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Abstract - This manuscript presents a comparative analysis of FOPID, FLC, and ANN-controlled Dynamic Voltage Restorer 

(DVR) systems in a grid-connected atmosphere, emphasizing the Optimization approach for enhancing performance. The 

Reboost converter is integrated with a DVR, and it is employed to enhance the voltage stability of a multi-bus system. The hybrid 

energy system consists of Photovoltaic (PV), Battery, and Wind Energy, which provides a robust interface to mitigate the voltage 

instability in weak bus systems. The output of the inverter is injected into the grid to compensate for the voltage sag caused by 

the increased load demand. To optimize control strategies, the parameters of FOPID, FLC, and ANN controllers are fine-tuned 

using an Enhanced Dung Bettle Optimizer Algorithm (Enhn-DBOA), providing optimal performance across a variety of 

operational conditions. The Dung Bettle Optimizer Algorithm (DBOA) is enhanced using the Ebola Search Optimization 

Algorithm (ESOA), and then it is named the Enhanced Dung Bettle Optimizer Algorithm (Enhn-DBOA). The FOPID, FLC, and 

ANN-controlled DVR systems are modeled in MATLAB/Simulink, and simulation results for bus voltage, real power, and reactive 

power are examined. According to the optimization-driven methodology, the ANN-controlled DVR system outperforms the 

FOPID and FLC-controlled systems in time-domain performance, with faster response times, higher voltage stability, and 

superior compensation for voltage sags. This paper emphasizes the effectiveness of optimization strategies in boosting DVR 

control performance for grid-connected systems. 

Keywords - Dynamic Voltage Restorer (DVR), Power Quality (PQ), Artificial Neural Networks (ANN), Fractional Order PID 

(FOPID), Fuzzy Logic Controllers (FLC), Static VAR Compensators (SVCs). 

1. Introduction  
In electrical networks, the DVR is an essential PQ tool 

that reduces voltage sags, swells, and harmonics. It ensures a 

constant power supply by injecting compensatory voltage 

during disruptions, improving system stability. DVRs 

constantly modify voltage levels to preserve operating 

efficiency, making them extremely effective at managing 

heavy load demands. Sensitive load protection and grid 

dependability are greatly enhanced by their quick response 

and sophisticated control techniques. High PQ is essential for 

reliable and effective energy distribution in contemporary 

grid-connected systems. The performance of delicate 

electrical loads is greatly impacted by voltage disturbances 

such as sag, swell, harmonics, and reactive power imbalances. 

To lessen these disruptions, a variety of power compensation 

tools have been used, including DVRs and SVCs. DVRs have 

become well-known because of their efficient voltage 

injection and fluctuation stabilization capabilities. However, 

inefficient control algorithms frequently limit the performance 

of typical DVRs, resulting in problems including delayed 

response time, excessive steady-state error, and insufficient 

compensation under dynamic grid settings. Furthermore, a lot 

of DVR solutions currently in use rely on conventional 

controllers like PI, PID, or fuzzy logic systems based on 

heuristics, which have trouble providing adaptive real-time 

performance under different load scenarios. Although several 

optimization techniques were developed to improve DVR 

control, current methods still have difficulty striking a 

compromise between fast transient response and low 

harmonic distortion. Traditional tuning strategies, such as 

gradient-based and heuristic optimization techniques, 

frequently have early convergence to local optima, which 

reduces their usefulness. Furthermore, intelligent-based 

controllers such as ANN, FOPID, and FLC have been 

http://www.internationaljournalssrg.org/
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investigated for DVR applications. These approaches, 

however, offer some drawbacks, such as large computing 

overhead, poor learning rates, and trouble implementing in 

real time. Although they can learn adaptively, ANN-based 

controllers are not feasible for dynamic grid settings since they 

need large training datasets and a lot of processing power.  

Scalability and adaptability in complex power systems 

may be limited by FLC controllers' reliance on expert 

knowledge for rule definition. Advanced control strategies are 

required to maintain grid stability because integrating RES, 

like wind and solar PV, introduces additional power 

fluctuations. A significant research gap still exists in the form 

of an ideal, adaptable, and dependable DVR control method 

that guarantees less Total Harmonic Distortion (THD), faster 

response times, and enhanced voltage stability. To overcome 

these difficulties, this manuscript suggests an improved DVR 

control approach that integrates intelligent-based controllers 

as best it can while avoiding their drawbacks. 

To overcome these difficulties, this manuscript proposes 

a hybrid control strategy for DVRs that combines ANN-based 

techniques, FLC, and FOPID. An Enhn-DBOA is used to 

optimize the control parameters, and the ESOA is used to 

refine the results further. This innovative optimization 

framework greatly enhances voltage compensation 

capabilities, reduces response time, and permits real-time 

flexibility. A Reboost converter also improves the system's 

supply of a steady DC-link voltage, which guarantees better 

correction for harmonics and voltage sags in a grid-connected 

hybrid energy system. The proposed methodology's improved 

performance in PQ enhancement and voltage stability across 

a range of operational conditions is demonstrated through 

simulations based on MATLAB/Simulink. 

