
SSRG International Journal of Electrical and Electronics Engineering Volume 12 Issue 3, 202-222, March 2025

ISSN: 2348-8379/ https://doi.org/10.14445/23488379/IJEEE-V12I3P119 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Implementation of an Automatic Control System and

an IOT Architecture for Wireless Monitoring

Through Bidirectional Communication by RF and

Wi-Fi for Registration in the Cloud of Parameters

Needed in Greenhouse Operation

Igor Miguel Paredes Cornejo1, Estefany Jared Rojas Chacón1, Fernando Paul Salazar Collantes1,

German Alberto Echaiz Espinoza1, Andrés Ortiz Salazar2, Elmer Rolando Llanos Villarreal3

1Professional School of Engineering Electronics, Universidad Nacional de San Agustin de Arequipa, Arequipa, Peru.
2Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte

(DCA-UFRN), Natal 59072-970, RN, Brazil.
3Department of Natural Sciences, Mathematics, and Statistics, Federal Rural University of Semi-Arid (DCME-UFERSA),

Mossoró 59625-900, RN, Brazil.

1Corresponding Author : gechaiz@unsa.edu.pe

Received: 06 December 2024 Revised: 06 March 2025 Accepted: 26 March 2025 Published: 31 March 2025

Abstract - Food shortages in Peru are frequently exacerbated by roadblocks due to social protests and seasonal variations,

restrict food production, and intensify shortages, particularly in regions with limited cultivable land. To address this challenge,

an automated control system and IoT architecture for wireless monitoring were developed to replicate specific climatic

conditions within greenhouses, allowing the cultivation of crops typically restricted to certain regions and providing a potential

solution to improve agricultural productivity and mitigate food scarcity. The system regulates critical environmental parameters

such as temperature, irrigation and luminosity, while wireless monitoring of temperature, water level, luminosity, and pH is

achieved through RF communication, with data transmitted to a database via Wi-Fi and visualized in real-time using a cross-

platform application. In addition, the NRF24L01 radio frequency communication modules were optimal for the application due

to their ease of integration with the Arduino UNO development board, affordability, range, and market availability. The system

was validated in a pilot-scale greenhouse. Further research is needed to evaluate its long-term scalability and efficiency in

diverse agricultural settings, as these aspects remain critical to its broader applicability and impact.

Keywords - Greenhouse, Automatic control, IoT, Radio Frequency, Monitoring.

1. Introduction
Food security is a critical issue facing many countries,

particularly in regions where agricultural production is

affected by climatic limitations or political instability. In Peru,

road blockages due to political demonstrations often disrupt

the supply of essential food products, leading to

shortages and malnutrition. According to the National

Disaster Risk Management Plan, approximately 3,862,572

residents in the provinces of Arequipa, Ayacucho,

Huancavelica, Junin and Puno in Peru are exposed to frost

periods with temperatures reaching 4°C for up to 30 days. [1]

In addition, data from INDECI indicate that between 2003 and

2016, 127,833 hectares of crops were lost, and 682,990

hectares were affected due to frost and cold. These

meteorological events significantly impact the health and food

security of the affected populations. [2] Furthermore, the most

affected population is generally those who live in places

located more than 3,000 meters above sea level and whose

subsistence resources depend mainly on agricultural activities

and livestock raising. Adverse weather conditions severely

impact these economic activities. [3] To address this

challenge, developing innovative agricdeveloping is crucial

the problem is a shortage of monitoring and control systems

for creating smart greenhouses that monitor and control

specific parameters in Peru, which hinders agricultural

production and contributes to food insecurity. Thus, the

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Igor Miguel Paredes Cornejo et al. / IJEEE, 12(3), 202-222, 2025

203

research gap lies in designing systems that include

simultaneous monitoring and control to replicate

microclimates. Traditional agricultural methods are

vulnerable to disruptions in food transportation networks

caused by social and political instability; they are also

vulnerable to drastic climate changes, resulting in shortages of

essential foods.

The inability to grow food in climate-controlled

conditions limits the availability of diverse products,

especially in regions with limited cultivable land. This

research project aims to develop and implement an automated

control system and IoT architecture for wireless monitoring in

greenhouses. The main objectives are:

 Establish an IoT architecture for wireless monitoring of

greenhouse parameters, including temperature, humidity,

brightness, and pH.

 Implement an automated control system for regulating

temperature and water levels in hydroponic irrigation

systems.

 Design and develop a user-friendly web application for

real-time data visualization and parameter control.

 Validate the proposed system by constructing a pilot-

scale greenhouse and evaluating its performance under

controlled conditions.

The scope of this research includes the design,

implementation, and validation of an IoT-enabled greenhouse

monitoring and control system. The focus is establishing a

communication network among sensors, actuators, and a

central controller, enabling real-time monitoring and

automated parameter adjustment. The system will be designed

to accommodate various greenhouse configurations and crop

requirements.

Implementing an IoT-based greenhouse monitoring and

control system has significant potential to address food

security concerns in Peru. Enabling the self-sufficient

cultivation of diverse crops under controlled conditions can

help mitigate the impact of transportation disruptions and

enhance agricultural productivity. This technology potentially

improves food availability, reduces malnutrition rates, and

contributes to economic growth in rural communities.

The main contributions of this study are the following:

 Regulation of key environmental parameters, such as

temperature, irrigation, and luminosity, to replicate

specific conditions within greenhouses. A PI controller

was used for irrigation and fuzzy control for temperature,

while luminosity was managed based on predefined

conditions.

 IoT infrastructure integration enables real-time

monitoring of parameters such as temperature, water

level, luminosity, and pH using Radio Frequency (RF)

communication and data transmission via WiFi.

 The development of a Cross-platform application to show

real-time monitoring of greenhouse conditions,

improving data accessibility and interpretation.

 Proposal of a technological solution to enhance

agricultural productivity in areas with limited cultivable

land, addressing food scarcity issues in the Peruvian

context.

1.1. State of the Art
The scientific article titled "IoT Architecture Based on

Wireless Sensor Network Applied to Agricultural

Monitoring: A Case Study of Cocoa Crops in Ecuador"

presents a low-cost IOT architecture intended for agricultural

monitoring of different types of crops. However, it focuses

only on cocoa crops. The article develops a multiplatform

application, which is the focus of the research. The basis of

the research is that in Ecuador, the main source of income in

rural areas (37% of the population) is agriculture, and due to

one of its main problems, which is low productivity, the

sustainable management of these resources is very important.

In order to address this problem, the authors present an IOT

architecture based on WSN. This architecture presents a

design based on a sensor network. It is important to consider

that the architecture should be accessible to farmers, so low

cost is prioritized, and that the system should be non-invasive

in the development of crops. The architecture presented is of

the client-server type, obtaining three layers: an application

layer, a service layer and a sensor layer. The sensor layer is

composed of five nodes under a mesh topology, a coordinator

node and a gateway. An important point in this layer is the

measurement of humidity, temperature, PH, conductivity and

luminosity. However, the sensors used do not provide high

accuracy because of their low cost. Data transmission is done

through Xbee S2C between each sensor node, and the data is

transmitted to the coordinator node, which is sent to the

Gateway through a LoRa module. Consequently, in the

service layer, the information hosted in the cloud is managed

and processed, obtaining tables, statistical graphs and

interactive maps, obtaining reports and notifications according

to the set parameters, thanks to the use of Framework MLib,

which contains massive data preprocessing algorithms [4].

An important comparative point in the analysed article

and the present research is that both present a multiplatform

application to address the problem of low food productivity,

and both work with an IOT architecture for data collection

intended to be low cost. However, although the literature

review emphasizes the processing and presentation of data,

human intervention is still necessary to solve problems that

arise over time; that is why, as a novelty, it was considered of

vital importance to develop an automatic control system to

control the main growth factors in a plant, avoiding human

intervention for the control of factors. Similar to the nodes

explained in the article, a transmitter module, a receiver

module, and a control module were developed, working with

Igor Miguel Paredes Cornejo et al. / IJEEE, 12(3), 202-222, 2025

204

wireless communications through Arduino and using

Raspberry Pi to send the information to a database.

