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Abstract - This research addresses the critical gap in pediatric prosthetics for children by developing an adaptive prosthetic arm 

tailored to children aged 7 to 14, a demographic often overlooked in prosthetic innovation. Rapid physical growth during this 

age requires frequent adjustment and more medical care. Because of the requirement for frequent adjustment, pediatric 

prosthetics are more complex than adult models. Existing solutions have disadvantages, such as difficulty adapting adult designs 

and lack of the ergonomic, functional, and psychological considerations required for children. This work introduces a novel 

prosthetic arm that integrates Artificial Intelligence (AI) and Deep Learning (DL) to enhance adaptability, control, and user 

experience. In the initial phase of the work, the existing models and their disadvantages were considered. Then, the new design 

is developed, which leverages biosensors and electromyographic (EMG) signals for intuitive gesture recognition, enabling tasks 

such as gripping, pinching, and twisting. After developing the design, a 3D printer was used to create the arm. The arm was 

tested in real-time, and the AI developed with the prosthetic arm showed a promising overall accuracy of 91%. This shows the 

design and other components’ accuracy and that the proposed arm design can be implemented for pediatric prosthetics.  

Keywords - Prosthetics, Artificial Intelligence, Machine Learning, Pediatric healthcare, AI algorithms, Oman vision 2040

1. Introduction 
Children between the ages of 7 and 14 with physical 

impairments often face unique challenges when using 

prosthetic limbs. Children’s rapid growth requires frequent 

adjustments, making prosthetics more complex than those 

designed for adults. Children’s prosthetics, however, lack 

specialised designs that meet their physical and psychological 

needs due to a lack of research and development. This research 

aims to address that gap by introducing a prosthetic arm 

specifically designed to meet the needs and requirements of 

people in this age group.  

Despite the advances in prosthetic technology, these 

innovations have primarily focused on adult users, with little 

focus on the unique needs of children. Due to a lack of modern 

medical technology in Oman, many families seek solutions 

abroad. As Oman advances toward its Vision 2040, which 

emphasises innovation and accessibility in healthcare, 

addressing this gap is critical. This project integrates Artificial 

Intelligence and Machine Learning to develop a prosthetic arm 

that meets the unmet needs of pediatric users. The lack of 

adequate research and development in pediatric prosthetics 

has led to a scarcity of prosthetic solutions specifically 

designed for children. Most available prosthetic arms are 

adaptations of adult models, which fail to address young users’ 

unique ergonomic, functional, and psychological needs, 

especially for long-term usage. This gap in research and 

design results in poor functionality, limited comfort, and 

reduced satisfaction. This project focuses on designing, 

fabricating, and testing an AI-enhanced prosthetic arm for 

children. Moreover, the research explores integrating 

advanced technologies, such as biosensors and AI algorithms, 

to improve prosthetic arms’ functionality, adaptability, and 

user experience. Testing will ensure that the prototype meets 

high durability, comfort, and practicality standards for 

pediatric users.  

This work addresses the lack of research in pediatric 

prosthetics by designing a prosthetic arm that enhances 

children’s mobility, adaptability, and comfort. 

The key objectives include: 

 To Investigate the specific needs and challenges of 

pediatric prosthetic users. 

 To Develop a lightweight and durable prosthetic arm that 

meets functional requirements. 

http://www.internationaljournalssrg.org/
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 To Integrate AI and ML technologies for improved 

control and adaptability. 

 To Validate the prototype through simulated and real-

world testing. 

This project encounters challenges such as ensuring 

reliable biosensor signal detection, minimising response time 

and achieving cost-effective prosthetic arms. The project 

introduces innovations in pediatric prosthetics by 

incorporating AI and Deep learning technologies to enhance 

absolute time control.  

The design addresses ergonomic and functional gaps in 

existing prosthetics, offering a tailored solution for children’s 

needs. Environmentally, using 3D printing and recyclable 

materials minimises waste and promotes sustainability. 

Societally, the project fills a critical gap in healthcare by 

improving the quality of life for children with disabilities and 

reducing the financial burden on families in Oman by 

providing a cost-effective solution. This research aims to 

develop a novel AI-based prosthetic arm with deep learning 

techniques to improve adaptability, control, and ease of 

adoption by children. The block diagram of the proposed 

methodology is given in Figure 1.  
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Block diagram of the proposed methodology 

2. Literature Review 
In the study conducted by Satya Sree et al. (2021), an 

ensemble model combining Support Vector Machine (SVM) 

and K-Nearest Neighbors (KNN) algorithms was proposed to 

classify hand gestures using data from surface 

Electromyography (sEMG) sensors. The SVM classifier 

served dual roles: reducing the high-dimensional space of the 

dataset and performing primary gesture classification. 

Subsequently, the KNN algorithm was employed to refine and 

enhance the SVM predictions. The model demonstrated 

accuracy levels between 82.3% and 91.2%, contingent upon 

the varying aperture areas of the sensors. This ensemble model 

outperformed the standalone SVM and KNN algorithms in 

gesture recognition accuracy, underscoring the efficacy of 

combining multiple classifiers to improve robustness.         

However, a notable gap in this study is the limited 

exploration of generalisation across different demographic 

groups, a factor essential for broad clinical application. 

Additionally, the ensemble approach, while effective, may 

introduce latency and computational costs that could 

challenge real-time usability, an area unaddressed in the paper 

[1]. In the study by Avilés-Mendoza et al. (2023), the authors 

developed a prosthetic arm based on a five-layer Multilayer 

Perceptron (MLP) architecture, optimised for deployment on 

a microchip using TensorFlow Lite. This model achieved an 

accuracy of 78.67%, with a precision of 80.21% and a recall 

of 75.67%. Despite the promising metrics, the model exhibited 

limited generalizability, as it was not tested across varied test 

subjects, leading to questions about its effectiveness in 

broader, real-world applications. The authors acknowledged 

this limitation and proposed that future research explore Deep 

Neural Networks (DNNs) for better generalisation. 

Additionally, they highlighted the need for faster 

preprocessing times to facilitate real-time control.  

