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Abstract - Coronary Heart Diseases (CHDs) are the leading cause of death, with a fatal rate increasing every year. Around 80 

million females and 110 million males are afflicted by this illness across the globe. Early detection and accurate risk assessment 

of this disease remain crucial in medical research. Many researchers are working on this issue, but it remains challenging. The 

proposed technique predicts CHD by applying the Modified Minority Synthetic Over-Sampling Technique (MMSOT) to balance 

the data and classify the data using the Random Forest (RF) and grid search techniques to fine-tune the hyperparameters. The 

proposed technique achieved decent performance on the Comprehensive Heart Disease Dataset, with an accuracy of 94.84%, 

ROC-AUC of 98.15%, Sensitivity of 95.00%, Specificity of 94.70%, F1-Score of 94.61%, Precision (PPV) of 94.21%, and NPV 

of 95.42%, outperforming baseline models. 

Keywords - Coronary Heart Disease, Grid Search, Machine Learning Techniques, MMSOT, SMOTE. 

1. Introduction 
Coronary Heart Disease (CHD) is a heart disease that 

damages the heart and eventually results in death [1]. It occurs 

due to the buildup of fatty substances in the arteries when the 

coronary arteries struggle to supply oxygen-rich blood to the 

heart [2]. Even in developed countries like the United States, 

approximately 7 lakh people died due to this disease in 2022, 

which is almost 1 in 5 deaths [3, 4].  

This disease affects over 110 million men and 80 million 

women globally [5]. Early detection and accurate risk 

assessment remain crucial in lessening the devasting effects of 

CHD despite advancements in medical research and 

therapeutic approaches [6]. Traditional healthcare systems 

have struggled to satisfy patient needs, resulting in unreliable 

outcomes. Modern medical equipment and technologies 

include internal applications for gathering and storing precise 

patient data, which serves as a valuable resource for Machine 

Learning (ML) predictions [7]. ML algorithms have the 

adaptability to extract knowledge from data for CHD risk 

assessment. These algorithms can unveil intricate 

relationships that underpin CHD risk by ingesting and 

processing a myriad of patient attributes, including 

demographics, medical history, laboratory results, and 

imaging data. 

1.1. Background on SMOTE 

In the existing approach, SMOTE initially chooses a 

sample of the dataset's minority classes at random. Next, it 

looks through the other minority class samples to identify the 

minority sample's k-nearest neighbors (Using Euclidean 

distance). One neighbor is chosen at random from these k-

nearest neighbors. Lastly, SMOTE interpolates between the 

randomly selected minority sample and its neighbor to create 

a synthetic sample. Usually, a point is randomly selected along 

the line connecting the two samples to interpolate. The 

interpolation formula is: 

𝑋𝑛𝑒𝑤 = 𝑋𝑜𝑙𝑑𝑀𝑖𝑛 + 𝑟 ∗ (𝑋𝑛 − 𝑋𝑜𝑙𝑑𝑀𝑖𝑛) (1) 

Xnew is the new synthetic sample, XoldMin is the existing 

minority sample, r is any random factor, and Xn is the 

randomly selected neighbor. The main problem in SMOTE is 

that if the initially chosen minority sample is located in a 

region heavily dominated by majority-class samples, there's a 

high chance that the synthetic sample generated from this 

point could still lie close to or within the majority-class's 

decision boundary. As a result, during the testing process, the 

model might incorrectly predict this synthetic sample as part 

of the majority class, leading to misclassification. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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1.2. Research Gap 

Many researchers have worked on detecting the risk of 

CHD by applying ML algorithms, but they still need methods 

to improve accuracy by utilizing balanced datasets. 

1.3. Problem Statement 

CHD is a global health issue affecting millions of people. 

Accurate CHD risk assessment is critical to finding high-risk 

patients and establishing preventative measures. Developing 

techniques to balance the data for applying ML algorithms in 

assessing CHD risk is a major problem. 

1.4. Objectives 

 To develop a classification model to predict CHD. 

 A new data balancing technique will be applied to make 

the model efficient. 

 To improve the accuracy of the existing models. 

1.5. Novel Contributions of the Work 

 Integrate the Modified Minority Synthetic Oversampling 

(MMSOT) technique to balance the data predicting CHD.  

 Applied Random Forest model along with Grid Search for 

hyperparameter tuning. 

 Achieved high accuracy in CHD risk assessment. 

The entire study is described in 5 segments. Segment 2 

provides a detailed literature review, and Segment 3 describes 

the methodology; Segment 4 discusses data and result 

analysis. Finally, Segment 5 concludes by reviewing the 

findings made during the investigation and providing 

suggestions for future studies. 

