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Abstract - We generate enormous amounts of data every day across various fields, such as finance, healthcare, sales, marketing, 

social media, and industry. State-of-the-art technology leverages this big data to make decisions and gain valuable insights. 

Machine learning, one of the most advanced and dynamic artificial intelligence techniques, utilizes large datasets to make 

predictions and develop intelligent applications. Machine learning algorithms enable computers to learn without being explicitly 

programmed. In this paper, we identify key algorithms and discuss fundamental algorithmic concepts. We explore various 

categories of machine learning, including supervised, unsupervised, semi-supervised, and reinforcement learning, along with 

their respective algorithms. Furthermore, we identify advanced machine learning applications across diverse fields. Finally, we 

discuss the challenges associated with machine learning techniques and potential future directions for developing algorithms 

and services. 
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1. Introduction 
Machine learning involves teaching a machine in such a 

way that it can generate decisions on its own, enabling the 

creation of intelligent applications. Combining principles 

from computer science, data science, artificial intelligence, 

and statistics, machine learning is an interdisciplinary field 

that develops algorithms and systems that can recognize 

patterns in data and make decisions or predictions without 

explicit programming. It was introduced by Arthur Samuel in 

1959. Samuel, a pioneering American computer scientist and 

AI expert, is renowned for developing early computer checker 

programs and contributing to the field of machine learning. 

According to Samuel, machine learning as “the study that 

enables computers to learn without being explicitly 

programmed [1, 2].” This groundbreaking concept laid the 

foundation for contemporary machine-learning techniques. So 

the question is how they can be taught the machine in such a 

way that it can generate its own decisions. 

The machine is taught in basically four ways such as 

supervised, semi-supervised, unsupervised, and reinforcement 

learning. Supervised learning uses input features and target or 

label data features to train the model. Semi-supervised 

learning uses both labeled and unlabeled features of data. 

Reinforcement learning uses action and reward, and 

unsupervised learning uses unlabeled data. This is how 

machines learn to predict or classify the task and produce the 

result. Figure 1 shows the foundation of machine learning, 

which is capable of learning and making predictions. Figure 2 

shows the machine learning-based predictive model. Firstly, it 

builds a predictive model using algorithms and datasets in the 

training phase. Secondly, new data is predicted using a 

predictive model in the testing phase. Figure 3 shows the steps 

of a machine learning-based problem-solving model. This 

model serves as a basic framework for machine learning, 

outlining its operations. 

Utilizing large datasets, patterns, and algorithms 

significantly bolsters the machine's functionality. For optimal 

results and precision, selecting the appropriate algorithm for 

the specific task is crucial. Supervised learning excels in tasks 

involving classification and regression, while unsupervised 

learning is beneficial for clustering and dimensionality 

reduction. Semi-supervised learning, which operates on both 

labeled and unlabeled data, is particularly effective in image 

labeling and medical diagnosis. Reinforcement learning is 

good for sequential tasks such as game playing, autonomous 

vehicles, robotics, etc. Some real-world application examples 

such as speech recognition, chatGPT, face recognition, cancer 

detection and robotics all applications have been developed 
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using these learning methods [3, 15]. However, the algorithm's 

performance and the data's characteristics and nature are 

correlated. Every algorithm has its own characteristics and 

performance nature, even though showing similar results on 

different data. Therefore, understanding the nature and 

features of the algorithm and its applicability is important to 

get the best performance of the algorithm. Data preprocessing 

and feature selection are challenging tasks for researchers and 

developers. A huge amount of data with high dimensionality 

requires dimension reduction to reduce the complexity of data.  

The selection of features is very important for building a 

robust machine-learning model. There are many techniques 

used for feature selection and extraction. After selecting the 

features, feature extraction is done, and new features are 

created with lower dimensions. For example, PCA is used to 

do this task. Data preprocessing and feature selection are 

important for the model’s accuracy, which is described in the 

following section. The application of machine learning is 

growing very rapidly. Almost all fields are using this 

technique to make advanced decisions and solutions. Based on 

this applicability, it is important to understand these 

algorithmic behaviors and which one is best suited for what. 