1.1. Contribution and Novelty  

 The main contribution of this manuscript is developing a 

comparative analysis framework for FOPID, FLC, and 

ANN-controlled DVR systems integrated with a Reboost 

converter to improve voltage stability in grid-connected 

multi-bus systems.  

 The manuscript is significant because it uses an Enhn-

DBOA, which is then refined using the ESOA, to fine-

tune the control parameters of the DVR systems.  

 This optimized approach improves performance under 

various operating conditions, effectively mitigating 

voltage sags caused by increased load demand.  

 The incorporation of a hybrid energy system that includes 

PV, battery, and wind energy adds a unique layer of 

robustness, while the ANN-controlled DVR system is 

shown to provide superior time-domain performance, 

with faster response times and better voltage stability than 

FOPID and FLC-controlled systems.  

 The optimization and control of DVR systems for 

enhancing PQ in suboptimal bus grid settings are 

significantly aided by this investigation. 

2. Literature Review  
This section discusses recent research among the many 

studies on scene description generation utilizing deep learning 

and optimization. Venkatesh and P. S. Kumar [21] have 

approached Customers with delicate loads that require 

solutions for fast voltage control.  

A power electronic converter drives a DVR, which 

protects sensitive loads from supply voltage swings. DVR was 

a widely used and inexpensive treatment for severe sagging 

and swelling. The maximal active power contribution and 

voltage injection define a DVR's mitigation capabilities. The 

DC input of conventional DVRs is batteries; however, 

batteries are large, expensive, and dangerous to dispose of 

after usage. The result is that DVRs are paid less. Increasing 

the DVR's VA rating by 1.5 times requires increasing the DC 

connection voltage and improving microgrid voltage control. 

Ch.S. Kumar and Z.M. Livinsa [22] have presented a 

three-phase Z-Source Inverter-based DVR designed to 

eliminate voltage variations, sagging, swelling, and 

harmonics. The error-driven PID controller improves PQ 

performance in distribution systems by raising voltage, 

stabilizing it, and lowering harmonic distortion. Along with 

addressing other voltage issues, this technique keeps the load 

voltage near the nominal value. The Z-DVR's validity was 

demonstrated by modifying a PID controller's gain parameter 

using the HHO approach, comparing it to conventional and 

GA-based PID controllers, and performing distortion and total 

harmonics calculations. 

P. Kumar et al. [23] have demonstrated that artificial 

intelligence will control a three-phase DVR. The suggested 

LMBP algorithm was based on supervised learning and 

employs an intelligent computing system. The optimized 

ANN model was used to calculate the fundamental load 

voltage components during the training process.  

ANN models frequently faced the training challenges of 

slow system learning and getting stuck in a local optimum. By 

reducing error rates, the LMBP hybridized learning system 

gets around the previously noted problem. The ANFIS 

controller controls the voltage errors between the AC and DC 

lines. To extract the projected ANFIS models, the ANN-AN-

FIS-based DVR uses Gaussian membership functions and a 

hybrid learning technique.  

The author have described a low-complexity voltage 

compensation management system that uses a proprietary 

power device called a DVR that was used with various inverter 

topologies. Voltage variations like sag, swell, and harmonics 

are reduced by a three-phase Z-Source Inverter DVR. The 

error-driven PID controller improves PQ in distribution 

networks by boosting voltage augmentation, stability, and 

harmonic distortion reduction. This technique manages a 

range of voltage problems while maintaining the load voltage 

https://link.springer.com/article/10.1007/s13204-022-02364-2#auth-A_-Venkatesh-Aff1
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close to the nominal value. The PID controller's gain 

parameter was modified using the HHO approach. 

A.B. Abdelkader et al. [24] described a low-complexity 

voltage compensation management system that employs a 

proprietary power device known as a DVR and is employed 

with various inverter topologies. To reduce voltage 

fluctuations, sag, swell, and harmonics, a digital video 

recorder is powered by a three-phase Z-Source Inverter. The 

error-driven PID controller raises voltage, stabilizes it, and 

lowers harmonic distortion to enhance PQ performance in 

distribution systems. This approach keeps the load voltage 

near its nominal value while addressing various additional 

voltage issues. The HHO method was used to modify the gain 

of a PID controller. 

M. Rawa et al. [25] have demonstrated the DVR was used 

to address the PQ issues related to RESs. The PI controller 

controlled the DVR, and the GTA was used to determine the 

controller's gain settings for various PQ problems. Two 

operating modes were discussed: off-grid and on-grid with 

high PV, wind, and nonlinear loads. To get the intended 

outcome and DVR power, two comparison studies of various 

optimization techniques were also suggested, along with 

adding a second controller. 

A.C. Kathiresan et al. [26] have demonstrated to solve PQ 

difficulties, and the PV DVR was designed for series-

connected solar and wind farms. The operational zone of the 

recommended hybrid system was determined using graphical 

analysis. Solar PV electricity integration into the grid is 

supported by the system's performance in different grid 

topologies. Series voltage injection can reduce the negative 

impact of voltage sag and unbalance on wind-connected 

induction generators. 