Similarly, the research article entitled “Technological

architecture for monitoring environmental variables in a

museum” presents a system for monitoring temperature in

degrees Celsius and relative humidity percentage designed for

a museum with completely sealed and covered rooms. The

article presents an architecture composed of three levels: a

physical level centered on DHT sensors, then a level to acquire

data centered on Arduino and a final level of management by

Raspberry Pi 3 B+. The purpose of the research is to notify

when it is necessary to provide preventive maintenance to the

books, extending this system with a control system to carry

out preventive actions. In addition, the authors want to provide

a system developed with modern technologies, low cost and

energetically efficient. The reason why they chose to use

“free” software and hardware is to allow access from any

device. It is worth mentioning that the acquisition of variables

is performed every 5 minutes because the rate of change of

temperature and humidity is slow.

They calculate the average values for each variable. This

information is stored in a database requested to perform a

basic statistical analysis, data visualization, email reporting,

and notification. In the physical layer, they use UTP twisted

pair cable category 5, suitable for instrumentation and

shielding against noise to connect the DHT11 and DHT22

sensors to an Arduino nano through serial communication

with a maximum distance of 20 meters. For data processing

and visualization, they use a Raspberry Pi 3 B+, which has the

open-source Raspberry Pi OS and internet connection via Wifi

without extra modules. In this configuration, Raspberry Pi 3

B+ works as a system server and another as a client using the

local access program Node-Read, which can only be accessed

via remote access. [5]

Although the article analysed is not oriented to

agriculture, it presents a monitoring system that could easily

be adapted to a greenhouse since both the museum and the

greenhouse are closed environments. Now, the article uses

DHT11 and DHT22 sensors, very similar to the DHT21 used

in this research; likewise, Arduino and Raspberry Pi are used;

however, the article uses the Arduino nano and Raspberry Pi

3 B+, which have fewer features and power than the Arduino

UNO R3 and Raspberry Pi 4B used in this research, which can

develop a control logic, which is not developed in the article

presented. Because the authors do not develop a control, they

prioritize obtaining reports and the generation of alarms.

Another key point is that the authors use direct wired

communication, not wireless technology, as presented in this

research. This is a key factor because it limits the distance to

20 meters. Finally, although Raspberry Pi is used in both

cases, the exposed article uses it as a local database. To access

it remote access to the Raspberry Pi is made through a local

WiFi network. While in this research, the Raspberry Pi is used

as a gateway to store data on a web server. Additionally,

remote access can be made through the local network by WiFi

to visualize the data flow.

The article "LoRaWAN Based Internet of Things (IoT)

System for Precision Irrigation in Plasticulture Fresh-Market

Tomato" presents the development and evaluation of an IoT

system based on LoRaWAN for precision irrigation in fresh-

market irrigation in scheduling treatments were designed and

tested. The study implemented and evaluated four irrigation

treatments, including irrigation based on crop

EvapoTranspiration (ET), soil matrix potential sensors

(Watermark 200SS-5) set to -60 kPa (MP60) or -40 kPa

(MP40), and the GesCoN fertigation Decision Support System

(DSS). The results suggest that the IoT system can be

implemented for automated and precision irrigation

operations in vegetable and other horticultural crops,

enhancing water use efficiency and sustainability. In terms of

system performance, the LoRaWAN network successfully

transmitted real-time data, having occasional signal losses

(5.5% data loss rate) due to gateway positioning and network

disconnections. The solenoid valves operated effectively;

some response delays were noted due to low voltage power

supply and potential clogging. Battery-powered data loggers

maintained stable operation throughout the three-month

experiment, with solar panels continuously recharging. [6]

Unlike this system, which focuses on soil moisture, the

present study integrates both monitoring and automatization,

offering a more comprehensive approach to environmental

management. One of the limitations was its reliance on

intermittent manual intervention for irrigation control. In

contrast, the proposed system is fully automated. Furthermore,

using NRF24L01 modules ensures reliable data transmission,

addressing issues such as data loss and power limitation

observed in the LoRaWAN implementation. Finally, in the

study "An Automatic Irrigation System Using IoT Devices,"

an automated irrigation system was implemented. It was

complemented by an Android application that allows manual

motor control, enabling it to be switched on and off as an

alternative. The implementation of this system utilizes an

Arduino UNO, GSM modules, an Android application, and

temperature and soil moisture sensors. [7]

This research project aims to advance the development of

IoT-enabled greenhouse monitoring and control systems,

tackling the critical issue of food security in Peru. By enabling

the cultivation of diverse crops under controlled conditions,

the system has the potential to mitigate the impact of

transportation disruptions, improve agricultural productivity,

and enhance food availability in regions facing food shortages.

Unlike this system, which primarily focuses on irrigation

automation, the proposed system monitors and controls a

broader set of parameters, including pH, luminosity and water

level. Additionally, the web-based application enhances

functionality by offering real-time monitoring, remote reset

and scalability for diverse greenhouse configurations. An

important point of comparison between the analysed article

Igor Miguel Paredes Cornejo et al. / IJEEE, 12(3), 202-222, 2025

205

and the present research is that both systems allow farmers to

observe the status of the field or greenhouse from anywhere

and at any time.

2. Materials and Methods
Figure 1 describes the general block diagram of the

project.

Fig. 1 General block diagram

Figure 2 describes the block diagram of the IoT

architecture for monitoring.

Fig. 2 Block diagram of the IoT architecture for monitoring

Figure 3 describes the block diagram for the level control

of a hydroponics tank.

,

Fig. 3 Block diagram for level control of a hydroponics tank

Figure 4 describes a block diagram for temperature

control.

Fig. 4 Block diagram for temperature control

Figure 5 describes a block diagram for hourly brightness

control.

Fig. 5 Block diagram for hourly brightness control

2.1. Materials Required for the Implementation of the

Project
List of materials required for implementation in Tables 1,

2 and 3. Arduino was used because it is an open-source

hardware and software platform, so there is no need to

purchase licenses. Raspberry Pi 4B was chosen because of its

low price, operating system-agnostic design, Python

capability and USB and Wi-Fi connections included. In the

case of the selection of the BH1750, HC-SR04, DHT21 and

Liquid pH Sensor +Hydroponic Electrode BNC sensors, the

rationale is based on their low price, easy installation and

programming. In addition, they are commercially available.

Table 1. List of materials required for implementation

Description
Unit of

Measure
Quantity

Raspberry Pi 4B 8Gb + Vilros

Case
Unit 1

Cooler Fan 12V 8cm Unit 2

Cooler Fan 12V 4cm Unit 1

RF module NRF24L01 Unit 2

Driver Bridge ’H’ L298N Unit 2

Motor Shield VHN2SP30 Unit 1

Luxmeter BH1750 Unit 1

DS3231 clock module Unit 1

LM2596 DC-DC voltage regulator

module
Unit 2

Ultrasonic sensor HC-SR04 Unit 2

Digital humidity and temperature

sensor DHT21
Unit 2

LED Tape 5m without silicone Unit 2

Liquid pH Sensor +Hydroponic

Electrode BNC
Unit 1

Peltier Kit 12706 with cell,

heatsink and thermal paste
Unit 1

Water Pump 12 V. 3.5 L/min 2 A Unit 1

Switching power supply AC/DC

12 VDC 10 A
Unit 1

Switching power supply AC/DC

12 VDC 10 A
Unit 1

White PETG roll Unit 1

ARDUINO UNO R3 Unit 4

S
T

E
P

 1Determination
of the subject
and collection
of information

S
T

E
P

 2Aproach and
development of
research

S
T

E
P

3

Implementation
of the
automatic
control system
an IoT
architecture

S
T

E
P

 4 Project
validation

Sensor

reading

Arduino

UNO R3

Antenna

transmitter

module RF

NRF24L01

Antenna

receiver

module RF

NRF24L01

Web

Application
Database

Raspberry Pi

4B

Arduino

UNO R3

RF

Wi-Fi

Stabilization

default level

value input

Arduino

IDE

Arduino

UNO R3

(Control)