2. Literature Review 
This section provides an overview of various approaches 

that use different models to predict cardiac disease. ML [8] 

has transformed healthcare by allowing data-driven decision-

making, boosting diagnosis accuracy, and optimizing 

treatment strategies. In cardiovascular disorders, notably 

Coronary Heart Disease (CHD), ML models may evaluate 

massive volumes of patient data, including medical history, 

lifestyle factors, and clinical test results, to uncover patterns 

that traditional methods may miss. ML improves patient 

outcomes by facilitating early diagnosis, risk assessment, and 

individualized treatment planning through the use of 

predictive analytics. RF, LR, and SVM algorithms were 

employed to classify CHD. The dataset underwent balancing 

using the SMOTE method, and hyperparameter optimization 

was carried out through 10-fold cross-validation. The 

accuracy achieved by the RF model was reported as 0.929 [9]. 

Accuracy is still a problem. Four classification algorithms in 

ML, namely DT, RF, SVM, and Neural Networks (NN) were 

employed for CHD prediction. SVM achieved an AUC of 0.75 

[10]. A grid search was proposed to fine-tune the 

hyperparameters in combination with statistical methods [11] 

for risk assessment of CHD.  

The SMOTE technique is used to balance the data, 

followed by the feature selection technique, and finally, the 

application of ML techniques. LR achieved better accuracy 

among multiple classification models. However, the technique 

did not handle missing values and outliers. Therefore, 

preprocessing is necessary to improve the performance of any 

classifier [12]. 

NB, SVM, and DT were applied for the analysis of CHD 

with 10-fold cross-validation. The empirical study utilized the 

South African Heart Disease dataset, containing 462 

instances, although small. Among NB, SVM, and DT, Naïve 

Bayes exhibited better performance in detecting CHD [13]. A 

comparative study on predicting CHD was conducted using 

various classification techniques. The recursive feature 

elimination method and the Boruta method were employed for 

feature selection, while ROS and SMOTE techniques were 

utilized to balance the data. Various classification techniques 

were applied, with the RF Classifier notably achieving an 

accuracy of 88% [14]. Resampling techniques, including ROS 

and SMOTE, were applied in conjunction with various 

classification methods. Notably, the findings revealed that 

using SMOTE with the Naïve Bayes classifier yielded a higher 

accuracy of 81.73%, surpassing the 81.12% accuracy 

achieved with ROS and Naïve Bayes [15]. 

KNN, SVM, DT, LR, and RF techniques were applied to 

predict CHD. Results reveal the RF algorithm's superiority, 

with an 85.05% accuracy, highlighting its potential to enhance 

cardiovascular risk assessment [16]. The SMOTE resampling 

technique was introduced to improve classifier performance 

and sensitivity in detecting minority classes. Using this 

strategy, the minority class is over-sampled while the majority 

class is under-sampled [17]. MLP with grid search for 

hyperparameter tuning achieved the highest accuracy 

(87.28%) for the prediction of CHD [18].  

A comparative study for predicting CHD was conducted, 

employing various ML classification techniques, including 

KNN, NB, DT, and RF [19]. This study utilized the 

“Cleveland dataset”, comprising 303 samples and 76 features, 

with only 14 features considered for evaluation. KNN 

demonstrated superior performance among all classification 

techniques, achieving an accuracy of 90.79%. While this 

performance is notable for a balanced dataset, the model's 

effectiveness on an imbalanced dataset remains uncertain. 

A Hard Voting (HV) classifier comprising LR, RF, MLP, 

and GNB classifiers was introduced. Before this, the dataset 

was balanced using Random Under Sampling (RUS), and their 

proposed technique later achieved improved accuracy at 

88.42% [20]. A comparative study was proposed to predict 

coronary Artery Disease (CAD) using the SVM and ANN 

models. In their investigation, SVM demonstrated strong 

performance in predicting CAD [21]. A Logistic Regression 

model for cardiac disease classification was proposed. The 
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UCI dataset was used for their study. The model's 

performance was enhanced through meticulous pre-

processing, including data cleaning, handling missing values, 

and selecting features based on positive correlations. Various 

training-testing ratios were explored, with the 90:10 split 

achieving 87.10% accuracy [22]. RF and Extra Trees 

Classifier (ETC) are the “Tree-based models” that have shown 

superior predictive accuracy, particularly when combined 

with feature ranking methods. The Synthetic Minority 

Oversampling Technique (SMOTE) effectively addresses 

class imbalance, enhancing model performance. Significant 

predictors identified include age, creatinine levels, and 

ejection fraction, which improve classification outcomes. This 

study builds on these findings by evaluating multiple 

classifiers, including Logistic Regression and Adaptive 

Boosting, with results demonstrating that ETC achieves the 

highest accuracy of 0.9262 [23]. Some of the challenges 

encountered in these works include class imbalance problems, 

difficulty in achieving satisfactory accuracy levels, and a 

notable absence of representation for key performance 

measures. The summary of the literature is presented in Table 

1. 