One of the goals of this paper is to understand the algorithms 

to implement the right algorithm for the right applications.  

           
Fig. 1 Underlying of machine learning 

 
Fig. 2 Machine learning-based predictive model 

1.1. Contributions 

The significant endeavor of this paper is as follows:   

1. To identify all categories of algorithms and their 

subtypes. 

2. To explain the fundamental concepts of algorithms based 

on their working principles. 

3. To explain the pseudocode of each algorithm for 

implementation code. 

4. To discuss the different machine learning applications in 

the real-world problem solution. 

5. To consider the research direction for advanced data 

analysis and services. 

1.2. Organization 

The rest of the paper is structured as follows: Section 2 

introduces various types of machine learning algorithms, 
covering fundamental concepts and their classifications. 

Section 3 explains data preprocessing and feature selection 

techniques. Global trends in machine learning are discussed in 

Section 4.  

Section 5 explores state-of-the-art applications of 

machine learning. Section 6 addresses the challenges in 

machine learning and outlines future research directions. 

Finally, Section 7 concludes the paper with a summary of key 

findings. 

      
Fig. 3 Machine learning-based problem-solving model
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Fig. 4 Real-world applications of machine learning, (a) Speech 

processing, (b) ChatGPT, (c) Face recognition, (d) Cancer detection, 

and (e) ML in robotics. 

2. Machine Learning Techniques 
There are mainly four categories of machine learning 

techniques. Supervised, unsupervised, semi-supervised and 

reinforcement learning, as shown in Figure 5. In this section, 

we discuss each type of technique that is used in real-world 

applications. Figure 6 shows the list of algorithms of all 

categories used in real-world problem-solving. 

2.1. Supervised Learning 

Supervised learning is a basic machine learning model 

that divides the learning process into two stages: training and 

testing [4].  

Samples from training data are used as input during the 

training process so that the learner or learning algorithm can 

build the learning model. The learning model creates 

predictions for the test or production data during testing by 

utilizing the execution engine. The output of the learning 

model, also known as “tagged data” or “labeled data,” 

provides the final prediction or classified data. To train the 

model, input-output pairs are used, denoted as (xi, yi). The 

input in these pairs is denoted by xi, and the matching intended 

output is denoted by yi [13].  

In order to accurately predict future unseen data, the 

primary goal of supervised learning is to establish a mapping 

between input and output [5]. To evaluate the algorithm's 

predictive accuracy, the difference between expected and 

actual labels is measured using a loss function [6]. The degree 

of the model's departure from the true values is represented by 

the loss function L (yˆ, y), where y stands for the actual label 

and yˆ for the predicted output.  

The algorithm iteratively modifies its parameters during 

the learning process to reduce the difference between its 

predictions and the actual labels [7]. When the model’s error, 

measured by the loss function, falls below a reasonable level, 

it is considered sufficiently trained to generalize and make 

accurate predictions for new, unseen data instances.  

Figure 7 displays a schema of the SL model's 

environment. After obtaining the data xi as input, the learner 

generates an output yˆi. By computing the loss function L (yˆi, 

yi), the output is compared to the true value yi. After that, 

iterations are made. SL excels at tasks involving regression 

and classification [8, 22, 23]. 

The loss function L (yˆ, y) illustrates the degree to which 

the model departs from the true values, where y represents the 

actual label and yˆ the predicted output. The algorithm 

iteratively adjusts its parameters throughout the learning 

process to minimize discrepancies between its predictions and 

the actual labels [7].  

When the error, as indicated by the loss function, reaches 

a threshold that can be tolerated and the model can generalize 

and produce precise predictions for novel, unseen data 

instances, it is said to be sufficiently trained.  

Figure 7 shows a schema of the SL model’s configuration. 