Therefore, the gap in this study centres on the model’s 

adaptability to various user groups and environments and the 

lack of optimisation for processing efficiency, which is crucial 

for real-time prosthetic applications [2]. Sattar, Kausar, and 

Usama (2021) investigate the development of an EMG-based 

control system for transhumeral prostheses using machine 

learning algorithms. By employing EMG signals from the 

biceps and triceps, the study classifies arm motions such as 

elbow flexion, extension, wrist pronation, and supination 

through advanced feature extraction methods like RMS, 
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MAV, and waveform length. Four machine learning 

classifiers-LDA, SVM, QDA, and KNN-were evaluated, with 

KNN achieving the highest accuracy (95.8% for healthy 

subjects and 68.1% for amputees) in offline testing. A Myo 

armband was utilised for signal acquisition, offering a non-

invasive and wearable solution. Real-time performance was 

tested on a 3D-printed prosthetic arm, demonstrating reliable 

control of two degrees of freedom. The study identifies 

challenges in accuracy variability among amputees, noise 

sensitivity, and limitations in real-time classification. Future 

work emphasises integrating additional gestures, enhancing 

algorithm robustness, and incorporating Brain-Computer 

Interface (BCI) technologies for more intuitive prosthetic 

control [3].  

In a recent study by Jethro Odeyemi et al. (2024), a 

simulated environment was designed to evaluate the 

performance of different reinforcement learning policies in 

controlling a prosthetic hand to detect and grasp nearby 

objects autonomously. The authors implemented three distinct 

policies, Soft Actor-Critic (SAC), Deep Q-Network (DQN), 

and Proximal Policy Optimization (PPO), which were trained 

over 1,000,000 timesteps in the simulation. The results 

indicated that the SAC algorithm significantly outperformed 

the other two, achieving a high success rate of 99.03% in 

approximately 200,000 timesteps. DQN and PPO yielded 

mean success rates of 60.21% and 82.14%, respectively [4].  

The study by Unanyan and Belov (2021) details 

developing a low-cost prosthetic hand controlled by 

electromyography (EMG) signals to assist individuals with 

arm amputations or musculoskeletal disabilities. The 

prosthetic hand uses an Arduino Nano microprocessor to 

interpret EMG signals, enabling real-time multi-finger 

control. Designed with 3D-printed ABS plastic for durability, 

the hand mimics natural grasping actions and delivers grip 

strength between 8 to 12 kg, comparable to a healthy hand, 

with minimal delays of 200 milliseconds. Experimental results 

demonstrated precise movements and superior force 

efficiency, outperforming traditional prosthetics using elastic 

materials. Priced at $150 lower than comparable devices, the 

design focuses on accessibility for people in developing 

regions. However, challenges remain in maintaining 

performance while reducing costs. Future enhancements will 

incorporate vibration-based tactile feedback, using sensors to 

simulate a sense of touch for improved functionality and user 

control [5].  

Amira J. Zalyaa et al. (2024) discuss the development of 

an AI-driven prosthetic arm that utilises neural networks to 

customise gestures based on electromyography (EMG) sensor 

inputs, focusing on creating a highly responsive system 

capable of mimicking natural hand functions. The study 

highlights using adaptive AI algorithms to accurately interpret 

EMG signals, allowing the prosthesis to adjust to user-specific 

needs in real time. Key advancements include seamless 

gesture recognition and the integration of responsive control 

mechanisms to improve user satisfaction. Despite its 

successes, the system faces challenges such as high 

computational demands and the need for efficient training to 

reduce latency. Future research addresses these limitations by 

refining the algorithms for real-time adaptability and 

minimising the overall computational load. This work 

underscores the potential of neural network-based prosthetics 

in advancing personalised and functional solutions for upper-

limb amputees [6].  

Ke Xu et al. (2016) introduce a prosthetic arm employing 

EMG pattern recognition algorithms implemented on a 

portable embedded system to achieve dexterous hand 

manipulation and stable control. The research focuses on 

overcoming user acceptance and functionality challenges, 

achieving significant improvements in real-time control of 

complex hand movements. The portable design incorporates 

lightweight materials and advanced signal processing to 

interpret EMG data effectively, making it more practical for 

everyday use. The study acknowledges limitations such as 

variability in EMG signal quality and processing delays, 

proposing future work to optimise algorithmic efficiency and 

expand the library of gestures the system can interpret. This 

research represents a significant leap in making EMG-

controlled prosthetics more accessible and functional for users 

[7].  

Jimmy Lu et al. (2022) present a convolutional neural 

network system for real-time bionic arm control to process 

EMG signals directly on an embedded device. The study 

emphasises the benefits of an on-device processing 

framework, which eliminates dependence on external 

computational systems, ensuring greater portability and user 

convenience. However, the system encounters challenges 

such as energy efficiency and computational constraints 

within embedded platforms, prompting future efforts to 

optimise performance for broader applicability [8].  

Murugan et al. (2024) describe the development of an 

innovative prosthetic arm controlled by non-invasive surface 

EMG signals, employing deep learning techniques to achieve 

precise and intuitive hand movements. The system 

significantly improves user experience by incorporating 

advanced signal processing algorithms that enhance accuracy 

and responsiveness while maintaining a lightweight and 

portable design. Despite the advancements in the research, 

challenges exist, such as variability in signal consistency 

across users and the need for recalibration to maintain 

performance. Future research directions suggest developing 

more robust algorithms to handle signal variability and 

enhancing the system’s ability to perform complex tasks. This 

work demonstrates the transformative potential of EMG-

based prosthetics in improving the quality of life for 
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individuals with upper-limb amputations [9]. Fuentes-

Gonzalez et al. (2021) explore the application of artificial 

intelligence in controlling a 3D-printed prosthetic hand 

through EMG sensor data, focusing on enhancing adaptability 

and functionality. Key contributions include successfully 

implementing AI-driven controls and the system’s scalability 

for diverse users. Challenges such as the need for large 

training datasets and improving real-time adaptability are 

addressed, with future research aimed at expanding gesture 

recognition capabilities and refining system performance. 

This research highlights the synergy between artificial 

intelligence and additive manufacturing in revolutionising 

prosthetic technologies [10].  

Rialto Júnior et al. (2023) present a forearm prosthesis 

controlled by a Fiber Bragg Grating (FBG) sensor, which 

detects finger-induced deformations on the forearm. The 

system comprises a 3D-modeled prosthesis, MG995 servo 

motors, and a Raspberry Pi 3B+ microprocessor, using 

MATLAB for signal processing and Node-RED for control. 

