
SSRG International Journal of Electrical and Electronics Engineering Volume 12 Issue 4, 12-46, April 2025

ISSN: 2348-8379/ https://doi.org/10.14445/23488379/IJEEE-V12I4P102 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

Machine Learning: Key Algorithms, Practical

Applications, and Current Research Directions

Mohammad Nazmul Alam1, Vijay Laxmi2, Abhishek Sharma3, Sarishma Dangi4

1Department of CSE, Guru Kashi University, Talwandi Sabo, Bathinda, Punjab, India.
2Department of Computer Applications, Guru Kashi University, Talwandi Sabo, Bathinda, Punjab, India.

3Graphic Era Deemed to be University, Dehradun, Uttarakhand, India.
4Department of CSE, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India.

1Corresponding Author : mnazmulalam171447@gku.ac.in

Received: 01 February 2025 Revised: 03 March 2025 Accepted: 04 April 2025 Published: 29 April 2025

Abstract - We generate enormous amounts of data every day across various fields, such as finance, healthcare, sales, marketing,

social media, and industry. State-of-the-art technology leverages this big data to make decisions and gain valuable insights.

Machine learning, one of the most advanced and dynamic artificial intelligence techniques, utilizes large datasets to make

predictions and develop intelligent applications. Machine learning algorithms enable computers to learn without being explicitly

programmed. In this paper, we identify key algorithms and discuss fundamental algorithmic concepts. We explore various

categories of machine learning, including supervised, unsupervised, semi-supervised, and reinforcement learning, along with

their respective algorithms. Furthermore, we identify advanced machine learning applications across diverse fields. Finally, we

discuss the challenges associated with machine learning techniques and potential future directions for developing algorithms

and services.

Keywords - Machine Learning, Reinforcement learning, Supervised, Unsupervised, Semi-supervised, Neural Network.

1. Introduction
Machine learning involves teaching a machine in such a

way that it can generate decisions on its own, enabling the

creation of intelligent applications. Combining principles

from computer science, data science, artificial intelligence,

and statistics, machine learning is an interdisciplinary field

that develops algorithms and systems that can recognize

patterns in data and make decisions or predictions without

explicit programming. It was introduced by Arthur Samuel in

1959. Samuel, a pioneering American computer scientist and

AI expert, is renowned for developing early computer checker

programs and contributing to the field of machine learning.

According to Samuel, machine learning as “the study that

enables computers to learn without being explicitly

programmed [1, 2].” This groundbreaking concept laid the

foundation for contemporary machine-learning techniques. So

the question is how they can be taught the machine in such a

way that it can generate its own decisions.

The machine is taught in basically four ways such as

supervised, semi-supervised, unsupervised, and reinforcement

learning. Supervised learning uses input features and target or

label data features to train the model. Semi-supervised

learning uses both labeled and unlabeled features of data.

Reinforcement learning uses action and reward, and

unsupervised learning uses unlabeled data. This is how

machines learn to predict or classify the task and produce the

result. Figure 1 shows the foundation of machine learning,

which is capable of learning and making predictions. Figure 2

shows the machine learning-based predictive model. Firstly, it

builds a predictive model using algorithms and datasets in the

training phase. Secondly, new data is predicted using a

predictive model in the testing phase. Figure 3 shows the steps

of a machine learning-based problem-solving model. This

model serves as a basic framework for machine learning,

outlining its operations.

Utilizing large datasets, patterns, and algorithms

significantly bolsters the machine's functionality. For optimal

results and precision, selecting the appropriate algorithm for

the specific task is crucial. Supervised learning excels in tasks

involving classification and regression, while unsupervised

learning is beneficial for clustering and dimensionality

reduction. Semi-supervised learning, which operates on both

labeled and unlabeled data, is particularly effective in image

labeling and medical diagnosis. Reinforcement learning is

good for sequential tasks such as game playing, autonomous

vehicles, robotics, etc. Some real-world application examples

such as speech recognition, chatGPT, face recognition, cancer

detection and robotics all applications have been developed

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mnazmulalam171447@gku.ac.in

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

13

using these learning methods [3, 15]. However, the algorithm's

performance and the data's characteristics and nature are

correlated. Every algorithm has its own characteristics and

performance nature, even though showing similar results on

different data. Therefore, understanding the nature and

features of the algorithm and its applicability is important to

get the best performance of the algorithm. Data preprocessing

and feature selection are challenging tasks for researchers and

developers. A huge amount of data with high dimensionality

requires dimension reduction to reduce the complexity of data.

The selection of features is very important for building a

robust machine-learning model. There are many techniques

used for feature selection and extraction. After selecting the

features, feature extraction is done, and new features are

created with lower dimensions. For example, PCA is used to

do this task. Data preprocessing and feature selection are

important for the model’s accuracy, which is described in the

following section. The application of machine learning is

growing very rapidly. Almost all fields are using this

technique to make advanced decisions and solutions. Based on

this applicability, it is important to understand these

algorithmic behaviors and which one is best suited for what.

One of the goals of this paper is to understand the algorithms

to implement the right algorithm for the right applications.

Fig. 1 Underlying of machine learning

Fig. 2 Machine learning-based predictive model

1.1. Contributions

The significant endeavor of this paper is as follows:

1. To identify all categories of algorithms and their

subtypes.

2. To explain the fundamental concepts of algorithms based

on their working principles.

3. To explain the pseudocode of each algorithm for

implementation code.

4. To discuss the different machine learning applications in

the real-world problem solution.

5. To consider the research direction for advanced data

analysis and services.

1.2. Organization

The rest of the paper is structured as follows: Section 2

introduces various types of machine learning algorithms,
covering fundamental concepts and their classifications.

Section 3 explains data preprocessing and feature selection

techniques. Global trends in machine learning are discussed in

Section 4.

Section 5 explores state-of-the-art applications of

machine learning. Section 6 addresses the challenges in

machine learning and outlines future research directions.

Finally, Section 7 concludes the paper with a summary of key

findings.

Fig. 3 Machine learning-based problem-solving model

1. Define ML
Objectives

Identify the
problem and
desired ML
outcome.

2. Data Collection
and Preprocessing

Gather and clean
relevant data.

3. Feature
Engineering and

Selection

Identify and select
important features.

4. Model Selection
Choose an

appropriate ML
algorithm.

5. Model Training
& Hyperparameter

Tuning

Train the model
and adjust

hyperparameters.

6. Evaluation &
Validation

Assess model
performance using

validation data.

7. Model
Deployment

Deploy the trained
model.

8. Continuous
Monitoring &
Maintenance

Monitor and
update the model

as required.

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

14

Fig. 4 Real-world applications of machine learning, (a) Speech

processing, (b) ChatGPT, (c) Face recognition, (d) Cancer detection,

and (e) ML in robotics.

2. Machine Learning Techniques
There are mainly four categories of machine learning

techniques. Supervised, unsupervised, semi-supervised and

reinforcement learning, as shown in Figure 5. In this section,

we discuss each type of technique that is used in real-world

applications. Figure 6 shows the list of algorithms of all

categories used in real-world problem-solving.

2.1. Supervised Learning

Supervised learning is a basic machine learning model

that divides the learning process into two stages: training and

testing [4].

Samples from training data are used as input during the

training process so that the learner or learning algorithm can

build the learning model. The learning model creates

predictions for the test or production data during testing by

utilizing the execution engine. The output of the learning

model, also known as “tagged data” or “labeled data,”

provides the final prediction or classified data. To train the

model, input-output pairs are used, denoted as (xi, yi). The

input in these pairs is denoted by xi, and the matching intended

output is denoted by yi [13].

In order to accurately predict future unseen data, the

primary goal of supervised learning is to establish a mapping

between input and output [5]. To evaluate the algorithm's

predictive accuracy, the difference between expected and

actual labels is measured using a loss function [6]. The degree

of the model's departure from the true values is represented by

the loss function L (yˆ, y), where y stands for the actual label

and yˆ for the predicted output.

The algorithm iteratively modifies its parameters during

the learning process to reduce the difference between its

predictions and the actual labels [7]. When the model’s error,

measured by the loss function, falls below a reasonable level,

it is considered sufficiently trained to generalize and make

accurate predictions for new, unseen data instances.

Figure 7 displays a schema of the SL model's

environment. After obtaining the data xi as input, the learner

generates an output yˆi. By computing the loss function L (yˆi,

yi), the output is compared to the true value yi. After that,

iterations are made. SL excels at tasks involving regression

and classification [8, 22, 23].

The loss function L (yˆ, y) illustrates the degree to which

the model departs from the true values, where y represents the

actual label and yˆ the predicted output. The algorithm

iteratively adjusts its parameters throughout the learning

process to minimize discrepancies between its predictions and

the actual labels [7].

When the error, as indicated by the loss function, reaches

a threshold that can be tolerated and the model can generalize

and produce precise predictions for novel, unseen data

instances, it is said to be sufficiently trained.

Figure 7 shows a schema of the SL model’s configuration.

After obtaining the data xi as input, the learner produces an

output yˆi. The output and the actual value of yi are compared

using the loss function L (yˆi, yi), which is computed. The

process is then carried out once more [8, 22, 23].

Fig. 5 Primary categories of machine learning algorithm

Supervised

Learning

Arthur Samuel
Invent: 1959

Uses Labeled

Data Training

Involves

Input-Output

Mapping

Unsupervised

Learning

Herbert A.

Simon
Invent: 1956

Finds Patterns

in Data, NO

Labeled Data

Required

Semi-

Supervised

Learning

Unknown
Invent: Mid-

1990s

Uses both

Labeled and

Unlabeled

Data

Reinforcemen

t Learning

Richard Sutton
Invent: 1989

Learns from

Action and

Rewards, Trail

and Error-

Based

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

15

Fig. 6 Taxonomy of machine learning techniques

Fig. 7 Supervised learning model

Supervised Learning
• Classification

• Regression

Unsupervised Learning

• Clustering

• Visualization and dimensionality reduction

• Association rule learning

Semi-Supervised
Learning

• Self-Training

• Graph-Based Methods

• Generative Models

• Transductive Support Vector Machine

Reinforcement
Learning

• Q-learning

• Deterministic Q-learning

• Monte Carlo Methods

• Temporal difference Methods

• SARSA

Self-Supervised
Learning

• Contrastive Learning

• Generative Models

• Autoencoders

Multi-Task Learning • Jointly learns multiple related tasks

Transfer Learning
• Fine-Tuning

• Domain Adaptation

Online Learning
• Continual Learning

• Stochastic Gradient Descent (SGD)

Active Learning
• Pool-Based Sampling

• Query-by-Committee

Few-Shot Learning
• One-Shot Learning

• N-Shot Learning

Meta-Learning
• Learning to Learn

• Model-Agnostic Meta-Learning (MAML)

Federated Learning
• Centralized

• Decentralized

Ensemble Learning

• Bagging (e.g., Random Forest)

• Boosting (e.g., AdaBoost, Gradient Boosting, XGBoost)

• Stacking

• Voting

• Blending

Generative Models
• Generative Adversarial Networks (GANs)

• Variational Autoencoders (VAEs)

Graph-Based Learning
• Graph Neural Networks (GNN)

• Graph Convolutional Networks (GCN)

Neural Networks

• Feedforward Neural Networks

• Convolutional Neural Networks (CNN)

• Recurrent Neural Networks (RNN)

• Long Short-Term Memory (LSTM)

• Transformer Networks

Evolutionary
Algorithms

• Genetic Algorithms

• Genetic Programming

Bayesian Learning
• Bayesian Networks

• Gaussian Processes

Deep Learning
• Deep Belief Networks

• Restricted Boltzmann Machines

Learning

System
(Algorithm)

Traninig Data
(X1, Y1…X

n
 Y

n
)

Learning

Model

Prediction
y

i

Y
i-1
 X

i-1

x
i

L
(Y,Yi)

Yi
^

^

^

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

16

2.2. Supervised Learning Algorithms and Tasks

Supervised learning algorithm uses datasets to train the

model. The datasets carry both input and correspondence

output. The input is the features or attributes of the datasets,

and the output is the labels or classes of the datasets [9].

Supervised learning is ideal for classification and regression

analysis [10].

Fig. 8 Taxonomy of supervised learning based on their task and nature

2.2.1. Decision Tree

In supervised machine learning, decision trees are a

widely used technique for tasks involving regression and

binary classification [11-13]. It has the ability to forecast

outcomes and contrast them with the real ones. The fact that

decision trees are simple to understand and manage, which is

often a preferred option, is one of their alluring features. A

decision tree is a visual representation of the decision-making

process that looks like a tree, for example, in a situation where

we wish to forecast if someone will visit the beach. We can

use three predictors for this purpose.

Fig. 9 Decision tree architecture

The first predictor, called “sky”, records the weather

conditions as either cloudy, rainy, or sunny. The second

predictor, “weekend” indicates whether it is a weekend or not.

The third predictor, “wind speed,” captures whether the wind

is high or low. Finally, we create a result variable named

“Maria goes to the beach” which represents the decision. The

answer will only be either yes or no because this is a binary

classification problem.

Decision Tree Algorithm

Input : A training dataset S, containing feature vectors x

and their corresponding class labels y. Splitting

criterion, IG, Gini.

Output : A decision tree, internal nodes as features and

leaf nodes as labels.

Step 1 : Start with a training data set, S, which includes

features and their classifications.

Step 2 : Determine the best feature of the dataset:

BestAttribute = Best feature from S based on some

criteria.

Step 3 : Split S into subsets based on the possible values of

the BestAttribute.

Step 4 : Create a decision tree node for BestAttribute.

Supervised
Learning

Classification
(Algorithms that

categorize input data
into predefined labels

or classes)

Logistic
Regression

Support
Vector

Machines
(SVM)

Decision Trees

k-Nearest
Neighbors

(k-NN)

Random
Forest

Naïve Bayes

Regression
(Algorithms used to
predict continuous
values from input

data)

Linear
Regression

Ridge
Regression

Lasso
Regression

Polynomial
Regression

Support
Vector

Regression
(SVR)

Ensemble Learning
(Combines multiple

classifiers to improve
accuracy)

Bagging (e.g.,
Random
Forest)

Boosting (e.g.,
AdaBoost,
XGBoost)

Blending

Voting
Classifier

Neural Networks
(Models inspired by

the human brain,
commonly used for
deep learning tasks)

Perceptron

Multi-Layer
Perceptron

(MLP)

Convolutional
Neural

Networks
(CNN)

Recurrent
Neural

Networks
(RNN)

Radial Basis
Function
Networks
(RBFN)

Attribute 1

Value

Attribute 3 Attribute 2

Value

Value

Value Value

Lable1

Value Value

Lable1 Labe1 Lable1

Labe1

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

17

Step 5 : For each subset of S:

If the subset can no longer be classified:

- Create a leaf node with the class label.

 Else:

- Recursively repeat steps 2-5 on the subset.

Step 6 : Return the decision tree with nodes and leaf nodes.

2.2.2. k-Nearest Neighbor

One well-liked supervised machine learning technique for

multiclass classification is k-Nearest Neighbor [3, 14]. This

instance-based machine learning algorithm is also known as

lazy learning. Lazy learning is demonstrated by the rote

classifier, which memorizes the entire training set and only

classifies a test instance if its attributes correspond to one of

the training examples. Each test instance computes the

distance or similarity between z = (x´, y´), and all training

examples (x, y) ∈ D have to determine the list of nearest

neighbors from D to Dz. Such calculations can be expensive if

the number of training examples is large. Once the list of

nearest neighbors is obtained, the test instance is classified

based on the majority class of its nearest neighbors.

Majority Voting

y =́ 𝑎𝑟𝑔𝑚𝑎𝑥
𝑣

∑ 1(𝑣 = 𝑦𝑖(𝑥𝑖,𝑦𝑖)∈𝐷𝑧
) (1)

Where v is a class label, yi is a neighbor's class label, and

1(.) is an indicator function that, if its argument is true, returns

1; otherwise, it returns 0. The number of nearest neighbors in

the Nearest Neighbor algorithm is k, and the training set

consists of D examples. The Euclidean distance function can

be used to determine similarity or distance. In the majority

voting system, the classification of each neighbor has the same

effect. The algorithm is, therefore, sensitive to the choice of k.

To lessen the impact of k, each nearest neighbor should weigh

the influence of xi based on its distance: wi=1/d (x´, xi)2.

Training examples that are far from z, therefore, have less of

an impact on classification than those that are close to z. A

distance-weighted voting scheme is used to determine class

labels.

Distance-Weighted Voting

y =́ 𝑎𝑟𝑔𝑚𝑎𝑥
𝑣

∑ 𝑤𝑖 . 1(𝑣 = 𝑦𝑖(𝑥𝑖,𝑦𝑖)∈𝐷𝑧
) (2)

This algorithm is used in many areas for its simplicity and

effectiveness in solving classification and regression [15].

There are some common areas like pattern recognition, face

recognition, handwriting recognition, image classification,

recommender systems, text mining, document classification,

banking and finance, anomaly detection, geographical and

geospatial applications, genomics and bioinformatics, market

segmentation, speech recognition have used this method

effectively. What is the most likely label for c? For the

solution, find k nearest neighbors of c. Then, extract the

maximum label as the label of c. Let k = 3, the 3 nearest points

to c are a, a, and o. Therefore, the most likely label for c is a.

Fig. 10 k-Nearest Neighbor example 1, (b) k-Nearest Neighbor example

2, and (c) k-Nearest Neighbor example 3.