Actuator

(electro

pump)

Sensor data

(ultrasonic)

Stabilization

default

temperature

value input

(°C)

Arduino

IDE

Arduino

UNO R3

(Control)

Actuator

(Peltier

cell)

Sensor data

(temperature

sensor)

Input

stabilization

default value

(lux) and set

on hours

Arduino

IDE

Arduino

UNO R3

(Control)

Actuato

r

(LED

lights)

Igor Miguel Paredes Cornejo et al. / IJEEE, 12(3), 202-222, 2025

206

Table 2. List of required software

Description
Unit of

measure

ARDUINO IDE Unit

MATLAB/Simulink (UNSA Student

License)
Unit

Pusher Unit

Visual Studio Code Unit

Tinkercad Unit

Thonny, Python IDE Unit

Table 3. List of materials required for prototype structure

Description
Unit of

measure
Quantity

Premium Acrylic Plate 4mm

1.25 x 1.85
Unit 1

MDF board Unit 1

Aluminum angles Unit 4

Screws Unit 100

UTP cable Meters 8

Sika acetic silicone Unit 1

6′′ PVC pipe Unit 1

2.2. Mathematical Modeling and Simulation of Control Systems
2.2.1. Mathematical Model of the Level Control System

Figure 6 below shows the filling and draining scheme of a

tank.

Fig. 6 Schematic diagram of filling and draining a tank

Therefore, the resulting expression of the Equation of

Obtained Motion (EOM), considering the mass balance

applied to the water level in the tank, is:

𝐴 𝑇𝑖
𝑑ℎ𝑖

𝑑𝑡
 = 𝐹𝑖𝑖 − 𝐹𝑜𝑖 (1)

Where:

ℎ𝑖 water height in the tank 𝑻𝒊

𝐴𝑇𝑖
tank base area 𝑻𝒊

𝐹𝑖𝑖
 Tank inlet flow rate 𝑻𝒊

𝐹𝑜𝑖
tank outlet flow rate Ti

It is assumed that the inlet volumetric flow rate to the tank

is directly proportional to the current applied to the pump,

obtaining:

𝐹𝑖𝑖
 = 𝐾𝑝𝐼𝑝 (2)

In addition, according to Bernoulli’s equation for small

orifices, it is possible to obtain the tank outlet velocity.

1

2
 𝑚𝑣2 = 𝑚𝑔ℎ

𝑣𝑜𝑖
 = √2𝑔ℎ𝑖 (3)

Thus, the volumetric flow rate out of the tank is expressed

as:

𝐹𝑜𝑖
 = 𝐴𝑜𝑖

𝑣𝑜𝑖
 (4)

Where:

𝐴𝑜𝑖
tank outlet orifice area Ti

𝑣𝑜𝑖 tank outlet flow velocity Ti

From the figure of the tank, the following equations are

defined:

𝛥𝑉1 = 𝑓𝑖1 − 𝑓𝑜1

Since the area of the base of the tank is constant, the

equation develops as follows:

𝐴1𝛥ℎ1 = 𝑓𝑖1 − 𝑓𝑜1

𝐴ℎ1̇ = 𝑓𝑖1 − 𝑓𝑜1

From equations (2) and (4), the above expression is

rewritten as:

𝐴ℎ1̇ = 𝐾𝑝𝐼𝑝 − 𝐴𝑜1𝑣𝑜1

Finally, replace equation (3) in the previous expression:

𝐴ℎ1̇ = 𝐾𝑝𝐼𝑝 − 𝐴𝑜1√2𝑔ℎ1

 ℎ1̇ =
𝐾𝑝

𝐴
𝐼𝑝 −

𝐴𝑜1

𝐴
 √2𝑔ℎ1 (5)

Linearization

From equation (5), which defines the tank, the term 𝐵0ℎ

is calculated by deriving equation (5) and evaluating at an

average height of 15 cm. The linearized system has the form:

Igor Miguel Paredes Cornejo et al. / IJEEE, 12(3), 202-222, 2025

207

ℎ̇ = 𝑢 𝐴 − 𝐵0ℎ

System parameters:

 𝑑𝑜1 = 0. 6 𝑐𝑚

 𝐴𝑜1 = 0. 2827 𝑐𝑚2

 𝑔 = 978
𝑐𝑚

𝑠2

 𝐴 = 888 𝑐𝑚2

ℎ̇ =
𝐾𝑝

𝐴
 𝐼𝑝 −

𝐴𝑜1

𝐴
 √2𝑔ℎ

𝑑ℎ̇

𝑑ℎ
 = −

𝐴𝑜1

2𝐴
√

2𝑔

ℎ
|

ℎ=15𝑐𝑚

𝑑ℎ̇

𝑑ℎ
 = −

𝐴𝑜1

2𝐴
√

2𝑔

15

𝐵0 =
𝑑ℎ̇

𝑑ℎ
 = −0.00182

System Model

The linearized system is:

ℎ̇ =
𝑢

𝐴
 − 𝐵0ℎ

ℎ̇ =
𝑢

888
 − 0.00182ℎ

In addition, by Laplace, the transfer equation is obtained:

𝐻(𝑠) =
ℎ(𝑠)

𝑢(𝑠)
 =

0.619

549.505𝑠 + 1

Although nonlinearities can cause discrepancies between

the model and the system's actual behaviour, particularly when

operating far from the equilibrium point—resulting in control

errors, instabilities, or unexpected saturations—the

linearization method remains highly advantageous. It

simplifies mathematical analysis and facilitates the design of

controllers using tools developed for linear systems, such as

transfer function analysis. This approach is especially useful

in small operational ranges with less significant nonlinearities,

offering a practical balance between accuracy and

computational manageability. [8]

2.2.2. Simulation and Auto-Tuning of the PI Controller for the

Level Control System

It is possible to use the Tune function of the Simulink

software to perform the auto-tuning of the PID controller. This

function provides estimated values of the PID according to the

established transfer function, and it is also possible to observe

a change depending on the desired response time. The block

diagram is presented below in Figure 7:

Fig. 7 Block diagram of the system implemented in simulink

In this software, there is a block designated as PID(s).

Figure 8 shows where the tune configuration is performed on

the block’s form, in addition to making changes to the PID

values to observe the result in the simulation.

Fig. 8 PID block parameters in simulink

The values obtained, as well as the response time of the

controller with these values, are presented below in Figure 9.

Fig. 9 Auto tuning of PID parameters

Igor Miguel Paredes Cornejo et al. / IJEEE, 12(3), 202-222, 2025

208

The proportional value of the controller allows the

controller output to adjust proportionally to the current error.

For instance, if the difference between the setpoint and the

actual value is 1 unit, the proportional action will generate a

controller output of 70 units. Meanwhile, the integral value of

the controller is responsible for accumulating the error Over

time. The PID tuning value indicates that the error's integral

will be multiplied by 0.8 to adjust the controller output. Based

on observations from the simulation, the system response

shows an overshoot of approximately 1% and a settling time

of around 4 minutes.