2.1. Problem Statement 

The demand for robust and adaptable voltage regulation 

techniques to reduce PQ disturbances, including voltage sag, 

swell, and harmonic distortions, has grown due to modern 

power systems' increasing reliance on delicate electronic 

equipment. Although they are commonly used, traditional 

DVRs frequently use battery-based DC inputs, which have 

drawbacks in terms of size, cost, and environmental impact.  

Z-source inverters, intelligent controllers (PID, ANN, 

ANFIS), and tuning algorithms based on metaheuristics 

(HHO, GTA, GA-PID, ANN-ANFIS, etc.) are some more 

methods that have been investigated to improve DVR 

performance. However, behind the dynamic response, limited 

voltage compensation capabilities, high harmonic distortion, 

and inefficient parameter tuning remain challenges for current 

approaches, especially in grids that combine renewable energy 

sources. Global convergence, computational efficiency, and 

real-time adaptability in DVR control schemes are also not 

balanced by the majority of optimization methodologies. 

Using an improved Reboost converter and an Enhanced Dung 

Beetle Optimization Algorithm (Enhn-DBOA) enhanced with 

an Ebola Search Optimization Algorithm (ESOA), this study 

suggests an Enhanced Optimization-Control Framework to 

address these issues.  

It integrates FOPID, FLC, and ANN-controlled DVRs. 

This innovative framework outperforms traditional techniques 

in PQ enhancement, guaranteeing faster response, better 

voltage correction, lower THD, and increased stability for 

renewable-integrated multi-bus systems. 

3. Proposed System 
The block diagram of closed loop FOPID, FLC, and ANN 

controlled proposed system of `hybrid energy source with 

RBC and DVR is specified away on Figure 1. As the series 

voltage injection of the DVR is three-phase, it provides an 

occasion for the DVR to control the current in every bus 

vulnerably, which implies that combined negative and zero-

sequence unbalanced voltage can be compensated. To reduce 

voltage stress, Re-boost converters provide an incessant input 

current. The output ripple voltage and overall harmonic 

distortion factor are kept to a minimum. 

Figure 1 depicts a closed-loop circuit schematic for a re-

boost converter with DVR managed by FOPID, FLC, and 

ANN. In this diagram, the mutually 'PMSG-based' wind 

turbine and PV array with Re-boost-conversion are linked at a 

DC bus connection, which is connected to the utility grid via 

the grid-side converter. The AC bus bar connects the DVR and 

the 3ϕ load. 

3.1. Controller Design  

The ANN controller is intended to provide adaptive 

control by learning from the DVR system's input-output 

relationships. In contrast to the FLC, FOPID and the ANN-

based DVR controller optimize voltage injection based on 

real-time system activity, resulting in faster and more precise 

voltage adjustment. 

The Design and develop three distinct control strategies: 

 FOPID 

 FLC 

 ANN  

3.1.1. Modelling of FOPID (Fractional Order PID) Controller 

The FOPID controller adds two more adjustable 

parameters 𝜆 and 𝜇 (which are non-integer orders of derivative 

and integral terms) to the normal PID controller's three 

parameters, 𝑘𝑝, 𝑘𝑑, and 𝑘𝑖. Therefore, the FO PID controller's 

transfer function can be expressed as, 

𝐴(𝑠) = 𝑘𝑝 +
𝑘𝑖

𝑠𝜆
+ 𝑘𝑑𝑠

𝜇               (1) 
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Fig. 1 Diagram of the blocks for the proposed closed-loop system 
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The FOPID controller's basic architecture is depicted in 

Figure 2. From Equation (4), we can deduce that the controller 

is a traditional integral PID when 𝜆 = 1 and𝜇 = 1, a 

proportion amplifier when 𝜆 = 0 and 𝜇 = 0; a (PI) controller 

when 𝜆 = 1 and 𝜇 = 1; and a Proportional Derivative (PD) 

controller when 𝜆 = 0 and 𝜇 = 0. Selecting the ideal 

parameters to create an accurate controller is one of the main 

problems with FOPID controllers. An evolutionary algorithm 

has been used for that aim. 

3.1.2. FLC Controller  

Steps for FLC Modelling  

Input Variables: The two key inputs are defined for FLC 

in the DVR system 

 Error (𝐸(𝑇)): The difference between the measured 

voltage is indicated as 𝑉𝑀𝑒𝑎𝑠, and the reference voltage is 

indicated as 𝑉𝑅𝑒 𝑓 

 Change in Error(𝛥𝐸(𝑇)): The rate of change of the 

error.𝛥𝐸(𝑇) = 𝐸(𝑇) − 𝐸(𝑇 − 1) 

Fuzzification 

Fuzzification of input variables 𝐸(𝑇) and 𝛥𝐸(𝑇) using 

membership functions results in linguistic variables. Common 

fuzzy sets are: 

 Positive Large (PL), Positive Small (PS), Positive 

Medium (PM), Negative Medium (NM), Negative Small 

(NS), Zero (ZE), and Negative Large (NL). 

These fuzzy sets qualitatively describe voltage error and 

change.  

Rule Base 

The control actions are defined by the FLC using a rule 

base. Typically, the rules are expressed as "if-then" phrases, 

such as: 

 If 𝐸(𝑇) is Positive Large (PL) and 𝛥𝐸(𝑇) is Negative 

Small (NS), then output control is Negative Medium 

(NM). 