KNN Algorithm

Algorithm KNN (x_new, K, D):

Input: - x_new: the new data point to classify or predict

 - K: the number of nearest neighbors

 - D: the training dataset containing (x_i, y_i) pairs

Output: - y_new: the predicted class (for classification) or

predicted value (for regression)

Step 1 : Compute distances

 For each data point (x_i, y_i) in D:

Calculate distance d (x_new, x_i) using a distance

metric (e.g., Euclidean distance)

Step 2 : Select K nearest neighbors

 Sort the distances in ascending order

Select the K smallest distances and their

corresponding labels y_i

Step 3 : Make a prediction

 If the problem is classification:

- Create a frequency count of the labels of the K

nearest neighbors

- Assign the label with the highest frequency as

the predicted label y_new

 Else, if the problem is regression:

- Compute the mean of the labels (y_i values) of

the K nearest neighbors

- Assign this mean value as the predicted value

y_new

Step 4 (Optional): Apply distance-weighted voting

 If classification with distance-weighted voting:

- For each of the K nearest neighbors, compute the

weight as w_i = 1 / (d (x_new, x_i) + ε)

- For each class C_k, sum the weighted votes for

C_k

- Assign the class with the highest weighted vote

as y_new

 Return y_new as the prediction.

End Algorithm

2.2.3. Support Vector Machines

SVM is a supervised learning algorithm used for binary

classification [16]. In this algorithm, the support vector is a

data point that resides on the margin and is used to determine

the boundary and classify the new data. Margins are the

distance between the support vectors and hyperplane in each

class. In SVMs, a large margin is better than a small margin.

The decision boundary or hyperplane, also called the

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

18

separation line, separates the data points into two classes.

SVM seeks to determine which hyperplane in a multi-

dimensional space best divides the data points into distinct

classes [17, 18]. SVM algorithms are given below.

Fig. 11 Support vector machines

Support Vector Machines (SVMs) Algorithm

Algorithm SVM (X, Y, C, kernel):

Input: - X: training data points (features)

 - Y: labels for the training data

 - C: regularization parameter

 - kernel: the kernel function (e.g., linear, polynomial,

RBF)

Output: - w, b: weights and bias for the separating hyperplane

Step 1 : Define the optimization problem

 - Minimize the objective function (hinge loss +

regularization term)

 - Subject to the constraint that each data point is

classified correctly with a margin

Step 2 : Solve the quadratic optimization problem

 - Use a solver (e.g., Sequential Minimal

Optimization) to find the optimal w and b

Step 3 : Make prediction for a new data point x_new

- Compute the decision function f(x_new) = w^T *

x_new + b

 - If f(x_new) >= 0, assign the label y_new = +1

 - Else, assign the label y_new = -1

 Return y_new as the predicted class

End Algorithm

2.2.4. Linear Regression Algorithm

Linear regression is a technique for predictive modeling

used in statistics and machine learning. It is one of the best

statistical techniques widely used in various fields for

modeling the relationship between variables. This technique is

used in engineering, management, biological science, social

science, chemical science, economics and many more. The

common linear regression models are simple linear regression,

which uses exactly one regressor or predictor, and multiple

linear regression, which uses more than one predictor [19-21].

In simple linear regression, the equation is expressed as:

y = β0 + β1x + ε (3)

Where y is the dependent variable, x as the independent

variable, β0 denoted as intercept, β1 denoted as slop and

constant, and ε represents the random error term.

And multiple linear regression, which contains multiple

regressors such as x1, x2 , x3 …xk; therefore, the equation is

expressed as:

y = β0 + β1x1 + β2x2 +…+ βkxk + ε (4)

The residual is a crucial statistical tool in regression

analysis used to evaluate how well the model fits the data. It

can be applied to increase the model's accuracy.

The residuals, or the vertical separations between the

actual data points and the predicted values on the regression

line, are shown in Figure 10 by the green dashed lines.

Fig. 12 Linear regression with residual error

Fig. 13 The Simple linear regression model uses a single feature and the

target variable, and the multiple regression model uses two features and

the target variable

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

19

Linear Regression Algorithm

Algorithm LinearRegression(X, Y):

Input: - X: training data points (features)

 - Y: corresponding labels (real values)

Output: - w, b: the parameters for the linear regression model

Step 1 : Define the linear model

 - y_pred = w^T * X + b

Step 2 : Define the cost function

- Cost function = Mean Squared Error (MSE) between

y_pred and Y

Step 3 : Minimize the cost function

- Use gradient descent or closed-form solution to

compute w and b that minimize the MSE

Step 4 : Make prediction for a new data point x_new

- Compute y_new = w^T * x_new + b

Return y_new as the predicted value

End Algorithm

2.2.5. Random Forest Algorithm

Multiple decision trees are used in the Random Forest

algorithm, an ensemble learning technique, to make

predictions. It creates multiple subsets by randomly sampling

data with replacement using bootstrapping techniques [24,

25]. A statistical technique called bootstrap allows the creation

of multiple samples from a single dataset. A subset of random

features is used to train each decision tree in the forest. Then,

decision trees are built for every subset by splitting the nodes

followed by feature criteria. Finally, aggregate the votes of

each tree and select the majority voting class for classification

and averages of all trees for regression. The architecture of a

random forest tree is given in Figure 14.

Fig. 14 Random forest architecture

Random Forest Algorithm

Algorithm RandomForest (X, Y, num_trees):

Input: - X: training data points (features)

- Y: corresponding labels (classification or regression)

 - num_trees: the number of decision trees to create

Output: - Forest: a collection of decision trees

Step 1 : Create num_trees decision trees

 For each tree:

 - Select a random subset of the data points from X

(bootstrap sampling)

Bootstrap Sample

1 Subset of

Dataset

Tree 1 Trained on

Bootstrap Sample

Dataset

Input Data

Tree 2 Trained on

Bootstrap Sample

Bootstrap Sample

2 Subset of

Dataset

Tree 3 Trained on

Bootstrap Sample

Output Prediction

Final Decision

Aggregation

Voting for Classification/Average for Regression

Bootstrap Sample

3 Subset of

Dataset
Instances

Decision Trees

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

20

 - Randomly select a subset of features to split the

data at each node

 - Build a decision tree by recursively splitting the

data based on the selected features

Step 2 : Make prediction for a new data point x_new

 - For classification:

 - Let each decision tree in the forest predict the

class of x_new

 - Use majority voting to assign the final predicted

class y_new

 - For regression:

 - Let each tree predict a value for x_new

 - Compute the average of all predicted values as

y_new

 Return y_new as the final prediction

End Algorithm

2.3. Unsupervised Learning

This is known as unsupervised learning because, unlike

supervised learning, there are no supervisors or correct

answers. Algorithms use their own creativity in identifying

and presenting the interesting structure of the data.

Algorithms for unsupervised learning learn very few

features from the data. When new data is added, its class is

determined using the previously learned features. Clustering

and feature reduction are its main uses. We have shown the

taxonomy of unsupervised learning in Figure 17.

2.4. Unsupervised Learning Algorithms and Tasks

Unsupervised learning algorithms identify hidden

patterns and structures in unlabeled data, making them

essential for exploratory data analysis, anomaly detection, and

clustering. Algorithms such as K-Means, GMMs, and

Hierarchical Clustering partition data into meaningful

clusters, while PCA and t-SNE perform dimensionality

reduction to enhance feature representation.

Advanced techniques like Autoencoders and Generative

Adversarial Networks (GANs) leverage deep learning to

encode latent structures and generate synthetic data. These

algorithms power diverse applications, including fraud

detection, customer segmentation, and feature learning in

complex, high-dimensional datasets.

Fig. 15 Unsupervised learning

Fig. 16 Unsupervised algorithm (clustering)

Fig. 17 Taxonomy of unsupervised machine learning algorithms based

on their tasks

2.4.1. k-Means Clustering

According to Lloyd (1957) and McQueen (1967), k-

Means is a partitional clustering program. K-Means clustering

is used to divide the given data into k clusters. Every cluster

has a centroid, which is its central point. Convergence occurs

when a cluster ceases to evolve [26, 27]. The k-Means

algorithm is used when the user inputs “k.”. The algorithm

below explains how to apply k-Means to datasets for

clustering. The provided equation is used to determine the

Euclidean distance.

[(x, y), (a, b)]≡ √(x − a)2 + (y − b)2 (5)

Clustering
Analysis

• k-Means Clustering

• Hierarchical Clustering

• Approximate Nearest Neighbor Search

• Gaussian Mixture Models

• Hierarchical Agglomerative Clustering

Dimensionalit
y Reduction

• Principal Component Analysis

• Autoencoders

• t-SNE

• Self-Organizing Maps

Anomaly
Detection

• Isolation Forest

• One-Class SVM

• Local Outlier Factor

Feature
Embedding

• t-Distributed Stochastic Neighbor
Embedding

• Multidimensional Scaling

• Uniform Manifold Approximation and
Projection

• Isomap Embedding

• Locally Linear Embedding (LLE)

• Manifold Learning

Pattern
Discovery

• Frequent Pattern Mining

• Sequence Pattern Mining

• Graph Pattern Mining

Text Analysis

• Hierarchical Topic Modeling

• Word Embedding

• Latent Dirichlet Allocation

• Language Modeling

• Text Summarization

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

21

k-Means Algorithm

Algorithm KMeans (X, K, max_iterations):

Input: - X: dataset containing n data points

 - K: the number of clusters

 - max_iterations: the maximum number of iterations

to perform

Output: - Centroids: The K cluster centroids

 - Cluster assignments: a label for each data point

indicating its cluster

Step 1 : Initialize K centroids randomly from the dataset.

Step 2 : Repeat until convergence or until max_iterations is

reached:

 - For each data point x_i in X:

 - Assign x_i to the nearest centroid based on

distance (e.g., Euclidean).

 - For each cluster:

 - Recalculate the centroid as the mean of all data

points assigned to that cluster.

Step 3 : Return the final centroids and cluster assignments.

End Algorithm

Fig. 18 Standard k-means algorithm

2.4.2. PCA

Dimensionality reduction, principal components,

eigenvectors and eigenvalues are the key concepts of PCA. By

employing principal components to preserve as much

variability as possible, PCA minimizes the number of

variables in a dataset. Regarding how much variance they

capture, principal components are the most effective and

arranged orthogonally [13, 28].

Fig. 19 Example of PCA original 3D dataset reduced to 2D and 1D, (a) Original features in 3D space, (b) PCA in 2D space, and (c) PCA in 1D space.

Convergence End

Begin Initialization

Classificatio

n

Centroid

Calculation

No

Yes

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

22

The algorithm that follows explains how PCA operates.

Standardizing the data and calculating the mean and deviation

to scale the data to contribute equally are the first steps in

using the dataset in PCA. Compute the covariance matrix next

to display the relationship between the various variables.

Subsequently, determine the covariance matrix's eigenvalues

and eigenvectors to determine the variance magnitudes in each

direction and the directions through eigenvectors [29].

When selecting the principal components, the higher

eigenvalue determines which eigenvectors are the top choices.

The more variance that component explains, the higher the

eigenvalue. Finally, the data is transformed into new

dimensional space formed by the selected principle

components, resulting in a reduced dataset. Figure 19

describes PCA's pictorially 3D, 2D, and 1D space. This plot

shows the original data in three dimensions (X, Y, Z). The 3D

dataset was reduced to a 2D dataset after reducing its

dimensionality from 3D to 2D using PCA. The new

components are PC1 and PC2. PCA of the 3D Dataset

Reduced to 1D, and this plot shows the dataset after reducing

its dimensionality from 3D to 1D using PCA. Only the First

Principal Component (PC1).

PCA Algorithm

Algorithm PCA (X, n_components):

Input: - X: dataset with n samples and m features

 - n_components: the number of principal components

to retain

Output: - Transformed data: X projected onto the principal

components

 - Principal components: the directions of maximum

variance

Step 1 : Normalize the dataset X by subtracting the mean of

each feature.

Step 2 : Compute the covariance matrix of the normalized

dataset.

Step 3 : Compute the eigenvalues and eigenvectors of the

covariance matrix.

Step 4 : Select the top n_components eigenvectors

corresponding to the largest eigenvalues.

Step 5 : Project the dataset X onto the selected

eigenvectors.

Step 6 : Return the transformed data and the principal

components.

End Algorithm

2.4.3. Autoencoder

The two main components of an autoencoder are an

encoder and a decoder. While the encoder’s task is to

compress the input data while minimizing information loss,

the decoder’s task is to reconstruct the original data using the

compressed representation. Autoencoders are used

extensively in various fields, including data compression,

anomaly detection, dimensionality reduction, image

denoising, feature extraction, and image colorization [30].

The input layer, encoder hidden layer, latent space

(compressed data), decoder hidden layer, and output layer are

the five main components of a basic autoencoder architecture.

Notably, in order to ensure compression and prevent simple

data replication, the number of neurons in the output layer

must match that in the input layer. Mathematically, the process

can be described as:

Where the input vector is denoted by x, the encoder

function by f(x), the compressed representation by z, the

decoder function by g(z), and the reconstructed output by x′.

A more sophisticated variation, deep autoencoders, contains

several hidden layers in both the encoder and the decoder.

These layers must mirror each other, with the same number of

neurons on both sides. Different types of autoencoders are

described here.

Fig. 20 Autoencoder

Autoencoder Algorithm

Algorithm Autoencoder (X, encoder_layers, decoder_layers,

learning_rate, epochs):

Input:

 - X: dataset with n samples

 - encoder_layers: architecture of the encoder (e.g.,

number of hidden layers)

 - decoder_layers: architecture of the decoder

 - learning_rate: the learning rate for optimization

 - epochs: number of training epochs

Output:

 - Compressed representation (latent space)

 - Reconstructed data

Step 1 : Initialize the encoder and decoder networks with the

given layers.

Step 2 : Perform forward propagation:

- Pass the input X through the encoder to get the

compressed representation.

- Pass the compressed representation through the

decoder to reconstruct X.

Step 3 : Compute the reconstruction loss (e.g., Mean

Squared Error).

Step 4 : Perform backpropagation to update weights using

gradient descent.

Step 5 : Repeat steps 2-4 for the specified number of epochs.

Step 6 : Return the compressed representation and

reconstructed data.

End Algorithm

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

23

Fig. 21 Various autoencoders

Table 1. Various autoencoders tasks and characteristics

Method Task Characteristics References

Basic

Autoencoder
Compress and reconstruct data

Simple architecture with encoder and decoder. Used for

dimensionality reduction and feature learning.
[30]

Denoising

Autoencoder

(DAE)

Remove noise from input data

Trained with corrupted input and learns to recover the

original clean data. Useful for noise reduction and data

preprocessing.

[31]

Sparse

Autoencoder
Feature extraction

Encourages sparsity in hidden layers, where only a small

subset of neurons activates. Typically used for feature

extraction and learning sparse representations.

[32]

Variational

Autoencoder

(VAE)

Generate new data samples

Assumes latent variables follow a Gaussian distribution. A

generative model is used for sampling new data similar to the

training set, enabling probabilistic modeling.

[33]

Convolutional

Autoencoder

(CAE)

Capture spatial hierarchies in

image data

Incorporates convolutional layers, making it suitable for

image data. Effective for capturing spatial dependencies in

images.

[34]

Contractive

Autoencoder

Enforce robustness to small

changes in input

Adds a penalty term to the loss function to minimize the

derivative of the hidden representations. Promotes robustness

to small input variations.

[35]

Stacked

Autoencoder

Create deep networks for

complex data representations

Multiple layers of autoencoders are stacked. Each layer’s

output is the input to the next, enabling the learning of more

complex data representations.

[36]

Undercomplete

Autoencoder

Compress data into a smaller

representation

The latent space is smaller than the input, enforcing data

compression. Used for efficient data representation.
[37]

Overcomplete

Autoencoder
Capture complex features

Has more hidden units than input dimensions. Regularization

is required to avoid learning the identity function and ensure

meaningful feature extraction.

[38]

Autoencoder

Basic Autoencoder
Denoising

Autoencoder
(DAE)

Sparse
Autoencoder

Variational
Autoencoder

(VAE)

Convolutional
Autoencoder

(CAE)

Contractive
Autoencoder

Stacked
Autoencoder

Undercomplete
Autoencoder

Overcomplete
Autoencoder

Multimodal
Autoencoder

Sequence-to-
Sequence

Autoencoder

LSTM
Autoencoder

Hierarchical
Autoencoder

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

24

Multimodal

Autoencoder

Combine different modalities

of data (e.g., image, text)

Trained on multiple modalities to create a shared latent space.

Useful for cross-domain data representation.
[39]

Sequence-to-

Sequence

Autoencoder

Model sequential data like

time series or text

The input and output are sequences. Used for tasks like time

series prediction, machine translation, and other sequence-

based tasks.

[40]

LSTM

Autoencoder

Capture temporal

dependencies in sequential

data

Uses LSTM units to handle time dependencies. Often applied

in time series data or sequential modeling tasks.
[41]

Hierarchical

Autoencoder

Extract information at different

levels of granularity

Input is broken down into hierarchical layers, allowing for

multilevel data representation. Effective for hierarchical data

structures.

[42]

2.4.4. Isolation Forest

To isolate observations, Isolation Forest randomly selects

a feature and then randomly selects a split value between the
feature's minimum and maximum values. This makes the

algorithm especially useful for anomaly detection. Here’s an

overview of how the algorithm works:

 Isolation Trees: The algorithm constructs an ensemble of

isolation trees for a given dataset. Each tree is created by

recursively splitting the data points until each point is

isolated in a leaf node.

 Path Length: The algorithm determines the path length for

each data point, which is the separation between the root

node and the leaf node in each tree where the point ends.

 Anomaly Score: The average path length across all trees is

the anomaly score for a given data point. Due to their rapid

isolation, points with shorter average path lengths are

regarded as anomalies. The anomaly score s (x, n) for a

data point x in a forest of n trees is computed as follows.