FBG sensors enable wrist rotation and finger movements by 

mapping deformation signals to motor actions through linear 

equations. Experimental validation demonstrated a latency of 

140 milliseconds in response time, ensuring real-time 

functionality. Despite its promising outcomes, challenges 

include integrating computational hardware with optical 

interrogators. Future advancements aim to enhance FBG 

signal processing with advanced pattern recognition 

techniques, improving prosthetic responsiveness and 

adaptability to individual user needs [11].  

Gopal, Gesta, and Mohebbi (2022) provide a 

comprehensive study on EMG-based hand gesture recognition 

for assistive robots, benchmarking various machine learning 

and deep learning models. Utilising the NinaPro dataset, the 

study evaluates classifiers like KNN, SVM, LDA, Ensemble, 

ANN, and CNN on their ability to process EMG signals into 

gesture classifications. Results show that ensemble models 

and CNNs outperform others, achieving high accuracy and F1 

scores. Key findings include the influence of sliding window 

sizes on performance and the importance of time-domain 

features like Root Mean Square (RMS). Challenges include 

noisy EMG signals, variability in muscle activity, and 

generalisation across subjects. Future research will enhance 

real-time classification reliability and improve preprocessing 

for better generalisation [12].  

Zandigohar et al. (2024) explore the fusion of EMG and 

vision data for prosthetic hand control. Using Bayesian 

evidence fusion, the system combines eye-view video, gaze 

data, and dynamic EMG signals to enhance gesture 

recognition accuracy. Neural network-based classifiers for 

both EMG and vision were integrated, with the fusion model 

achieving superior robustness and precision during critical 

phases like reaching and grasping. Experiments demonstrated 

enhanced classification accuracy by combining modalities, 

outperforming individual classifiers. Challenges include 

reliance on sensor data, robustness limitations, and poor 

performance during occlusions. Future advancements will 

focus on refining classification algorithms and improving 

fusion techniques for dynamic environments [13].  

Odeyemi, Ogbeyemi, Wong, and Zhang (2024) delve into 

developing intelligent prosthetic hands capable of 

autonomous object grasping, addressing persistent challenges 

in user training and control precision. Their study employs 

reinforcement learning algorithms such as Soft Actor-Critic 

(SAC), Deep Q-Network (DQN), and Proximal Policy 

Optimization (PPO) to enable automated gripping actions. 

Among these, SAC demonstrates superior performance with a 

99% success rate within 200,000 timesteps, outperforming its 

counterparts in handling high-dimensional action spaces and 

sparse rewards. The research further emphasises the influence 

of object properties-like shapes and textures on grasping 

success. Challenges such as achieving optimal grip force and 

preventing object slippage or damage are tackled through 

advanced simulation environments and tailored reward 

functions. The study underscores the potential of combining 

computer vision and machine learning techniques in prosthetic 

development, paving the way for more efficient and accessible 

solutions in the biomedical engineering domain [4].  

Jiang et al. (2022) review wearable interfaces and 

algorithms for hand gesture recognition. Sensing modalities 

such as surface EMG, electrical impedance tomography (EIT), 

and inertial measurement units (IMUs) are evaluated for their 

applications in gesture recognition. Both classical machine 

learning and deep learning methods are discussed, with 

examples of CNN and LSTM architectures achieving high 

accuracy rates. Challenges include robustness against subject-

specific variations and scaling gesture sets. Future research is 

directed toward soft systems like e-skin and e-tattoos, offering 

more comfortable and accurate interfaces [14].  

Uptasarma and Kennedy (2024) introduce the Prosthetic 

Arm Control Testbed (ProACT), an augmented reality 

platform to evaluate intelligent control methods for prosthetic 

arms. Integrating movement-based intent estimation with low-

level robotic autonomy enhances user satisfaction and task 

success rates. The study demonstrates that intent estimation 

methods improve performance in virtual myoelectric 

prosthetic arm tasks, marking a pioneering effort in semi-

autonomous control for complex whole-arm prostheses [15].  

Guo et al. (2024) systematically review bionic prosthetic 

hands, focusing on control mechanisms, sensory feedback 

integration, and mechanical design innovations. The review 

emphasises the utilisation of bioelectrical signals, such as 

electromyography (EMG), for prosthetic control and discusses 

the application of machine learning algorithms to enhance 
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gesture recognition accuracy. Advancements in sensory 

feedback technologies, including tactile, visual, and auditory 

modalities, are explored to improve user interaction. The 

authors identify key areas for future development, aiming to 

refine the utility and accessibility of prosthetic hands for 

amputees [16].  

Sarker et al. (2024) present a sensorized, vision-enabled 

prosthetic hand to replicate natural hand performance and 

functionality. The design incorporates a camera and embedded 

processors to perform tasks, with pressure sensors ensuring 

safe object grasping and accelerometers detecting gestures for 

object release. Unlike current EMG-based designs, this 

prosthetic does not require personalised training, offering a 

user-friendly interface [17].  

Nazari and Zheng (2024) introduce ProRuka, a novel low-

cost prosthetic hand with six degrees of freedom, controlled 

using sonography (SMG). By monitoring forearm muscle 

activity through ultrasonic imaging, the system employs 

machine learning algorithms to classify different hand 

gestures accurately. Real-time experiments with amputees 

demonstrate ProRuka’s effectiveness in assisting with daily 

activities, highlighting SMG’s potential as an alternative 

control system to electromyography [18]. 

3. Design and development of prosthetic arm  
3.1. Design of Arm Using CAD model 

In Fusion 360, a prosthetic arm was designed with a focus 

on achieving a balance between usability, aesthetics, and 

manufacturing feasibility. The primary objective was to 

optimise the design for practical, long-term use while 

replicating essential characteristics of a human hand, such as 

natural range of motion and flexibility. To ensure adequate 

mobility, the design process involved determining the Degrees 

of Freedom (DoF) required for daily tasks, selecting 

lightweight yet durable materials, and strategically integrating 

servo motors and linkages.  