Table 1. Overview of literature 

Citation Year Technique 
Performance 

Measures (in %) 
Dataset Remarks 

[18] 2023 
RF, DT, MLP, XGB 

with cross-validation 

Out of all, MLP 

performed well 

Accuracy = 87.28 

“Kaggle cardiovascular 

disease dataset” 

Accuracy is the 

problem 

[9] 2022 

RF, LR, and SVM with 

3-repeats, 10-fold 

repeated cross-validation 

+ SMOTE resampling 

Out of all, RF 

performed well 

Accuracy = 92.9 

“Heart Disease Dataset” 

from the IEEE-Data Port 

database 

Accuracy is the 

problem 

[22] 2022 Feature Selection + LR 

Accuracy = 87.1 

(when splitting ratio 

is 90:10) 

“UCI dataset” 

Need to improve 

accuracy at 80:20 

splitting ratio. 

[11] 2022 
RF with a grid search 

model 

Recall = 90.2 

F1-score = 82.1 

Accuracy = 86 

“Framingham Heart Study 

dataset” from Kaggle 

Dataset is 

unbalanced 

[16] 2021 

KNN, SVM, DT, LR, 

and RF with 10-fold 

cross-validation 

Out of all, RF 

performed well 

Accuracy = 85.05 

“Framingham Heart Study 

dataset” from the Kaggle 

Dataset is 

unbalanced, but no 

resampling 

technique is used 

[23] 2021 ETC with SMOTE 

Accuracy=0.9262 

Precision=0.93 

Recall=0.93 

F1-Score=0.93 

“Heart-failure-clinical-

records-dataset” from the 

UCI ML repository 

Small dataset is 

used for 

experiments 

[19] 2020 KNN, NB, DT, and RF 

Out of all, KNN 

performed well 

Accuracy = 90.79 

“Cleveland dataset” from 

UCI machine learning 

repository 

Accuracy and data 

balancing are the 

problems. 

[10] 2019 DT, RF, SVM, and NN 

Out of all, SVM 

performed well 

Accuracy = 75 

“Framingham Heart Study 

dataset” from the Kaggle 

repository 

Accuracy is the 

problem. 

[21] 2019 SVM and ANN model 

SVM performed 

well 

PPV = 87.1 

Sensitivity=92.32 

Specificity=74.42 

The research sample was 

collected from AJA 

University of Medical 

Sciences affiliated colleges. 

Accuracy is the 

problem. 

3. Methodology 
CHD is a prevalent and life-threatening cardiovascular 

condition that demands effective risk prediction and early 

intervention. Traditional risk assessment methods based on 

clinical and demographic data may have limitations regarding 

accuracy and predictive power. This work uses ML and data 

balance techniques to create a reliable and accurate model for 

CHD risk prediction. This model aims to optimize the model's 

hyperparameters and evaluate its performance using cross-

validation techniques. Data collection, data preprocessing, 

model design and evaluation are the crucial steps. 
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3.1. Data Collection and Cleaning 

The suggested model uses 3 datasets, including 

Framingham, Z-Alizadeh Sani, and Comprehensive Heart 

Disease Dataset (Statlog + Cleveland + Hungary dataset).  

These datasets were obtained from Kaggle, and feature 

engineering was performed to choose the best features.  

3.1.1. Framingham Dataset 

The “Framingham dataset” [24] comprises 4,240 records 

and 16 features. Among the 4,240 records, 644 are labeled as 

"yes", while the remaining 3,596 are labeled as "no." For 

simplicity, the dataset's features are categorized as “Nominal”, 

abbreviated as "Nom", and “Continuous” abbreviated as 

"Contn" in Table 2.  

The Framingham dataset has been extensively used in 

heart disease research and provides well-established features, 

making it a suitable choice for detailed analysis in this study. 

Hence, its attributes are explicitly designated, while the other 

datasets are not elaborated. However, this study conducted 

research on all three datasets. 