Inference Mechanism 

The inference engine examines the rule base to determine 

the control action based on the fuzzified inputs. This stage 

maps fuzzy inputs to fuzzy outputs using methods such as 

Max-Min and Max-Product. 

Defuzzification 

After the rules are evaluated, the fuzzy output is 

defuzzified to create a clear control signal using techniques 

such as the centroid algorithm. This signal is forwarded to the 

DVR control system, which adjusts the inverter output for 

voltage sag correction. 

Output Control Signal 

The FLC's final output is utilized to regulate the DVR 

voltage injection, stabilizing the grid-connected system. 

𝑈(𝑇) = 𝐹(𝐸(𝑇), 𝛥𝐸(𝑇))                 (2) 

 
Fig. 2 Proposed circuit diagram of closed loop FOPID/ FLC / ANN controller 
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3.1.3. ANN Controller  

Input Layer 

The ANN controller employs the same inputs as the FLC, 

with two neurons for 

 Error𝐸(𝑇): Difference in reference and actual bus 

voltage. 

 Change in error(𝜟𝑬(𝑻)): The rate at which the 

mistake changes. 

Hidden Layer 

The ANN consists of one or more hidden layers with 

enough neurons to learn the complex dynamics of the grid-

connected system. In the deep layers, neurons use weighted 

sums and an activation function to process the input. 

𝐻𝐽 = 𝐹(∑ 𝜔𝐼𝐽𝜒𝐼 + 𝐵𝐽
𝑁
𝐼=1 )                                    (3) 

Here, 𝜔𝐼𝐽 denotes the weights from the 𝐼𝑡ℎinput to the𝐽𝑡ℎ 

hidden neuron, 𝐵𝐽 is the bias term, and 𝐹(⋅) indicates the 

activation function. 

Output Layer 

The output layer establishes a control signal for the DVR 

based on the processed data from the hidden layers. 

𝜇(𝑇) = ∑ 𝜔𝐽𝜅𝐻𝐽
𝑀
𝜅=1          (4) 

The control action (voltage compensation) transmitted to 

the DVR inverter is denoted as 𝜇(𝑇) 

Training the ANN 

The ANN is trained using supervised learning with 

historical data from the DVR system, and the weights are 

adjusted via backpropagation utilizing input-output pairs 

(error, change in error, control action). During the training 

phase, the cost function, generally called mean squared error 

(MSE), is minimized. 

𝐽 =
1

𝜂
∑ (𝜇𝐷𝑒𝑠𝑖𝑟𝑒𝑑(𝑇) − 𝜇𝐴𝑁𝑁(𝑇))

2𝜂
𝐼=1                (5) 

The desired control action is represented by 𝜇𝐷𝑒𝑠𝑖𝑟𝑒𝑑(𝑇), 
whereas the output from the ANN is represented by 𝜇𝐴𝑁𝑁(𝑇). 

Adaptive Control 

After training, the ANN can be employed in real-time. It 

learns about system dynamics and adapts to load demand and 

voltage variations. Alter for voltage sags, and the ANN 

continually modifies the control signal to the DVR. 

Control Action 

The DVR receives the ANN's control output to manage 

the voltage. 

𝜇(𝑇) = 𝐴𝑁𝑁(𝐸(𝑇), 𝛥𝐸(𝑇))                               (6)                                                                                                                  

3.3. Enhanced Dung Bettle Optimizer Algorithm (Enhn-

DBOA) is Employed to tune the Hybrid Controller  

Animal excrement serves as food for the dung beetle, a 

common bug in the wild. Remember that dung beetles are 

essential to the environment because they are found in most 

places of the world and function as natural decomposers. Dung 

beetle's ability to transfer their excrement ball as quickly and 

efficiently as feasible is important to note since it can keep 

other dung beetles from out-competing them [27]. 

Step 1: Initialization 

In step 1, Set the input parameters to their initial values 

so that PV, BES, and FC are considered the input Parameters 

for the Dung Bettle Optimizer Algorithm (DBOA).  

Step 2: Random Generation 

The second phase entails creating the input parameters at 

random.  

Step 3: Fitness Evaluation 

The goal function is employed to select the fitness. 

Fit(t) = Mini(E)
                   

(7) 

While Eis defined as the minimum of the error.  

Step 4: Location of the Rolling Ball 

The intensity of the light source is also assumed to have 

an impact on the dung beetle's trajectory. The dung beetle 

updates its position when it rolls a ball, as shown by 

𝑌𝐼(𝑇 + 1) = 𝑌𝐼(𝑇) + 𝛼 × 𝐾 × 𝑌𝐼(𝑇 − 1) + 𝐵 × 𝛥𝑌 (8) 

𝛥𝑌 = |𝑌𝐼(𝑇) − 𝑌𝑊|                      (9) 

When 𝑇is the iteration number currently in progress, 

𝑌𝐼(𝑇)represents the 𝐼𝑡ℎis denoted as dung beetle's position at 

the iteration of 𝑇𝑡ℎ, 𝐾 ∈ (0,0.2) indicates a constant value that 

represents the defection coefficient, 𝐵 is indicate a constant 

value that belongs to (0,1), 𝛼is a natural coefficient that is 

assigned -1 or 1, 𝑌𝑊indicates the location that is globally 

worst, and 𝛥𝑌 simulates fluctuations in light intensity. The 

architecture of Enhn-DBOA is shown in Figure 3. 