The location of the battery compartment was chosen to be 

on the back end of the arm to balance the overall weight of the 

prosthetic. Designing a prosthetic arm was influenced by the 

human hand’s built-in range of motion, flexibility, and 

function. The main objective was to design a comfortable, 

long-lasting, lightweight device to carry out daily duties while 

maintaining usability and visual appeal. The design was 

developed through repeated modifications in Fusion 360, 

beginning with initial sketches identifying essential Degrees 

of Freedom (DoF). Every component was thoroughly 

designed and tested to guarantee compatibility, functionality, 

and a balance between mechanical accuracy and real-world 

usage.  

3.1.1. Hand Structure 

As shown in Figure 2, the palm (1) is the prosthetic arm’s 

primary central location, connecting the fingers and 

containing the servo motors (2) and linkages (3,4) that allow 

it to move. The Fusion 360-designed palm has a lightweight, 

reinforced structure that ensures durability. Figure 2 shows the 

interior view of the palm structure, which also shows the 

locations of the linkages and servo motors that enable 

controlled finger movements. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 The palm structure of the prosthetic arm 

3.1.2. Servo Motors  

As shown in Figure (2), The prosthetic thumb and fingers 

move through the actuation of two servo motors positioned in 

the palm and forearm to maximise efficiency and 

functionality. A dedicated motor controls the thumb, allowing 

for independent movement. In contrast, the remaining motors 

are designed to coordinate the movements of the other fingers, 

enabling tasks that require precision and grip. 

 

Fig. 3 Finger Linkages 

3.1.3. Finger Linkage 

In order for the fingers to bend and grasp items precisely, 

motion from the servo motors must be transmitted to them 

through the finger linkages, as shown in Figure 3. These links 

are made to be both lightweight and strong, with accurate 

dimensions and smooth edges that guarantee smooth motion 

and reduce mechanical resistance. Flexibility and 

dependability are prioritised in the design, enabling the fingers 

to replicate human movements while preserving structural 

integrity even under repeated use.  

1 2 
3 4 
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3.1.4. Wrist Mechanism  

The wrist mechanism has a single Degree of Freedom 

(DOF) for rotation, simulating the natural motion of a human 

wrist, as shown in Figure 4. This design allows the prosthetic 

arm to perform functions, including object rotation and grip 

angle adjustment. The wrist assembly comprises gears (1) and 

linkages (2) that convey exact motion, resulting in smooth, 

controlled rotation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 Wrist mechanism, top view and side view 

3.1.5. Battery Compartment 

As shown in Figure 5, the power source needed to run the 

prosthetic arm is housed in the battery compartment (1). It is 

positioned in the forearm case (2) and is made to be both safe 

and convenient for fast charging. The compartment in Figure 

5 is small and blends perfectly with the forearm structure, 

preserving the prosthetic’s overall size while offering a 

valuable and effective power management solution. 

 

Fig. 5 Battery compartment 

3.1.6. Overall Design of the Prosthetic Arm 

The prosthetic arm was built as an integrated system with 

components designed to replicate the natural functionality of 

a human arm. Each element (including the battery 

compartment, wrist mechanism, fingers, and palm) works 

together for optimal efficiency. The developed design 

prioritises durability and balance for practical applications. 

The overall structure, as shown in Figure 6, demonstrates how 

the components are positioned to provide utility while 

maintaining an organised and compact form.  

 

Fig. 6 The overall design of the prosthetic arm (fusion 360) 

3.2. Fabrication of Design 
The 3D printing process began with converting the CAD 

file into an STL file format and then sent into the 3D printer’s 

software (Creality K1 Max) (Figure 7). The STL file provided 

a standardised representation of the 3D model, simplifying its 

integration into the slicing software. Next, the printing 

parameters were adjusted to meet the project’s specific 

requirements. These adjustments included defining the in-fill 

and speed of the print and enabling support structures where 

necessary to handle overhangs or complex geometries.  

The careful tuning of these settings was essential to 

achieve the desired balance between structural integrity and 

surface finish. Following the parameter setup, the slicing 

process was performed. This step involved importing the STL 

file into slicing software, which converted the 3D model into 

G-code. The G-code provided detailed, layer-by-layer 

instructions for the 3D printer to follow, including toolpath 

movements, extrusion rates, and temperature settings (Figure 

8). 

 

Fig. 7 The slicing process of prosthetic arm components, with the STL 

files prepared for 3D printing on a smooth PEI plate (Creality K1 MAX 

software). 

1 2 
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Fig. 8 3D-printed components of the prosthetic arm, fabricated by 

executing G-code instructions layer by layer, resulting in precise and 

high-quality parts that meet the design specifications. 

3.3. Assembly 

The assembly process for the prosthetic arm involved 

using fasteners and components, as displayed in Figure 9. For 

instance, the 2x10 and 2x15 pins align and connect moving 

parts, providing stability and smooth rotational motion where 

required. The screws were employed to secure joints and static 

connections. The spherical bearings contribute to the 

articulation of joints, enabling a range of motion crucial for 

the prosthetic arm’s functionality. Each component is selected 

for its material properties, such as strength and corrosion 

resistance. 

 

Fig. 9 Fasteners and components used in the assembly of the prosthetic 

arm. 

3.3.1. Hardware Integration 

Figure 10 shows the hardware integration process for the 

prosthetic hand system. This process involves the precise 

connection of servo motors to actuate the individual fingers 

and achieve the desired motion. The integration 

accommodated the prosthetic hand’s mechanical constraints 

and functionality requirements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10 Hardware integration of the prosthetic hand 

3.3.2. The Movement of the Prosthetic Arm: Thumb Finger 

Movement 

A small servo motor is dedicated to the thumb. This motor 

is strategically mounted to enable independent and smooth 

articulation of the thumb. The linkage mechanism visible in 

Figure 10 ensures that the servo’s rotational motion is 

translated into linear motion, mimicking the thumb’s natural 

movement. 

3.3.3. Index Finger Movement 

A big servo motor with a gear mechanism controls the 

movement of the index finger independently. The motor’s 

increased torque allows for the finger’s higher strength. The 

gear mechanism helps optimise the force transmission and 

ensures robust operation without mechanical interference. 

3.3.4. Combined Movement of Middle, Ring, and Little 

Fingers 

Another small servo motor is responsible for the 

simultaneous actuation of the middle, ring, and little fingers. 

As highlighted in Figure 11, a well-designed linkage 

mechanism achieves the use of a single motor for these three 

fingers. This mechanism distributes the motor’s motion evenly 

across the three fingers, ensuring synchronised movement that 

resembles a natural grip. 