After obtaining the data xi as input, the learner produces an 

output yˆi. The output and the actual value of yi are compared 

using the loss function L (yˆi, yi), which is computed. The 

process is then carried out once more [8, 22, 23]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 Primary categories of machine learning algorithm 
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Fig. 6 Taxonomy of machine learning techniques 
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2.2. Supervised Learning Algorithms and Tasks 

Supervised learning algorithm uses datasets to train the 

model. The datasets carry both input and correspondence 

output. The input is the features or attributes of the datasets, 

and the output is the labels or classes of the datasets [9]. 

Supervised learning is ideal for classification and regression 

analysis [10].  

  

 
Fig. 8 Taxonomy of supervised learning based on their task and nature 

2.2.1. Decision Tree 
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Fig. 9 Decision tree architecture 
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Step 5 : For each subset of S:  

If the subset can no longer be classified:  

- Create a leaf node with the class label.  

 Else: 

- Recursively repeat steps 2-5 on the subset.  

Step 6 : Return the decision tree with nodes and leaf nodes.  

 

2.2.2. k-Nearest Neighbor 

One well-liked supervised machine learning technique for 

multiclass classification is k-Nearest Neighbor [3, 14]. This 

instance-based machine learning algorithm is also known as 

lazy learning. Lazy learning is demonstrated by the rote 

classifier, which memorizes the entire training set and only 

classifies a test instance if its attributes correspond to one of 

the training examples. Each test instance computes the 

distance or similarity between z = (x´, y´), and all training 

examples (x, y) ∈  D have to determine the list of nearest 

neighbors from D to Dz. Such calculations can be expensive if 

the number of training examples is large. Once the list of 

nearest neighbors is obtained, the test instance is classified 

based on the majority class of its nearest neighbors. 

Majority Voting 

y =́ 𝑎𝑟𝑔𝑚𝑎𝑥
𝑣

∑ 1(𝑣 = 𝑦𝑖(𝑥𝑖,𝑦𝑖)∈𝐷𝑧
) (1) 

Where v is a class label, yi is a neighbor's class label, and 

1(.) is an indicator function that, if its argument is true, returns 

1; otherwise, it returns 0. The number of nearest neighbors in 

the Nearest Neighbor algorithm is k, and the training set 

consists of D examples. The Euclidean distance function can 

be used to determine similarity or distance. In the majority 

voting system, the classification of each neighbor has the same 

effect. The algorithm is, therefore, sensitive to the choice of k. 

To lessen the impact of k, each nearest neighbor should weigh 

the influence of xi based on its distance: wi=1/d (x´, xi)2. 

Training examples that are far from z, therefore, have less of 

an impact on classification than those that are close to z. A 

distance-weighted voting scheme is used to determine class 

labels. 

Distance-Weighted Voting 

y =́ 𝑎𝑟𝑔𝑚𝑎𝑥
𝑣

∑ 𝑤𝑖 . 1(𝑣 = 𝑦𝑖(𝑥𝑖,𝑦𝑖)∈𝐷𝑧
) (2) 

This algorithm is used in many areas for its simplicity and 

effectiveness in solving classification and regression [15]. 

There are some common areas like pattern recognition, face 

recognition, handwriting recognition, image classification, 

recommender systems, text mining, document classification, 

banking and finance, anomaly detection, geographical and 

geospatial applications, genomics and bioinformatics, market 

segmentation, speech recognition have used this method 

effectively. What is the most likely label for c? For the 

solution, find k nearest neighbors of c. Then, extract the 

maximum label as the label of c. Let k = 3, the 3 nearest points 

to c are a, a, and o. Therefore, the most likely label for c is a. 

 
Fig. 10 k-Nearest Neighbor example 1, (b) k-Nearest Neighbor example 

2, and (c) k-Nearest Neighbor example 3. 