Step 5: Rolling Direction 

To replicate the dancing action, they derive the new 

rolling direction using the tangent function. It's crucial to 

remember that just the values of the tangent function defined 

on the interval [0, F] are relevant. Once a new path is 

discovered, the dung beetle should continue rolling the ball 

backwards. As a result, the rolling dung beetle's definition and 

current position are the ensuing: 

𝑌𝐼(𝑇 + 1) = 𝑌𝐼(𝑇) + 𝑇𝑎𝑛(𝜃) |𝑌𝐼(𝑇) − 𝑌𝐼(𝑇 − 1)|         (10) 

Here,𝜃 is the angle of deflection, which pertains to [0, 𝜋]. 
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Fig 3. Architecture of Enhn-DBOA
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Step 6: Best Position 

Motivated by the preceding conversations, to imitate the 

regions delineated by female dung beetle egg-laying 

𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑛𝑑
∗ = 𝑀𝑎𝑥(𝑌∗ × (1 − 𝑅𝑎𝑛𝑑), 𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑛𝑑)  (11) 

𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑛𝑑
∗ = 𝑀𝑖𝑛(𝑌∗ × (1 − 𝑅𝑎𝑛𝑑), 𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑛𝑑) (12) 

When 𝑡𝑀𝑎𝑥 is indicated as the maximum iteration number, 

𝑅𝑎𝑛𝑑 = 1 −
𝑇

𝑡𝑀𝑎𝑥
 indicates the current local best position, 

𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑛𝑑
∗and 𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑛𝑑

∗ specifies the upper part and 

lower boundaries of the optimization problem, and 𝑌∗ 
indicates the current local best position. 

Step 7: Brood Balls 

When a sequence of iterations is followed, the placement 

of the brood ball is also dynamic, as dictated by 

𝑏𝐼(𝑇 + 1) = 𝑌∗ + 𝐵1 × (𝐵𝐼(𝑇) − 𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑛𝑑
∗) + 𝐵2 ×

(𝐵𝐼(𝑇) − 𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑛𝑑
∗)                                                     (13) 

Whereby 𝐵𝐼and 𝐵2denote two separate, size-independent 

random vectors 1 × 𝑑, where 𝑇denotes the magnitude of the 

optimization issue and 𝐵𝐼(𝑇) is the address data for the 

𝐼𝑡ℎbrood ball at the 𝑇𝑡ℎiteration. 

Step 8: Optimal Foraging Area 

In addition, to guide the foraging beetles and mimic their 

actual foraging habits, players must select the best feeding 

area. The ideal foraging area's perimeter is specifically 

established as follows: 

𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑛𝑑
𝐵 = 𝑀𝑎𝑥(𝑌𝐵 × (1 − 𝑟), 𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑛𝑑) ∗ 𝑚(𝑖) (14) 

𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑛𝑑
𝐵 = 𝑀𝑖𝑛(𝑌𝐵 × (1 − 𝑟), 𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑛𝑑) ∗ 𝑚(𝑖) (15) 

Here 𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑛𝑑
𝐵and 𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑛𝑑

𝐵 symbolize the lower 

and optimal foraging area. higher borders, respectively, and 

𝑌𝐵represents the global best position. The remaining 

parameters are specified in (84).  

Step 9: Updating Optimal Foraging Area using the Ebola 

Search Optimization Algorithm (ESOA) [29] 

Using the ESOA can improve the reliability of the DBOA 

in converging toward the optimal solution. Traveling and 

Chasing the Objective that was mentioned, the prey is hunted 

during the stages of exploration.  

The infected person ventures outside the normal 

neighborhood range 𝐿𝑟𝑎𝑡𝑒, which is the basis of the 

exploration phase. The present investigation considers the 

hypothesis that the greater the relocation distance, the more 

individuals  𝑆are exposed to infection.  

𝑚(𝑖) = 𝐿𝑟𝑎𝑡𝑒 ∗ 𝑅𝑎𝑛𝑑(0,1) + 𝑚(𝑖𝑛𝑑𝐵𝑒𝑠𝑡)  (16)  

According to the Equation (16), the neighborhood 

parameter controls the 𝐿𝑟𝑎𝑡𝑒. If neighborhood >= 0.5, it 

indicates that an individual has left the neighborhood and is 

now in the mega infection; if the neighborhood is less than 0.5, 

the infection is suppressed. 

Step 10: Location of Small Dung Beetles 

The little dung beetle's position is updated in the 

following way:  

𝑌𝐼(𝑇 + 1) = 𝑌(𝑇) + 𝑐1 × (𝑌𝐼(𝑇) − 𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑛𝑑
𝐵) +

𝑐2 × (𝑌𝐼(𝑇) − 𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑛𝑑
𝐵)                                 (17) 

Here, 𝑐1is a randomly distributed number, 𝑐2is a random 

vector that belongs to 𝑇𝑡ℎ (0, 1), and 𝑌𝐼(𝑇)is the 𝐼𝑡ℎlittle dung 

beetle position information at the 𝑇𝑡ℎiteration. 