2.2.3. Temperature Control System Control Logic

Fuzzy control allows for the expression of logical values

between true and false. For decision-making and system

control, use fuzzy logic, meaning decisions are made based on

various variables using approximate or fuzzy rules. [9, 10]

These rules are used to make decisions in different scenarios,

which are evaluated through a degree of truthfulness by

comparing the rules and the established input. The fuzzy

controller has two main features that support its selection as a

control system. First, it does not require a detailed

mathematical model of the system for design. Additionally, a

fuzzy controller involves minimal computational load. [11]

The fuzzy controller design is applied in a temperature

control system using a Peltier cell. This Peltier cell operates

over a current range of 0 to 3.2 amps, where 0 amps represents

the minimum temperature and 3.2 amps represents the

maximum temperature. In this control system, the control

action is represented by a PWM signal (0 to 255 pulses)

generated by the Arduino UNO, allowing adjustment of the

current range required for Peltier cell operation. The

temperature sensor used is the DHT21 model. Inputs to the

fuzzy controller are determined from the difference between

the temperature setpoint established in the greenhouse and the

temperature measured at a specific moment, as well as the rate

of change of that difference. This enables the controller to

adjust the output effectively to maintain the desired level of

greenhouse temperature. Based on this theory, the following

rules were applied for temperature control using fuzzy logic in

Table 4:
Table 4. Structure of the fuzzy controller

Fuzzy Rules
 Output (PWM Value on

Current Control Driver (0-255)

Temperature between

22°C - 25°C

PWM response between

230 - 255

Temperature between

23.5°C - 26.5°C

PWM response between

160 - 230

Temperature between

25°C - 28°C

PWM response between

0 - 160

These rules present control of the PWM response given

to the driver based on the value recorded in the temperature

sensor; below is the graphical representation of the rules

presented in Figure 10.

Fig. 10 Input configuration of the fuzzy controller

The figure below shows the configuration of the

controller outputs represented with a PWM signal (0 − 255).

Three possible controller outputs are configured, which will

be selected according to the decision of the fuzzy controller,

considering the rules established above in Figure 11.

Fig. 11 Output configuration of the fuzzy controller

Likewise, the rules are assigned a weight, and the

resolution of these rules is established:

 If the measured temperature is in the "LowTemp" range,

then the controller output will be "highPeltier" (230 −

255).

 If the measured temperature is in the "MedTemp" range,

then the controller output will be "medPeltier" (160 −

230).

 If the measured temperature is in the "HighTemp" range,

then the controller output will be "lowPeltier" (0 − 160).

Figure 12 presents fuzzy controller rules.

Igor Miguel Paredes Cornejo et al. / IJEEE, 12(3), 202-222, 2025

209

Fig. 12 Fuzzy controller rules

Figure 13 shows the controller's response to different

temperature values, considering the abovementioned rules.

The setpoint considered in the control system is 25° C.

According to the simulation before this temperature, the

controller output will be 220 pulses.

Fig. 13 Response of the fuzzy controller to temperature changes

2.3. Electronic Design

2.3.1. Emitter Module

The transmitter module represents the initial stage in the

process of real-time parameter monitoring. The purpose of this

module is to measure water pH, temperature, humidity,

luminosity, and water level and then transmit these readings

via a radiofrequency module to a remote receiver. Monitoring

the water level is essential, as a hydroponic irrigation system

is being considered, where the water is maintained at a preset

level (setpoint) and flows continuously to prevent stagnation.

The transmitter module includes an Arduino Uno

programming board, an NRF24L01 RF module, an AM2302

temperature sensor, an HC-SR04 ultrasonic sensor, a PH-

4502C pH sensor, and a BH-1750 luminosity sensor. The

actual wiring of the transmitter module is shown in Figure 14.

In addition, the schematic diagram of the emitter module is

shown below, according to the actual connection with its

respective pins. Figure 15 presents a schematic diagram of the

emitter module. From the datasheet of the RF module

NRF24L01 from NORDIC SEMICONDUCTOR, Table 5

describes the function of the pins used for data transmission.

Table 5. Structure of the fuzzy controller

No
Pin

Name

Pin

Function
Description

1 CE
Digital Input

(7)

Chip Enable. Enables RX

or TX mode.

2 CSN
Digital Input

(8)

SPI (Serial Peripheral

Interface) chip selection.

3 SCK
Digital Input

(13)
SPI watch.

4 MOSI
Digital Input

(11)
SPI slave data input

5 MISO
Digital Output

(12)

SPI slave data output,

with a choice of three

states.

6 IRQ

Digital Output

(Not

connected).

Maskable interrupt

pin. Active low

7 VCC Power 3.3 V
Power supply (+1.9V-

+3.6V DC)

8 GND Power (GND) Ground (0V)

Data transmission via the MOSI (Master Out Slave In)

pin is a unidirectional operation used in devices that follow the

SPI communication protocol. In this protocol, the master

device (Arduino) sends data to the slave device (NRF24L01)

[12].

After correctly configuring the pins, the Arduino sends a

clock pulse on the SCK pin. With each clock pulse, the least

significant bit of the data in the output register is placed on the

MOSI pin. If the bit is 1, the MOSI pin goes high; if the bit is

0, the MOSI pin goes low.

This process repeats for each bit of data. Besides

collecting data from sensors, the Arduino receives a reset

command from the web application, which does not interfere

with the normal operation of the system. Once the data

transmission is complete, the CSN pin is set high, signaling to

the NRF24L01 module that the transfer has finished and the

module can process the received information.

2.3.2. Receiver Module

The purpose of this module is to receive data from the

sender module and transmit this data to a database and a web

application. An Arduino UNO was used as the programming

board for this module, an NRF24L01 was used as the RF

module, and additionally, a Raspberry Pi 4B was used to send

the data received from the transmitter to a database so that

these data can be viewed in a web application. [13] Figure 16

presents the actual connection diagram of the receiver module,

and Figure 17 shows a schematic diagram of the receiver

module.

Igor Miguel Paredes Cornejo et al. / IJEEE, 12(3), 202-222, 2025

210

Fig. 14 Actual wiring diagram of the emitter module

Fig. 15 Schematic diagram of the emitter module

Fig. 16 Actual connection diagram of the receiver module

Fig. 17 Schematic diagram of the receiver module

Igor Miguel Paredes Cornejo et al. / IJEEE, 12(3), 202-222, 2025

211

2.3.3. Control Module

This module manages the water supply control for the main

tank based on data from the ultrasonic sensor HC-SR04; this

sensor was chosen primarily due to its simplicity in measuring

water levels, while other alternatives, such as capacitive or

pressure-based sensors, offer enhanced precision, they can be

more complex to integrate for a prototype. PID control adjusts the

intensity supplied to the water pump via an L298N driver.

Although higher-performance drivers, such as the BTS7960, offer

greater current capacity and efficiency, the L298N remains a

reliable option. The pump operates at a voltage level of 12V,

requiring a power source that can provide this voltage. Lighting

control utilizes a ZS-042 RTC1 clock module, which regulates the

light intensity in the prototype at specific times of the day through

automatic monitoring. Operation times are preset in the code, and

when the module registers a specified time, the light intensity is

adjusted by the L298N driver. The system uses an Arduino UNO

board for control and code implementation. Additionally,

temperature control is managed using a separate Arduino UNO

and a Peltier cell. This cell adjusts the temperature via a

VHN2SP30 motor shield, which modulates a PWM signal

through fuzzy control embedded in the Arduino code. This shield

is chosen due to the amperage limitations of the L298N drivers.

Fans circulate air, helping to distribute the temperature generated

by the Peltier cell. Figure 18 presents an actual wiring diagram of

the control module.

Fig. 18 Actual wiring diagram of the control module.

Figure 19 and 20 presents a schematic diagram of the control

module.

Fig. 19 Actual wiring diagram of the control module. (Part 1)

Igor Miguel Paredes Cornejo et al. / IJEEE, 12(3), 202-222, 2025

212

Fig. 20 Actual wiring diagram of the control module. (Part2)

3. Materials and Methods
3.1. Mechanical Design

3.1.1. Pilot Prototype

Figures 21 and 22 show, from different perspectives, the

plan of the pilot prototype implemented to validate the

research project. This design was made using the free software

Tinkercad.