 

KNN Algorithm  

Algorithm KNN (x_new, K, D): 

Input:    - x_new: the new data point to classify or predict 

        - K: the number of nearest neighbors 

        - D: the training dataset containing (x_i, y_i) pairs 

Output:  - y_new: the predicted class (for classification) or 

predicted value (for regression) 

Step 1 : Compute distances 

        For each data point (x_i, y_i) in D: 

Calculate distance d (x_new, x_i) using a distance 

metric (e.g., Euclidean distance) 

Step 2 : Select K nearest neighbors 

        Sort the distances in ascending order 

Select the K smallest distances and their 

corresponding labels y_i 

Step 3 : Make a prediction 

        If the problem is classification: 

- Create a frequency count of the labels of the K 

nearest neighbors 

- Assign the label with the highest frequency as 

the predicted label y_new 

        Else, if the problem is regression: 

- Compute the mean of the labels (y_i values) of 

the K nearest neighbors 

- Assign this mean value as the predicted value 

y_new 

Step 4 (Optional): Apply distance-weighted voting 

        If classification with distance-weighted voting: 

- For each of the K nearest neighbors, compute the 

weight as w_i = 1 / (d (x_new, x_i) + ε) 

- For each class C_k, sum the weighted votes for 

C_k 

- Assign the class with the highest weighted vote 

as y_new 

    Return y_new as the prediction. 

End Algorithm 

2.2.3. Support Vector Machines 

SVM is a supervised learning algorithm used for binary 

classification [16]. In this algorithm, the support vector is a 

data point that resides on the margin and is used to determine 

the boundary and classify the new data. Margins are the 

distance between the support vectors and hyperplane in each 

class. In SVMs, a large margin is better than a small margin. 

The decision boundary or hyperplane, also called the 
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separation line, separates the data points into two classes. 

SVM seeks to determine which hyperplane in a multi-

dimensional space best divides the data points into distinct 

classes [17, 18]. SVM algorithms are given below. 

 
Fig. 11 Support vector machines 

Support Vector Machines (SVMs) Algorithm 

Algorithm SVM (X, Y, C, kernel): 

Input:   - X: training data points (features) 

        - Y: labels for the training data 

        - C: regularization parameter 

        - kernel: the kernel function (e.g., linear, polynomial, 

RBF) 

Output:  - w, b: weights and bias for the separating hyperplane 

Step 1 : Define the optimization problem 

        - Minimize the objective function (hinge loss + 

regularization term)  

        - Subject to the constraint that each data point is 

classified correctly with a margin 

Step 2 : Solve the quadratic optimization problem 

        - Use a solver (e.g., Sequential Minimal 

Optimization) to find the optimal w and b 

Step 3 : Make prediction for a new data point x_new 

- Compute the decision function f(x_new) = w^T * 

x_new + b 

        - If f(x_new) >= 0, assign the label y_new = +1 

        - Else, assign the label y_new = -1 

    Return y_new as the predicted class 

End Algorithm 

2.2.4. Linear Regression Algorithm 

Linear regression is a technique for predictive modeling 

used in statistics and machine learning. It is one of the best 

statistical techniques widely used in various fields for 

modeling the relationship between variables. This technique is 

used in engineering, management, biological science, social 

science, chemical science, economics and many more. The 

common linear regression models are simple linear regression, 

which uses exactly one regressor or predictor, and multiple 

linear regression, which uses more than one predictor [19-21]. 

In simple linear regression, the equation is expressed as: 

y = β0 + β1x + ε (3)                             

Where y is the dependent variable, x as the independent 

variable, β0 denoted as intercept, β1 denoted as slop and 

constant, and ε represents the random error term. 

And multiple linear regression, which contains multiple 

regressors such as x1, x2 , x3 …xk; therefore, the equation is 

expressed as: 

y = β0 + β1x1 + β2x2 +…+ βkxk + ε (4) 

The residual is a crucial statistical tool in regression 

analysis used to evaluate how well the model fits the data. It 

can be applied to increase the model's accuracy.  