Step 11: Best Place to Compete for Food 

Assume the region surrounding 𝑌𝐵 

signifies the ideal location for food competition. The 

thief's position is changed during the iteration process and ca

n be explained as follows: 

𝑌𝐼(𝑇 + 1) = 𝑌𝐵 + 𝑠 × 𝐺 × (|𝑌𝐼(𝑇) − 𝑌∗| + |𝑌𝐼(𝑇) − 𝑌𝐵|)
 (18) 

Wherever 𝐺is a regularly distributed, randomly 

distributed, 1 × 𝑑 -dimensional vector, and 𝑠designates a 

constant value. 𝑌𝐼(𝑇) symbolizes the positions of 𝐼𝑡ℎthe thief 

at the 𝑇𝑡ℎiteration. The optimal position 𝑌𝐵and its fitness 

value are output at the end.  

The DBO technique is a unique SI-based optimization 

strategy that consists of six fundamental processes that, for 

each given optimization challenge, can be expressed as:1) The 

DBO method and dung beetle swarm parameters were both set 

to zero. 2) Use the objective function to calculate each agent's 

fitness value. 3) Update the positions of all dung beetles. 4) 

Find out if an agent is beyond the boundary. 5) Revise the 

fitness value and current optimal solution. 6. Continue steps 1 

through 6 until the requirement is satisfied. 7) Provide the 

fitness value and global best solution. 

Step 12: Return to its Best Solution  

Step 13: Termination  

Verify the required stopping condition. After the 

maximum number of iterations, step 3 needs to be performed, 

and the suspension requirement is not met. 

4. Result and Discussion  
The proposed model was implemented with 

MATLAB/Simulink. The proposed system is evaluated 

against existing techniques such as GA-PID, ANN-AN-FIS, 

and HHO. The Performance matrices are evaluated using 
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Output voltage for FOPID, ANN, and FLC, Output voltage 

THD for FOPID, ANN, and FLC, RMS voltage for FOPID, 

ANN, and FLC, Output current for FOPID, ANN, and FLC, 

Output Current THD for FOPID, ANN, and FLC, Real power 

for FOPID, ANN, and FLC, Reactive Power for FOPID, ANN, 

and FLC, Compensation, Faster Response Time (s), Reactive 

Power Stability (%), Real Power Stability (%), Rise Time, 

Setting Time, Voltage Sag Mitigation, and Voltage Stability. 

Table 1. Simulation parameters of integrated DVR 

Symbols Values 

Vin 48V 

C1, C2 10µF 

C3 180 µF 

C4 1800 µF 

L1, L2 1µH 

L3, L4, L5 200mH 

C5, C6, C7 10µF 

Frequency 50hz 

Mosfet IRF840 

Diode IN4007 

Ro 80Ω 

V0 475V 

 
Fig. 4 Circuit diagram of Re-boost converter of DVR with closed loop for (a) FOPID controller, (b) FLC, and (c) ANN. 



S. Sudharani & Godwin Immanuel D / IJEEE, 12(3), 185-201, 2025 

194 

The circuit diagram of the Re-boost converter of DVR 

with closed loop for (a) FOPID controller, (b) FLC, and (c) 

ANN is shown in Figure 4. Performance Evaluation of Output 

voltage for (a) FOPID, (b) FLC, and (c) ANN is shown in 

Figure 5. The output voltage across the RL load and the 

FOPID values are marked as 470V, the value of FLC is marked 

as 472V, and the value of ANN is 474V. Performance 

Evaluation of Output voltage THD for (a) FOPID, (b) FLC, 

and (c) ANN is shown in Figure 6. The Output voltage THD 

for RL load values for FOPID is marked as 5.11%, FLC is 

marked as 2.96%, and ANN is marked as 2.20%. 

 
Fig. 5 Performance evaluation of output voltage for (a) FOPID, (b) FLC, and (c) ANN. 

 
Fig. 6 Performance evaluation of output voltage THD for (a) FOPID, (b) FLC, and (c) ANN. 
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Figure 7 shows a performance analysis of RMS voltage 

for (a) FOPID, (b) FLC, and (c) ANN. The output RMS 

voltage for FOPID is marked as 345V, FLC is marked as 342V, 

and ANN is marked as 340V. Analysis of Output current for 

(a) FOPID, (b) FLC, and (c) ANN is shown in Figure 8. The 

Output current through RL load and its range is FOPID is 

marked as 3.4A, FLC is marked as 3.3A, and ANN is marked 

as 3.2A.  

 
Fig. 7 Performance analysis of RMS voltage for (a) FOPID, (b) FLC, and (c) ANN. 