𝑠(𝑥, 𝑛) = 2
−

𝐸(ℎ(𝑥)

𝑐(𝑛) (6)

Where E(h(x) is the average path length of x and c(n) is

the average path length of unsuccessful searches in a Binary

Search Tree, defined as:

Fig. 22 Illustrates the relationship between the expected path length,

E(h(x)), and the anomaly score, s

Here, c(n) represents the average path length defined in

Equation 7 [43].

𝑐(𝑛) = 2𝐻(𝑛 − 1) − (2(𝑛 − 1)/𝑛) (7)

With H(i) being the i-th harmonic number, we can

calculate it using the following:

𝐻(𝑖) = 𝑙𝑛(𝑖) + 𝛾 (𝐸𝑢𝑙𝑒𝑟′𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝛾 ≈ 0.577) (8)

 In Equation (6):

 When E(h(x)) → c(n), s → 0.5;

 When E(h(x)) → 0, s → 1; and

 When E(h(x)) → n − 1, s → 0.

When the expected path length E(h(x)) matches the

average path length c(n), the anomaly score s is equal to 0.5,

regardless of the value of n. s is monotonic to h(x). Figure 22

illustrates the relationship between E(h(x)) and s, and the

following conditions are applied where 0 < s ≤ 1 for 0 < h(x)

≤ n − 1. Using the anomaly scores, we are able to make the

following assessment:

 If instances return s very close to 1, then they are definitely

anomalies,

 If instances have a much smaller than 0.5, then they are

quite safe to be regarded as normal instances and

 If all the instances return ≈ 0.5, then the entire sample does

not really have any distinct anomaly.

Isolation Forest algorithm

Algorithm Isolation_Forest (X, n_trees, max_samples)

Input:

 X: Dataset with n samples

 n_trees: Number of isolation trees to create

 max_samples: Maximum number of samples to use in

each tree

Output:

 Anomaly scores for each data point in X

Step 1 : Initialize a list to store isolation trees

 trees ← []

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

25

Step 2 : Build n_trees isolation trees

 for i = 1 to n_trees do

 // Randomly select max_samples from X

 sample_X ← Random_Sample (X, max_samples)

 // Build an isolation tree using sample_X

 tree ← Build_Tree(sample_X)

 // Add the tree to the list of trees

 trees. append (tree)

 end for

Step 3 : Compute the path length for each data point in X

 path_lengths ← []

 for each data_point in X do

 total_path_length ← 0

 for each tree in trees do

 path_length←Calculate_Path_Length(tree,

data_point)

 total_path_length←total_path_length+path_length

 end for

 // Average path length across all trees

 avg_path_length ← total_path_length / n_trees

 path_lengths.append (avg_path_length)

 end for

Step 4 : Calculate the anomaly score for each data point

 anomaly_scores ← []

 for each avg_path_length in path_lengths do

 score← Calculate_Anomaly_Score(avg_path_length)

 anomaly_scores. Append (score)

 end for

Step 5 : Return anomaly_scores

End Algorithm

2.4.5. One Class SVM

The One-Class Support Vector Machine (OCSVM) is a

specialized type of support vector machine used for anomaly

detection. It learns a decision function that can classify new

data as either similar to or different from the training data,

making it suitable for novelty detection [44, 45]. The

following is the working procedure:

 Kernel Function: In OCSVM, the kernel function K(x,y)

plays a crucial role by mapping the input data into a higher-

dimensional space. This transformation makes separating

normal data from anomalies easier by defining a clear

boundary. Commonly used kernels include the Radial

Basis Function (RBF), polynomial, and linear kernels,

which help capture complex patterns in the data.

 Decision Function: f(x) = w.ϕ(x) −ρ is the definition of the

decision function, where w denotes the weight vector, ρ the

offset, and ϕ(x) is the feature map.

 Optimization Issue: The issue with OCSVM optimization

is:

𝑚𝑖𝑛
𝜔,𝜌,𝜉𝑖

1

2

||𝑤||2 +
1

𝑣𝑙
∑ 𝜉𝑖 − 𝜌𝑙

𝑖=1 (9)

Subject to: (w.ϕ(xi))≥ρ−ξi, ξi≥0, i=1,…, l

Where ξi are slack variables that deal with data points that

are misclassified and fall inside the margin, and ν is a

parameter that controls the trade-off between maximizing the

margin and minimizing the number of anomalies.

 Kernel trick: Finding the best boundary in a high-

dimensional space to distinguish between normal and

outlier data points allows for detecting anomalies.

Fig. 23 OC-SVM, plotting the decision boundary, normal data points

and support vectors

One Class-SVM algorithm

Algorithm One Class SVM (X, kernel, nu):

Input:

 - X: dataset with n samples

 - kernel: kernel function (e.g., linear, RBF)

 - nu: an upper bound on the fraction of anomalies

Output:

 - Anomaly score for each data point

Step 1 : Train the SVM on the dataset X using the specified

kernel and nu.

Step 2 : For each data point x_i in X:

 - Compute the decision function value f(x_i).

 - If f(x_i) < 0, classify x_i as an outlier.

Step 3 : Return the anomaly score for each data point based

on the decision function.

End Algorithm

2.4.6. Local Outlier Factor

The LOF algorithm measures the local density deviation

of a data point relative to its neighbors. By comparing a point's

density to that of its surrounding neighbors, LOF can identify

points that have a significantly lower density than their

neighbors as potential anomalies [46]. The following is the

working procedure.

 k-Distance: For every point p, the distance to its k-th

nearest neighbor is computed

 Reachability Distance: The reachability distance between

a point p and a point o is determined by:

 Reach-dist k (p,o) = max{k-distance (o), d(p,o)}

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

26

 Local Reachability Density(LRD): The inverse of the

average reachability distance determined by the k-nearest

neighbors is the local reachability density of point p.

𝑙𝑟𝑑𝑘(𝑝) = (
∑ 𝑟𝑒𝑎𝑐ℎ−𝑑𝑖𝑠𝑡𝑘(𝑝,𝑜)𝑜∈𝑁𝑘(𝑝)

|𝑁𝑘(𝑝)|
)

−1

 (10)

LOF Score: A point’s local reachability density is divided

by the local reachability density of its k-nearest neighbors to

determine its average LOF score, which is:

𝐿𝑂𝐹𝑘(𝑝) = (
∑

𝑙𝑟𝑑
𝑘(𝑜)

𝑙𝑟𝑑
𝑘(𝑝)

𝑜∈𝑁𝑘(𝑝)

|𝑁𝑘(𝑝)|
) (11)

 Anomalies: To find anomalies, LOF calculates a data

point’s local density deviation from its neighbors.

Local Outlier Factor Algorithm

Algorithm LOF (data, k):

Input:

 data: A set of data points

 k: The number of nearest neighbors

Output:

 LOF scores for each data point

Step 1 : For each point p in data:

 1.1. Calculate the k-distance of p

 k-distance(p) = distance to the k-th nearest neighbor

of p

Step 2 : For each point p in data:

 2.1. Initialize a list reachability_distances

 2.2. For each point o in the k-nearest neighbors of p:

 2.2.1. Calculate the reachability distance

 Reach-distk(p, o) = max(k-distance(o), distance(p,

o))

 2.2.2. Append Reach-distk(p, o) to

reachability_distances

 2.3. Calculate the local reachability density (LRD) of p

 LRD(p) = 1 / (average of reachability_distances)

Step 3 : For each point p in data:

 3.1. Initialize sum_LRD_neighbors = 0

 3.2. For each point o in the k-nearest neighbors of p:

 3.2.1. Calculate the local reachability density of

neighbor o

 LRD(o) = 1 / (average of reachability distances to k-

neighbors of o)

 3.2.2. sum_LRD_neighbors += LRD(o)

 3.3. Calculate the LOF score for p

 LOF(p) = (sum_LRD_neighbors / k) / LRD(p)

Step 4 : Return the LOF scores for all points in the data

2.4.7. t-SNE Algorithm

t-SNE algorithm is used to reduce high-dimensional data

to a lower-dimensional space for visualization while

preserving relationships between data points [47]. There are

several advantages of t-SNE over PCA, such as working with

similar local data points close to each other in the lower

dimensional space rather than global variance. It can handle

non-linear data, whereas PCA uses a linear method. It is good

for complex and high-dimensional data. It can create better

visualization than PCA because it can visualize in 2D or 3D

by grouping similar points together while separating

dissimilar points, but PCA spreads the variances across the

components linearly. Another important thing is that t-SNE

has a parameter called perplexity that allows the user to

balance between local and global aspects of the data [48]. This

makes t-SNE flexible and suitable for different kinds of

datasets. The t-SNE algorithm is given below.

t-SNE Algorithm

Algorithm t-SNE (X, perplexity, learning_rate, iterations):

Input:

 - X: dataset with n samples (high-dimensional data)

 - perplexity: balance between local and global aspects of

the data

 - learning_rate: step size for optimization

 - iterations: number of iterations to run

Output:

 - Low-dimensional representation of the data (2D or 3D)

Step 1 : Compute pairwise affinities between data points in

the high-dimensional space:

 1.1 For each data point, compute the probability

distribution of its neighbors.

 1.2 Use perplexity to determine the similarity between

points.

Step 2 : Initialize the low-dimensional map (e.g., 2D or 3D)

randomly:

 2.1 Generate random starting positions for the n samples

in the lower-dimensional space.

Step 3 : Minimize the Kullback-Leibler (KL) divergence

between the high-dimensional and low-dimensional

distributions using gradient descent:

 3.1 For each iteration:

 - Calculate the similarity of points in the lower-

dimensional space.

 - Compute the gradient of the KL divergence between

high-dimensional and low-dimensional similarities.

 - Update the positions of the points in the low-

dimensional map based on the gradient and learning rate.

Step 4 : Repeat Step 3 for the specified number of iterations.

Step 5 : Return the final low-dimensional representation of

the data.

End Algorithm

2.4.8. Association Rule Mining

Association rule mining is a data mining technique

utilized to uncover intriguing relationships or associations

among items or variables within a dataset. It identifies

frequent patterns and dependencies among data items, which

can be categorized into items-individual entities like products

in a store, words in a document, or items in a basket-and

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

27

transactions, which represent collections of items that capture

a customer’s purchase, a user’s web page visit, or any event

involving items.

Key metrics in this process include support, a measure of

how frequently an item set (a combination of items) appears

in the dataset, reflecting the popularity or occurrence of the

item set, and confidence, which assesses the strength of the

association between two item sets by indicating how often one

item set is found alongside another. An association rule is

expressed in the format ''If {Antecedent} then {Consequent},''

linking two item sets with a specified support and confidence

level. Frequent item sets are those that meet a minimum

support threshold and are considered significant for generating

association rules.

The Apriori algorithm is a widely used method for

association rule mining, employing a level-wise approach to

discover frequent item sets by iteratively pruning infrequent

ones based on the Apriori property, which states that if an item

set is frequent, all its subsets must also be frequent.

For instance, in a retail dataset with customer

transactions, frequent item sets may indicate that customers

who purchase milk and bread are also likely to buy eggs,

leading to the association rule: “If {milk, bread} then {eggs}”

with corresponding support and confidence values.

Association rule mining has diverse applications across

various domains, including market basket analysis to identify

product associations in retail sales, recommender systems for

suggesting related items or content, healthcare for discovering

patterns in patient diagnoses and treatments, and web usage

mining to analyze user behavior for targeted marketing

strategies [49, 50]. Based on the association rules, we discover

the following. Customers who buy bread are likely to buy milk

(66.67% confidence), customers who buy milk are likely to

buy bread (50% confidence), and customers who buy bread

are somewhat likely to buy Eggs (33.33% confidence).

Fig. 24 Association rule mining analysis

Table 2. Sales datasets

Transaction ID Items Purchased

1 Bread, Milk, Eggs

2 Milk, Eggs

3 Bread, Diapers, Beer

4 Bread, Milk, Diapers

5 Milk, Beer

Association Rule Mining Algorithm (Apriori)

Algorithm Apriori (T, min_support, min_confidence):

Input:

 - T: transactional dataset

 - min_support: minimum support threshold

 - min_confidence: minimum confidence threshold

Output:

 - Frequent itemsets and strong association rules

Step 1 : Find all frequent itemsets:

 - Generate candidate itemsets and prune those below

the min support.

Step 2 : Generate strong association rules:

 - For each frequent itemset, generate rules.

 - Compute confidence for each rule and retain those with

confidence >= min_confidence.

Step 3 : Return the frequent itemsets and strong association

rules.

End Algorithm

2.5. Semi-Supervised

Fig. 25 Taxonomy of semi-supervised learning

Semi-supervised
Learning

Self-
Training

Pseudo-
Labeling

Iterative
Refinement

Confidence-
Based

Filtering

Co-Training

Multi-View
Learning

Collaborative
Learning

Augmentation

Graph-Based
Methods

Label
Propagation

Manifold
Regularization

Graph Neural
Networks

(GNN)

Spectral
Methods

Generative
Models

Variational
Autoencoders

(VAEs)

Generative
Adversarial
Networks
(GANs)

Semi-
Supervised

GANs

Clustering-Based
Methods

Clustering

Entopy
Minimization

Expectation-
Maximization

Consistency
Regularization

Data
Augmentation
Consistency

Virtual
Adversarial

Training
(VAT)

Hybrid
Approaches

Graph-Based
Methods with
Consistency

Regularization

Generative
Models with
Graph-Based
Approaches

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

28

There is an algorithm that can handle training data that is

partially labeled, unlabeled, and partially labeled. We refer to

this type of learning as semi-supervised learning. Supervised

and unsupervised learning are typically combined to create

semi-supervised learning. Google Photos service, for instance.

The same person can be automatically identified once you

upload a family photo here. Techniques for semi-supervised

learning include self-training, graph-based approaches,

generative models, and transductive support vector machines.

A detailed semi-supervised taxonomy is given in Figure 25.

2.6. Semi-Supervised Learning Algorithms and Tasks

SSL is an advanced machine learning paradigm that

leverages a small set of labeled data alongside a large volume

of unlabeled data to enhance model performance. It bridges

the gap between supervised and unsupervised learning by

incorporating techniques such as self-training, consistency

regularization, and graph-based methods to efficiently infer

patterns from unlabeled data. SSL is particularly effective in

domains where labeled data is scarce or expensive to obtain,

such as medical diagnosis, speech recognition, and anomaly

detection. Key algorithms include pseudo-labeling, entropy

minimization, and contrastive learning, which iteratively

refine decision boundaries while maintaining robustness

against overfitting. The primary objective of SSL tasks is to

improve generalization by utilizing the intrinsic structure of

data, ultimately reducing dependency on extensive human

annotations.

Fig. 26 Semi-supervised learning [10]

2.6.1. Self-Training

Fig. 27 Self-training semi-supervised learning process

A common method is self-training, in which a model is

first trained on labeled data and then uses the unlabeled data

to make predictions. The model is then iteratively retrained by

treating the most confident predictions as additional labeled

examples [51]. It is helpful because, in email spam filters, an

initial model is typically trained using a small set of labeled

emails (spam and non-spam). The model then labels large

volumes of unlabeled emails with high confidence. These

confidently predicted labels are added to the training data to

iteratively improve the spam filter’s accuracy. The working

process begins by using a labeled dataset DL to train a

classifier h. Once trained, the classifier also processes an

unlabeled dataset DU, assigning pseudo-labels to the unlabeled

examples based on its predictions.

These pseudo-labeled samples XU
pseudo are then added

back to the labeled dataset DL, expanding the training data and

enabling the classifier to iteratively improve with larger, albeit

partially pseudo-labeled datasets that include both human-

labeled data and machine-generated pseudo-labeled data. This

cycle of training and pseudo-labeling continues over multiple

iterations until a predefined stopping criterion is reached, such

as a maximum number of iterations T or a convergence

criterion, indicating stable performance.

2.6.2. Graph-Based Methods

Graph-based methods use data points as nodes and their

similarities as edges, constructing a graph where labeled and

unlabeled data interact to propagate label information across

the graph [52]. For example, in social network analysis, in

social networks like Facebook or LinkedIn, graph-based semi-

supervised learning is used to infer user attributes (e.g.,

interests, job titles) by modeling the network of user

connections. Labeled user profiles can propagate information

to unlabeled profiles based on network structure, improving

predictions of interests or job roles.

2.6.3. Generative Models

Generative models attempt to model the joint distribution

of the input features and labels, utilizing unlabeled data to

better capture the underlying structure of the data [53]. For

example, in medical imaging and medical diagnosis,

generative models like Variational Autoencoders (VAEs) can

be applied to tasks such as classifying types of tumors. With

limited labeled MRI scans of tumors, the generative model can

learn the distribution of both labeled and unlabeled images to

generate new examples, improving the model’s ability to

differentiate between benign and malignant tumors.

2.6.4. Transductive Support Vector Machine

Transductive Support Vector Machines (TSVMs) are

extensions of Support Vector Machines (SVMs) tailored for

semi-supervised learning. Unlike traditional SVMs, which

rely solely on labeled data, TSVMs utilize both labeled and

unlabeled data to enhance classification accuracy. They work

by finding a hyperplane that separates the class while

considering the distribution of the unlabeled data to define a

more effective decision boundary. TSVMs aim to maximize

the margin between classes using information from the entire

dataset. Being transductive, TSVMs focus on the specific test

set available during training, unlike inductive models that

generalize to unseen data. Despite their computational

Labeled Data (D
L
) Classifier (h)

Pseudo-Labeled Data

(𝑋𝑈
𝑝𝑠𝑒𝑢𝑑𝑜

)

Unlabeled Data (D
U
)

Repeat of T iterations or until Convergence

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

29

intensity, TSVMs have proven useful in areas like text and

image classification, offering improved accuracy and

robustness in scenarios where labeled data is hard to find. We

can categorise it as a hybrid approach because it bridges the

gap between supervised SVM and semi-supervised by

incorporating unlabeled data.

