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Abstract - Existing literature predominantly focuses on operational analyses of single-phase modified five-level neutral-point-

clamped (5L-NPC) inverter topologies in standalone configurations, with limited exploration of their closed-loop three-phase 

grid-connected (CL-3Ph-GC) counterparts. Critical gaps persist in addressing the interdisciplinary challenges of dynamic grid 

synchronization and harmonic interaction mechanisms inherent to three-phase architectures, necessitating holistic control 

frameworks that integrate advanced modulation strategies with grid compliance protocols to advance renewable energy 

integration. This paper proposes extending a three-phase, nine-level modified neutral point clamped grid-connected inverter 

(9L-MNPC-GCI) topology with a modified Proportional Resonant (PR) based control strategy. To generate nine levels in the 

pole voltage of 3-phase, a cascade connection of the modified 5L-NPC inverter topology with two cells has been considered, 

and it provides the greatest level of the line voltage. Prior to grid synchronization, the operational principles and 

implementation of the three-phase standalone system are analyzed, emphasizing the application of the Unipolar Phase 

Disposition Pulse Width Modulation (UPD-PWM) technique to achieve precise voltage regulation and harmonic suppression 

in islanded configurations. Compared with the normal Phase Disposition (PD) PWM technique, the implementation of the 

UPD-PWM technique is less. The same UPD-PWM technique has been incorporated at the end stage of a PR-based control 

strategy in 3Ph-GC. The entire PR-based control strategy is simpler than the conventional dq-frame control strategy. The 

study comprehensively examines the critical objectives of Active Power Control (APC), Reactive Power Control (RPC), and 

grid current harmonic mitigation within a CL-3Ph-GC. Utilizing the PLECS simulation platform, dynamic operational 

scenarios are employed to evaluate system performance under varying grid conditions.  

Keywords - Modified neutral point clamped, Grid-connected inverter, Proportional resonant controller, Pulse width 

modulation, Active power and reactive power. 

1. Introduction  
Rising global energy demand has increased fossil fuel 

use, worsening environmental damage from greenhouse gas 

emissions [1]. As a result, renewable energy resources are 

gaining attention for their efficient, low-pollution power 

generation [2]. The advancement of energy extraction 

efficiency in renewable systems has catalyzed the innovation 

of sophisticated control architectures and adaptive tracking 

algorithms designed to maximize power yield from 

inherently variable energy sources, as demonstrated in [3, 4]. 

Multilevel Inverters (MLIs) have emerged as a prioritized 

topology in power conversion research due to their inherent 

advantages, including high voltage handling capacity, 

enhanced efficiency through reduced switching losses, 

mitigated Electromagnetic Interference (EMI), and superior 

power quality enabled by their multi-level output topology, 

as evidenced in [5, 6]. MLI topologies serve as critical 

components in grid-integrated Renewable Energy Systems 

(RES) due to their scalability and compatibility with high-

power applications [7]. Contemporary research prioritizes 

architectural simplification of MLIs, emphasizing the 

reduction of active switches and gate driver circuits to 

minimize system complexity, operational costs, and footprint 

while preserving performance in grid-tied configurations 

[8].MLIs are used in power systems for their high power 

quality, rating, low harmonic distortion, and EMI [9]. The 

most common industrial topologies are neutral Point 

Clamped (NPC), Flying Capacitor (FC), and cascaded H-
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bridge (CHB) [10]. MLIs are increasingly favored in 

medium- and high-power energy conversion systems due to 

their inherent capability to synthesize high-fidelity output 

waveforms at reduced switching frequencies. This 

operational characteristic enables optimal harmonic 

performance while minimizing switching losses, making 

MLIs particularly advantageous for applications requiring 

stringent power quality and scalable deployment in grid-tied 

architectures, as highlighted in [11]. The conventional NPC 

inverter topology demonstrated superior performance in 

cascaded configurations, achieving minimized current Total 

Harmonic Distortion (THD) through its multi-level voltage 

synthesis. However, its commercial viability in grid-tied 

systems remains constrained by prohibitively high 

component counts, particularly switching devices and 

associated auxiliary circuitry, as noted in [12]. These 

limitations underscore ongoing research imperatives to refine 

modern MLI architectures, focusing on cost reduction, 

topological simplification, and enhanced grid compliance to 

mitigate inherent limitations in voltage balancing, fault 

tolerance, and dynamic response for renewable integration, 

as emphasized in [13]. 