Table 2. Framingham data set attributes description 

 Variable Name Description Type of Attribute 

Demographic 
“MALE” Male or Female (0 or 1) Nom 

“AGE” Patient's age (32 to 70 yrs) Contn 

Behavioral 

“EDUCATION” Education Levels: 1 to 4 Contn 

“CURRENTSMOKER” Whether the patient smokes now or not (0 or 1) Nom 

“CIGSPERDAY” Daily intake of cigarettes (0 to 70 per day) Contn 

Medical 

History 

“BPMEDS” 
Whether the patient took blood pressure medicine or 

not (0 or 1) 
Nom 

“PREVALENTSTROKE” 1, if the patient had a stroke in the past, otherwise it is 0 Nom 

“PREVALENTHYP” High blood pressure 1, otherwise 0 Nom 

“DIABETES” Diabetic patient 1, otherwise 0 Nom 

“TOTCHOL” Total cholesterol measurement in mg/dL Contn 

“SYSBP” Systolic blood pressure, mmHg Contn 

“DIABP” Diastolic blood pressure, mmHg Contn 

“BMI” Body Mass Index, weight(kg)/height(m2) Contn 

“HEARTRATE” Heart rate measured in beats/minute Contn 

“GLUCOSE” Glucose level, mg/dL Contn 

Target 

Variable 
“TENYEARCHD” 

Is there a 10-year risk of CHD for the patient? (1 

represent yes, 0 means no) 
Nom 

3.1.2. Z-Alizadeh Sani Dataset 

The “Z-Alizadeh Sani dataset” [25] contains 303 samples 

and 55 features. The class label "Cath" has two possible 

values: "Cad" and "Normal". 

3.1.3. Comprehensive Heart Disease Dataset 

The “Comprehensive Heart Disease dataset” [26] 

comprises 1,190 records and 12 features.  

The class label "target" is binary, with values "1" 

indicating CHD (629 entries) and "0" indicating non-CHD 

(561 entries). 

3.2. Data Preprocessing 

After loading the data, preprocessing begins by 

identifying missing values in the dataset, as shown in Figure 

1.

 

 

 

 

 

 

 

 
 
 

Fig 1. Missing values in framingham dataset 
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Here, three different approaches are considered, are 

 Mean/Median Imputation: Use the mean or median of the 

relevant feature to replace missing numerical values. 

Despite being a straightforward imputation technique, it 

could not be appropriate if the missing values are not 

MCAR. 

 Mode Imputation: Replace missing categorical data with 

the mode. 

 Remove Rows: Consider eliminating certain rows if the 

dataset's total number of missing values is relatively low. 

However, use this approach cautiously, which may result 

in data loss. 

Based on the above analysis, only glucose has the highest 

number of missing values, almost ~10%, so mean imputation 

is used to fill in missing values. The remaining records have a 

very low percentage of values, so the remaining records are 

removed. Table 3 describes the statistical properties of the 

attributes in the dataset. In the following table, the attributes 

“male, age, education, current smoker, cigsPerDay, BPMeds, 

prevalentStroke, prevalentHyp, diabetes, totChol, sysBP, 

diaBP, BMI, heartRate, glucose, TenYearCHD” are renamed 

as “Gn, Age, Edu, CS, CPD, BPM, PStr, PHyp, Diab, TCh, 

sysBP, DBP, BMI, HR, Gl, and TYCHD” respectively.

Table 3. Statistical properties of the data 

Index Gn Age Edu CS CPD BPM PStr PHyp Diab TCh sysBP DBP BMI HR Gl TYCHD 

Count 3989 3989 3989 3989 3989 3989 3989 3989 3989 3989 3989 3989 3989 3989 3989 3989 

Mean 0.43 49.47 1.98 0.49 9.02 0.03 0.01 0.31 0.03 236.6 132.23 82.87 25.77 75.87 81.86 0.15 

Std 0.5 8.53 1.02 0.5 11.92 0.17 0.07 0.46 0.16 44.02 21.94 11.88 4.08 12.09 22.89 0.36 

Min 0 32 1 0 0 0 0 0 0 113 83.5 48 15.54 44 40 0 

25% 0 42 1 0 0 0 0 0 0 206 117 75 23.06 68 72 0 

50% 0 49 2 0 0 0 0 0 0 234 128 82 25.38 75 79 0 

75% 1 56 3 1 20 0 0 1 0 263 143.5 89.5 27.99 83 85 0 

Max 1 70 4 1 70 1 1 1 1 600 295 142.5 56.8 143 394 1 
 

All these datasets are split into two sections: a test portion 

and a training component. While the training phase creates a 

model that predicts heart disease, the test dataset portion is 

used to evaluate classifiers, as shown in Figure 2. Data 

cleansing involves addressing missing values in the dataset by 

filling them with the mean value for numerical features. There 

are no missing values in categorical features. Subsequently, 

Exploratory Data Analysis (EDA) is applied for data 

visualization to observe the correlation among all features. 

The feature matrix undergoes standardization using a standard 

scalar; the resulting mean and standard deviation are 

approximately 0 and 1, respectively. 

3.3. Proposed Model 

The overall architecture consists of MMSOT, Grid 

Search, and Random classifier, as shown in Figure 3.  