2.7. Reinforcement

In reinforcement learning, the machine gradually updates

some of its programs. But, the program automatically

understands when to stop updating. That is, it realizes that the

program may terminate on its own if it proceeds further, and

then it starts to slow down on its own. A program moves

forward when it understands that the state of the program is

well and stops when it understands the danger. Reinforcement

learning is the term for this kind of learning [1]. For example,

consider an intelligent agent on which a reinforcement

learning algorithm is applied. Agents can observe their

surroundings, choose and carry out actions, and either receive

rewards or penalties for receiving unfavorable ones. After that,

it must figure out for itself the best course of action to

maximize rewards over time. This is referred to as the

principle in reinforcement learning. What an agent should do

in a particular circumstance is specified by a policy. In other

words, the trainer can offer a positive reward if the agent is

trained to play a game. The game offers no reward in any other

way, a positive reward when it is won and a negative reward

when lost [2].

2.8. Reinforcement Learning Algorithms and Tasks

 RL algorithms, such as Q-learning, DQN, Policy

Gradient Methods, and PPO, leverage techniques like value

iteration, policy optimization, and experience replay to

enhance learning efficiency and stability. Tasks in RL span

from robotics control and autonomous navigation to

algorithmic trading and real-time strategy games, where an

agent must balance exploration-exploitation trade-offs to

maximize cumulative rewards.

Advanced RL frameworks integrate deep learning,

model-based planning, and meta-learning to adapt to complex,

high-dimensional environments with minimal supervision,

pushing the boundaries of AI-driven decision-making. An

excellent illustration of reinforcement learning is the AlphaGo

program from DeepMind. It garnered media attention when it

defeated world go champion Lee Seidl in March 2016. After

analyzing millions of games and playing numerous games

against itself, it discovered its winning formula. However,

during the match against the champion, it ceased to learn.

AlphaGo merely put the lessons it had learned into practice.

Additionally, a lot of robots learn to move by using

reinforcement learning algorithms. Q-learning, deterministic

Q-learning, Monte Carlo methods, temporal difference

methods, and SARSA are examples of reinforcement learning

techniques frequently employed in various applications. A

detailed taxonomy of RL is provided in Figure 29.

Fig. 28 Reinforcement learning [1]

Fig. 29 Taxonomy of reinforcement learning

Model-Based
Reinforcement

Learning

• Value Iteration

• Policy Iteration

• Model Predictive Control (MPC)

• Dynamic Programming (DP)

Model-Free
Reinforcement

Learning

• Value-Based Methods

• Q-Learning

• Deep Q-Networks (DQN)

• SARSA (State-Action-Reward-State-Action)

• Policy-Based Methods

• REINFORCE Algorithm

• Deterministic Policy Gradient (DPG)

• Proximal Policy Optimization (PPO)

• Trust Region Policy Optimization (TRPO)

• Actor-Critic Methods

• Advantage Actor-Critic (A2C)

• Asynchronous Advantage Actor-Critic (A3C)

• Deep Deterministic Policy Gradient (DDPG)

• Twin Delayed Deep Deterministic Policy Gradient
(TD3)

On-Policy
Reinforcement

Learning

• SARSA

• Proximal Policy Optimization (PPO)

• Trust Region Policy Optimization (TRPO)

Off-Policy
Reinforcement

Learning

• Q-Learning

• Deep Q-Networks (DQN)

• Deep Deterministic Policy Gradient (DDPG)

• Twin Delayed Deep Deterministic Policy Gradient
(TD3)

Hierarchical
Reinforcement

Learning

• Options Framework

• Feudal Reinforcement Learning

• Hierarchical Deep Q-Networks (h-DQN)

Multi-Agent
Reinforcement

Learning

• Cooperative Multi-Agent Systems

• Competitive Multi-Agent Systems

• Mixed Cooperative-Competitive Environments

Inverse
Reinforcement

Learning

• Behavior Cloning

• Apprenticeship Learning

Exploration
Strategies in

Reinforcement
Learning

• ε-Greedy

• Upper Confidence Bound (UCB)

• Boltzmann Exploration

• Thompson Sampling

Deep
Reinforcement

Learning

• Deep Q-Networks (DQN)

• Actor-Critic Methods (e.g., A2C, A3C, DDPG, PPO)

• Soft Actor-Critic (SAC)

Safe
Reinforcement

Learning

• Constrained Policy Optimization (CPO)

• Risk-Sensitive RL

Distributed
Reinforcement

Learning

• Ape-X

• IMPALA (Importance Weighted Actor-Learner
Architecture)

Meta-
Reinforcement

Learning

• Model-Agnostic Meta-Learning (MAML)

• RL² (Reinforcement Learning Squared)

Agent

Environment

State Reward Action

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

30

2.8.1. Q-Learning (QL)

Finding the optimal strategy for a given Markov Decision

Process (MDP) is the aim of the model-free reinforcement

learning algorithm Q-Learning. It learns by iteratively

updating the values of state-action pairs, or Q-values, based

on the observed rewards and transitions. Q-Learning uses a

table called a Q-table to store and update the Q-values. The Q-

values represent the anticipated future rewards for carrying out

a particular action in a particular state. Through iterative

interactions with the environment and Q-value updates, Q-

Learning can converge to an optimal policy that maximizes

the cumulative reward.

Q-values, also known as action values, are a fundamental

concept in reinforcement learning. In the context of Q-

Learning and related algorithms, Q-values represent the

expected cumulative reward an agent can obtain by carrying

out a specific action in a specific state. Formally, the expected

total of future rewards the agent will receive by starting in

state s, acting in a, and then following a particular policy is

known as the Q-value Q (s, a) for a given state-action pair (s,

a). The following is a common recursive definition of the Q-

value.

Q (s, a) = R (s, a) + γ * max (Q (s’, a’)) (12)

Where:

 The immediate reward received when acting in state s. is

denoted by R (s, a),

 The discount factor, γ (gamma), establishes the relative

importance of future rewards compared to immediate

rewards. After action a in state s. s’ is the next state

reached. max (Q (s’, a’)) represents the maximum Q-

value among all possible actions a’ in state s’

By iteratively updating the Q-values based on observed

rewards and transitions, reinforcement learning algorithms

aim to find the optimal policy that maximizes the cumulative

reward. The agent uses the Q-values to make action-selection

decisions, often employing exploration-exploitation trade-offs

to balance between trying out new actions and exploiting the

knowledge gained so far.

The Q-values are typically stored in a table called the Q-

table in discrete state and action spaces, while in continuous

spaces, they can be approximated using function

approximators like neural networks in algorithms such as

Deep Q-Networks (DQN). For example, in optimal route

planning, suppose there is a delivery robot that needs to

navigate through a complex maze-like environment to deliver

packages efficiently. Then, Q-Learning can be used to find the

optimal path for the robot by updating Q-values based on

rewards (e.g., reaching the destination) and penalties (e.g.,

hitting obstacles). The robot explores the environment,

gradually learning the best actions to take in each state to reach

the destination quickly.

2.8.2. Deterministic Q-Learning (DQL)

Deterministic Q-Learning is a variant of the standard Q-

Learning algorithm designed specifically for environments

with continuous action spaces. Traditional Q-Learning, which

works well for discrete actions, selects the action based on the

maximum Q-value for each state. However, finding the

maximum Q-value in continuous action spaces is not easy. To

address this problem, DQL approximates the Q-values using a

function approximator, such as a deep neural network. After

receiving the state as input, the neural network produces the

Q-values for each possible course of action. The action with

the highest Q-value is selected for each state during training.

2.8.3. Monte-Carlo Methods (MCM)

Monte Carlo methods are a model-free, value-based class

of reinforcement learning algorithms that learn by averaging

the rewards obtained from complete environmental interaction

episodes. Unlike Q-Learning, which updates the values based

on each step, Monte-Carlo methods wait until the end of an

episode to update the Q-values. The basic idea is to estimate a

state-action pair's expected return (cumulative reward) by

averaging the actual returns observed across multiple

episodes. This approach is particularly useful when the

dynamics of the environment are unknown or when the agent

can only receive rewards at the end of an episode.

2.8.4. Temporal Difference Methods (TDM)

Temporal Difference Methods are a class of

reinforcement learning algorithms that update the Q-values

based on the observed rewards and the estimated value of the

subsequent state. Unlike Monte-Carlo methods, which wait

until the end of an episode, Temporal Difference methods

update the Q-values after each time step. The update is based

on the current estimate of the Q-value and the target value,

which combines the immediate reward with the estimated Q-

value of the subsequent state. This technique allows Temporal

Difference methods to learn online by progressively updating

the Q-values as the agent interacts with the environment.

2.8.5. SARSA

SARSA is an on-policy reinforcement learning algorithm

that stands for “State-Action-Reward-State-Action.”. It is

similar to Q-Learning even though its update rule is different.

When updating the Q-values in Sarsa, the following factors

are considered: the current state, the action taken in that state,

the reward received, the subsequent state, and the next action

chosen in compliance with the policy. The update rule

considers both the observed reward and the estimated Q-value

of the next state-action pair. Sarsa is particularly well-suited

for environments with stochastic transitions because it can

adjust its policy in real time and learn directly from

interactions.

2.9. Ensemble Learning

Ensemble learning is a machine learning fusion technique

shown in Figure 30 that combines knowledge from several

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

31

learning models to enable more precise and effective decision-

making. Ensemble machine learning and statistics approaches

combine several learning algorithms to produce better

predictive results than anyone learning algorithm alone [54].

Ensemble methods, which train multiple learners and then

combine them for use, boosting, and bagging as

representatives, are one type of advanced learning technique

[55]. An ensemble approach is typically far more accurate than

a single learner, and it has already produced impressive results

in a number of real-world tasks.

The ensemble method teaches multiple students how to

solve the same problem. Ensemble learning is distinct from

traditional learning approaches that seek to generate a learner

from training data. It is also referred to as committee-based

learning or learning multiple classifier systems. Bias,

variance, and noise are the primary causes of error in learning

models [56]. Integrated machine learning techniques ensure

the accuracy and stability of machine learning algorithms,

which reduce these error-inducing factors.

Fig. 30 Ensemble learning architecture [11]

Ensemble learning is like this scenario where an

individual wants to buy a laptop. Instead of directly

purchasing the laptop recommended by the salesperson at the

showroom, the person takes a more comprehensive approach

to make an informed decision.

He seeks opinions from friends, family, and colleagues,

researches various portals to explore different laptop models,

and visits review sites to gather more insights. In essence, he

gathers multiple perspectives and reviews before concluding.

This approach of considering diverse opinions and reviews to

make a better decision can be linked to the concept of

ensemble learning. Ensemble learning methods can be

classified into three primary categories [57, 58].

2.9.1. Bagging

Bagging involves training multiple decision trees on

different subsets of the same dataset and combining their

predictions through averaging. The term “Bagging” is derived

from “Bootstrap AGGregatING,” emphasizing the use of

bootstrapping and aggregation. Some examples of bagging

methods include Bagged Decision Trees (canonical bagging),

Random Forest, and Extra Trees.

Bagging Algorithm

1. Initialize empty list of models: models = []

2. for i = 1 to n_estimators do

3. Create bootstrap sample from the training dataset

4. Train a base model (e.g., Decision Tree) on the

bootstrap sample

5. Add the trained model to the models list

6. end for

7. Initialize empty list of predictions: all_predictions = []

8. for each test sample in test_set do

9. Initialize empty list for sample_predictions =[]

10. for each model in models, do

11. prediction = model.predict(test_sample)

12. Append prediction to sample_predictions

13. end for

14. final_prediction = majority_vote(sample_predictions)

 # For classification

 or

 final_prediction = average(sample_predictions) # For

regression

15. Append final_prediction to all_predictions

16. end for

17. return all_predictions

2.9.2. Stacking

Training various model types on the same dataset and

using other models to Figure out how to best combine their

predictions is known as stacking. Stacking techniques include

super ensembles, blending, and stacked models.

2.9.3. Boosting

Iteratively adding ensemble members that alter the

predictions of earlier models and produce a weighted average

of those predictions is known as “boosting”. A family of

algorithms known as “boosting” has the ability to turn weak

learners into strong ones. Examples: Stochastic Gradient

Boosting, Gradient Boosting Machines, and AdaBoost

(canonical boosting).

2.10. Neural Network

An artificial neural network or neural network is a set of

algorithms created to detect hidden patterns and relationships

within data, operating in a way that mimics the human brain

[59]. The Taxonomy of NN is in Figure 31. These networks

are made up of interconnected neurons, whether natural or

synthetic. Neural networks can adapt to changing inputs,

delivering the most effective results without modifying the

output parameters. It can give optimal solutions to nonlinear

types of problems. Rooted in artificial intelligence, neural

networks are becoming increasingly popular in designing

trading systems due to their flexibility and learning abilities.

It uses three or more layers. The input layer receives input,

one or more hidden layers process it, and the output layer

generates the output from the preceding layer. Weight,

summing, and activation functions are used in neural networks

to predict or classify data based on input. Throughout the

Learner 1

Learner 2

Learner 𝑛

Combination

𝑥

⋮ 𝑦

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

32

learning process, weight is used to assess each input feature's

significance. It modifies the impact of each input on the

neuron's output and regulates the influence of features. The

more significant features are given more weight in order to

increase their influence. In order to reduce the error between

the expected and actual outputs, it is also utilized for learning

and adaptation through the backpropagation process. The

weighted sum of each neuron's inputs is calculated by the

summing function.

To provide the model greater flexibility in fitting the data

for precise prediction, a bias term is applied in the summing

function prior to applying the activation function. The neural

network is made non-linear by applying the activation

function.

No matter how many layers the model has, it would act

like a linear regression model without the activation function.

It converts the summing function's output into a value that can

either be used as the final output or passed to the following

layer. The Figure below lists the various kinds of activation

functions. These are some of the most widely used activation

functions in deep learning and machine learning, each with

unique properties and uses [60-62].

 Rectified Linear Unit (ReLU): The function outputs 0 for

negative inputs and the input itself for positive values.

 Softmax: Often used in classification, showing

probabilities over a set of classes.

 Sigmoid: A squashing function that maps any input to a

range between 0 and 1.

 Linear: A direct linear mapping.

 Tanh: Maps inputs to a range between -1 and 1, showing

an ''S''-shaped curve like the sigmoid but centered at zero.

 Softplus: A smooth approximation of ReLU that outputs

positive values for all inputs and is differentiable across the

entire range.

Fig. 31 Taxonomy of neural network

Supervised Learning
Neural Networks

• Feedforward Neural Networks (FNN)

• Single-Layer Perceptron (SLP)

• Multi-Layer Perceptron (MLP)

• Convolutional Neural Networks (CNN)

• Standard CNN

• AlexNet

• VGGNet

• ResNet

• Inception Networks

• Recurrent Neural Networks (RNN)

• Vanilla RNN

• Long Short-Term Memory (LSTM)

• Gated Recurrent Unit (GRU)

• Radial Basis Function Networks (RBFN)

• Deep Neural Networks (DNN)

• Transformer Networks (for NLP)

• BERT

• GPT

• T5

Unsupervised
Learning Neural

Networks

• Autoencoders

• Variational Autoencoders (VAE)

• Denoising Autoencoders

• Sparse Autoencoders

• Generative Adversarial Networks (GAN)

• Vanilla GAN

• Conditional GAN (CGAN)

• Wasserstein GAN (WGAN)

• Self-Organizing Maps (SOM)

• Kohonen Network

• Restricted Boltzmann Machines (RBM)

• Deep Boltzmann Machines (DBM)

Semi-Supervised
Learning Neural

Networks

• Semi-Supervised GAN

• Deep Belief Networks (DBN)

• Labeled and Unlabeled Data Neural Networks

• Self-Training Neural Networks

• Co-training Networks

Reinforcement
Learning Neural

Networks
• Deep Q-Networks (DQN)

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

33

Fig. 32 Neural network architecture

Fig. 33 Various activation functions in NN

2.10.1. Supervised Neural Network

The supervised learning policy is the foundation of the

Supervised Neural Network (SNN). It gains knowledge from

labeled data, which ensures that every input data set produces

accurate results. Using a training set, the network is trained to

translate input data into the appropriate output. If there is a

discrepancy between the expected and actual outputs, the

neural network's parameters are adjusted and fed into the

network once more. Feed Forward Networks (FNNs), which

transfer data from input to output in a single direction, are used

by supervised neural networks. It is good for classification and

regression. Image classification is a typical example of SNN.

FNN, CNN, RNN, LSTM networks, and DBNs are the basic

types of SNN, and all use feed-forward network strategies.

Fig. 34 Supervised neural network

2.10.2. Unsupervised Neural Network

Unsupervised neural networks learn from input data

based on its structure and patterns without the need for label

data. Neural networks create groups based on correlations

with similar data. It is primarily employed for dimensionality

reduction, association, and clustering. Common UNN types

include autoencoders, SOMs, and GANs.

Fig. 35 Unsupervised neural network

2.10.3. Reinforcement Neural Network

This is a goal-oriented model, aiming to maximize

cumulative rewards over time. In this learning, the correct

output is not provided; instead, it learns from the environment

through the process of trial and error by receiving feedback in

the form of rewards and penalties. Reinforcement learning can

be used as a standalone algorithm in the traditional form;

however, when neural network function is used in

reinforcement learning, it is called a reinforcement neural

network.

It is also called deep reinforcement learning, using a

neural network system. The detailed description and Figure 36

are given in the section on reinforcement learning. Q-learning,

Deep Q-Networks, Policy Gradient Methods, and Actor-Critic

Methods are examples of reinforcement neural network

models [1, 10].