 MLIs have been comprehensively evaluated in 

contemporary literature through holistic assessments of their 

structural benefits, operational classifications, and inherent 

limitations, alongside their pivotal role in optimizing energy 

conversion efficiency within contemporary power 

infrastructures [14]. Emerging modified MLI configurations 

are gaining prominence in RES due to their synergistic 

advantages in cost-effectiveness, compact form factor, 

harmonic suppression, and enhanced conversion efficiency, 

positioning them as enabling technologies for sustainable 

grid integration [15]. Modulation techniques for MLIs can be 

categorized into different types of carrier-based PWM 

techniques [16]. The PD-PWM technique is more popular in 

obtaining better THD [17]. In [18], the single-phase cascaded 

NPC and CHB-based 7-level inverter topology is explained. 

In [19], a 3-phase 9-level inverter topology with PD-PWM 

technique is discussed. However, the PD-PWM technique 

needs more number of triangular carriers, and along with 

this, execution time also increases. Cascaded configurations 

of conventional NPC inverters enable 9-level voltage 

synthesis, albeit at the expense of elevated semiconductor 

device count and associated complexity in auxiliary circuitry 

[20]. Prior studies such as [21, 22] detail single-phase five-

level MNPC inverter architectures, though their analyses 

remain confined to standalone operation, omitting critical 

evaluations of grid-tied functionality. Similarly, works in 

[23, 24] explore three-phase implementations of five-level 

topologies. Yet, their scope remains restricted to five-level 

output configurations without extension to higher voltage 

tiers or systematic integration with grid compliance 

protocols. These gaps highlight the need for advanced MLI 

designs for modern renewable energy systems to harmonize 

scalability, cost-effectiveness, and grid synchronization 

capabilities. Building upon the architectural framework 

established in [21], this paper presents a three-phase, nine-

level inverter topology capable of seamless operation in both 

standalone and Grid Connected Modes (GCMs). Drawing on 

theoretical insights from [25, 26], an enhanced Proportional-

Resonant (PR) control strategy synergistically integrated 

with UPD-PWM is developed to facilitate precise power 

regulation, harmonic suppression, and dynamic grid 

synchronization in nine-level grid-interfaced applications. 

This novel control architecture addresses the limitations of 

prior works by unifying advanced modulation techniques 

with adaptive feedback mechanisms, thereby optimizing 

harmonic performance, switching efficiency, and transient 

stability across dual operational paradigms. The paper's 

organisation in Section 2 gives the operation of the proposed 

3-phase 9L-MNPC inverter topology. In Sections 3 and 4, 

both standalone and grid operations have been explained 

respectively. The comparative studies have been discussed in 

Section 5. Finally, conclusions are reported. 

2. Description and Operation of Proposed 3-

Phase 9L-MNPC-Inverter Topology 
To generate 9 levels, the conventional single-phase 

cascade connection of NPC inverter topology needs a large 

number of semiconductor devices, as depicted in Figure 1. 

By considering [21], the extension of a 3-phase 9L-MNPC-

GCI configuration has been proposed in this paper with a 

cascade connection of two 5L-MNPC inverter topologies. 

This topology consists of 12 discrete IGBTs with diodes, 2 

bidirectional switches, 4 discrete diodes, and 4 equal DC 

sources per phase. At the end, the inductor filter (Lg) and 

grid are connected. The respective proposed 3-phase circuit 

diagram of a 9L-MNPC-GCI topology is depicted in Figure 

2. The switching arrangement is represented in Table 1. 

From this, it is concluded that in every state, only six 

switches are conducted to produce 9L-pole voltage, and 

hence, this topology will be able to generate 17-level line 

voltage in the output. The enhanced voltage synthesis 

capability facilitates a reduction in passive filter 

requirements while inherently mitigating harmonic distortion 

in grid-injected currents.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1 Conventional 1-phase 9L-NPC inverter topology [20] 
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Fig. 2 Circuit diagram of 3-phase 9L-MNPC-GCI topology: proposed 