3.3.5. Electrical Connection 

The electrical connections of the prosthetic arm integrate 

an Arduino, Raspberry Pi, and battery to facilitate seamless 

functionality and control. Arduino is the primary 

microcontroller that handles real-time sensor inputs and motor 

actuation. It is connected to the Raspberry Pi via a serial 

communication interface, enabling the Pi to function as the 

central processing unit, executing complex algorithms, 

including machine learning and signal processing. The battery 
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acts as the power source, delivering regulated voltage to 

Arduino and Raspberry Pi through a power distribution 

module or voltage regulator to ensure consistent operation. 

Additionally, the Arduino manages the motor drivers, which 

receive power directly from the battery and are controlled via 

PWM signals generated by the Arduino. This arrangement 

ensures efficient power management and reliable 

communication between the components for precise 

prosthetic arm control.  

 

Fig. 11 The internal electrical configuration of the prosthetic arm. 

4. Data Gathering and AI Programming 
4.1. Data Gathering 

The following section dives into the apparatus used for 

data acquisition, the procedures used for the data acquisition 

and filtration, and finally, the preprocessing and cleaning done 

to the data. The apparatus employed in this study comprised a 

combination of hardware and software components designed 

to collect, process, and analyse electromyographic (EMG) 

frequencies for gesture recognition. The core components 

include Myoware EMG sensors and an Arduino UNO R3 

microcontroller. The Myoware EMG sensor is a compact and 

lightweight device that records and reads muscle activities in 

the arm. The sensor measures the electrical activity skeletal 

muscles generate during contraction and relaxation. Key 

features of the Myoware sensors include: 

4.1.1.Power Supply 

The sensors were powered by a voltage supply ranging 

from a minimum of 2.27V to a maximum of 5.47V, with 

typical configurations using either 3.3V or 5V. The Arduino 

UNO provided a stable voltage source to ensure consistent 

operation. 

4.1.2. Input Characteristics 

● Bias Current: 250 pA (maximum 1 nA), ensuring minimal 

leakage currents. 

● Impedance: 800 kΩ, optimised to reduce loading effects 

and maintain signal fidelity. 

4.1.3. Signal Outputs 

● RAW Output: This output provided the unprocessed 

EMG signal, centred around a reference offset voltage of 

(half the supply voltage). The amplification was fixed 

with a gain of 200, making it suitable for high-resolution 

analysis. 

● RECT Output: The rectified signal was optimised for 

envelope detection with fixed amplification. 

● ENV Output: The envelope signal represented the overall 

trend of muscle activity, filtered for low-frequency 

components. 

The sensors integrated high-pass and low-pass filtering 

stages: 

● High-pass Filter: A first-order active filter with a cutoff 

frequency of 20.8 Hz to eliminate baseline drift and low-

frequency noise. 

● Low-pass Filter: A first-order active filter with Hz to 

suppress high-frequency noise, retaining the EMG 

signal’s essential characteristics. 

Additionally, the sensors included a linear envelope 

detection stage, providing smoothed signal outputs for 

applications requiring trend analysis. Three Myoware sensors 

were positioned to capture signals from specific muscle 

groups based on their involvement in the targeted gestures: 

● Brachialis: Positioned on the upper arm to detect signals 

related to forearm flexion, primarily for gripping 

gestures. 

● Flexor Carpi: Placed on the forearm to capture activity 

associated with wrist and finger flexion during pinching 

and twisting gestures. 

● Extensor Digitorum: Located on the dorsal side of the 

forearm to record extensor muscle activity, particularly 

during gripping. 

The placement was guided by anatomical landmarks and 

adjusted to minimise crosstalk from adjacent muscles, 

ensuring each sensor captured signals specific to its target 

muscle group. Moreover, The Arduino UNO R3 

microcontroller was the interface between the Myoware 

sensors and the data acquisition system. This microcontroller 

was selected for its simplicity, cost-effectiveness, and 

compatibility with the sensors and processing environment. 

Key specifications included: 

● Analog-to-Digital Conversion (ADC): The UNO 

provided a 10-bit ADC with a voltage range matching the 

sensor output (), ensuring that the entire signal range was 

accurately digitised. 

● Processing Capability: In real-time, the microcontroller 

sampled and transmitted EMG signals via USB, enabling 

seamless data collection. 
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The EMG sensors were connected to the Arduino UNO 

using shielded wires to minimise signal noise. The setup 

included a stable power supply for the sensors directly from 

the Arduino board. The board was also used for grounding 

points to eliminate common mode noise and enhance signal 

stability. A data recording system captured real-time signals at 

a consistent sampling rate. 

The data collection procedure was designed to ensure 

quality acquisition of electromyographic (EMG) signals from 

the selected muscle groups during the performance of 

predefined gestures (Figure 12). The procedure involves 

several steps: participant preparation, sensor placement, signal 

acquisition, and data recording. The following sections detail 

each phase of the procedure. 

Before the data collection, a healthy male with no known 

musculoskeletal disorders was briefed on the purpose and 

procedure of the experiment. This ensured that the subject 

understood the task’s requirements, reducing variability due to 

confusion or discomfort. The subject’s right arm was selected 

for testing, as it was free of any conditions that could affect 

the data integrity. Moreover, before the experiment, the 

participant was instructed to refrain from consuming 

excessive caffeine or engaging in strenuous physical activities 

to prevent external factors that might influence muscle 

activity.  

Additionally, the participant was informed about the need 

for controlled movement execution during the trials to ensure 

consistent muscle activation.  After sufficient data acquisition, 

the EMG sensors were placed on the subject’s right arm and 

rotated through three different muscle groups. The muscle 

groups were the Brachialis, Flexor Carpi, and Extensor 

Digitorum. 

● Brachialis: The sensor was placed on the upper arm, over 

the brachialis muscle, and was responsible for forearm 

flexion.  

● Flexor Carpi: This muscle controls wrist flexion and 

finger movements. This group of muscles was involved 

in both the pinching and twisting gestures. 

● Extensor Digitorum: Positioned on the forearm’s dorsal 

aspect, this muscle extends the fingers. Which is activated 

primarily during the gripping gesture. 

The sensors were affixed using medical-grade adhesive 

electrodes to ensure stable contact with the skin, reducing the 

likelihood of movement artefacts or noise. The data collection 

focused on three distinct gestures: gripping, pinching, and 

twisting. The subject was provided with the following 

instructions for performing each gesture. 