Fig. 21 Front view of the pilot prototype

Fig. 22 Top view of the pilot prototype

3.1.2 Module Structures

Supports were designed and fabricated for the emitter,

receiver, and control modules to ensure proper organisation

and functionality. These supports were modeled using

Tinkercad software and 3D-printed with an Artillery Genius

Pro 3D printer. Each support was tailored to securely house

the components of its respective module, providing structural

stability and facilitating proper ventilation where necessary.

Igor Miguel Paredes Cornejo et al. / IJEEE, 12(3), 202-222, 2025

213

Emitter Module Holder

The support for the emitter module was designed to

accommodate all components related to this module. Special

attention was given to structural integrity and accessibility.

Figure 23 shows the top view of the emitter module

holder, highlighting its layout and organization.

Fig. 23 Top view of emitter module

Receiver Module Holder

The receiver module holder was similarly designed to

ensure the proper placement of all associated components.

Ventilation considerations were incorporated where needed.

Figure 24 provides a top view of the receiver module

holder, illustrating its design features.

Fig. 24 Top view of the receiver module

Control Module Holder

The support for the control module includes additional

features, such as ventilation holes in the lower section, to

improve airflow and prevent overheating of sensitive

components.

Figure 25 displays the top view of the control module

holder, showing its arrangement and functional elements.

Fig. 25 Top view of the control module

3.2. Software Design

3.2.1. Script for the Transmitter and Receiver Modules

The script for the transmitter and receiver modules was

designed to efficiently handle the sensor data transmission to

the receiver module.

Although parameters such as temperature, humidity, and PH

change slowly over time (taking minutes to have a significant

variation), the general data-sending rate was set at 500 ms.

This is because the collection of water level data for control,

as this process must be fast. The HC-SR04 sensor has a minimum

waiting time between measurements of 20 ms, so a time of 30 ms

was considered for obtaining the level, luminosity, humidity and

temperature, adding up to 120 ms; for the PH, the same 30 ms

was taken, however, as the average of 10 measurements is taken,

a time of 300 ms is taken.

Finally, 80 ms was given to store the data in variables and

send them through the serial port. This adds up to 500 ms.

Figure 26 provides the flow diagram for the transmitter

module, illustrating the logic and processes involved.

Igor Miguel Paredes Cornejo et al. / IJEEE, 12(3), 202-222, 2025

214

START

#include <SPI.h>

#include <RF24.h>

RF24 radio(7,8);

const byte identification[6]="00001";

resetFunc=0;

float dato[5];

float datoR_01;

float datoR_02;

float datoR_03;

float datoR_04;

float datoR_05;

radio.begin();

radio.openReadingPipe(0,identification);

radio.setPALevel(RF24_PA_MAX);

radio.startLisitening();

radio.available()

= TRUE

radio.read(&dato,si

zeof(dato));

datoR_01=dato[0];

datoR_02=dato[1];

datoR_03=dato[2];

datoR_04=dato[3];

datoR_05=dato[4];

No received

data

No

Serial.println("PH:");

Serial.println(datoR_01);

Serial.println("TEMPERATURA:");

Serial.println("datoR_02");

Serial.println("HUMEDAD:");

 Serial.println("datoR_03");

Serial.println("LUMINOSIDAD:");

 Serial.println("datoR_04");

Serial.println("DISTANCIA:");

 Serial.println("datoR_05");

Yes

command

="reset=TRUE"

Yes

ResetFunc()

No

Fig. 26 Flow diagram transmitter module

Figure 27 provides the flow diagram for the receiver.

Igor Miguel Paredes Cornejo et al. / IJEEE, 12(3), 202-222, 2025

215

Start

include <SPI.h>

include <RF24.h>

include <Wire.h>

include "DHT.h"

include <NewPing.h>

include <BH1750.h>

define DHTPIN 2

define DHTTYPE DHT21

 # define PIN_TRIG 3

define PIN_ECHO 4

define MAX_DISTANCIA 200

BH1750 lightMeter;

NewPing sonar(PIN_TRIG, PIN_ECHO,

MAX_DISTANCIA);

DHT dht(DHTPIN, DHTTYPE);

RF24 radio(7, 8);

const byte identificacion[6] = "00001";

float dato[5];

float ph_act =0.0;

 float calibration_value = 26.8;

 int phval = 0;

 unsigned long int avgval;

int buffer_arr[10], temp;

float luminosidad;

 float tiempo;

 float altura;

float humedad;

 float temperatura;

From i=0

To i=9

Increase=1

buffer_arr[i] =

analogRead(A0);

TRUE

From i=0

To i=8

Increase=1

From j=i+1

To j=9

Increase=1

buffer_arr[i] >

buffer_arr[j]

temp = buffer_arr[i];

 buffer_arr[i] = buffer_arr[j];

 buffer_arr[j] = temp;

Yes

No

FALSE

TRUE

TRUE

FALSE

Desde i=2

Hasta i=7

Incremento=1

 avgval += buffer_arr[i];

float volt = (float)avgval * 5.0 / 1023 / 6;

loat ph_act = -5.70 * volt + calibration_value;

return ph_act;

FALSE

TRUE

temperatura =

dht.readTemper

ature();

return

temperatura;

 humedad =

dht.readHum

idity();

return humedad;

tiempo =

sonar.ping_median();

altura = 15.3-tiempo /

S_ROUNDTRIP_CM;

 return altura;

luminosidad =

lightMeter.readL

ightLevel();

return luminosidad;

dato[0]= SENSOR_PH();

dato[1]=SENSOR_TEMPERATURA();

dato[2]=SENSOR_HUMEDAD();

dato[3]=SENSOR_LUMINOSIDAD();

dato[4]=SENSOR_ULTRASONICO();

Serial.print("PH: ");

 Serial.print(dato[0]);

 Serial.print("TEMPERATURA: ");

 Serial.print(dato[1]);

 Serial.print("HUMEDAD:");

 Serial.println(dato[2]);

 Serial.print("LUMINOSIDAD:");

 Serial.println(dato[3]);

 Serial.print("ALTURA:");

 Serial.println(dato[4]);

radio.write(&dato, sizeof(dato));

FALSE

Fig. 27 Receiver module flow diagram

Igor Miguel Paredes Cornejo et al. / IJEEE, 12(3), 202-222, 2025

216

START

Obtaining physical

data

Sending data to

Raspberry

PythonAnywhere Database

Web application

Fig. 28 Flowchart for sending data to the database Web application

3.2.2. Programming for Sending Data to the Database and Web

Application

To initiate the Python script on the Raspberry Pi, it must be

configured to run automatically upon booting. This is achieved

by adding a specific line of code to the Raspberry Pi's system

startup file, ensuring the program starts as the device powers on.

The Raspberry Pi receives sensor readings from the Arduino

(receiver module) via serial communication. Then, these

readings are sent to a web server hosted on PythonAnywhere.

The server processes the data and performs two key tasks:

 Storing the data in a database (SQLite).

 Updating the web application for real-time visualization

and analysis.

The server is hosted on PythonAnywhere, which provides

a free infrastructure for Python application deployment. The

Raspberry Pi communicates with the server to transmit

greenhouse monitoring data, which is subsequently stored in an

SQL database. The database maintains an organized structure

with columns for a Unique Identifier (ID), timestamp, pH level,

temperature, luminosity, and water level.

Pusher was used alongside HTML and JavaScript for the

web application to enable real-time updates. Pusher is

integrated into both the server and web application, ensuring

that any changes on the server are automatically reflected in the

web interface. When the Raspberry Pi invokes the

“/update_parameters” endpoint on the server, Pusher triggers

an "update" function via the "parameters" channel, enabling

seamless updates in the web application. Figure 28 illustrates

the flowchart for sending data to the database and web

application, providing a visual representation of the process.