Table 1. States of switches: 9-levels 

S.No Levels: VAO ON State Switches 

1 0Vdc S2,S3,S5,S9,S10,S12 

2 +1Vdc S2,S3,S5,S9,S10,S14 

3 +2Vdc S2,S3,S5,S8,S9,S14 

4 +3Vdc S2,S3,S7,S8,S9,S14 

5 +4Vdc S1,S2,S7,S8,S9,S14 

6 -1Vdc S2,S3,S5,S9,S10,S13 

7 -2Vdc S2,S3,S5,S10,S11,S13 

8 -3Vdc S2,S3,S6,S10,S11,S13 

9 -4Vdc S3,S4,S6,S10,S11,S13 

This operational paradigm imposes asymmetric voltage 

stress distribution across semiconductor devices: selective 

switches (e.g., S6, S7, S13, and S14) endure elevated voltage 

stresses (2Vdc) during commutation while remaining 

switches operate under nominal stress (1Vdc) per phase. This 

asymmetric stress distribution necessitates optimized device 

selection to balance reliability and cost efficiency in the 

multilevel architecture. 

3. Simulation Results: Standalone Operation 

with UPD-PWM Technique 
The simulation parameters governing standalone 

operation are methodically outlined in Table 2. To synthesize 

a pole voltage waveform with a peak magnitude of ±400V, 

the DC link voltages are configured at 100V per source. 

Standalone operational validation is exclusively conducted 

under Resistive-Inductive (RL) load conditions to rigorously 

evaluate voltage regulation, harmonic performance, and 

transient stability in isolation from grid interdependencies. 

For any topology, the PWM technique is important in 

generating switching pulses. To generate 9 levels in the pole 

voltage, the conventional PD-PWM technique needs 8-

triangular carriers; thereby, the implementation complexity 

also increases along with carriers.  

       Table 2. Simulation parameters 

Standalone Mode: RL-

Load 

Grid Connected Mode 

(GCM) 

Resistor(Load) =100Ω, 

Inductor(Load) =100mH, 

Switching Frequency           

=5kHz, 

and Vdc=100V. 

Rg=0.01Ω, Lg=2.5mH, 

S=10kVA, 

Switching 

Frequency=10kHz, 

Vdc=100V, Vgrid=415V, 

and Grid Frequency=50Hz. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 3 Control diagram of UPD-PWM technique 

To further reduce the complexity of the PWM stage, a 

UPD-PWM technique [11, 26] has been incorporated in this 

paper. In the UPD-PWM technique, the triangular carrier 

count can be reduced to half compared to the normal PD-

PWM technique. This means that to generate 9 levels in the 

pole voltage, only 4 triangular carriers are needed, and 

thereby, the rest of the PWM implementation is also simple. 

This implementation leads to reduce the computational 

burden on the real-time processor units. The respective UPD-

PWM technique is represented in Figure 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 Standalone results: MI=0.99 to 0.45 at t=0.1sec with RL-load 
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Following the implementation of the UPD-PWM 

technique on the three-phase 9L-MNPC inverter, a stepwise 

modulation index (MI) transition from 0.99 to 0.45 was 

introduced at t=0.1 S. The resultant dynamic response, as 

illustrated in Figure 4, captures the system’s transient 

performance during abrupt MI variation, validating its 

closed-loop stability, voltage tracking accuracy, and 

harmonic attenuation capabilities under dynamic modulation 

conditions. In this, Figure 4 (a) represents the pole voltage 

(VAO) changes from 9 levels to 5 levels with peak values of 

±400V and ±200V, respectively. Figure 4 (b) represents the 

line voltage changes from 17 to 9 levels with amplitudes of 

±800V to ±400V. Figure 4 (c) shows the load current 

waveform with peak values of 3.79A to 1.74A. Finally, this 

UPD-PWM technique is effectively worked along with 

dynamics. 