The MMSOT technique is employed to balance the data 

described in Algorithm 1. The MMSOT technique is used to 

generate synthetic samples from existing minority samples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Modified minority synthetic oversampling technique (Let K=3) 
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The value of k is determined based on 1% to 10% of the 

minority sample count, depending on the percentage of 

minority samples in the dataset. In the context of the MMSOT 

algorithm, the k value was selected using grid search to 

optimize model performance. This approach allowed for the 

systematic evaluation of various k values, ensuring that the 

chosen parameter effectively contributed to improving 

classification outcomes. The algorithm finds the k nearest 

neighbors for a randomly selected minority sample and 

generates a synthetic sample by taking the average of these k 

neighbors. This technique generates synthetic samples by 

averaging the k nearest neighbors. Figure 3 describes how this 

technique is applied to the given dataset. 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 
 
 

 

 
 

 
 

Fig. 3 The architecture of the proposed model (RF + MMSOT) 

 After that, Grid Search is employed to find the best hyper-parameters, and then a Random Forest classifier is applied. The 

pseudo-code/algorithm 2 for the proposed model is described below. The following algorithm describes how MMSOT is applied 

to balance the unbalanced data. 

Algorithm 1: MMSOT 

1. Input: 

a. X_minority: Array of minority class samples, where each sample is represented as a vector xi. 

b. k_neighbors: Number of nearest neighbors to consider. 

2. Initialization: 

a. Create a NearestNeighbors model with k_neighbors +  1 neighbors. 

3. Fit the Model: 

a. Fit the 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 model on 𝑋_𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦. 

4. Randomly Select Sample: 

a. Randomly select an index i from the range [0, len(X_minority) − 1]. 
b. Retrieve the selected sample Xi from X_minority. 

5. Find Nearest Neighbors: 

a. Use the NearestNeighbors model to find the k_neighbors + 1 nearest neighbors of xi. 
b. Extract the indices of these nearest neighbors, excluding i. Let these indices be{j1, j2, … , jk_neighbors}. 

6. Generate Synthetic Sample by Averaging the Nearest Neighbors: 

a. Retrieve the nearest neighbors {xj1
, xj2

, … , xjk_neighbors
} from X_minority. 

b. Compute the average vector of these nearest neighbors:  

𝑥𝑛𝑒𝑤 =
1

𝑘_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
∑ 𝑥𝑗𝑖

𝑘_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑖=1

 

7. Round the values of 𝑥𝑛𝑒𝑤Convert it to integer type if needed, and then return the new synthetic sample. 

Framingham Heart 

Disease Dat 
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The following algorithm outlines the application of RF with the grid search algorithm. 

Pseudo Code/Algorithm 2: Proposed Model (RF + MMSOT) 

1. Load the dataset 

2. Use standard scalar to standardize features 

3. Apply MMSOT to balance the class distribution 

4. Split the data in an 80:20 ratio between training and test sets. 

5. best_n_estimators, best_max_depth = Grid_search (estimator, param_grid, scoring, cv)  

6. Create an RF classifier with obtained hyperparameters in step 5 

 

var=1 

while var<= best_n_estimators do 

 At each node, randomly pick Z features from the total number of D features. Usually, the Z value √𝐷 is 

taken. 

𝐷 = |{𝑥1, 𝑥2, 𝑥3, … . , 𝑥𝑛}| 

Where 𝑥1, 𝑥2, 𝑥3, … . 𝑥𝑛 are features in the dataset. D is the cardinality of the set containing the 

individual features in the dataset. 

  depth=1 

  while depth != max_depth do 

 Compute the Gini index for each potential split using Z selected subset of features based on the following 

Equation  

𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 = 1 − ∑(𝑃𝑖)2

𝑛

𝑖=1

 

 Choose the split with the lowest Gini Index 

 Increase the depth, 𝑑𝑒𝑝𝑡ℎ = 𝑑𝑒𝑝𝑡ℎ + 1 

  end while 

𝑣𝑎𝑟 = 𝑣𝑎𝑟 + 1 

 end while 

7. Repeat the above process to create a forest of k-trees 

8. For each tree in the forest of k-trees, find the output and use the majority voting method to predict the final 

result using the following formula 

𝐻(𝑥) = arg max
𝑦

∑ 𝐼(

𝑘

𝑖=1

ℎ𝑖(𝑥) = 𝑌) 

Where H(x) is the final predicted class, k is the number of trees in a random forest, and ℎ𝑖(𝑥) is the predicted 

class by the ith tree.  𝐼(ℎ𝑖(𝑥) = 𝑌) is an indicator function that equals 1 if ℎ𝑖(𝑥) = 𝑌 and 0 otherwise. 