3.2.3. Programming for the Control Module

The control module was programmed to manage the

operation of actuators and monitor system feedback in real time.

Figure 29 presents the flow diagram of the control module,

detailing the processes for receiving sensor input, making

control decisions, and executing actuator commands.

4. Results and Discussion
4.1. Results

4.1.1. Explanation of the Construction of the Pilot Prototype

The pilot prototype was constructed using a 3 mm acrylic

sheet for the walls, base, and roof, providing a lightweight yet

durable structure. An MDF sheet was used as a base support,

enhancing stability. Aluminum angles were added to reinforce

the corners of the structure. Two plastic containers were

integrated into the design.

The lower container serves as a water reservoir, while the

upper container houses the lettuce plants along with the pH

and ultrasonic sensors. An MDF base was constructed and

securely positioned over the reservoir to support the upper

container. Additionally, a door was installed on the front of

the prototype to facilitate easier access to the internal sensors

and components. In Figure 30, the complete construction of

the pilot prototype is shown.

Igor Miguel Paredes Cornejo et al. / IJEEE, 12(3), 202-222, 2025

217

Start

Serial.begin(9600);

 dht.begin();

 setupFuzzy();

 pinMode(PWM_PIN, OUTPUT);

 pinMode(INA_PIN, OUTPUT);

 pinMode(INB_PIN, OUTPUT);

 pinMode(EN_PIN_1, OUTPUT);

isnan(h) || isnan(t)

delay (2000)

 float h = dht.readHumidity();

 float t = dht.readTemperature();

Yes

 Serial.print(" %\t");

 Serial.print("Temperatura: ");

 Serial.print(t);

 Serial.println(" *C");

No

fuzzy->setInput(1, t);

 fuzzy->fuzzify();

analogWrite(PWM_PIN, fanSpeed);

 digitalWrite(INA_PIN, HIGH);

 digitalWrite(INB_PIN, LOW);

digitalWrite(EN_PIN_1,HIGH);

Fuzzy *fuzzy = new Fuzzy();

FuzzySet *lowTemp = new FuzzySet(22, 22, 23.5, 25);

FuzzySet *medTemp = new FuzzySet(27.5, 25, 25,

26.5);

FuzzySet *highTemp = new FuzzySet(25,27.5, 28, 28);

FuzzySet *lowFan = new FuzzySet(230, 255, 255, 255);

FuzzySet *medFan = new FuzzySet(160, 210, 230,

230);

FuzzySet *highFan = new FuzzySet(0, 0, 100, 160);

Fuzzyset =

lowTemp

 FuzzyOutput *fanSpeed = new

FuzzyOutput(1);

 fanSpeed->addFuzzySet(lowFan);

 fanSpeed->addFuzzySet(medFan);

 fanSpeed->addFuzzySet(highFan);

 fuzzy->addFuzzyOutput(fanSpeed);

No

Fuzzyset =

medTemp No Fuzzyset =

highTempYes

fanSpeed = highFan
Yes

fanSpeed = medFan

Yes

fanSpeed = lowFan

No

Fig. 29 Flow diagram of the control module

Igor Miguel Paredes Cornejo et al. / IJEEE, 12(3), 202-222, 2025

218

Fig. 30 Construction of the pilot prototype

The operational phase of the prototype, including the

placement of sensors and the lettuce plants, is depicted in

Figure 31.

Fig. 31 Pilot prototype in operation

Figure 32 illustrates the temperature and ventilation

control system implemented within the prototype.

Fig. 32 Temperature and ventilation control system

The level control system is presented in Figure 33.

Fig. 33 Level control system

Finally, the monitoring system for both water level and

pH values is demonstrated in Figure 34, emphasizing the

integration of sensors and their placement within the structure.

Fig. 34 Level and pH monitoring system

4.1.2. Testing of the Level Control with Setpoint at 5 cm

The actual response of the level control system for a

setpoint of 5 cm is analyzed below. A comparison between the

simulated response in Simulink and the real system response

demonstrates a good agreement regarding settling time and

overshoot. Water level measurements were collected from the

Arduino serial port over a seven-minute period, enabling the

creation of a graph that shows the water level in centimeters

as a function of time. The simulation produced a settling time

of approximately 5 minutes and an overshoot of 7.6%. In

contrast, the real system achieved a settling time of 3 minutes

and 46 seconds, with an overshoot of 14%. The slight

discrepancy in overshoot is likely caused by disturbances not

considered in the system modeling, such as noise from the

ultrasonic sensor. Despite this, the differences observed are

minimal and do not significantly impact the system's behavior,

validating the proposed simulation model.

Igor Miguel Paredes Cornejo et al. / IJEEE, 12(3), 202-222, 2025

219

In Figure 35, the temporal response of the level control

system with a setpoint of 5 cm is displayed.

Fig. 35 Temporal response of the level control system (SP: 5 cm)

Figure 36 provides the simulation of the temporal

response for the same setpoint.

Fig. 36 Capture of simulation on Simulink of the time response of the level

control system (SP: 5 cm)

4.1.3. Testing of the Level Control with Setpoint at 8 cm

The response of the level control system to a setpoint of

8 cm, implemented with a PI controller, is presented below.

The time response shows that the system exhibits no overshoot

and achieves a settling time of approximately 9 minutes.

The simulation, however, indicates a settling time of 5

minutes and 48 seconds with an overshoot of 7.5%. This

divergence may arise from real-world disturbances not

considered in the simulation. Nonetheless, the overall

performance aligns closely with the expected behavior.

Figure 37 shows the temporal response of the level control

system at a setpoint of 8 cm.

Fig. 37 Temporal response of the level control system (SP: 8 cm)

Figure 38 presents the simulated time response for the

same setpoint, offering insight into the modeled system

dynamics.

Fig. 38 Capture of simulation on Simulink of the time response of the level

control system (SP: 8 cm)

Fig. 39 Temporal response of the temperature control system (SP: 25°C)

0

1

2

3

4

5

6

7

0
0

:0
1

0
0

:4
0

0
1

:1
9

0
1

:5
8

0
2

:3
7

0
3

:1
6

0
3

:5
5

0
4

:3
4

0
5

:1
3

0
5

:5
2

0
6

:3
1

0
7

:1
0

0
7

:4
9

0
8

:2
8

0
9

:0
7

0
9

:4
6

1
0

:2
5

1
1

:0
4

1
1

:4
3

1
2

:2
2

1
3

:0
1

1
3

:4
0

1
4

:1
9

L
E

V
E

L

TIME (s)

0

1

2

3

4

5

6

7

8

9

0
0
:0

1

0
1
:0

3

0
2
:0

5

0
3
:0

7

0
4
:0

9

0
5
:1

1

0
6
:1

3

0
7
:1

5

0
8
:1

7

0
9
:1

9

1
0
:2

1

1
1
:2

3

1
2
:2

5

1
3
:2

7

1
4
:2

9

1
5
:3

1

1
6
:3

3

1
7
:3

5

1
8
:3

7

1
9
:3

9

2
0
:4

1

2
1
:4

3

2
2
:4

5

2
3
:4

7

2
4
:4

9

2
5
:5

1

2
6
:5

3

L
E

V
E

L

TIME (s)

22.5

23

23.5

24

24.5

25

25.5

09:36 16:48 24:00 31:12 38:24 45:36 52:48 00:00

T
E

M
P

E
R

A
T

U
R

E
 (

C
°)

TIME (min)

Igor Miguel Paredes Cornejo et al. / IJEEE, 12(3), 202-222, 2025

220

4.1.4. Testing of Fuzzy Temperature Control with Setpoint at 25°C

The temperature control system's response to a setpoint of

25°C, implemented using a fuzzy controller, is evaluated here.