4. Simulation Results: Grid Connected Mode 

(GCM)-Modified PR-Based Control Strategy 
The simulation parameters governing GCM are 

systematically detailed in Table 2. For 3Ph-GC systems, the 

minimum DC-link voltage constitutes a critical design 

parameter derived from the grid voltage amplitude to ensure 

uninterrupted power transfer and synchronization. Based on 

the empirical relationship Vdc, min=1.63×Vgrid, a minimum 

DC-link voltage of 676.45V is mandated to sustain stable 

operation under nominal grid voltage conditions. For safety 

reasons and other constraints, a reasonable DC-link 

voltage=700V/800V is required; hence, each DC source 

magnitude=100V is needed in this topology. Finally, with 

switching operation, the normal pole voltage gives ±400V, 

and the normal line-to-line voltage gives ±800V/±700V. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5 Conventional dq-frame control strategy: 3- Ph GC [3, 10] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6 Modified PR-based control strategy with UPD-PWM technique: 

proposed 

For any 3Ph-GC, the closed-loop control strategy is 

important to achieve all grid objectives. The conventional 

dq-frame control strategy is depicted in Figure 5, which 

gives an effective solution for all 3-phase GCI topologies. 

However, its implementation needs more transformations, 

Phase Locked Loop (PLL) requirements, and more number 

of Proportional Integral (PI) controllers. To reduce the 

control complexity, a PR-based control strategy with the 

UPD-PWM technique has been proposed in this paper, and it 

is represented in Figure 6. The basic input points for 

implementing the PR-control strategy are taken from [25]. In 

the PR control strategy, first sense the both grid voltage and 

grid current of all phases. By using abc to alpha-beta 

transformation, convert abc quantities into alpha-beta 

quantities of both grid voltage and grid current. 

             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 7 GCM results: zoomed view-UPF of grid 
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By taking the inputs of Vα, Vβ, P*, and Q*, the 

reference currents are generated [25]. These reference 

currents are compared with Iα and Iβ. The obtained output 

signals are fed with the PR controller, and inherently, it 

almost provides zero steady-state error. After the PR-

controller, the obtained alpha-beta quantities are converted 

into an abc frame. Next, to obtain the desired modulating 

signals, a proper gain (normalization) should be provided 

before the UPD-PWM technique. In this implementation, no 

PLL is required. This entire implementation is simple 

compared with the conventional dq-frame control strategy, 

and it is a more effective control solution for all 3-Ph GCI 

topologies. After applying the PR-based control strategy, the 

following simulation results are obtained. Figure 7 represents 

a zoomed view of the unity power factor (UPF) of the grid 

with P*=10kW and Q*=0VARs.  

Figure 7 (a) represents unipolar modulating and 

triangular carrier signals in a closed loop. Figure 7 (b) 

represents a 9-level pole voltage with peak values of ±400V. 

Figure 7 (c) shows the UPF operation of the grid with a peak 

value of injected grid current of approximately 20A. In this, 

the scaling factor=5 represents the visibility of the grid 

current properly, and a gain is provided at the scope. Figure 8 

represents the UPF of the grid with step change of P*=10kW 

to 5kW and Q*=0VARs at t=1sec. Figure 8 (a) represents 3-

phase grid voltages with peak values of ±338.8V. Figure 8 

(b) represents injected 3-phase grid currents with peak values 

of ±20A and ±10A. Figure 8 (c) represents the UPF 

operation of the grid. Figure 8 (d) represents the 9-level pole 

voltage with peak values of ±400V. 

 

 

 

 

 

 

 

 

 

 

           
Fig. 8 GCM results: step change of P*=10kW to 5kW and Q*=0VARs-

UPF operation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 9 GCM results: step change of PF=one to 0.9 leading 

Figure 8 (e) represents the line voltage of the 15 levels 

with peak values of ±700V. The number of voltage levels 

depends on the injected grid current waveform w.r.to grid 

voltage. Figure 9 represents the step change of PF=1 to 0.9 

leading. In this, P*=10kW (t=0 to 2sec) and Q*= 0VARs & -

4843.22VARs (before t=1sec and after t=1sec) are 

considered to obtain unity and 0.9 leading PF. Figure 10 

represents the step change of PF=1 to 0.9 lagging. In this, 

P*=10kW (t=0 to 2sec) and Q*= 0VARs and +4843.22VARs 

(before t=1sec and after t=1sec) are considered to obtain 

unity and 0.9 lagging PF.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 10 GCM results: step change of PF=one to 0.9 lagging 
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Fig. 11 GCM results: step change of UPF (active power) to leading 