Fig. 36 Reinforcement neural network

2.10.4. Convolutional Neural Network

CNN, also known as Convolutional Networks or simply

Convnet, are widely used. Convolutional networks, which are

multilayer perceptions, are appropriate for pattern

classification. The most widely used deep learning

architecture at the moment is this one. Deep learning has

garnered attention recently due to its enormous popularity and

efficacy.

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

34

Fig. 37 CNN architecture

Fig. 38 Image classification using CNN [20]

Since AlexNet's launch in 2012, interest in convolutional

networks has increased dramatically. The researchers

upgraded from an 8-layer AlexNet to a 152-layer ResNet

move-on in just three years [63, 64]. Convolutional networks

are currently used to model image-related issues. It has been

effectively used in image processing, face recognition, natural

language processing, recommender systems, and other fields.

Its primary benefit is its ability to recognize significant

features automatically without human oversight. For instance,

it automatically learns distinct features for each class when

presented with numerous photos of dogs and cats.

The development of these networks is motivated by

neurobiological principles, which date back to Hubel and

Wiesel's groundbreaking research on the orientation-selective

neurons in the visual cortex of cats. Yann LeCun and others

were the first to invent it in the 1980s. One of the earliest real-

world uses of CNNs for handwritten digit recognition was

LeCun's work, specifically the LeNet-5 architecture. LeCun

and his group used an older concept based on ideas from

David H. Hubel and Torsten Wiesel, who were awarded the

1981 Nobel Prize in Physiology or Medicine for their

groundbreaking 1968 paper. They looked into the visual

cortex of animals and discovered links between smaller areas

of the visual field and the activity of a tiny but distinct brain

area. With greater degrees of translation, scaling, skewing, and

other distortions, it is specially made to detect two-

dimensional shapes invariantly. The working policy of the

four main components of the CNN above are as follows:

 Input Layer: Like other ANNs, the input layer of CNN

stores the pixel values of the input image, which are then

sent into the network for processing.

 Convolutional Layer: This layer computes the output of

neurons attached to particular, localized areas of the input

image in order to identify features. In order to create feature

maps that emphasize patterns like edges or textures, each

neuron computes the scalar product between its set of

weights, a kernel made by random numbers with discrete

values and the corresponding region of the input. Then, to

add non-linearity, the Rectified Linear Unit (ReLU)

activation function-which is frequently employed in

CNNs-is applied element-by-element, converting negative

values to zero while maintaining positive values. The main

function of the ReLU layer is to provide nonlinear

transformation to CNN for capturing complex patterns of

images [20]. Different types of convolution and its

applicability is explained in Table 1.

 Pooling Layer: By down-sampling, the pooling layer

shrinks the feature maps' spatial dimensions. By reducing

the number of calculations and parameters, this procedure

helps to avoid overfitting and increases computational

efficiency. Usually, pooling keeps the most important

aspects while eliminating the less crucial ones. Three types

of pooling methods are commonly used in this layer: min,

max, and global average pooling methods.

 Fully-Connected Layer: The fully-connected layers receive

the output from the convolutional and pooling layers and

produce class scores based on extracted features, much like

the structure found in conventional ANNs. The input image

is then classified using these scores. Between these layers,

ReLU activation functions are frequently used to advance.

There are various types of convolution. Each convolution

type plays a unique role in different applications,

leveraging specialized patterns and data structures to

optimize performance for specific tasks.

Input Layer

Raw Image Data

Conv Layer 1

Extract Edges &

Basic Patterns

Pooling Layer 1

Reduce Size,

Retain Features

Cony Layer 2

Detect Shapes & Complex

Patterns

Reduce Size,

Focus on Key

Features

Pooling Layer 2
Fully Connected

Layer

Combine Features

for Classification

Class Probabilities

or Prediction

Output Layer

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

35

Table 3. Different types of convolution

Type Dimension Purpose Applications

1D Convolution 1D Sequential patterns Time-series, audio, NLP

2D Convolution 2D Spatial patterns in images Image processing, CNNs

3D Convolution 3D Spatiotemporal data Video, medical imaging

Transpose Convolution 2D/3D Upsampling, image reconstruction GANs, image segmentation

Dilated Convolution 2D/3D Wider receptive fields Semantic segmentation, contextual learning

Separable Convolution 2D/3D Efficient computation Lightweight models (e.g., MobileNets)

Grouped Convolution 2D/3D Parallel feature learning ResNeXt, efficient deep learning

Circular Convolution 1D/2D Periodic data patterns Signal processing with periodicity

Convolutional Neural Network (CNN) Algorithm

Algorithm CNN (X, Y, num_epochs, learning_rate):

Input:

 - X: training data points (image data)

 - Y: corresponding labels (classification or regression)

 - num_epochs: number of training iterations

 - learning_rate: learning rate for optimization

Output:

 - Trained model (weights and biases)

Step 1 : Initialize the CNN architecture

 - Define convolutional layers, activation functions (e.g.,

ReLU), pooling layers, and fully connected layers

Step 2 : Forward propagation

 - Pass input X through the layers:

 - Convolution -> Activation -> Pooling -> Fully

Connected -> Output layer

 - Compute the predicted output y_pred for each sample

in X

Step 3 : Compute the loss

 - Use a loss function (e.g., cross-entropy for

classification or MSE for regression) to measure the

difference between y_pred and Y

Step 4 : Backward propagation

 - Use backpropagation to compute gradients of the loss

with respect to the model parameters (weights and

biases)

Step 5 : Update the model parameters

 - Use an optimization algorithm (e.g., Stochastic

Gradient Descent) to update weights and biases

Step 6 : Repeat steps 2-5 for num_epochs iterations

Step 7 : Make prediction for a new data point x_new

 - Pass x_new through the trained CNN to get the

predicted class or value y_new

 Return y_new as the prediction

End Algorithm

Table 4. Different ML algorithms and its application with pros and cons

Algorithm
Year of

Invention
Inventor Application Pros Cons Ref.

Linear

Regression
1805

Adrien-Marie

Legendre

Predicting sales,

risk assessment

Simple, interpretable,

fast to train.

Sensitive to outliers,

assumes linearity.
[19, 20]

PCA 1933 Karl Pearson

Image

compression,

exploratory

data analysis

Reduces

dimensionality,

helps with visualization,

and eliminates

multicollinearity.

Loss of information

assumes linearity.
[28, 29]

ANN

1943

(concept),

1986

Warren

McCulloch,

Walter Pitts,

Geoffrey

Hinton

Image

recognition,

speech

recognition,

game AI

Can model complex

patterns,

adaptable for a

variety of tasks.

It requires large

datasets, is

computationally

expensive, and is difficult

to interpret.

[59-62]

KNN 1951
Evelyn Fix,

Joseph Hodges

Recommendation

systems,

classification

 tasks

Simple to understand,

no training required.

Computationally

expensive,

sensitive to irrelevant

features and noise.

[14,15]

k-Means

Clustering
1957 Stuart Lloyd

Market

segmentation,

image

compression

Simple, fast, and works

well for

simple clusters.

Struggles with complex

datasets, sensitive to

initialization

and outliers.

[26, 27]

Logistic

Regression
1958 David Cox

Binary

classification

tasks, medical

Works well for binary

classification,

interpretable.

Assumes linear decision

boundary struggles with

large or non-linear

[21]

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

36

diagnosis datasets.

Naive

Bayes

2nd half of

the 18th

century

Thomas Bayes

(concept),

others later

developed.

Spam detection,

text

classification

Simple, fast,

works well with

high-dimensional data,

interpretable.

Assumes feature

independence may struggle

with complex datasets.

[1]

Decision

Trees
1963 Ross Quinlan

Credit scoring,

customer

segmentation

Easy to interpret,

requires little data

preprocessing, and

handles both numerical

and categorical data.

Prone to overfitting,

sensitive to small variations

in data.

[1, 9]

Recurrent

Neural

Networks

(RNN)

1980 John Hopfield

Natural language

processing, time

series analysis

Effective for sequential

data, captures time

dependencies.

Prone to

vanishing/exploding

gradient problems,

struggles with long-term

dependencies.

[2, 65]

Autoencoders 1980s

Geoff Hinton,

Yann LeCun,

others

Dimensionality

reduction,

denoising data

Effective for

unsupervised feature

learning dimensionality

reduction.

Prone to overfitting,

difficult to interpret,

requires careful tuning.

[30]

Reinforcement

Learning (Q-

Learning)

1989 Chris Watkins
Game playing,

robotic control

Good for sequential

decision-making

problems and learn

optimal policies

through trial and error.

Slow to converge,

can be unstable,

and requires a large

number of

interactions with the

environment.

[1]

Support

Vector

Machine

(SVM)

1992
Vladimir

Vapnik

Text

classification,

image

recognition

Effective in high-

dimensional spaces,

robust to overfitting

with proper tuning.

It can be slow, difficult to

tune, and doesn’t

work well with noisy data.

[2, 18]

Random

Forest
1995 Tin Kam Ho

Fraud detection,

feature selection

Reduces overfitting

compared to decision

trees and handles large

datasets well.

Slower in making

predictions,

difficult to interpret

individual trees.

[25]

AdaBoost 1996
Yoav Freund,

Robert Schapire

Face detection,

web search

ranking

Good accuracy,

especially for simple

classifiers, reduces bias.

Sensitive to noisy data and

outliers, it requires good

weak

classifiers.

[57]

DBSCAN 1996

Martin Ester,

Hans-Peter

Kriegel

Geospatial data

analysis,

anomaly

detection

It can find clusters of

arbitrary shapes that are

robust to outliers.

Struggles with varying

densities of clusters,

sensitive to the

choice of parameters.

[1]

Gradient

Boosting

Machines

(GBM)

1997
Jerome H.

Friedman

Customer churn

prediction, risk

modeling

High accuracy,

performs well with

structured/tabular data.

Prone to overfitting,

sensitive to noisy data,

slow to train.

[57]

Long

Short-Term

Memory

(LSTM)

1997

Sepp Hochreiter,

J rgen

Schmidhuber

Language

modeling, speech

recognition

It solves the vanishing

gradient problem and is

effective for long-term

sequential data.

Computationally

expensive, slower to train,

and difficult to interpret.

[2]

CNN 1998 Yann LeCun

Image and video

recognition,

medical image

analysis

Excellent for image

processing tasks,

automatically extracts

features.

It requires large

amounts of data and

computation and

is prone to

overfitting on small

datasets.

[63]

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

37

LOF 2000

Markus M.

Breunig, Hans-

Peter Kriegel

Fraud detection,

network security

It detects anomalies by

considering local

density and is

adaptive to clusters.

Sensitive to the

choice of parameters,

struggles with

very large datasets.

[46]

t-SNE 2008

Geoffrey Hinton,

Laurens van der

Maaten

Visualizing

high-

dimensional data

Great for visualizing

high-dimensional

data.

Computationally

expensive, it

doesn’t preserve global

structure well.

[47]

iForest 2008

Fei Tony Liu,

Kai Ming Ting,

Zhi-Hua Zhou

Anomaly

detection, fraud

detection.

Effective for anomaly

detection, handles

high-dimensional

datasets, and

scales well.

It can struggle with

low anomaly

contamination and may

require

parameter tuning.

[43]

Generative

Adversarial

Networks

(GANs)

2014 Ian Goodfellow

Image

generation, data

augmentation.

Effective for data

generation tasks

(images, text), can

model complex

distributions.

Difficult to train, prone to

mode collapse, requires

large datasets.

[53]

XGBoost 2014
Tianqi Chen,

Carlos Guestrin

Risk prediction

and

recommendation

systems.

Highly accurate,

efficient, works

well for large datasets,

and handles missing

data.

Computationally

expensive, can overfit

without proper tuning, and

less interpretable than

simpler models.

[56]

Transformer

Networks
2017

Ashish Vaswani

et al.

Natural language

processing,

machine

translation.

State-of-the-art NLP

tasks capture

 long-range

dependencies well.

Very computationally

expensive, requires

large datasets, and is prone

to overfitting on small

datasets.

[98]

LightGBM 2017
Microsoft

Research

Large-scale

machine learning

tasks and

recommendation

systems.

Faster training than

XGBoost handles large

datasets with low

memory usage.

It can be sensitive to

overfitting and is not as

interpretable,

especially on small

datasets.

[99]

CatBoost 2017 Yandex

Classification

tasks, particularly

with categorical

features.

Works well with

categorical features and

requires less tuning than

other gradient-boosting

methods.

Computationally intensive,

less interpretable.
[99]

3. Data Preprocessing and Feature Selection
Data preprocessing is essential for preparing data to build

an effective model. Handling missing values, label encoding,

normalization, and standardization techniques are used for

data preprocessing. However, the usability of techniques

depends on the nature of the data that will be processed.

Another crucial phase in data preprocessing, feature selection,

concentrates on the most informative variables to improve

model performance. The Chi-Square Test, which assesses

feature independence from the target variable, is best suited

for categorical features with a categorical target, whereas the

correlation coefficient for numerical features aids in

determining linear relationships between features and the

target. Since it identifies features with significant variance

across target classes, Analysis of Variance (ANOVA) is

helpful for numerical features with a categorical target.

Mutual Information captures non-linear dependencies with the

target variable and performs well for both continuous and

categorical features. The iterative processes of forward

selection and backward elimination add features according to

how well they contribute to model accuracy. In contrast,

backward elimination iteratively eliminates the least

important features to enhance model performance. Based on

model training, Recursive Feature Elimination (RFE) selects

and ranks features by recursively eliminating the least

significant ones. Lasso Regression is useful for high-

dimensional data because it reduces the coefficients of less

significant features to zero. Tree-based techniques that rank

features according to their significance in lowering impurity

in decision nodes include Random Forest and Gradient

Boosting. Linear Discriminant Analysis (LDA) is best suited

for supervised dimensionality reduction when class

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

38

separability is crucial, whereas Principal Component Analysis

(PCA) converts features into uncorrelated components, which

is especially helpful with highly correlated features. Genetic

algorithms allow the evolutionary search for the best feature

combinations, making them ideal for large or complex

datasets. By streamlining feature sets, these techniques

enhance computational efficiency and model performance

[11-13].

Fig. 39 Data preprocessing techniques

Fig. 40 Feature selection techniques

4. The Global Trend in Machine Learning
Machine learning is a global trend. We can gauge the

popularity of each learning method by analyzing the number

of published research papers in major databases like IEEE,

Springer, and Scopus over the years. Tracking how often these

terms have been searched globally on Google over time.

Analyzing GitHub to observe the growth of repositories or

projects related to these topics. Check surveys and reports

(such as those by Kaggle or Stack Overflow) to see which

techniques are most used by professionals in AI/ML.

Looking into references in major AI frameworks like

TensorFlow, PyTorch, or Scikit-learn documentation. The use

of reinforcement learning has increased recently along with

supervised learning is in higher rank and popularity of 90%

recently; unsupervised learning has recently stable and

popularity of 80%; semi-supervised learning is lower than

unsupervised learning, and its index is 70% recently [65, 66].

The summary of the Machine learning popularity index is

given in Figure 41.

Fig. 41 Machine learning popularity index

Handling
Missing
Values

Removing

Imputation

Predictive
Imputation

Encoding
Categorical
Variables

Label
Encoding

One-Hot
Encoding

Binary
Encoding

Frequency/Count
Encoding

Feature
Scaling

Normalization

Standardization

Robust
Scaling

Feature
Transformation

Log
Transformation

Square Root and
Cube Root

Transformations

Box-Cox
Transformation

Power
Transformation

Outlier
Detection and

Treatment

Removing
Outliers

Winsorizing

Transforming
Outliers

Dimensionality
Reduction

PCA

t-SNE

LDA

Data Binning
(Discretization)

Equal-Width
Binning

Equal-
Frequency
Binning

K-Means
Binning

Data
Augmentation

Augmentation
Techniques for

Images

Text Data
Preprocessing

Tokenization

Stopword
Removal

Stemming and
Lemmatization

Vectorization

Handling
Imbalanced

Data

Resampling

Synthetic
Data

Generation

Filter Methods

Correlation
Coefficient

Chi-Square Test

ANOVA

Mutual Information

Wrapper Methods

Forward
Selection

Backward
Elimination

Recursive
Feature

Elimination

Embedded
Methods

Lasso
Regression

Elastic Net

Tree-Based Methods
(e.g., Random Forest,

Gradient Boosting)

Dimensionality
Reduction

Techniques

PCA

LDA

Hybrid Methods

Combine filter
and wrapper
approaches

Heuristic and
Metaheuristic

Methods

Genetic
Algorithms

Simulated
Annealing

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

39

5. Machine Learning Applications
ML is revolutionizing many industries by empowering

sophisticated systems to examine data, spot trends, and

formulate well-informed forecasts. In the healthcare sector,

ML assists in diagnosing illnesses by identifying

abnormalities in medical images and forecasting patient

outcomes. Financial institutions employ ML to identify real-

time fraudulent activities, evaluate credit risks, and deliver

customized banking experiences. In retail and e-commerce,

ML enhances personalized recommendations and streamlines

supply chain management. Additionally, ML models interpret

complex datasets in environmental science to predict weather

patterns and monitor climate changes. By automating

decisions and offering valuable insights, ML accelerates

innovation and operational efficiency, driving the evolution

toward a data-centric world. Figure 42 shows evidence that the

medicine and healthcare sector are the most promising areas

where ML technology has the largest share at 35%, the

engineering sector showing considerable interest, making upto

20%, the Financial sector and other fields occupy 15%,

showing a balanced distribution, the agriculture sector is

showing notable investment at 10% and 5% specialized

nanotechnology [65-69]. Based on this statistic, some

common applications are explained in the following section.