The time response shows no overshoot and a settling time of

approximately 30 minutes. This extended settling time is

attributed to factors such as ambient temperature, Peltier cell

dimensions, and heatsink efficiency. Figure 39 illustrates the

temporal response of the temperature control system at the

specified setpoint. Additionally, Figure 40 depicts the

operating ranges of the Peltier cell, including variations in

pulses and current against temperature changes.

Fig. 40 Variation of pulses and amperage against temperature changes

4.1.5. Tests Performed on the Web Application

The web application was developed for real-time

monitoring of environmental parameters measured by sensors

connected to the Arduino. Sensor data is transmitted to the

Raspberry Pi, which forwards it to a database for logging. This

setup enables users to view the recorded measurements

through the application interface.

A key feature of the web application is its remote restart

function, which ensures a reliable and continuous flow of data

even in the event of failures or data saturation. The application

is accessible on any mobile device, offering flexibility and

ease of use. During the tests, a temperature setpoint of 25°C

and a water level setpoint of 8 cm were configured. The

application reported actual measured values of 24.6°C for

temperature and 7.95 cm for water level, demonstrating its

precision and functionality. Additionally, the application

successfully monitored other parameters, including:

 pH: 7.8

 Luminosity: 170 Lx

 Humidity: 41.4%

The web interface features a central button labelled

"Reset Device." This button allows the receiver module to be

remotely reset directly from the web application, further

enhancing system reliability and user control.

Figure 41 shows the web application.

Fig. 41 Operation of the web application

4.2. Discussion
Lettuce was selected as the primary hydroponic crop due

to its rapid growth, low water consumption, and adaptability

to hydroponic systems. Compared to spinach and Swiss chard,

it is more resilient to pH and temperature variations, reducing

crop failure risks. Unlike basil, it follows a predictable growth

cycle without requiring frequent pruning. Its compact root and

leaf structure suit the 3D-designed hydroponic pots, ensuring

efficient use of space. Its lower susceptibility to diseases and

frequent harvesting make it a practical and sustainable choice

for hydroponic cultivation.

Following the completion of the research project and the

corresponding tests and validation of the pilot-scale prototype,

several observations have been identified that could enhance

the system's performance and applicability in future iterations.

The first observation concerns the use of ultrasonic

sensors. These sensors often produce measurement spikes,

leading to inaccuracies. For future research, adopting more

precise level measurement technologies, such as hydrostatic

pressure sensors, is recommended, which provide higher

accuracy. The main reason for choosing this sensor is the low

cost and practicality of its use. Other models considered are,

for example, the differential pressure sensor MPX5010DP,

which measures the pressure exerted by a column of water on

its inlet; this pressure is directly proportional to the height of

the water in a container, so it needs an additional mechanical

design; this sensor has a price in the Peruvian market of S/

105.00. Another option is the TFMini-S LiDAR sensor, which

measures distances using laser detection technology; this

sensor has a price in the Peruvian market of S/ 310.00. On the

other hand, the HC-SR04 sensor is priced at S/ 8.00.

Additionally, the 3D-designed hydroponic pots proved

suitable for lettuce cultivation due to the plant’s limited root

Igor Miguel Paredes Cornejo et al. / IJEEE, 12(3), 202-222, 2025

221

and leaf extension. However, the pot dimensions may need to

be reconsidered and adapted for other crop species. Another

noteworthy aspect is the web application's data display and

update frequency, set at 500 ms. Such a rapid update rate in

greenhouse monitoring systems is unnecessary, as the

measured parameters typically evolve slowly. For instance, in

the García Cortés et al. study, "Low-cost wireless system for

monitoring temperature and relative humidity variables in a

greenhouse," an update interval of 5 minutes was used, which

suffices for similar applications [14].

Regarding the NRF24L01 RF modules, challenges were

observed in data transmission over distances with obstacles

obstructing the line of sight. To address these limitations,

future implementations could consider adding RF modules

using LoRaWAN technology, as demonstrated in the work by

Guillermo et al., "IoT Architecture Based on Wireless Sensor

Network Applied to Agricultural Monitoring: A Case Study of

Cacao Crops in Ecuador." LoRaWAN technology offers

extended transmission ranges of up to 10 km while

maintaining low power consumption, making it an excellent

alternative for agricultural applications. [4, 15]

 The NRF24L01 RF module was chosen for this research

due to its data rate, latency, cost, and easy installation and

programming. The LoRa E220-900T22D module has a

maximum data transmission rate of 62.5 Kbps with a high

latency greater than 100 ms, and the NRF24L01 2000 Kbps

module with a low latency of less than 5ms, which represents

a noticeable difference in data transmission rate, crucial when

a fast sending rate is needed for a closed-loop control system

because rapid changes in the sensors must be sent

immediately; in addition to the importance when monitoring

in real-time. In addition, the price in the Peruvian market LoRa

E220-900T22D module is S / 79.00, compared with the price

of the S / 28.00 NRF24L01 module. The price difference is

more than double.

The tests performed revealed certain discrepancies

between the system's responses (e.g., temperature, water level,

pulses, and amperage) and simulation results. These

differences are attributable to environmental conditions and

external factors influencing real-world data acquisition.

Simulations, by contrast, represent idealized scenarios

unaffected by such factors. Despite these variations, the

experimental results closely align with the simulations, with

only minor perturbations observed. Further testing is

recommended for temperature control to identify the specific

temperature ranges characteristic of the implementation

environment. This analysis could help refine existing control

rules or establish new ones tailored to local conditions.

Additionally, uniform heat sinks are advised to ensure

efficient heat transfer. Future works will explore the

possibility of enabling setpoint configuration for control

systems directly through the web application, further

enhancing the system's versatility and user interaction.

5. Conclusion
Upon completing this research project, an automatic

control system for a greenhouse was successfully

implemented. Additionally, through integrating an IoT

architecture, wireless monitoring of essential greenhouse

parameters was achieved using RF and Wi-Fi communication.

This approach ensures the creation of specific microclimates,

addressing the lack of greenhouses contributing to regional

food shortages. The monitored data is stored in the cloud and

displayed via a web application.

The research project was validated by constructing a

pilot-scale prototype, which was adapted along with the sensor

and actuator parameters for the hydroponic cultivation of

lettuce. During the implementation phase, the NRF24L01

radio frequency communication modules were identified as

optimal for the application due to their ease of integration with

the Arduino UNO development board, affordability, range,

and market availability. However, alternative antennas are

recommended for other applications.

The actuators selected for temperature, water level, and

luminosity control include a Peltier cell, a 12 VDC water

pump, and LED strips, respectively. Corresponding sensors

were chosen: the DHT21 for temperature, an ultrasonic sensor

for water level, the BH1750 lux meter for luminosity, and the

PH4502C sensor for pH. All parameters were configured

within suitable ranges for hydroponic lettuce cultivation. For

future applications involving other crops, parameter

adjustments will be necessary. The RF communication system

was thoroughly tested using the NRF24L01 modules, ensuring

reliable data transmission from the transmitter to the receiver.

The transmitted data was visualized in the web application via

a Wi-Fi connection using a Raspberry Pi 4B development

board. Thermal insulation is recommended for the RF module

to maintain optimal performance at low temperatures.

Additionally, twisted wires should connect the RF module to

the Arduino, and a 100 nF ceramic capacitor is suggested to

stabilize the 3.3 V power supply.