 
Fig. 8 Analysis of output current for (a) FOPID, (b) FLC, and (c) ANN. 
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Output Current THD for (a) FOPID, (b) FLC, and (c) 

ANN are shown in Figure 9. The Output current THD through 

RL load and the values for FOPID are marked as 5.21%, FLC 

is marked as 2.77%, and ANN is marked as 2.30%. Output 

Real Power for (a) FOPID, (b) FLC, and (c) ANN is shown in 

Figure 10. The output real power for RL load is marked for 

FOPID as 1980W, FLC is marked as 1983W, and ANN is 

marked as 1987W. 

 
Fig. 9 Output current THD for (a) FOPID, (b) FLC, and (c) ANN. 

 
Fig. 10 Output real power for (a) FOPID, (b) FLC, and (c) ANN. 
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Output Reactive Power for (a) FOPID, (b) FLC, and (c) 

ANN is shown in Figure 11. The output reactive power for RL 

load is marked for FOPID as 1490VAR, FLC is marked as 

1493VAR, and ANN is marked as 1513VAR.

 
Fig. 11 Output reactive power for (a) FOPID, (b) FLC, and (c) ANN. 

Table 2. Comparative analysis of time domain parameters  

Controllers 
Rise  

time (s) 

Peak  

time (s) 

Setting  

time (s) 

Steady-State 

Error (V) 

FOPID 1.12 1.14 1.18 3.23 

FLC 0.59 0.61 0.72 1.12 

ANN 0.57 0.58 0.60 0.85 

 
Fig. 12 Bar chart comparison of FOPID, FLC, and ANN controllers for 

dynamic response characteristics 

Table 2 compares Time Domain Parameters for FOPID, 

FLC, and ANN Controllers. Figure 12 shows the Bar chart 

comparison of FOPID, FLC, and ANN controllers for 

dynamic response characteristics. Table 3 shows an evaluation 

of voltage and current THD for FOPID, FLC, and ANN 

controllers.  

Table 3. Evaluation of voltage and current THD for FOPID, FLC, and 

ANN controllers 

Controller Voltage THD (%) Current THD (%) 

FOPID 5.11 5.21 

FLC 2.96 2.77 

ANN 2.20 2.30 

 
Fig. 13 Bar chart comparison of voltage THD and current THD for 

FOPID, FLC, and ANN controllers 
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Figure 13 shows the Bar chart comparison of FOPID, 

FLC, and ANN controllers for Voltage THD and current THD. 

Using the ANN controller, the dynamic response 

characteristics are as follows: The rise-time is condensed from 

1.12s, 0.59s to 0.57s; The peak time is 1.14s, with a range of 

0.61s to 0.58s when employing an ANN controller. The ANN 

controller reduces the settling time from 1.18s to 0.72s and 

0.60s. The ANN controller reduces the steady-state error from 

3.23V to 1.12V, then to 0.85V. As a result, the closed-loop 

ANN controller outperforms the closed-loop FOPID and 

Fuzzy Logic controllers in the re-boost converter with a DVR 

system. 

 
Fig. 14 Performance analysis of compensation using both proposed and 

existing technique  

Performance analysis of compensation using both 

proposed and existing techniques is illustrated in Figure 14. 

The values for existing techniques like GA-PID, ANN-AN-

FIS, and HHO are marked as 96 %, 97%, and 97.5%, and the 

values proposed are marked as 99%. Compared to the 

proposed technique, the value of the existing technique is low. 

 
Fig. 15 Performance analysis of faster response time (s) using both 

proposed and existing technique  

Performance analysis of Faster Response Time (s) using 

both proposed and existing techniques is demonstrated in 

Figure 15. The values for existing techniques like GA-PID, 

ANN-AN-FIS, and HHO are marked as 0.1 s, 0.08 s, and 

0.07s, and the values proposed are marked as 0.05s. The 

existing technique has a lower value than the proposed 

technique. 

 
Fig. 16 Performance analysis for (a) Reactive power stability (%), and (b) Real power stability (%) using both proposed and existing technique.

Performance analysis for (a) Reactive Power Stability (%) 

and (b) Real Power Stability (%) using both proposed and 

existing techniques is shown in Figure 16. The analysis of 

Reactive Power stability (%) is illustrated in the figure. The 

values for existing techniques like GA-PID, ANN-AN-FIS, 

and HHO are marked as 93%, 94%, 95% and the values 

proposed are marked as 96%. The analysis of Real Power 

stability (%) is illustrated in the figure. The values for existing 

techniques like GA-PID, ANN-AN-FIS, and HHO are marked 

as 94%, 95%, 96% and the values proposed are marked as 

97%. The existing technique has a lower value than the 

proposed technique. 
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Fig. 17 Performance analysis for (a) Rise time, and (b) Setting time using both proposed and existing techniques.  

Performance analysis for (a) Rise Time and (b) Setting 

time using both proposed and existing techniques in Figure 17. 

The values for existing techniques like GA-PID, ANN-AN-

FIS, and HHO are marked as 0.06 s, 0.05 s, and 0.04 s, and the 

values proposed are marked as 0.02s.  

The analysis of Real Power stability (%) is illustrated in 

the figure. The values for existing techniques like GA-PID, 

ANN-AN-FIS, and HHO are marked as 0.1s, 0.08s, and 0.07s, 

and the values proposed are marked as 0.05s. Compared to the 

existing technique, the value of the proposed technique is low.  