The residuals, or the vertical separations between the 

actual data points and the predicted values on the regression 

line, are shown in Figure 10 by the green dashed lines. 

 
Fig. 12 Linear regression with residual error 

 
Fig. 13 The Simple linear regression model uses a single feature and the 

target variable, and the multiple regression model uses two features and 

the target variable 
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Linear Regression Algorithm 

Algorithm LinearRegression(X, Y): 

Input:    - X: training data points (features) 

        - Y: corresponding labels (real values) 

Output: - w, b: the parameters for the linear regression model 

Step 1 : Define the linear model 

        - y_pred = w^T * X + b 

Step 2 : Define the cost function 

- Cost function = Mean Squared Error (MSE) between 

y_pred and Y 

Step 3 : Minimize the cost function 

- Use gradient descent or closed-form solution to 

compute w and b that minimize the MSE 

Step 4 : Make prediction for a new data point x_new 

- Compute y_new = w^T * x_new + b 

 

     

Return y_new as the predicted value 

End Algorithm 

2.2.5. Random Forest Algorithm 

Multiple decision trees are used in the Random Forest 

algorithm, an ensemble learning technique, to make 

predictions. It creates multiple subsets by randomly sampling 

data with replacement using bootstrapping techniques [24, 

25]. A statistical technique called bootstrap allows the creation 

of multiple samples from a single dataset. A subset of random 

features is used to train each decision tree in the forest. Then, 

decision trees are built for every subset by splitting the nodes 

followed by feature criteria. Finally, aggregate the votes of 

each tree and select the majority voting class for classification 

and averages of all trees for regression. The architecture of a 

random forest tree is given in Figure 14. 

 
Fig. 14 Random forest architecture 

Random Forest Algorithm 

Algorithm RandomForest (X, Y, num_trees): 

Input:   - X: training data points (features) 

- Y: corresponding labels (classification or regression) 

       - num_trees: the number of decision trees to create 
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(bootstrap sampling) 

Bootstrap Sample 

1 Subset of 

Dataset  

Tree 1 Trained on 

Bootstrap Sample  

Dataset  

Input Data  

Tree 2 Trained on 

Bootstrap Sample  

Bootstrap Sample 

2 Subset of 

Dataset  

Tree 3 Trained on 

Bootstrap Sample  

Output Prediction  

Final Decision 

Aggregation  

Voting for Classification/Average for Regression  

Bootstrap Sample 

3 Subset of 

Dataset  
Instances  

Decision Trees  



Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025 

20 

            - Randomly select a subset of features to split the 

data at each node 

            - Build a decision tree by recursively splitting the 

data based on the selected features 

Step 2 : Make prediction for a new data point x_new 

        - For classification: 

            - Let each decision tree in the forest predict the 

class of x_new 

            - Use majority voting to assign the final predicted 

class y_new 

        - For regression: 

            - Let each tree predict a value for x_new 

            - Compute the average of all predicted values as 

y_new 

    Return y_new as the final prediction 

End Algorithm 

 

2.3. Unsupervised Learning 

This is known as unsupervised learning because, unlike 

supervised learning, there are no supervisors or correct 

answers. Algorithms use their own creativity in identifying 

and presenting the interesting structure of the data.  

Algorithms for unsupervised learning learn very few 

features from the data. When new data is added, its class is 

determined using the previously learned features. Clustering 

and feature reduction are its main uses. We have shown the 

taxonomy of unsupervised learning in Figure 17. 

2.4. Unsupervised Learning Algorithms and Tasks 

Unsupervised learning algorithms identify hidden 

patterns and structures in unlabeled data, making them 

essential for exploratory data analysis, anomaly detection, and 

clustering. Algorithms such as K-Means, GMMs, and 

Hierarchical Clustering partition data into meaningful 

clusters, while PCA and t-SNE perform dimensionality 

reduction to enhance feature representation.  