● Gripping: The subject was instructed to close their right 

hand around an object, such as a pen or a bottle of water. 

The gesture involved flexions at the wrist and finger 

joints, primarily activating the Brachialis and Extensor 

Digitorum muscles.  

● Pinching: In this gesture, the subject was asked to pinch 

their thumb and index finger, simulating picking up a 

small object. This movement engaged the Flexor Carpi 

muscles, with subtle activation of the Brachialis. 

● Twisting: The twisting gesture was limited to the Flexor 

Carpi. The subject was asked to rotate their wrist as if 

turning a doorknob, which caused both wrist flexion and 

rotation. This movement activated the Flexor Carpi 

muscles without significant involvement of the other 

muscle groups. The subject was asked to perform each 

gesture as naturally as possible and to maintain a 

controlled pace to minimise variations in muscle 

activation. Each gesture was repeated 20-40 times to 

capture a wide range of motion dynamics. Data 

acquisition was carried out for approximately 2-3 hours 

with a 30-minute break between sessions to minimise 

fatigue and/or muscle strain. 

During each trial, the subject was asked to execute the 

three gestures randomly to mitigate any learning bias. Each 

gesture was performed for 5-10 seconds, with the subject 

instructed to hold the gesture at its peak for the duration of the 

trial. The execution of the gestures was monitored visually to 

ensure that the subject followed the instructions and 

maintained consistent movement patterns. The data collection 

continued until a sufficient number of trials had been 

completed, with 20 repetitions per gesture, resulting in 60 

gesture trials.  

 

Fig. 12  The setup used to record muscle activity during hand gestures. 

In the left image, electrodes are placed on the forearm to capture 

muscle signals while the subject gestures. The right image shows 

electrodes placed in a different muscle group. 

4.2. AI Programming  

After the data collection period, the collected EMG 

signals were immediately stored on the computer in .txt files 

for further processing. Each file contained timestamped signal 

data from the sensors associated with the specific gesture and 
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muscle group being tested. The files were later imported into 

Python for the cleaning, preprocessing, and analysis phases. 

The subject was thanked for their participation and 

allowed to rest after the trial, ensuring they did not experience 

discomfort due to prolonged muscle activation. 

4.2.1. Data Cleaning and Preprocessing 

Data cleaning and preprocessing are critical steps in any 

machine learning workflow, mainly when working with 

sensor data such as EMG signals, which are prone to noise, 

inconsistencies, and potential data imbalances. In this study, 

we followed a systematic approach to ensure the data was 

adequately prepared for analysis, providing the best possible 

performance from the movement prediction model. The 

following sections outline the detailed steps taken during the 

cleaning and preprocessing stages. 

4.2.2. Data Import and Initial Inspection 

The raw data collected from the Myoware EMG sensors, 

stored in text (.txt) files, was first imported into the Python 

environment for further processing. This data contained 

timestamped EMG signal values corresponding to the three 

muscle groups-Brachialis, Flexor Carpi, and Extensor 

Digitorum-across three gestures: Gripping, Pinching, and 

Twisting.  

Upon initial inspection, the data was checked for missing 

values, formatting errors, and any signs of corruption. 

Although the dataset was mostly intact, some cleaning and 

refinement were necessary to ensure its accuracy and usability 

for model training. 

4.2.3. Handling Missing Data and Noise Removal 

The next step involved handling missing or corrupted 

data. While the data collection process was managed carefully, 

gaps in the signal could still occur due to brief sensor 

disconnections or minor misalignments. Missing values were 

handled in the following ways: 

● Interpolation: In cases where only a few values were 

missing, linear interpolation was used to estimate the 

missing values by referencing the surrounding data 

points. 

● Row Removal: When more significant data segments 

were missing, the corresponding rows were removed to 

maintain dataset integrity and prevent incomplete data 

from skewing the results. 

Additionally, a low-pass filter was applied to mitigate the 

impact of random fluctuations and other noise in the raw EMG 

signals. This filter removed high-frequency noise while 

preserving the essential components of the EMG signals, 

making the data cleaner and more reliable for analysis. 

 

4.2.4. Normalisation and Standardization 

Next, we normalised and standardised the data. EMG 

signals are often measured in microvolts, and their amplitudes 

can vary widely depending on the muscle group, gesture, and 

other factors. Normalising the data helped to bring all the 

features (muscle groups) into a comparable scale, preventing 

any individual muscle group’s signal from dominating the 

model training process. 

● Normalization: Each feature (muscle group) was 

normalised by subtracting the mean and dividing by the 

standard deviation. This ensured that all muscle group 

signals had a similar range, essential for model 

convergence. 

● Standardization: The signal amplitudes were standardised 

to remove any reference bias in the data, ensuring the 

signals were comparable across different gestures and 

muscle groups. 

4.2.5. Segmentation and Labeling 

Since the raw EMG data was continuous over time, it 

needed to be segmented into smaller windows representing 

each gesture. Each segment of data (typically lasting 5–10 

seconds) was associated with a specific gesture (Gripping, 

Pinching, or Twisting).  

4.2.6. Gesture Segmentation  

The data was segmented into windows based on the 

duration of each gesture.  

4.2.7. Labelling 

Each segment was assigned a label corresponding to the 

gesture it represented. The three possible labels were 

Gripping, Pinching, and Twisting.  

4.2.8. Balancing the Dataset 

One challenge that arose during preprocessing was the 

imbalance in the dataset. Some gestures, such as gripping, 

were overrepresented, while others, like Twisting, were 

underrepresented. An oversampling technique from sci-kit-

learn, ‘resample,’ was used to fix the data imbalance. 

4.2.9. Shuffling and Splitting the Dataset 

After segmentation and balancing, the next step was to 

shuffle the data. Shuffling prevented the model from learning 

patterns based on the order of frequency in which the data was 

recorded, which could lead to overfitting. The data was 

randomly shuffled while maintaining the class distribution, so 

the same proportion of each gesture type was present 

throughout the dataset. 

4.2.10. The Shuffled Data was then Split into Two Subsets 

● Training Set: Most of the data (80%) was used to train the 

model, teaching it the relationship between the input 

signals and their corresponding gestures. 
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● Test Set: The remaining 20% of the data was reserved for 

testing the model’s performance, allowing an unbiased 

evaluation of its generalisation ability. 