 
Fig. 18 Analysis of voltage sag mitigation 

Voltage Sag Mitigation is shown in Figure 18. The values 

for existing techniques like GA-PID, ANN-AN-FIS, and HHO 

are marked as 85%,90%,91% and the values proposed are 

marked as 95%. Compared to the existing technique, the value 

of the proposed technique is high. Analysis of Voltage 

Stability is shown in Figure 19. The values for existing 

techniques like GA-PID, ANN-AN-FIS, and HHO are marked 

as 95%,96%,97%, and the values proposed are marked as 

98%. The proposed technique outperforms the present 

technique in terms of value. 

 
Fig. 19 Analysis of voltage stability 

Evaluation of the parameter is elaborated in Table 4. The 

table compares four optimization methods based on important 

PQ and stability parameters: HHO, GA-PID, ANN-ANFIS, 

and Enhn-DBOA. With the fastest response time (0.05s), the 

highest compensation (0.99%), and the best voltage sag 

mitigation (95%), Enhn-DBOA performs better than any other 

model.  

To minimize system disruptions, it also maintains 

exceptional reactive (0.96%) and real power stability (0.97%), 

as well as a quick rise time (0.02s) and settling time (0.05s). 

ANN-ANFIS and HHO exhibit comparable results but lag 

significantly below Enhn-DBOA in voltage stability, response 

time, and power compensation, while GA-PID performs the 

worst in the majority of areas. Enhn-DBOA performs better 

than alternative techniques, making it the best choice for 

improving grid-connected systems' stability and PQ.
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Table 4. Evaluation of parameter 

Parameters Enhn-DBOA GA-PID ANN-ANFIS HHO 

Compensation (%) 0.99 0.96 0.97 0.98 

Faster Response Time (s) 0.05 0.1 0.08 0.07 

Reactive Power Stability (%) 0.96 0.93 0.94 0.95 

Real Power Stability (%) 0.97 0.94 0.95 0.96 

Rise Time (s) 0.02 0.06 0.05 0.04 

Settling Time (s) 0.05 0.1 0.08 0.07 

Voltage Sag Mitigation (%) 95 85 90 92 

Voltage Stability (%) 0.98 0.95 0.96 0.97 

4.1. Discussion on Achieved Results Compared to State-of-

the-Art Techniques 

 The ESOA, in conjunction with the proposed Enhn-

DBOA, ensures optimal tuning of FOPID, FLC, and ANN 

controllers for DVR systems in hybrid energy-based multi-bus 

grids, outperforming currently used techniques like GA-PID, 

ANN-ANFIS, and HHO. In comparison to GA-PID (85%), 

ANN-ANFIS (90%), and HHO (92%), Enhn-DBOA reduces 

voltage sag by 95% while obtaining better voltage stability 

(98%) and compensation efficiency (99%). In comparison to 

GA-PID (0.06s, 0.1s), ANN-ANFIS (0.05s, 0.08s), and HHO 

(0.04s, 0.07s), the method dramatically improves dynamic 

response characteristics, cutting rise time to 0.02s and settling 

time to 0.05s. It also reduces Total Harmonic Distortion 

(THD) in voltage (2.20%) and current (2.30%) and eliminates 

steady-state error to 0.85V, beating traditional ANN-ANFIS 

and HHO-based techniques. Additionally, compared to 

competing approaches, the system enhances the stability of 

real power (0.97) and reactive power (0.96). The optimization-

driven DVR system is very effective in reducing voltage 

disturbances and improving stability in grid-connected hybrid 

energy systems because it guarantees faster response, better 

voltage regulation, and higher PQ. 

5. Conclusion  
In conclusion, PQ in multi-bus grid systems is greatly 

enhanced by the proposed hybrid-controlled DVR system 

optimized with the Enhn-DBOA. Regarding voltage stability, 

reaction time, and harmonic reduction, the comparison 

analysis shows that the ANN-controlled DVR system 

performs better than FOPID and FLC controllers. The 

incorporation of a Reboost converter improves the system's 

capacity to efficiently reduce voltage sags. Better 

compensation, quicker reaction, and less Total Harmonic 

Distortion (THD) are all guaranteed when the control 

parameters are adjusted for optimal DVR performance using 

the ESOA. The proposed method's improved performance is 

confirmed by the MATLAB/Simulink-based simulations, 

which make it a reliable way to improve PQ in distribution 

systems that include renewable energy sources. The 

performance of DVRs in extremely dynamic grid 

environments can be further enhanced by future research on 

real-time adaptive control strategies employing cutting-edge 

machine learning models, such as deep reinforcement 

learning. Including new optimization methods, including 

quantum-inspired algorithms, could improve control 

parameter tuning's effectiveness. Hardware-In-the-Loop 

(HIL) testing is another way to confirm that optimized DVR 

systems work well in practical settings. Multi-objective 

optimization techniques that take system dependability, 

energy efficiency, and economic viability into account for 

large-scale grid applications can also be investigated in future 

research. Energy management and grid resilience in smart grid 

environments may be further improved by the possible 

integration of DVR systems with blockchain-based energy 

trading platforms. 
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