𝐼(ℎ𝑖(𝑥) = 𝑌) = {
1 𝑖𝑓 ℎ𝑖(𝑥) = 𝑌
0    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

9. Make predictions on test data. 

10. Calculate various performance metrics. 

This model uses the Gini index as an impurity measure to 

construct a tree. Mathematically, it could be written as shown 

in Equation (2). 

𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 = 1 − ∑ (𝑃𝑖)2𝑛
𝑖=1  (2) 

If the predicted class is binary, with values such as YES 

(Y) or NO (N), the Gini Index is rewritten, as shown in 

Equation (3). 

𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 = 1 − [(𝑃𝑌)2+(𝑃𝑁)2] (3) 

Where 𝑃𝑌 and 𝑃𝑁 are probabilities of YES and NO 

classes, respectively. 

4. Experimental Setup and Result Analysis 

4.1. Experimental Setup 

Google Colab was used to conduct the analysis. For data 

manipulation, analysis, and visualization, the work made 

substantial use of Python tools such as scikit-learn (sklearn), 

Matplotlib, Pandas, and NumPy. Sklearn library is used for 

data preprocessing, model training, and evaluation; the 

Matplotlib library is used for creating visualizations such as 

plots and charts; Panda’s library is used for data manipulation 

and analysis; and NumPy library is used for numerical 

operations.  
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The investigation was carried out on a machine running 

Windows 11 with an Intel (R) CoreTM i3-8130U CPU 

running at 2.21 GHz and 8GB of RAM. All 3 datasets are 

imbalanced; the study addresses this issue by applying the 

MMSOT technique, oversampling the minority class to 

achieve a balanced distribution. After preprocessing and 

addressing the imbalance, the dataset is partitioned into two 

segments, allocating 80% for training and 20% for testing 

purposes. The next step involves applying different classifiers, 

coupled with grid search, to perform hyperparameter tuning 

and achieve optimal classification. 

4.1.1. Correlation Matrix 

A correlation among attributes would be described with 

the help of the heatmap shown in Figure 4. Utilizing a heatmap 

facilitates the visualization of the influence of independent 

features on dependent variables. Furthermore, it aids in 

identifying the features most strongly associated with the 

dependent variable. Later, analyzed the Framingham dataset 

concerning numerical attributes and observed the strength of 

the relationship between these features and the class label 

based on bar plot and KDE (Kernel Density Estimation) plot 

statistical visualizations as shown in Figure 5.  

Next, analyzed the Framingham dataset with categorical 

features and observed the relationship between categorical 

variables and the binary variable TenYearCHD in the dataset. 

This statistical analysis shows two plots for each categorical 

variable; the first plot shows a Pie chart, calculates the counts 

and proportion of unique values, and visualizes the 

distribution of unique values within the categorical variable.  
 

The other plot represents a Stacked bar chart for 

TenYearCHD, which is a count plot that stacks bars to show 

the distribution of TenYearCHD within each categorical 

variable such as education, male, currentSmoker, BPMeds, 

prevalentStroke, prevalentHyp and diabetes are shown in the 

following Figure 6 to Figure 12.

 
Fig. 4 A correlation matrix with Heatmap 
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Fig. 5 Numerical features vs Target distribution (TenYearCHD) 

 

 

 

 

0                                               1                                              30                                40                                50                                60                               70 
TenYearCHD 

40 
20 A

g
e 

0 

TenYearCHD 48.7 
0 
1 

54.2 

D
en

si
ty
 

Age 

Numerical Features Vs Target Distribution 

0                                               1                            -0.50              -0.25                 0.00                0.25                 0.50                 0.75                1.00                 1.25                1.50 
TenYearCHD 

0.4 
0.2 

P
re

v
al

en
tH

y
p
 

0 

TenYearCHD 
0.275 0 

1 

0.504 

D
en

si
ty
 

PrevalentHyp 

0                                               1                                         100                         200                         300                          400                         500                          600 
TenYearCHD 

200 
100 

to
tC

h
o
l 

0 

TenYearCHD 235 

0 
1 

245 

D
en

si
ty
 

totChol 

0                                               1                            10                                 20                               30                                40                                50                               60 
TenYearCHD 

20 
10 B

M
I 

0 

TenYearCHD 25.6 
0 
1 

26.5 

D
en

si
ty
 

BMI 

0                                               1                                           40                          60                          80                          100                        120                        140 
TenYearCHD 

50 

d
ia

B
P
 

0 

TenYearCHD 82.1 
0 
1 

87.1 

D
en

si
ty
 

diaBP 

0                                               1                              50                             100                            150                           200                             250                           300 
TenYearCHD 

100 

sy
sB

P
 

0 

TenYearCHD 130 
0 
1 

144 

D
en

si
ty
 

sysBP 

0                                               1                                                            0                                    20                                     40                                   60                                     80  
TenYearCHD 