4.2.11. Model Training and Evaluation 

The cleaned and preprocessed data was used to train the 

movement prediction model. We utilised a deep learning 

architecture using Convolutional Neural Networks (CNN) to 

capture the spatial of the EMG data. The CNN layers were first 

used to process the raw EMG signals and extract spatial 

features, such as local patterns in muscle activation. The 

model was trained using the dataset, and cross-validation was 

employed to fine-tune hyperparameters and ensure proper 

training. The model achieved a test accuracy of 91%. This 

shows the model’s ability to correctly predict each of the three 

gestures in real-time.  

4.2.12. Testing 

The prosthetic arm was tested to perform various hand 

gestures to evaluate its functionality and responsiveness. 

These tests involved executing multiple movements, such as 

opening and closing the hand, pinching, pointing, and gripping 

objects of different shapes and sizes. The Arduino processed 

sensor inputs and translated them into motor commands. 

Simultaneously, the Raspberry Pi coordinated gesture 

recognition algorithms, ensuring smooth and accurate hand 

movements. 

5. Results and Discussion 
With this design, the key goal was to enhance specific 

tasks’ accuracy and operational efficiency whilst maintaining 

cost-effectiveness. This model classifies activities involving 

gripping, pinching, and twisting. Three key aspects of the 

design were discussed:  

5.1. Degree of Freedom (DOF) 

A total of 5 degrees of freedom (DoF) have been achieved 

on the prosthetic arm, enabling it to fulfil the dynamic 

requirements of three primary tasks: gripping, pinching, and 

twisting. This advanced design allows the arm to replicate 

human-like actions with remarkable precision and 

adaptability. To perform the gripping exercise, the arm 

employs two degrees of freedom, allowing it to seamlessly 

adjust to items of different sizes for secure and stable grasping. 

The pinching task is supported by 1 DoF, providing fine motor 

control for delicate operations such as picking up small objects 

or manipulating tools.  

Furthermore, the twisting task is facilitated by 1 DoF, 

which allows rotational movements necessary for opening a 

bottle lid. The results demonstrate that the prosthetic arm can 

provide a wide range of human-like movements with stability, 

control, and reliability, meeting the varied demands of 

everyday life. 

5.2. Optimised Servo Motor Efficiency 

The prosthetic arm’s servomotors convert 81% of electrical 

energy into mechanical motion while minimising losses. This 

optimised energy use allows the prosthetic battery to last 

longer without sacrificing performance, reducing power 

consumption. Even though the motors operate at 81% 

efficiency, they remain highly responsive, allowing users to 

adjust grip strength in real time and pinch small items. This 

balance of efficiency and functionality makes the prosthetic 

arm more reliable and usable, significantly impacting user 

satisfaction. 

5.3. Servo Motor Torque 

A total torque was calculated by summing two small 

servos (DS113MG) and one large servo (TowerPro MG995). 

Each small servo has a torque of 2.0 kg-cm, and two small 

servos have a torque contribution of 4.0 kg-cm. A large servo 

has a torque of 10.0 kg-cm, meaning the total torque is 14.0 

kg-cm. 

Due to the efficiency losses suffered by servo motors, a 

torque output of 81% is achieved with only a 19% efficiency 

loss. The adequate torque was calculated by multiplying the 

total torque by the efficiency factor, resulting in an effective 

torque of 11.34 kg-cm. 

The conversion factor of 1 kg-cm = 0.0980665 Nm was 

used to convert this value into Newton meters. The adequate 

torque was determined to be 1.112 Nm. After accounting for 

efficiency losses, the three servos generate 1.112 Nm in 

torque. 

5.4. Component Placement 

To ensure structural stability, actuators, sensors, and 

control units have been incorporated into the design. The 

sensors are placed near the joints to provide precise movement 

data, while the actuators are evenly dispersed to prevent strain 

at any one site. This arrangement increases the arm’s 

durability and balance and the user’s comfort, allowing for 

more extended periods of use. The position of these 

components has been optimised to provide smooth integration 

with practical artificial intelligence algorithms for efficient 

motion control.  

The classification of performance measures shows a well-

optimized prosthetic arm system built for precision and 

dependability. Table 1 shows that the model effectively 

differentiates between Gripping, Pinching, and Twisting tasks, 

with an overall accuracy of 91%. Twisting achieved excellent 

precision, recall, and F1 scores, showing its applicability for 

rotational tasks such as opening jars. Pinching demonstrated a 

strong balance, with a recall of 0.96, showing its suitability for 

object handling. However, gripping had a lower recall of 0.76, 

indicating the need for additional development to improve the 

identification of lighter grip motions. These measurements 
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demonstrate the model’s dependability and potential to 

enhance prosthetic arm functionality for users in real-world 

situations dramatically. The method achieves a high overall 

accuracy of 91%. Twisting tasks received ideal ratings across 

all criteria, indicating outstanding performance. However, the 

Gripping task requires work, as evidenced by its low recall of 

0.76. The prosthetic arm’s performance was tested using EMG 

signal accuracy and response time parameters. The 

classification results in the confusion matrix indicate 

significant gains in overall accuracy, especially for twisting 

tasks that obtained 100% precision and recall. Noise reduction 

techniques, including signal filtering and adaptive 

thresholding, were used to improve signal clarity and decrease 

abnormalities.These strategies reduced categorisation errors 

caused by ambient interference and user variability, eventually 

lowering the system’s response time to less than 150 

milliseconds. This quick detection and classification 

capability assures real-time responsiveness, making the 

prosthetic arm extremely dependable and usable in real-life 

scenarios. The findings demonstrate that using advanced noise 

reduction technologies directly impacts the precision of EMG 

signal analysis. The AI model has the potential for future 

enhancements, making it a dependable alternative for 

operating prosthetic arms in different situations. 

Reinforcement learning can be used to continuously improve 

the system by incorporating user feedback and adapting to 

changing usage patterns. 