VARs 

Figure 11 represents the step change of UPF to leading 

VARs. In this, P*=10kW & 0kW (before t=1sec and after 

t=1sec) and Q*= 0VARs & -10kVARs (before t=1sec and 

after t=1sec) are considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 12 GCM results: step change of UPF (active power) to lagging 

VARs 

Figure 12 represents the step change of UPF to lagging 

VARs. In this, P*=10kW & 0kW (before t=1sec and after 

t=1sec) and Q*= 0VARs & +10kVARs (before t=1sec and 

after t=1sec) are considered.  In this case, after t=1sec, the 

line voltage has 17 levels with peak values of ±800V. From 

all these dynamic case studies of GCI results, it is concluded 

that both APC and RPC have been achieved effectively with 

the proposed PR-based control strategy. Figure 13 represents 

the harmonic spectrum (HS) of pole voltage, which gives 

total harmonic distortion (THD) of 17.19% with peak 

value=400V. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 13 HS of VAO under UPF operation (9-levels): GCM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 14 HS of VAB under UPF operation (15- levels): GCM 
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Fig. 15 HS of injected IA(A) under UPF operation: GCM 

Figure 14 represents the HS of line voltage, which gives 

THD of 15.14% with peak value=700V. Figure 15 represents 

the HS of injected grid current, which gives THD of 1.4% 

with peak value=20A. From this result, the injected grid 

current has less harmonic distortion and effectively follows 

IEEE-1547 standards. Finally, all three-phase grid-connected 

objectives have been achieved through the proposed PR-

based control strategy. 

5. Comparative Study 
Table 3 compares the conventional 9L-NPC topology 

and proposes a modified 9L-NPC topology w.r. to the 

semiconductor and DC sources count. From this, the 

proposed 9L-MNPC topology has a smaller number of 

semiconductor devices; hence, the cost will decrease. Table 4 

presents a comparative analysis of conventional dq-reference 

frame control strategies and the proposed PR-based control 

architecture.  

The results demonstrate that the modified PR-based 

strategy, synergized with the UPD-PWM technique, exhibits 

a streamlined implementation framework with reduced 

computational overhead, significantly alleviating the 

processing demands on real-time Digital Signal Processors 

(DSPs). This efficiency stems from eliminating complex 

coordinate transformations and adaptive frequency tracking 

inherent to dq-axis methods while retaining precision in 

harmonic suppression and dynamic grid synchronization. 

Table 3. Comparative study-1 (topologies: per phase) 

S. 

No 
Description 

Conventional 

9L-NPC [20] 

Proposed 

9L-MNPC 

1. Number of IGBTs 16 12 

2. 

No. of 

Bidirectional 

Switches 

00 02 

3. 
No. of Discrete 

Diodes 
08 04 

4. No. of DC Sources 04 04 

Table 4. comparative study-2 (control strategies) 

 

S. 

No 

Description 

Conventional 

dq-Frame 

Control [3, 10] 

Proposed PR-

Control with 

UPD-PWM 

Technique 

1 Vector Control 
Synchronous 

Reference 

Stationary 

Reference 

2 
Transformation 

Blocks 
More Less 

3 
No. of PI 

Controllers 
Three Zero 

4 PWM PD-PWM UPD-PWM 

5 
Number of 

Carriers 
Level-1 (Level-1)/2 

6 PLL Required Not Required 

7 
Control 

Complexity 
High Low 

8 
Total Execution 

Time 
More Less 

 

6. Conclusion 
In this paper, a three-phase 9L-MNPC-GCI topology 

with a closed-loop PR-based control strategy has been 

explained. Before going to the grid connection, the 

standalone operation is also described, considering the UPD-

PWM technique. This topology provides a line voltage of 17 

levels with a peak value of 8Vdc; thereby, the grid filter size 

is also smaller. The proposed 9L-MNPC topology has a 

smaller component count than the conventional 9L-NPC 

topology, and the proposed PR-control strategy complexity is 

also less than that of the conventional dq-frame control 

strategy. The main objectives of APC, RPC, and less 

harmonic grid current distortion have been effectively 

achieved with different case studies using a modified PR-

based control strategy. In the future, the three-phase topology 

work will be updated for STATCOM, AFER, etc., for 

different kinds of applications with different types of control 

strategies.
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