Fig. 42 Percentage of machine learning application area

Fig. 43 Applications of machine learning

Medicine and

Healthcare,

35%

Engineering, 20%

Financial

Services,

15%

Other

Fields,

15%

Agriculture, 10%
Nanotechnology, 5%

Machine Learning

Applications

Healthcare
Cybersecurity &

IoT

Engineering

Financial Services

Agriculture

Nanotechnology

Manufacturing

NLU

Autonomous
Vehicles

Smart CitiesRobotics

Space Exploration

Education &
E-Learning

Retail & E-
Commerce

Climate Science &
Environmental

Monitoring

Entertainment &
Media

Supply Chain &
Logistics

Energy Sector &
Smart Grids

Sports Analytics

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

40

5.1. Healthcare

Machine learning applications have surged in the last few

years, especially in predictive models for diseases such as

heart disease, diabetes, and, more recently, COVID-19 [70,

71]. Deep learning and federated learning have also been

prominent, particularly for image classification and medical

diagnostics, personalized treatment, and drug discovery.

Machine learning can predict and diagnose various diseases,

including neurodegenerative disorders like Alzheimer's

disease and Parkinson's disease, as well as serious mental

health disorders such as psychosis and depression.

ML is used in genetic research to identify mutations

linked to diseases, predict genetic risks, and understand

complex genetic interactions. NLP is used for medical records,

enabling information extraction from unstructured data. ML

improved robotic surgery and assistance in real-time. It is

estimated that every year robotic surgery is growing 18%

globally. Remote patient monitoring and telehealth improve

care access and reduce hospital visits. ML helps to reduce

operation costs and waiting time by optimizing healthcare

operations [72].

5.2. Cybersecurity & IoT

From 2020 onwards, there has been significant interest in

applying machine learning to network anomaly detection,

fraud detection, and IoT data processing, especially with the

growing number of connected devices. ML is utilized in threat

detection and intrusion prevention by analyzing network

traffic [73]. ML can classify and detect malware by analyzing

code structure and attack patterns. Phishing detection using

machine learning is a promising application that is available

and widely used.

Ml algorithms are used to manage authentication

protocols to authenticate IoT devices. ML techniques,

including anomaly detection, identify unusual traffic patterns

or abnormal device behaviors within IoT networks, which are

often targeted due to their limited security.ML models predict

when IoT devices will likely fail, enabling proactive

maintenance and reducing downtime, which is critical for

uninterrupted network security.ML models can detect

fraudulent activities within IoT ecosystems by analyzing user

behavior, transaction patterns, and device activity. ML

algorithms help identify and shut down botnets by detecting

command-and-control traffic patterns.

5.3. Engineering

Especially in bioengineering, AI assists in designing

medical devices and optimizing infrastructure projects.

Moreover, ML is applied in predictive maintenance, quality

control and inspection, building and structural health

monitoring, energy optimization, smart manufacturing,

robotics and automation systems, aerospace engineering

design and optimization [74], NLP for engineering

documents, civil engineering [75] and urban planning using

ML by creating data-driven approaches that lead to safer, more

efficient, and environmentally friendly urban environments

[76]. ML is used in environmental engineering and climate

prediction. In environmental engineering, ML helps monitor

and manage resources like water, air, and soil by analyzing

data from sensors, satellites, and other sources [78] to identify

patterns, predict contamination events, and improve pollution

control. Climate prediction assesses the impacts of climate

change on ecosystems.

ML techniques are applied in mechanical engineering to

enhance manufacturing efficiency. ML in chemical

engineering [79] by enhancing process optimization,

accelerating materials discovery, and improving safety. In

materials science [77], ML expedites the discovery of new

chemicals and materials by predicting the properties of

compounds before they are synthesized. This approach

significantly shortens the development cycle for new materials

in fields like pharmaceuticals, polymers, and battery

technology.

5.4. Financial Services

Machine learning helps in fraud detection, algorithmic

trading, and personalized financial services. By using machine

learning techniques, we can identify financial fraud. Making

quick decisions for loan approval by calculating credit score.

It offers real-time solutions to make complex decisions. ML

can save time and increase productivity. The customer gets

24/7 services through chatbot and virtual assistant, and it

reduces operational costs by the one-time implementation.

Process automation reduces time and cost and improves

productivity [80]. Network security is a vital issue in financial

institutions, and ML can play a significant role in securing the

system. Money laundering techniques can be prevented by

ML-enabled monitoring [81].

5.5. Agriculture

AI optimizes crop monitoring, yield prediction, disease

detection, weed detection, livestock production, species

recognition, soil management, water management, and

sustainable farming practices. Weed is called one of the most

important enemies of crop production. ML can be used for

weed detection and management. ML can detect weeds with

the help of sensors and then develop tools and robots to

destroy them [82]. Crop quality identification for accurate

pricing. ML can be used to identify the features related to crop

quality. Different ML techniques are applied to observe the

features and identify the quality.

ML is used for species recognition. It can identify and

classify the plant species automatically. It can reduce the

human efforts and time. Farming complexes can use ML

techniques to manage livestock. Sensors will be attached to

the animals and observe their behavior and food habits. ML is

also used to optimize livestock production. Agricultural main

resources such as water and soil play a significant role and can

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

41

be monitored and managed by ML techniques. ML

applications are adjusting water level, monitoring soil

conditions, and weather prediction.

5.6. Nanotechnology

ML helps advance materials research and the

development of nanoscale devices. ML can support

automation in nanoscale manufacturing processes, improving

efficiency, reducing costs, and ensuring precision. As ML

algorithms become more adept at predicting biological

responses, they could be used to design personalized Nano

medicines tailored to an individual's genetic profile,

enhancing treatment efficacy.

Quantum computing, combined with ML, is expected to

revolutionize nanotechnology by enabling more accurate

simulations and predictions for molecular design and

materials properties at the quantum level. This technology is

rapidly growing in some specialized sectors like clean energy,

pharmaceuticals, and semiconductors [83, 84].

5.7. Manufacturing
In order to increase productivity and cut expenses,

industry 4.0 uses AI for predictive maintenance, quality

control, defect detection, process and supply chain

optimization, product design and development, energy

management, work safety and monitoring, and robotic

automation. An emerging field is self-optimizing, in which

machines learn from production data and modify parameters

independently. ML is used in conjunction with digital twins,

or virtual copies of physical assets, to simulate and optimize

processes in real-time [85].

An integrated supply chain with machine learning is more

resilient and responsive to interruptions. Real-time monitoring

and predictive analytics are two applications of machine

learning that are expanding quickly. The strong use of ML

techniques is seen in the transition to IIoT, cloud computing,

additive manufacturing, and augmented and virtual reality

[86].

5.8. Natural Language Understanding
This application is widely used. Translation of language,

voice-to-text, text-to-voice conversion, speech recognition,

voice recognition, and sentiment analysis are all examples of

NLP applications [13].

Computers can understand human voices and translate

them into text in real time and vice versa. Sentiment analysis

is another popular ML application. Users give product reviews

on blogs, forums, and social media such as Facebook, Zomato,

Cars.com, etc. Based on these reviews, businesses and brands

can recommend and improve their product [91]. Moreover, it

also can analyze emotions such as happy, very happy, sad,

angry, interest, not interest, etc.

5.9. Some Other Applications

Machine learning has become crucial for personalized

content, predictive analytics, and customer segmentation.

Over half of organizations are now using ML for these

purposes. ML helps in optimizing power grids [89], predicting

energy demand, and enhancing the efficiency of renewable

energy systems such as wind and solar power. ML is critical

in autonomous driving systems, traffic management, route

optimization, and vehicle predictive maintenance. Machine

learning with IoT is a promising application for monitoring

and management of smart cities and transportation. AI-driven

ML systems help in personalized marketing, customer service

chatbots, inventory management, and demand forecasting.

ML applications in education include personalized

learning systems [90], grading automation, and intelligent

tutoring systems. ML in recommendation systems is a very

popular application nowadays. It is mostly used in interactive

web environments, such as content recommendation and

personalized shopping, which are widely used in e-commerce

business [91]. Businesses can analyze customers’ shopping

behavior, and they can suggest product recommendations.

Recommend movies based on users watching behavior are

widely used [92].

Video and audio editing, gaming, and generating creative

content such as music [93] or visual art [94] are also gaining

popularity and being widely used. ML is used in surveillance,

military robotics, and strategic decision-making. Moreover,

ML assists in recruitment processes, employee performance

tracking, and human capital management.

6. Challenges and Research Directions
Machine learning systems are deployed in many areas and

offer opportunities in our everyday life. Despite these new

opportunities, there are still many challenges in machine

learning. In model generalization to unseen data, there is an

underfitting and overfitting issue, specifically in deep learning

models in noisy data, resulting in poor performance [95].

Imbalanced datasets with limited labeled data hinder the

effectiveness of supervised learning. Bias is another challenge

due to the underrepresented of minority classes. The deep

learning model requires more interpretable, human-

understandable rationales in decision-making. The vast

datasets and complex machine learning models require more

efficient algorithms, hardware acceleration techniques and

quantum-inspired approaches to increase the scalability and

computational efficiency [96].

Lack of adaptation to a dynamic environment requires

continual learning algorithms to update and evolve over time

without requiring retraining. Data collection from diverse

sources such as medical, agriculture, cybersecurity, IoT, and

industrial sources is not candid, although collecting such

Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025

42

useful data is crucial for further analysis and decision-making.

There should be concrete data collection methods to

investigate real-world data. We produce huge amounts of data,

which is called big data, but this data comes in many forms,

such as structured, semi-structured, and unstructured. Data

can be poor quality.

It may contain missing values, unnecessary values, etc. It

is a big challenge for machine learning to process and make

unique formats. There are no unified methods to generalize

this data. Therefore, we need concrete data preprocessing

methods to use machine learning algorithms effectively in a

particular domain. Selecting the proper algorithm for diverse

datasets is another challenge. It can be a single-model or

multi-model disagreement.

Multi-model disagreement in machine learning is a

phenomenon where different models trained on the same

dataset provide diverse predictions for a given input. It is not

because of the algorithm but because of the features of the

datasets. Therefore, the results produced from this model can

be inaccurate, unexpected and ambiguous for the application.

Nevertheless, the combined model could be prominent for

latent work in future [97].

 One must handle both the datasets and algorithms to get

the best result by implementing machine learning in the

application. It needs to consider the algorithm based on the

nature and characteristics of the datasets before implementing

the algorithm. Insufficient and poor-quality data are ultimately

useless or have little value for the application. Datasets should

have sufficient information to get insights for making

decisions. Therefore, handling the datasets properly and fitting

the appropriate algorithm can make robust machine learning-

based intelligent applications. Nevertheless, the inter-

disciplinary cooperation and continuous investigation and

improvement of algorithms will be well-positioned to sustain

its revolutionary influence in the field of artificial and machine

learning.

7. Conclusion
In our study, we have conducted an extensive overview

of machine learning and neural networks, a vital part of deep

learning. We have explained the major algorithms that are

most applicable in various fields. Understanding the

fundamental concepts and their applicability will help the

education and research community, practitioners, and research

scholars gain insights into each algorithm, which has been

discussed here. The popularity of the ML index shows that

supervised learning is the most popular based on use and

applicability.

Moreover, we have discussed various applications and

their suitable algorithms. Different techniques, such as dataset

preprocessing and feature selection, have also been discussed.

Various activation functions in neural networks have also been

discussed to clarify their applicability in various experiments.

Nevertheless, we identified challenges and future directions to

make burly and highly accurate with biased-free intelligent

applications.

References
[1] Tom M. Mitchell, Machine Learning, McGraw-Hill, 2017. [Publisher Link]

[2] Aurélien Géron, Hands-on Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent

Systems, O'Reilly Media, Inc., 2019. [Google Scholar] [Publisher Link]

[3] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar, Introduction to Data Mining, Pearson Education Limited, 2019. [Google Scholar]

[Publisher Link]

[4] Elaine Rich, Kevin Knight, and Shivashankar B. Nair, Artificial Intelligence, 3rd ed., TATA McGraw-Hill, 2009. [Publisher Link]

[5] Harry Henderson, Artificial Intelligence, Milestones in Discovery and Invention, Infobase Publishing, 2007. [Google Scholar] [Publisher

Link]

[6] Mahdi Rezaei, and Reinhard Klette, Computer Vision for Driver Assistance, Springer International Publishing, 2017. [CrossRef] [Google

Scholar] [Publisher Link]

[7] Taiwo Oladipupo Ayodele, Types of Machine Learning Algorithms, New Advances in Machine Learning, pp. 19-48, 2010. [CrossRef]

[Google Scholar] [Publisher Link]

[8] Zhi-Hua Zhou, Ensemble Methods: Foundations and Algorithms, CRC Press, 2012. [Google Scholar] [Publisher Link]

[9] Rahul Saxena, How Decision Tree Algorithm Works, Dataaspirant, 2017. [Online]. Available: https://dataaspirant.com/how-decision-

tree-algorithm-works/

[10] Aurélien Géron, Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow, O'Reilly Media, Inc., 2022. [Google Scholar]

[Publisher Link]

[11] Antonio Gulli, and Sujit Pal, Deep Learning with Keras: Implementing Deep Learning Models and Neural Networks with the Power of

Python, Packt Publishing Ltd, 2017. [Google Scholar] [Publisher Link]

[12] Tom M. Mitchell, The Discipline of Machine Learning, Carnegie Mellon University, School of Computer Science, Machine Learning

Department, 2006. [Google Scholar] [Publisher Link]

[13] Iqbal H. Sarker, “Machine Learning: Algorithms, Real-World Applications and Research Directions,” SN Computer Science, vol. 2, no.

3, pp. 1-21, 2021. [CrossRef] [Google Scholar] [Publisher Link]

https://www.abebooks.com/Machine-Learning-Tom-M-Mitchell-Graw/32110298318/bd
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hands-on+Machine+Learning+with+Scikit-Learn+and+TensorFlow%3A+Concepts%2C+Tools%2C+and+Techniques+to+Build+Intelligent+Systems&btnG=
https://link.springer.com/chapter/10.1007/698_2022_912
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=P.+N.+Tan%2C+M.+Steinbach%2C+and+V.+Kumar%2C+Introduction+to+Data+Mining&btnG=
https://www.pearson.com/en-us/subject-catalog/p/introduction-to-data-mining/P200000003204/9780137506286?srsltid=AfmBOor9c79hXI0L9oCPJNuW8WMbHA8-xr3kN8B7jDPqqOEkMcRftZFz
http://103.83.136.203:802/KDK-%20DATA%20CENTER/2.3)%20Knowledge%20Resources%20for%20Library%20Enrichment/E%20books/CT-IT%20Department/VII%20and%20VIII%20Sem/artificial-intelligence-rich-knight.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=H.+Henderson+Artificial+Intelligence&btnG=
https://www.infobasepublishing.com/Bookdetail.aspx?ISBN=1604130598&Ebooks=1
https://www.infobasepublishing.com/Bookdetail.aspx?ISBN=1604130598&Ebooks=1
https://doi.org/10.1007/978-3-319-50551-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Computer+Vision+for+Driver+Assistance&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Computer+Vision+for+Driver+Assistance&btnG=
https://link.springer.com/book/10.1007/978-3-319-50551-0
https://doi.org/10.5772/9385
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Types+of+machine+learning+algorithms&btnG=
https://www.intechopen.com/chapters/10694
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ensemble+Methods%3A+Foundations+and+Algorithms&btnG=
https://www.routledge.com/Ensemble-Methods-Foundations-and-Algorithms/Zhou/p/book/9781439830031?srsltid=AfmBOopZybeUVAhuCSzU1UISd21oAkQn3y3QPKk7UfhDP9uk9txAw2yF
https://dataaspirant.com/how-decision-tree-algorithm-works/
https://dataaspirant.com/how-decision-tree-algorithm-works/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Aur%C3%A9lien+G%C3%A9ron+Hands-On+Machine+Learning+with+Scikit-Learn%2C+Keras%2C+and+TensorFlow&btnG=
https://www.oreilly.com/library/view/hands-on-machine-learning/9781098125967/?_gl=1*kocvxo*_ga*MTA2NjY3ODEwNC4xNzQzNjU1Njcz*_ga_092EL089CH*MTc0Mzc2MjUzMi4zLjEuMTc0Mzc2MjYwMi42MC4wLjA.
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+Learning+with+Keras%3A+Implementing+deep+learning+models+and+neural+networks+with+the+power+of+Python&btnG=
https://www.packtpub.com/en-fr/product/deep-learning-with-keras-9781787128422
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Discipline+of+Machine+Learning&btnG=
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/www.cs.cmu.edu/~tom/pubs/MachineLearning.pdf
https://doi.org/10.1007/s42979-021-00592-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+learning%3A+Algorithms%2C+Real-World+Applications+and+Research+Directions&btnG=%5d
https://link.springer.com/article/10.1007/s42979-021-00592-x

Alam, M. N., et al. / IJEEE, 10(1), 1-4, 2023

43

[14] Diah Puspitasari et al., “Heart Disease: Application of the K-Nearest Neighbor (KNN) Method,” International Information and

Engineering Technology Association, vol. 29, no. 4, pp. 1275-1281, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[15] Gongde Guo et al., “KNN Model-Based Approach in Classification,” OTM Confederated International Conferences, ‘On the Move to

Meaningful Internet Systems’, Catania, Italy, vol. 1, pp. 986-996, 2003. [CrossRef] [Google Scholar] [Publisher Link]

[16] V. Kecman, Support Vector Machines-An Introduction, Support Vector Machines: Theory and Applications, Springer, Berlin, Heidelberg,

pp. 1-47, 2005. [CrossRef] [Google Scholar] [Publisher Link]

[17] Dustin Boswell, “Introduction to Support Vector Machines,” Department of Computer Science and Engineering, University of California

San Diego, vol. 11, pp. 16-17, 2002. [Google Scholar]

[18] Vikramaditya Jakkula, “Tutorial on Support Vector Machine (SVM),” School of EECS, Washington State University, vol. 37, no. 2-5,

2006. [Google Scholar]

[19] Kecheng Qu, “Research on Linear Regression Algorithm,” 2nd International Conference on Physics, Computing and Mathematical, vol.