Future improvements include replacing the ultrasonic

sensor for water level measurement, which introduces noise

due to signal peaks. External factors observed during testing

differed slightly from simulations but did not significantly

impact results, validating the system’s reliability and potential

for further refinements by incorporating these factors in future

simulations. The free PythonAnywhere platform was used to

store the data, which requires a service restart every three

months to guarantee its functionality, as it is free to use. This

does not affect the functioning of the system or the SQLite

database. This service restart is only to validate that the

application is in use. Additionally, a restart mechanism was

incorporated through bidirectional communication, and a

button was added to the web application. In the control phase,

a mathematical model of the tank system was developed, and

a PI controller for water level management was tuned using

Igor Miguel Paredes Cornejo et al. / IJEEE, 12(3), 202-222, 2025

222

Simulink's PID Tune tool. Feedback was provided via an

ultrasonic level sensor. An open-loop system was employed

for brightness control, using LED strips programmed to

operate 11 hours per day. Brightness monitoring was

performed using the BH1750 lux meter, achieving an

approximate reading of 288 lux. A Peltier cell was configured

to operate continuously for temperature control, maintaining a

temperature range of 20°C at low power and 25°C at

maximum power. This range aligns with the optimal growth

conditions for lettuce, which span from 15°C to 35°C.

Acknowledgments
 The authors thank the National University of San Agustín,

their alma mater, for providing the knowledge necessary to

carry out this project.

References
[1] National Disaster Risk Management Plan - PLANAGERD 2014-2021, National Center for Disaster Risk Assessment, Prevention, and

Reduction (CENEPRED), 2021. [Online]. Available: https://sigrid.cenepred.gob.pe/sigridv3/documento/417

[2] Jorge Luis Chávez Cresta, Statistical Compendium 2017, National Institute of Civil Defense, gob.pe, 2017. [Publisher Link]

[3] A. Perea Flores, ‘6-Friaje_Heladas’, Lima, 2018. [Online]. Available:

https://www2.congreso.gob.pe/sicr/cendocbib/con5_uibd.nsf/322B8DD56F06DD6E0525832700584752/$FILE/6-Friaje_Heladas.pdf

[4] Juan Carlos Guillermo et al., “IoT Architecture Based on Wireless Sensor Network Applied to Agricultural Monitoring: A Case of Study

of Cacao Crops in Ecuador,” International Conference of Information and Communication Technologies for Adapting Agriculture to

Climate Change, Cali, Colombia, pp. 42-57, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[5] Leonardo Fernández Díaz et al., “Technological Architecture for Monitoring Environmental Variables in a Museum,” Colombian Journal

of Advanced Technologies, vol. 2, no. 38, pp. 1-8, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[6] Haozhe Zhang et al., “Lorawan Based Internet of Things (Iot) System for Precision Irrigation in Plasticulture Fresh-Market Tomato,”

Smart Agricultural Technology, vol. 2, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[7] Jalalu Guntur et al., “An Automatic Irrigation System Using IOT Devices,” Materialstoday: Proceedings, vol. 68, pp. 2233-2238, 2022.

[CrossRef] [Google Scholar] [Publisher Link]

[8] Jissie Vaquero López, and Carlos Luis Milian del Valle, “Nonlinear Control Using Approximate Linearization Applied in the Nonlinear

System Position of a Ring on a Rotating Ring,” Cuban Journal of Computer Science, vol. 10, no. 2, pp. 89-99, 2016. [Google Scholar]

[Publisher Link]

[9] Rafael J. García et al., “Design of a Fuzzy Control Strategy Applied to the Ultra-Freezing Process of Food,” Ingeniare. Chilean

Engineering Journal, vol. 25, no. 1, pp. 70-84, 2017. [Google Scholar]

[10] Chiara Bersani et al., “Internet of Things Approaches for Monitoring and Control of Smart Greenhouses in Industry 4.0,” Energies, vol.

15, no. 10, pp. 1-30, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[11] R. Jimenez Moreno, O. Aviles Sanchez, and O.L. Ramos Sandoval, “Analysis of the Implementation of a Fuzzy Controller on Different

Hardware Architectures,” Neogranadine Science and Engineering, vol. 23, no. 1, pp. 77-87, 2013. [Google Scholar]

[12] Yongchao Song, Jiping Bi, and Xuan Wang, “Design and Implementation of Intelligent Monitoring System for Agricultural Environment

in IoT,” Internet of Things, vol. 25, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[13] Dawid Witczak, and Sabina Szymoniak, “Review of Monitoring and Control Systems Based on Internet of Things,” Applied Sciences,

vol. 14, no. 19, pp. 1-27, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[14] José de Jesús García Cortés et al., “Low-Cost Wireless System for Monitoring Temperature and Relative Humidity in a Greenhouse,”

Ingeniantes, vol. 2, no. 2, pp. 61-67, 2019. [Google Scholar]

[15] Mohammad Mansour et al., “Internet of Things: A Comprehensive Overview on Protocols, Architectures, Technologies, Simulation Tools,

and Future Directions,” Energies, vol. 16, no. 8, pp. 1-39, 2023. [CrossRef] [Google Scholar] [Publisher Link]

https://www.gob.pe/institucion/indeci/informes-publicaciones/861434-compendio-estadistico-2017
https://www2.congreso.gob.pe/sicr/cendocbib/con5_uibd.nsf/322B8DD56F06DD6E0525832700584752/$FILE/6-Friaje_Heladas.pdf
https://doi.org/10.1007/978-3-030-04447-3_3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=IoT+Architecture+Based+on+Wireless+Sensor+Network+Applied+to+Agricultural+Monitoring%3A+A+Case+of+Study+of+Cacao+Crops+in+Ecuador&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-04447-3_3
https://doi.org/10.24054/rcta.v2i38.1270
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Arquitectura+Tecnol%C3%B3gica+Para+El+Monitoreo+De+Variables+Ambientales+En+Un+Museo&btnG=
https://ojs.unipamplona.edu.co/index.php/rcta/article/view/1270
https://doi.org/10.1016/j.atech.2022.100053
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=LoRaWAN+based+internet+of+things+%28IoT%29+system+for+precision+irrigation+in+plasticulture+fresh-market+tomato&btnG=
https://www.sciencedirect.com/science/article/pii/S2772375522000181?via%3Dihub
https://doi.org/10.1016/j.matpr.2022.08.438
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Automatic+Irrigation+System+Using+IOT+Devices&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2214785322056280?via%3Dihub
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Control+no+lineal+mediante+Linealizaci%C3%B3n+Aproximada+aplicada+en+el+sistema+no+lineal+Posici%C3%B3n+de+un+anillo+sobre+un+aro+rotatorio+Nonlinear+control+by+Approximate+linearization+applied+to+the+non-linear+system+of+a+ring+on+a+rotating+ring&btnG=
https://rcci.uci.cu/?journal=rcci&page=article&op=view&path%5B%5D=1083
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dise%C3%B1o+de+una+estrategia+de+control+difuso+aplicada+al+proceso+de+ultracongelaci%C3%B3n+de+alimentos&btnG=
https://doi.org/10.3390/en15103834
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Internet+of+Things+Approaches+for+Monitoring+and+Control+of+Smart+Greenhouses+in+Industry+4.0&btnG=
https://www.mdpi.com/1996-1073/15/10/3834
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An%C3%A1lisis+De+La+Implementaci%C3%B3n+De+Un+Controlador+Difuso+Sobre+Diferentes+Arquitecturas+De+Hardware&btnG=
https://doi.org/10.1016/j.iot.2023.101029
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+and+implementation+of+intelligent+monitoring+system+for+agricultural+environment+in+IoT&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2542660523003529?via%3Dihub
https://doi.org/10.3390/app14198943
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Review+of+Monitoring+and+Control+Systems+Based+on+Internet+of+Things&btnG=
https://www.mdpi.com/2076-3417/14/19/8943
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sistema+inal%C3%A1mbrico+de+bajo+costo+para+monitoreo+de+las+variables+temperatura+y+humedad+relativa+en+un+inverna&btnG=
https://doi.org/10.3390/en16083465
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Internet+of+Things%3A+A+Comprehensive+Overview+on+Protocols%2C+Architectures%2C+Technologies%2C+Simulation+Tools%2C+and+Future+Directions&btnG=
https://www.mdpi.com/1996-1073/16/8/3465