Table 1. Performance metrics for gripping, pinching, and twisting 

activities, along with overall accuracy, macro average, and weighted 

average 

Activity Precision Recall 
F1 

Score 
Score 

Gripping 0.96 0.76 0.85 3670 

Pinching 0.80 0.96 0.87 3621 

Twisting 1.00 1.00 1.00 3646 

Accuracy   0.91 10937 

Macro Avg 0.92 0.91 0.91 10937 

Weighted 

Avg 
0.92 0.91 0.91 10937 

 

This continuous learning process enhances the model’s 

ability to handle complex tasks while increasing real-time 

accuracy. The training loss graph shows a constant decline 

across 50 epochs and a stabilisation of training accuracy at 

91%, reflecting the system’s optimisation and learning 

advancement. These findings show the AI’s capacity to 

generalise across tasks and adapt to new inputs. Using 

unsupervised learning methods improves the system’s 

adaptability by recognising patterns in EMG signals rather 

than depending entirely on labelled data. This capacity allows 

the AI to adapt to new users and effectively change muscle 

signal qualities. These developments and real-time flexibility 

ensure that the prosthetic arm offers users an easy-to-use, 

efficient, and highly responsive experience under challenging 

situations. The proposed prosthetic arm design provides a 

significant improvement over the previous model. The 

following characteristics show its superiority: 

5.5. Accuracy and Classification Performance 

Previous prototypes, such as Unanyan and Belov’s EMG-

controlled prosthetic arm (2021), achieved effective gripping 

capabilities with multi-finger control but were limited in 

classification accuracy and delayed due to signal noise. In 

comparison, our approach includes an AI-enhanced 

classification key that achieves 91% overall accuracy and 

task-specific optimisation to address difficulties such as 

under-detection in softer gripping movements. 

5.6. Energy Efficiency and Response Time 

Traditional prosthetic designs frequently struggle with 

power efficiency and delayed response times, as Fuentes-

Gonzalez et al. (2021) reported. By optimizing servomotor 

placement and leveraging AI for real-time task modifications, 

The model reduces power consumption by 15% while 

maintaining a response time of less than 150 ms, resulting in 

greater energy efficiency and responsiveness. 

5.7. Component Integration and Durability 

Early prototypes, such as Parming’s 3D-printed hand 

(2018), focused on cost-effective fabrication but struggled to 

achieve solid integration of electronic components and 

sensors. The design improves the component design, resulting 

in equal load distribution and increased structural stability, 

which is crucial for long-term use and longevity. 

5.8. Advanced Functionalities 

Avilés-Mendoza et al. (2023) [2] introduced a real-time 

control; however, their designs could not manage multitasking 

settings. This approach excels by incorporating an AI 

framework that differentiates between Gripping, Pinching, 

and Twisting activities, ensuring flexibility in various 

scenarios. The training loss curve in Figure 13 demonstrates 

consistent optimization, decreasing from 0.218 to 0.208 over 

50 epochs. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 13 Training loss curve over 50 epochs, demonstrating consistent 

optimisation with a reduction in loss from 0.218 to 0.208. 
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This graph (Figure 14) shows the progression of training 

accuracy over 50 epochs. The steady rise in accuracy, which 

has stabilized at 91%, indicates the AI model’s long-term 

success in learning task classifications. The oscillations reflect 

minor differences, most likely due to changes in the learning 

method and dataset features. These findings illustrate the 

model’s strong convergence and capacity to generalise across 

multiple tasks, which are critical for real-world prosthetic arm 

performance. The confusion matrix (Figure 15) displays the 

classification results for the Gripping, Pinching, and Twisting 

tasks, emphasising the system’s strengths and imperfections. 

The Twisting job had 100% accuracy with no 

misclassifications, as seen by the evident diagonal in the 

matrix. However, there is a significant overlap between 

Gripping and Pinching jobs, with 868 incidents of Gripping 

being wrongly classed as pinching. This shows feature 

similarities between the two targets, which might require 

additional enhancement in data preparation or feature 

extraction. Conversely, pinching is less confused with 

gripping, indicating a higher level of categorisation 

consistency. These findings will help guide future system 

performance improvements. 

 
 

 

 

 

 

 

 

 

 

 

 
 

Fig. 14 The training accuracy progression over 50 epochs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 15 Confusion matrix for classifying gripping (0), pinching (1), and 

twisting (2) 

6. Conclusion and Future Work 
This research addresses a critical gap in pediatric 

prosthetics by developing a prosthetic arm tailored to children 

aged 7 to 14. The study successfully integrates advanced 

technologies, such as Artificial Intelligence (AI) and 

biosensors, to create a device that enhances mobility and 

comfort.  

The results demonstrate the effectiveness of the prosthetic 

arm in performing key tasks like gripping, pinching, and 

twisting with an overall accuracy of 91%. Using 3D printing 

and recyclable materials ensures the design is cost-effective 

and environmentally sustainable.  

The project’s findings aim to meet pediatric users’ 

ergonomic, functional, and psychological needs, offering a 

durable and lightweight solution. By enhancing the accuracy, 

this prosthetic arm has the potential to significantly improve 

the quality of life for children with physical impairments, 

particularly in regions like Oman, where modern medical 

technologies are limited.  

Furthermore, the project supports Oman’s Vision 2040 by 

advancing healthcare innovation and accessibility while 

contributing to global goals such as the United Nations 

Sustainable Development Goals (UNSDGs) for health, 

innovation, and sustainable production. 

6.1. Future Work and Recommendations 

 Enhancing AI Algorithms: Future iterations should 

incorporate reinforcement learning to further adapt to user 

needs and improve functionality for more complex tasks. 

 Expanding Gesture Recognition: Introducing additional 

gestures and refining signal processing algorithms could 

enhance the prosthetic’s versatility. 

 User-Centric Testing: Conducting large-scale testing with 

diverse pediatric populations will ensure broader 

applicability and better generalization of the design. 

 Modular Design for Growth: Developing a modular 

system that can be adjusted for children’s physical growth 

will extend the prosthetic’s usability over time. 

 Collaborative Efforts: Partnerships with healthcare 

providers and educational institutions can facilitate this 

technology’s commercialization and widespread 

adoption, particularly in the GCC region. 

This innovative approach addresses a pressing medical 

need and sets a new standard for healthcare solutions by 

incorporating technology and sustainability into pediatric 

prosthetics.  

Research in this area has the potential to reshape pediatric 

prosthetics, allowing children to lead more independent and 

fulfilling lives by addressing current limitations and pursuing 

future advancements. 
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