395, pp. 1-6, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[20] Supichaya Sunthornjittanon, “Linear Regression Analysis on Net Income of an Agrochemical Company in Thailand,” Portland State

University, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[21] Riccardo Trinchero, and Flavio Canavero, “Machine Learning Regression Techniques for the Modeling of Complex Systems: An

Overview,” IEEE Electromagnetic Compatibility Magazine, vol. 10, no. 4, pp. 71-79, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[22] Shruthi H. Shetty et al., Supervised Machine Learning: Algorithms and Applications, Fundamentals and Methods of Machine and Deep

Learning: Algorithms, Tools and Applications, pp. 1-16, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[23] F.Y. Osisanwo et al., “Supervised Machine Learning Algorithms: Classification and Comparison,” International Journal of Computer

Trends and Technology, vol. 48, no. 3, pp. 128-138, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[24] S.B. Kotsiantis, Supervised Machine Learning: A Review of Classification Techniques, Frontiers in Artificial Intelligence and

Applications, Emerging Artificial Intelligence Applications in Computer Engineering, vol. 160, pp. 3-24, 2007. [Google Scholar]

[Publisher Link]

[25] José-Luis Solorio-Ramírez et al., “Random Forest Algorithm for the Classification of Spectral Data of Astronomical Objects,” Algorithms,

vol. 16, no. 6, pp. 1-16, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[26] Mohiuddin Ahmed, Raihan Seraj, and Syed Mohammed Shamsul Islam, “The K-Means Algorithm: A Comprehensive Survey and

Performance Evaluation,” Electronics, vol. 9, no. 8, pp. 1-12, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[27] Xin Jin, and Jiawei Han, “K-Means Clustering,” Encyclopedia of Machine Learning, pp. 563-564, 2011. [CrossRef] [Google Scholar]

[Publisher Link]

[28] Jonathon Shlens, “A Tutorial on Principal Component Analysis,” arXiv Preprint, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[29] Andrzej Maćkiewicz, and Waldemar Ratajczak, “Principal Components Analysis (PCA),” Computers & Geosciences, vol. 19, no. 3, pp.

303-342, 1993. [CrossRef] [Google Scholar] [Publisher Link]

[30] Shuangshuang Chen, and Wei Guo, “Auto-Encoders in Deep Learning-A Review with New Perspectives,” Mathematics, vol. 11, no. 8,

pp. 1-54, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[31] Pascal Vincent et al., “Extracting and Composing Robust Features with Denoising Autoencoders,” Proceedings of the 25th International

Conference on Machine Learning, Helsinki, Finland, pp. 1096-1103, 2008. [CrossRef] [Google Scholar] [Publisher Link]

[32] Andrew Ng, “Sparse Autoencoder,” CS294A Lecture Notes, 2011. [Google Scholar] [Publisher Link]

[33] Diederik P. Kingma, and Max Welling, “Auto-Encoding Variational Bayes,” arXiv Preprint, 2014. [CrossRef] [Google Scholar]

[Publisher Link]

[34] Jonathan Masci et al., “Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction,” International Conference on Artificial

Neural Networks, Espoo, Finland, pp. 52-59, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[35] Salah Rifai et al., “Contractive Auto-Encoders: Explicit Invariance During Feature Extraction,” Proceedings of the 28th International

Conference on International Conference on Machine Learning, Bellevue, Washington, USA, pp. 833-840, 2011. [Google Scholar]

[Publisher Link]

[36] Pascal Vincent et al., “Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising

Criterion,” Journal of Machine Learning Research, vol. 11, pp. 3371-3408, 2010. [Google Scholar] [Publisher Link]

[37] Yoshua Bengio, Aaron Courville, and Pascal Vincent, “Representation Learning: A Review and New Perspectives,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1798-1828, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[38] Bruno A. Olshausen, and David J. Field, “Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1?,” Vision Research,

vol. 37, no. 23, pp. 3311-3325, 1997. [CrossRef] [Google Scholar] [Publisher Link]

[39] Nitish Srivastava, and Ruslan Salakhutdinov, “Multimodal Learning with Deep Boltzmann Machines,” Advances in Neural Information

Processing Systems, vol. 25, pp. 2222-2230, 2012. [Google Scholar] [Publisher Link]

[40] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le, “Sequence to Sequence Learning with Neural Networks,” Advances in Neural Information

Processing Systems, vol. 27, pp. 3104-3112, 2014. [Google Scholar] [Publisher Link]

https://doi.org/10.18280/isi.290403
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Heart+Disease%3A+Application+of+the+K-Nearest+Neighbor+%28KNN%29+Method&btnG=
https://www.iieta.org/journals/isi/paper/10.18280/isi.290403
https://doi.org/10.1007/978-3-540-39964-3_62
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=KNN+Model-Based+Approach+in+Classification&btnG=
https://link.springer.com/chapter/10.1007/978-3-540-39964-3_62
https://doi.org/10.1007/10984697_1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Support+vector+machines%E2%80%93an+introduction&btnG=
https://link.springer.com/chapter/10.1007/10984697_1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Introduction+to+Support+Vector+Machines&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Tutorial+on+Support+Vector+Machine+%28svm%29&btnG=
https://doi.org/10.1051/matecconf/202439501046
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Research+on+Linear+Regression+Algorithm&btnG=
https://www.matec-conferences.org/articles/matecconf/abs/2024/07/matecconf_icpcm2023_01046/matecconf_icpcm2023_01046.html
https://doi.org/10.15760/honors.137
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Linear+Regression+Analysis+on+Net+Income+of+an+Agrochemical+Company+in+Thailand&btnG=
https://pdxscholar.library.pdx.edu/honorstheses/131/
https://doi.org/10.1109/MEMC.2021.9705310
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+Learning+Regression+Techniques+for+the+Modeling+of+Complex+Systems%3A+An+Overview&btnG=
https://ieeexplore.ieee.org/document/9705310
https://doi.org/10.1002/9781119821908.ch1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Supervised+Machine+Learning%3A+Algorithms+and+Applications&btnG=
https://onlinelibrary.wiley.com/doi/10.1002/9781119821908.ch1
https://doi.org/10.14445/22312803/IJCTT-V48P126
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Supervised+Machine+Learning+Algorithms%3A+Classification+and+Comparison&btnG=
https://www.ijcttjournal.org/archives/ijctt-v48p126
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Supervised+Machine+Learning%3A+A+Review+of+Classification+Techniques&btnG=
https://ebooks.iospress.nl/volumearticle/3666?_gl=1*yfo9pu*_up*MQ..*_ga*MjEzMTA1ODkzNy4xNzQzNzY2MTU0*_ga_6N3Q0141SM*MTc0Mzc2NjE1NC4xLjAuMTc0Mzc2NjE1NC4wLjAuMA..
https://doi.org/10.3390/a16060293
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Random+Forest+Algorithm+for+the+Classification+of+Spectral+Data+of+Astronomical+Objects&btnG=
https://www.mdpi.com/1999-4893/16/6/293
https://doi.org/10.3390/electronics9081295
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+K-Means+Algorithm%3A+A+Comprehensive+Survey+and+Performance+Evaluation&btnG=
https://www.mdpi.com/2079-9292/9/8/1295
https://doi.org/10.1007/978-0-387-30164-8_425
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Xin+Jin+%26+Jiawei+Han+K-Means+Clustering+Encyclopedia+of+Machine+Learning&btnG=
https://link.springer.com/referenceworkentry/10.1007/978-0-387-30164-8_425
https://doi.org/10.48550/arXiv.1404.1100
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+tutorial+on+principal+component+analysis&btnG=
https://arxiv.org/abs/1404.1100
https://doi.org/10.1016/0098-3004(93)90090-R
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Principal+components+analysis+%28PCA%29&btnG=
https://www.sciencedirect.com/science/article/abs/pii/009830049390090R?via%3Dihub
https://doi.org/10.3390/math11081777
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Auto-encoders+in+deep+learning-a+review+with+new+perspectives&btnG=
https://www.mdpi.com/2227-7390/11/8/1777
https://doi.org/10.1145/1390156.1390294
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Extracting+and+Composing+Robust+Features+with+Denoising+Autoencoders&btnG=
https://dl.acm.org/doi/10.1145/1390156.1390294
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sparse+autoencoder&btnG=
https://web.stanford.edu/class/cs294a/sparseAutoencoder_2011new.pdf
https://doi.org/10.48550/arXiv.1312.6114
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Auto-Encoding+Variational+Bayes&btnG=
https://arxiv.org/abs/1312.6114
https://doi.org/10.1007/978-3-642-21735-7_7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Stacked+Convolutional+Auto-Encoders+for+Hierarchical+Feature+Extraction&btnG=
https://link.springer.com/chapter/10.1007/978-3-642-21735-7_7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Contractive+Auto-Encoders%3A+Explicit+Invariance+During+Feature+Extraction&btnG=
https://icml.cc/Conferences/2011/papers.php.html
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Stacked+Denoising+Autoencoders%3A+Learning+Useful+Representations+in+a+Deep+Network+with+a+Local+Denoising+Criterion&btnG=
https://www.jmlr.org/papers/v11/
https://doi.org/10.1109/TPAMI.2013.50
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Representation+Learning%3A+A+Review+and+New+Perspectives&btnG=
https://ieeexplore.ieee.org/document/6472238
https://doi.org/10.1016/S0042-6989(97)00169-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sparse+Coding+with+an+Overcomplete+Basis+Set%3A+A+Strategy+Employed+by+V1%3F&btnG=
https://www.sciencedirect.com/science/article/pii/S0042698997001697?via%3Dihub
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multimodal+Learning+with+Deep+Boltzmann+Machines&btnG=
https://papers.nips.cc/paper_files/paper/2012/hash/af21d0c97db2e27e13572cbf59eb343d-Abstract.html
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sequence+to+Sequence+Learning+with+Neural+Networks&btnG=
https://papers.nips.cc/paper_files/paper/2014/hash/5a18e133cbf9f257297f410bb7eca942-Abstract.html

Alam, M. N., et al. / IJEEE, 10(1), 1-4, 2023

44

[41] Kyunghyun Cho et al., “Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation,” Proceedings

of the Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, pp. 1724-1734, 2014. [CrossRef] [Google

Scholar] [Publisher Link]

[42] Arash Vahdat, and Jan Kautz, “NVAE: A Deep Hierarchical Variational Autoencoder,” Advances in Neural Information Processing

Systems, vol. 33, pp. 19667-19679, 2020. [Google Scholar] [Publisher Link]

[43] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou, “Isolation Forest,” 8th IEEE International Conference on Data Mining, Pisa, Italy, pp.

413-422, 2008. [CrossRef] [Google Scholar] [Publisher Link]

[44] Y. Wang, J. Wong, and A. Miner, “Anomaly Intrusion Detection Using One-Class SVM,” Proceedings from the 5th Annual IEEE SMC

Information Assurance Workshop, pp. 358-364, 2004. [CrossRef] [Google Scholar] [Publisher Link]

[45] Kun-Lun Li et al., “Improving One-Class SVM for Anomaly Detection,” Proceedings of the International Conference on Machine

Learning and Cybernetics (IEEE Cat. No.03EX693), Xi'an, vol. 5, pp. 3077-3081, 2003. [CrossRef] [Google Scholar] [Publisher Link]

[46] Markus M. Breunig et al., “LOF: Identifying Density-Based Local Outliers,” Proceedings of the ACM SIGMOD International Conference

on Management of Data, Dallas Texas, USA, pp. 93-104, 2000. [CrossRef] [Google Scholar] [Publisher Link]

[47] Laurens Van Der Maaten, and Geoffrey Hinton, “Visualizing Data Using T-SNE,” Journal of Machine Learning Research, vol. 9, pp.

2579-2605, 2008. [Google Scholar] [Publisher Link]

[48] Martin Wattenberg, Fernanda Viégas, and Ian Johnson, “How to Use t-SNE Effectively,” Distill, vol. 1, no. 10, 2016. [CrossRef] [Google

Scholar] [Publisher Link]

[49] Haoyu Xie, “Research and Case Analysis of Apriori Algorithm Based on Mining Frequent Itemsets,” Open Journal of Social Sciences,

vol. 9, no. 4, pp. 458-463, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[50] Hongfei Xu et al., “Research on an Improved Association Rule Mining Algorithm,” IEEE International Conference on Power Data

Science, Taizhou, China, pp. 37-42, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[51] Massih-Reza Amini et al., “Self-Training: A Survey,” arXiv Preprint, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[52] Zixing Song et al., “Graph-Based Semi-Supervised Learning: A Comprehensive Review,” IEEE Transactions on Neural Networks and

Learning Systems, vol. 34, no. 11, pp. 8174-8194, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[53] L. Ruthotto, and E. Haber, “An Introduction to Deep Generative Modeling,” GAMM-Mitteilungen, vol. 44, no. 2, 2021. [CrossRef]

[Google Scholar] [Publisher Link]

[54] Xibin Dong et al., “A Survey on Ensemble Learning,” Frontiers of Computer Science, vol. 14, pp. 241-258, 2020. [CrossRef] [Google

Scholar] [Publisher Link]

[55] Thomas G. Dietterich, “Ensemble Methods in Machine Learning,” International Workshop on Multiple Classifier Systems, Cagliari, Italy,

vol. 1, pp. 1-15, 2000. [CrossRef] [Google Scholar] [Publisher Link]

[56] David Opitz, and Richard Maclin, “Popular Ensemble Methods: An Empirical Study,” Journal of Artificial Intelligence Research, vol.

11, pp. 169-198, 1999. [CrossRef] [Google Scholar] [Publisher Link]

[57] Ying Zhou, Thomas A. Mazzuchi, and Shahram Sarkani, “M-Adaboost-A Based Ensemble System for Network Intrusion Detection,”

Expert Systems with Applications, vol. 162, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[58] Batta Mahesh, “Machine Learning Algorithms-A Review,” International Journal of Science and Research, vol. 9, no. 1, pp. 381-386,

2020. [CrossRef] [Google Scholar] [Publisher Link]

[59] A.D. Dongare, R.R. Kharde, and Amit D. Kachare, “Introduction to Artificial Neural Network,” International Journal of Engineering

and Innovative Technology, vol. 2, no. 1, pp. 189-194, 2012. [Google Scholar]

[60] Yu-chen Wu, and Jun-wen Feng, “Development and Application of Artificial Neural Network,” Wireless Personal Communications, vol.

102, no. 2, pp. 1645-1656, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[61] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi, “Understanding of A Convolutional Neural Network,” International

Conference on Engineering and Technology, Antalya, Turkey, pp. 1-6, 2017. [CrossRef] [Publisher Link]

[62] Keiron O'Shea, and Ryan Nash, “An Introduction to Convolutional Neural Networks,” arXiv Preprint, 2015. [CrossRef] [Google Scholar]

[Publisher Link]

[63] Laith Alzubaidi et al., “Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions,” Journal

of Big Data, vol. 8, no. 1, pp. 1-74, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[64] Anjar Wanto, Yuhandri Yuhandri, and Okfalisa Okfalisa, “RetMobileNet: A New Deep Learning Approach for Multi-Class Eye Disease

Identification,” Artificial Intelligence Review, vol. 38, no. 4, pp. 1055-1067, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[65] Yoshua Bengio, “Learning Deep Architectures for AI,” Foundations and Trends® in Machine Learning, vol. 2, no. 1, pp. 1-127, 2009.