10 
5 

C
ig

sp
er

D
ay
 

0 

TenYearCHD 8.73 
0 
1 

10.7 

D
en

si
ty
 

CigsperDay 

0                                               1                                   0                                     100                                    200                                   300                                   400 
TenYearCHD 

50 

G
lu

co
se
 

0 

TenYearCHD 80.7 
0 
1 

88.3 

D
en

si
ty
 

Glucose 

0                                               1                                         40                           60                           80                          100                         120                        140 
TenYearCHD 

50 

H
ea

rt
R

at
e
 

0 

TenYearCHD 
75.8 

0 
1 

76.5 

D
en

si
ty
 

HeartRate 



M. Janaki Ramudu et al. / IJEEE, 12(3), 100-113, 2025 

 

109 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

 
Fig. 6 Analysis of education vs TenYearCHD 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Analysis of gender vs TenYearCHD 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 8 Analysis of smoking vs TenYearCHD 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Analysis of BPMeds vs TenYearCHD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10 Analysis of PrevalentStroke vs TenYearCHD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 11 Analysis of PrevalentHyp vs TenYearCHD 
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Fig. 12 Analysis of diabetes vs TenYearCHD 

4.2. Performance Measures 

This section evaluates the efficacy of ML classifiers 

through a range of assessment metrics, such as accuracy, ROC 

AUC, recall, specificity, PPV, NPV, and F1-score. Evaluate 

the performance of various classifiers with the help of various 

performance measures. 

Accuracy: It is the percentage of accurately predicted 

cases-both TP and TN-out of all the instances in the dataset, 

which is known as accuracy. Accuracy in mathematical terms 

is represented as shown in Equation (4): 

Accuracy =
Number of Correct Predictions (TP+TN)

Total Number of Predictions (TP+TN+FP+FN)
 (4) 

 Where TP means the total count of instances where the 

classifier correctly identifies something as positive when 

it is positive.  

 TN means the total count of instances where the classifier 

correctly identifies something as negative when it is 

negative.  

 FP means the total count of instances where the classifier 

correctly identifies something as positive when it is 

negative.  

 FN means the total count of instances where the classifier 

correctly identifies something as negative when it is 

positive. 

Sensitivity: It evaluates how well a classification model 

can identify positive occurrences among all the dataset's actual 

positive cases. Mathematically, it could be represented as 

Equation (5). 

Sensitivity =
TP

TP+FN
 (5) 

Specificity: It evaluates how well a classification model 

can identify negative occurrences among all the dataset's 

actual negative cases. It could be represented in Equation (6). 

Specificity =
TN

TN+FP
 (6) 

PPV (Precision): This metric assesses how well the 

classification model predicts positive outcomes. It could be 

represented in Equation (7). 

Precision =
TP

TP+FP
 (7) 

NPV: It evaluates a classification model's ability to make 

accurate negative predictions. It could be represented in 

Equation (8). 

NPV =
TN

TN+FN
 (8) 

F1-Score: It is a harmonic mean of obtained precision and 

recall. It could be represented in Equation (9). 

F1 − Score = 2 ∗
Precision∗Recall

Precision+Recall
 (9) 

4.3. Result Analysis with Dynamic k Value 

Based on the results obtained from different ML 

classifiers, the proposed model demonstrated superior 

performance, yielding higher accuracy, ROC AUC, 

sensitivity, specificity, F1-score, PPV, and NPV compared to 

all other classifiers. The following Table 4 shows the 

performance of the proposed model.  

For different values of K in MMSOT, the following 

metrics were given: When K = 1%, it means the k value is 1% 

of total minority samples; at this stage, it gave better 

performance. Where k is essentially a dynamically adjusted 

parameter that changes based on the size of the minority class. 

In general, the default value for K in SMOTE resampling is 5. 

Table 4. Analysis of MMSOT at various K values applied to the framingham dataset 

K value Test Accu ROC AUC Sen Spe PPV NPV F1-score 

K=1% 0.934 0.976 0.907 0.961 0.960 0.910 0.933 

K=2% 0.912 0.971 0.865 0.961 0.958 0.874 0.909 

K=3% 0.914 0.968 0.860 0.969 0.966 0.871 0.909 

K=4% 0.905 0.965 0.853 0.958 0.954 0.864 0.901 
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K=5% 0.912 0.967 0.866 0.960 0.957 0.875 0.909 