[CrossRef] [Google Scholar] [Publisher Link]

[66] Raffaele Pugliese, Stefano Regondi, and Riccardo Marini, “Machine Learning-Based Approach: Global Trends, Research Directions, and

Regulatory Standpoints,” Data Science and Management, vol. 4, pp. 19-29, 2021. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.3115/v1/D14-1179
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Learning+Phrase+Representations+Using+RNN+Encoder-Decoder+for+Statistical+Machine+Translation&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Learning+Phrase+Representations+Using+RNN+Encoder-Decoder+for+Statistical+Machine+Translation&btnG=
https://aclanthology.org/D14-1179/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=NVAE%3A+A+Deep+Hierarchical+Variational+Autoencoder&btnG=
https://proceedings.neurips.cc/paper/2020/hash/e3b21256183cf7c2c7a66be163579d37-Abstract.html
https://doi.org/10.1109/ICDM.2008.17
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Isolation+forest&btnG=
https://ieeexplore.ieee.org/document/4781136
https://doi.org/10.1109/IAW.2004.1437839
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Anomaly+Intrusion+Detection+Using+One-Class+SVM&btnG=
https://ieeexplore.ieee.org/document/1437839
https://doi.org/10.1109/ICMLC.2003.1260106
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improving+One-Class+SVM+for+Anomaly+Detection&btnG=
https://ieeexplore.ieee.org/document/1260106
https://doi.org/10.1145/342009.335388
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=LOF%3A+Identifying+Density-Based+Local+Outliers&btnG=
https://dl.acm.org/doi/10.1145/342009.335388
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Visualizing+Data+Using+T-SNE&btnG=
https://www.jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.23915/distill.00002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=How+to+use+t-SNE+effectively&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=How+to+use+t-SNE+effectively&btnG=
https://distill.pub/2016/misread-tsne/
https://doi.org/10.4236/jss.2021.94034
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Research+and+Case+Analysis+of+Apriori+Algorithm+Based+on+Mining+Frequent+Itemsets&btnG=
https://www.scirp.org/journal/paperinformation?paperid=108829
https://doi.org/10.1109/ICPDS47662.2019.9017168
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Research+on+an+Improved+Association+Rule+Mining+Algorithm&btnG=
https://ieeexplore.ieee.org/document/9017168
https://doi.org/10.48550/arXiv.2202.12040
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Self-training%3A+A+survey&btnG=
https://arxiv.org/abs/2202.12040
https://doi.org/10.1109/TNNLS.2022.3155478
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Graph-Based+Semi-Supervised+Learning%3A+A+comprehensive+Review&btnG=
https://ieeexplore.ieee.org/document/9737635
https://doi.org/10.1002/gamm.202100008
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Introduction+to+Deep+Generative+Modeling&btnG=
https://onlinelibrary.wiley.com/doi/10.1002/gamm.202100008
https://doi.org/10.1007/s11704-019-8208-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+on+Ensemble+Learning&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+on+Ensemble+Learning&btnG=
https://link.springer.com/article/10.1007/s11704-019-8208-z
https://doi.org/10.1007/3-540-45014-9_1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ensemble+Methods+in+Machine+Learning&btnG=
https://link.springer.com/chapter/10.1007/3-540-45014-9_1
https://doi.org/10.1613/jair.614
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Popular+Ensemble+Methods%3A+An+Empirical+Study&btnG=
https://jair.org/index.php/jair/article/view/10239
https://doi.org/10.1016/j.eswa.2020.113864
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=M-Adaboost-A+Based+Ensemble+System+for+Network+Intrusion+Detection&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0957417420306746?via%3Dihub
https://doi.org/10.21275/ART20203995
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+learning+algorithms-A+Review&btnG=
https://www.ijsr.net/getabstract.php?paperid=ART20203995
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Introduction+to+Artificial+Neural+Network&btnG=
https://doi.org/10.1007/s11277-017-5224-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Development+and+Application+of+Artificial+Neural+Network&btnG=
https://link.springer.com/article/10.1007/s11277-017-5224-x
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://ieeexplore.ieee.org/document/8308186
https://doi.org/10.48550/arXiv.1511.08458
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Introduction+to+Convolutional+Neural+Networks&btnG=
https://arxiv.org/abs/1511.08458
https://doi.org/10.1186/s40537-021-00444-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Review+of+Deep+Learning%3A+Concepts%2C+CNN+Architectures%2C+Challenges%2C+Applications%2C+Future+Directions&btnG=
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-021-00444-8
https://doi.org/10.18280/ria.380401
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=RetMobileNet%3A+A+New+Deep+Learning+Approach+for+Multi-Class+Eye+Disease+Identification&btnG=
https://www.iieta.org/journals/ria/paper/10.18280/ria.380401
http://dx.doi.org/10.1561/2200000006
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Learning+deep+architectures+for+AI&btnG=
https://www.nowpublishers.com/article/Details/MAL-006
https://doi.org/10.1016/j.dsm.2021.12.002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+learning-based+approach%3A+Global+trends%2C+research+directions%2C+and+regulatory+standpoints&btnG=
https://www.sciencedirect.com/science/article/pii/S2666764921000485?via%3Dihub

Alam, M. N., et al. / IJEEE, 10(1), 1-4, 2023

45

[67] S. Reema Sree, S.B. Vyshnavi, and N. Jayapandian, “Real-World Application of Machine Learning and Deep Learning,” International

Conference on Smart Systems and Inventive Technology, Tirunelveli, India, pp. 1069-1073, 2019. [CrossRef] [Google Scholar] [Publisher

Link]

[68] Vineet Chaoji, Rajeev Rastogi, and Gourav Roy, “Machine Learning in the Real World,” Proceedings of the VLDB Endowment, vol. 9,

no. 13, pp. 1597-1600, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[69] George Tzanis et al., “Modern Applications of Machine Learning,” Proceedings of the 1st Annual SEERC Doctoral Student Conference,

vol. 1, no. 1. pp. 1-10, 2006. [Google Scholar]

[70] Shahid Tufail et al., “Advancements and Challenges in Machine Learning: A Comprehensive Review of Models, Libraries, Applications,

And Algorithms,” Electronics, vol. 12, no. 8, pp. 1-43, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[71] Hafsa Habehh, and Suril Gohel, “Machine Learning in Healthcare,” Current Genomics, vol. 22, no. 4, pp. 291-300, 2021. [CrossRef]

[Google Scholar] [Publisher Link]

[72] Qi An et al., “A Comprehensive Review on Machine Learning in Healthcare Industry: Classification, Restrictions, Opportunities and

Challenges,” Sensors, vol. 23, no. 9, pp. 1-21, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[73] Yang Lu, and Li Da Xu, “Internet of Things (IoT) Cybersecurity Research: A Review of Current Research Topics,” IEEE Internet of

Things Journal, vol. 6, no. 2, pp. 2103-2115, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[74] Yoram Reich, and S.V. Barai, “Evaluating Machine Learning Models for Engineering Problems,” Artificial Intelligence in Engineering,

vol. 13, no. 3, pp. 257-272, 1999. [CrossRef] [Google Scholar] [Publisher Link]

[75] Yoram Reich, “Machine Learning Techniques for Civil Engineering Problems,” Computer-Aided Civil and Infrastructure Engineering,

vol. 12, no. 4, pp. 295-310, 1997. [CrossRef] [Google Scholar] [Publisher Link]

[76] Huu-Tai Thai, “Machine Learning for Structural Engineering: A State-of-the-Art Review,” Structures, vol. 38, pp. 448-491, 2022.

[CrossRef] [Google Scholar] [Publisher Link]

[77] Guannan Huang et al., “Application of Machine Learning in Material Synthesis and Property Prediction,” Materials, vol. 16, no. 17, pp.

1-30, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[78] Sabrina C. Shen et al., “Computational Design and Manufacturing of Sustainable Materials through First-Principles and Materiomics,”

Chemical Reviews, vol. 123, no. 5, pp. 2242-2275, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[79] Baiyu Lu, “The Application of Machine Learning in Chemical Engineering: A Literature Review,” Proceedings of the 9th International

Conference on Humanities and Social Science Research, Atlantis Press, pp. 57-66, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[80] Periklis Gogas, and Theophilos Papadimitriou, “Machine Learning in Economics and Finance,” Computational Economics, vol. 57, no.

1, pp. 1-4, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[81] Komal et al., Opportunities and Challenges of AI/ML in Finance, The Impact of AI Innovation on Financial Sectors in the Era of Industry

5.0, pp. 238-260, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[82] Konstantinos G. Liakos et al., “Machine Learning in Agriculture: A Review,” Sensors, vol. 18, no. 8, pp. 1-29, 2018. [CrossRef] [Google

Scholar] [Publisher Link]

[83] Wenxiang Liu et al., “Applications of Machine Learning in Computational Nanotechnology,” Nanotechnology, vol. 33, no. 16, 2022.

[CrossRef] [Google Scholar] [Publisher Link]

[84] Avnish Pareek et al., “Nanotechnology for Green Applications: How Far on the Anvil of Machine Learning!,” Biobased Nanotechnology

for Green Applications, pp. 1-38, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[85] Rahul Rai et al., “Machine Learning in Manufacturing and Industry 4.0 Applications,” International Journal of Production Research, vol.

59, no. 16, pp. 4773-4778, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[86] Tingting Chen et al., “Machine Learning in Manufacturing Towards Industry 4.0: From ‘For Now’ to ‘Four-Know’,” Applied Sciences,

vol. 13, no. 3, pp. 1-32, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[87] Massimo Bertolini et al., “Machine Learning for Industrial Applications: A Comprehensive Literature Review,” Expert Systems with

Applications, vol. 175, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[88] Thorsten Wuest et al., “Machine Learning in Manufacturing: Advantages, Challenges, and Applications,” Production & Manufacturing

Research, vol. 4, no. 1, pp. 23-45, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[89] Sam Yang, Bjorn Vaagensmith, and Deepika Patra, “Power Grid Contingency Analysis with Machine Learning: A Brief Survey and

Prospects,” Resilience Week, Salt Lake City, UT, USA, pp. 119-125, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[90] Kuldeep Singh Kaswan, Jagjit Singh Dhatterwal, and Rudra Pratap Ojha, AI in Personalized Learning, Advances in Technological

Innovations in Higher Education, CRC Press, pp. 103-117, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[91] Md. Zahurul Haque, “E-Commerce Product Recommendation System Based on ML Algorithms,” arXiv Preprint, 2024. [CrossRef]

[Google Scholar] [Publisher Link]

[92] Badrul Sarwar et al., “Analysis of Recommendation Algorithms for E-Commerce,” Proceedings of the 2nd ACM Conference on Electronic

Commerce, pp. 158-167, 2000. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/ICSSIT46314.2019.8987844
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Real-World+Application+of+Machine+Learning+and+Deep+Learning&btnG=
https://ieeexplore.ieee.org/document/8987844
https://ieeexplore.ieee.org/document/8987844
https://doi.org/10.14778/3007263.3007318
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Chaoji%2C+V.%2C+Rastogi%2C+R.%2C+and+Roy%2C+G+Machine+Learning+in+the+Real+World&btnG=
https://dl.acm.org/doi/10.14778/3007263.3007318
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modern+Applications+of+Machine+Learning&btnG=
https://doi.org/10.3390/electronics12081789
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Advancements+and+challenges+in+machine+learning%3A+A+comprehensive+review+of+models%2C+libraries%2C+applications%2C+and+algorithms&btnG=
https://www.mdpi.com/2079-9292/12/8/1789
https://doi.org/10.2174/1389202922666210705124359
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+Learning+in+Healthcare&btnG=
https://www.eurekaselect.com/article/116453
https://doi.org/10.3390/s23094178
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Comprehensive+Review+on+Machine+Learning+in+Healthcare+Industry%3A+Classification%2C+Restrictions%2C+Opportunities+and+Challenges&btnG=
https://www.mdpi.com/1424-8220/23/9/4178
https://doi.org/10.1109/JIOT.2018.2869847
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Internet+of+Things+%28IoT%29+cybersecurity+research%3A+A+review+of+current+research+topics&btnG=
https://ieeexplore.ieee.org/document/8462745
https://doi.org/10.1016/S0954-1810(98)00021-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evaluating+Machine+Learning+Models+for+Engineering+Problems&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0954181098000211?via%3Dihub
https://doi.org/10.1111/0885-9507.00065
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+Learning+Techniques+For+Civil+Engineering+Problems&btnG=
https://onlinelibrary.wiley.com/doi/10.1111/0885-9507.00065
https://doi.org/10.1016/j.istruc.2022.02.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+Learning+for+Structural+Engineering%3A+A+State-of-the-Art+Review&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2352012422000947?via%3Dihub
https://doi.org/10.3390/ma16175977
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Application+Of+Machine+Learning+In+Material+Synthesis+And+Property+Prediction&btnG=
https://www.mdpi.com/1996-1944/16/17/5977
https://doi.org/10.1021/acs.chemrev.2c00479
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Computational+Design+and+Manufacturing+of+Sustainable+Materials+Through+First-Principles+and+Materiomics&btnG=
https://pubs.acs.org/doi/10.1021/acs.chemrev.2c00479
https://doi.org/10.2991/978-2-38476-092-3_9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Application+of+Machine+Learning+in+Chemical+Engineering%3A+A+Literature+Review&btnG=
https://www.atlantis-press.com/proceedings/ichssr-23/125990969
https://doi.org/10.1007/s10614-021-10094-w
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+Learning+In+Economics+And+Finance&btnG=
https://link.springer.com/article/10.1007/s10614-021-10094-w
https://doi.org/10.4018/979-8-3693-0082-4.ch014
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Opportunities+and+Challenges+of+AI%2FML+in+Finance&btnG=
https://www.igi-global.com/gateway/chapter/330120
https://doi.org/10.3390/s18082674
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+Learning+in+Agriculture%3A+A+Review&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+Learning+in+Agriculture%3A+A+Review&btnG=
https://www.mdpi.com/1424-8220/18/8/2674
https://doi.org/10.1088/1361-6528/ac46d7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Applications+of+Machine+Learning+in+Computational+Nanotechnology&btnG=
https://iopscience.iop.org/article/10.1088/1361-6528/ac46d7
https://doi.org/10.1007/978-3-030-61985-5_1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Nanotechnology+for+green+applications%3A+How+far+on+the+anvil+of+machine+learning%21&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-61985-5_1
https://doi.org/10.1080/00207543.2021.1956675
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+learning+in+manufacturing+and+industry+4.0+applications&btnG=
https://www.tandfonline.com/doi/full/10.1080/00207543.2021.1956675
https://doi.org/10.3390/app13031903
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+Learning+in+Manufacturing+Towards+Industry+4.0%3A+From+%E2%80%98For+Now%E2%80%99+to+%E2%80%98Four-Know%E2%80%99&btnG=
https://www.mdpi.com/2076-3417/13/3/1903
https://doi.org/10.1016/j.eswa.2021.114820
https://scholar.google.com/scholar_lookup?title=Machine+Learning+for+industrial+applications:+A+comprehensive+literature+review&author=Bertolini,+M.&author=Mezzogori,+D.&author=Neroni,+M.&author=Zammori,+F.&publication_year=2021&journal=Expert+Syst.+Appl.&volume=175&pages=114820&doi=10.1016/j.eswa.2021.114820
https://www.tandfonline.com/doi/full/10.1080/00207543.2021.1956675
https://doi.org/10.1080/21693277.2016.1192517
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+Learning+in+Manufacturing%3A+Advantages%2C+Challenges%2C+and+Applications&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S095741742100261X?via%3Dihub
https://doi.org/10.1109/RWS50334.2020.9241293
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Power+Grid+Contingency+Analysis+with+Machine+Learning%3A+A+Brief+Survey+and+Prospects&btnG=
https://ieeexplore.ieee.org/document/9241293
https://doi.org/10.1109/RWS50334.2020.9241293
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=KS+Kaswan%2C+JS+Dhatterwal%2C+AI+in+Personalized+Learning&btnG=
https://ieeexplore.ieee.org/document/9241293
https://doi.org/10.48550/arXiv.2407.21026
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=E-Commerce+Product+Recommendation+System+Based+on+ML+Algorithms&btnG=
https://arxiv.org/abs/2407.21026
https://doi.org/10.1145/352871.352887
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analysis+of+recommendation+algorithms+for+e-commerce&btnG=
https://dl.acm.org/doi/10.1145/352871.352887

Alam, M. N., et al. / IJEEE, 10(1), 1-4, 2023

46

[93] Yizhao Ni et al., “An End-to-End Machine Learning System for Harmonic Analysis of Music,” IEEE Transactions on Audio, Speech,

and Language Processing, vol. 20, no. 6, pp. 1771-1783, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[94] Iria Santos et al., “Artificial Neural Networks and Deep Learning in the Visual Arts: A Review,” Neural Computing and Applications,

vol. 33, pp. 121-157, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[95] Ravil I. Mukhamediev et al., “Review of Artificial Intelligence and Machine Learning Technologies: Classification, Restrictions,

Opportunities and Challenges,” Mathematics, vol. 10, no. 15, pp. 1-25, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[96] Enrico Barbierato, and Alice Gatti, “The Challenges of Machine Learning: A Critical Review,” Electronics, vol. 13, no. 2, pp. 1-30, 2024.

[CrossRef] [Google Scholar] [Publisher Link]

[97] Eric Horvitz, “Machine Learning, Reasoning, and Intelligence in Daily Life: Directions and Challenges,” Proceedings of, Microsoft, vol.

360, 2006. [Google Scholar]

[98] Niki Parmar et al., “Image Transformer,” Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden,

PMLR 80, pp. 4055-4064, 2018. [Google Scholar] [Publisher Link]

[99] Jung Min Ahn, Jungwook Kim, and Kyunghyun Kim, “Ensemble Machine Learning of Gradient Boosting (Xgboost, Lightgbm, Catboost)

and Attention-Based CNN-LSTM for Harmful Algal Blooms Forecasting,” Toxins, vol. 15, no. 10, pp. 1-15, 2023. [CrossRef] [Google

Scholar] [Publisher Link]

https://doi.org/10.1109/TASL.2012.2188516
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+End-to-End+Machine+Learning+System+for+Harmonic+Analysis+of+Music&btnG=
https://ieeexplore.ieee.org/document/6155600
https://doi.org/10.1007/s00521-020-05565-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Artificial+Neural+Networks+and+Deep+Learning+in+the+Visual+Arts%3A+A+Review&btnG=
https://link.springer.com/article/10.1007/s00521-020-05565-4
https://doi.org/10.3390/math10152552
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Review+of+Artificial+Intelligence+and+Machine+Learning+Technologies%3A+Classification%2C+Restrictions%2C+Opportunities+and+Challenges&btnG=
https://www.mdpi.com/2227-7390/10/15/2552
https://doi.org/10.3390/electronics13020416
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Challenges+of+Machine+Learning%3A+A+Critical+Review&btnG=
https://www.mdpi.com/2079-9292/13/2/416
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+learning%2C+reasoning%2C+and+intelligence+in+daily+life%3A+Directions+and+challenges&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Image+Transformer&btnG=
https://proceedings.mlr.press/v80/parmar18a.html
https://doi.org/10.3390/toxins15100608
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ensemble+Machine+Learning+of+Gradient+Boosting+%28Xgboost%2C+Lightgbm%2C+Catboost%29+and+Attention-Based+CNN-LSTM+for+Harmful+Algal+Blooms+Forecasting&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ensemble+Machine+Learning+of+Gradient+Boosting+%28Xgboost%2C+Lightgbm%2C+Catboost%29+and+Attention-Based+CNN-LSTM+for+Harmful+Algal+Blooms+Forecasting&btnG=
https://www.mdpi.com/2072-6651/15/10/608