K=6% 0.914 0.963 0.865 0.966 0.963 0.874 0.911 

K=7% 0.913 0.964 0.857 0.970 0.967 0.869 0.909 

K=8% 0.911 0.961 0.851 0.972 0.969 0.865 0.906 

K=9% 0.918 0.967 0.866 0.970 0.967 0.876 0.914 

K=10% 0.910 0.960 0.852 0.970 0.967 0.865 0.906 

4.4. Comparison of Existing Approaches with Proposed Work 
Table 5. Comparison of existing approaches with proposed work on framingham dataset 

Technique/ Model 

Performance Metrics 

Test 

Accuracy 

ROC 

AUC 

Sensitivity/ 

Recall 
Specificity 

F1-

Score 

PPV / 

Precision 
NPV 

LR [22] 86.72 73,15 86.87 66.67 92.85 99.71 3.7 

MLP [18] 85.83 64.95 86.47 14.29 92.37 99.13 0.93 

KNN [19] 83.33 50.92 95.36 6.48 30.21 17.95 86.69 

SVM [10] 86.46 47.64 - 100 - - 86.47 

ETC + SMOTE [23] 73.64 82.71 72.20 75.11 73.48 74.81 72.52 

RF + SMOTE + Grid Search [9] 89.10 95.97 91.99 86.14 89.52 87.17 91.31 

Proposed Model  

(RF + MMSOT + Grid Search) 
93.37 97.58 90.68 96.13 93.26 95.99 90.97 

Table 6. Comparison of existing approaches with proposed work on Comprehensive Heart Disease dataset (Statlog + Cleveland + Hungary dataset) 

Technique/ Model 

Performance Metrics 

Test 

Accuracy 

ROC 

AUC 

Sensitivity/ 

Recall 
Specificity 

F1-

Score 

PPV / 

Precision 
NPV 

LR [22] 79.83 89.16 81.40 77.98 81.40 81.40 77.98 

MLP [18] 87.82 94.96 89.15 86.23 88.80 88.46 87.03 

KNN [19] 86.55 92.56 89.15 83.49 87.79 86.47 86.67 

SVM [10] 80.25 88.20 82.17 77.98 81.85 81.54 78.70 

ETC + SMOTE [23] 87.39 95.18 89.15 85.32 88.46 87.79 86.92 

RF + SMOTE + Grid Search [9] 93.65 97.59 94.17 93.18 93.39 92.62 94.62 

Proposed Model  

(RF + MMSOT + Grid Search) 
94.84 98.15 95.00 94.70 94.61 94.21 95.42 

Table 7. Comparison of existing approaches with proposed work on the Z-Alizadeh Sani dataset 

Technique/ Model 

Performance Metrics 

Test 

Accuracy 

ROC 

AUC 

Sensitivity/ 

Recall 
Specificity 

F1-

Score 

PPV / 

Precision 
NPV 

LR [22] 85.25 92.65 93.18 64.71 90.11 87.23 78.57 

MLP [18] 86.89 90.78 93.18 70.59 91.11 89.13 80.00 

KNN [19] 81.97 86.30 88.64 64.71 87.64 86.67 68.75 

SVM [10] 85.25 91.84 90.90 70.59 89.89 88.89 75.00 

ETC + SMOTE [23] 89.66 97.30 88.37 90.90 89.41 90.48 88.89 

RF + SMOTE + Grid Search [9] 93.10 98.26 90.70 95.45 95.12 91.30 92.86 

Proposed Model 

(RF + MMSOT + Grid Search) 
94.84 98.15 95.00 94.70 94.21 95.42 94.61 

 

Figure 13 to Figure 15 show the ROC AUC comparison of baseline models with a proposed model on 3 different datasets. 
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Fig. 13 ROC AUC comparison of baseline models with the proposed 

model on framingham dataset 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 14 ROC AUC comparison of baseline models with the proposed 

model on statlog + Cleveland + Hungary comprehensive dataset 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15 ROC AUC comparison of baseline models with the proposed 

model on the Z-Alizadeh Sani dataset 

5. Conclusion and Future Scope 
CHD is one of the serious health problems and leading 

cause of most deaths. Early prediction of this disease is crucial 

to avail better treatment. The proposed model integrates 

MMSOT, RF and Grid Search techniques. The MMSOT 

technique provides better class balancing for the gathered 

data. The performance measures such as ROC AUC, accuracy, 

and other important metrics consistently showed superior 

results with the proposed model over the state-of-the-art. This 

result implies that MMSOT is one of the best competitive 

models among others, which improves the model’s ability to 

generalize the difficulties related to class imbalance. The 

proposed model can be deployed in the healthcare sector to 

provide early prediction of CHD. The present work is limited 

to 3 datasets and ML algorithms. In future, advanced deep-

learning techniques will be explored to enhance heart disease 

prediction further. IoT is a new emerging technology that 

controls and monitors data from remote areas. In the future, it 

can be integrated into IoT devices.
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