Advanced techniques like Autoencoders and Generative 

Adversarial Networks (GANs) leverage deep learning to 

encode latent structures and generate synthetic data. These 

algorithms power diverse applications, including fraud 

detection, customer segmentation, and feature learning in 

complex, high-dimensional datasets. 

 
Fig. 15 Unsupervised learning 

 
Fig. 16 Unsupervised algorithm (clustering) 

 

 
Fig. 17 Taxonomy of unsupervised machine learning algorithms based 

on their tasks 

2.4.1. k-Means Clustering 

According to Lloyd (1957) and McQueen (1967), k-
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has a centroid, which is its central point. Convergence occurs 

when a cluster ceases to evolve [26, 27]. The k-Means 

algorithm is used when the user inputs “k.”. The algorithm 

below explains how to apply k-Means to datasets for 

clustering. The provided equation is used to determine the 

Euclidean distance. 

[(x, y), (a, b)]≡ √(x − a)2 + (y − b)2 (5) 
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k-Means Algorithm 

Algorithm KMeans (X, K, max_iterations): 

Input:     - X: dataset containing n data points 

        - K: the number of clusters 

        - max_iterations: the maximum number of iterations 

to perform 

Output:  - Centroids: The K cluster centroids 

        - Cluster assignments: a label for each data point 

indicating its cluster 

Step 1 : Initialize K centroids randomly from the dataset. 

Step 2 : Repeat until convergence or until max_iterations is 

reached: 

        - For each data point x_i in X: 

            - Assign x_i to the nearest centroid based on 

distance (e.g., Euclidean). 

        - For each cluster: 

            - Recalculate the centroid as the mean of all data 

points assigned to that cluster. 

Step 3 : Return the final centroids and cluster assignments. 

End Algorithm 
 

 
Fig. 18 Standard k-means algorithm

2.4.2. PCA 

Dimensionality reduction, principal components, 

eigenvectors and eigenvalues are the key concepts of PCA. By 

employing principal components to preserve as much 

variability as possible, PCA minimizes the number of 

variables in a dataset. Regarding how much variance they 

capture, principal components are the most effective and 

arranged orthogonally [13, 28].  

 
Fig. 19 Example of PCA original 3D dataset reduced to 2D and 1D, (a) Original features in 3D space, (b) PCA in 2D space, and (c) PCA in 1D space. 
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The algorithm that follows explains how PCA operates. 

Standardizing the data and calculating the mean and deviation 

to scale the data to contribute equally are the first steps in 

using the dataset in PCA. Compute the covariance matrix next 

to display the relationship between the various variables. 

Subsequently, determine the covariance matrix's eigenvalues 

and eigenvectors to determine the variance magnitudes in each 

direction and the directions through eigenvectors [29].  

When selecting the principal components, the higher 

eigenvalue determines which eigenvectors are the top choices. 

The more variance that component explains, the higher the 

eigenvalue. Finally, the data is transformed into new 

dimensional space formed by the selected principle 

components, resulting in a reduced dataset. Figure 19 

describes PCA's pictorially 3D, 2D, and 1D space. This plot 

shows the original data in three dimensions (X, Y, Z). The 3D 

dataset was reduced to a 2D dataset after reducing its 

dimensionality from 3D to 2D using PCA. The new 

components are PC1 and PC2. PCA of the 3D Dataset 

Reduced to 1D, and this plot shows the dataset after reducing 

its dimensionality from 3D to 1D using PCA. Only the First 

Principal Component (PC1). 

PCA Algorithm 

Algorithm PCA (X, n_components): 

Input:  - X: dataset with n samples and m features 

            - n_components: the number of principal components 

to retain 

Output: - Transformed data: X projected onto the principal 

components 

             - Principal components: the directions of maximum 

variance 

Step 1 : Normalize the dataset X by subtracting the mean of 

each feature. 

Step 2 : Compute the covariance matrix of the normalized 

dataset. 

Step 3 : Compute the eigenvalues and eigenvectors of the 

covariance matrix. 

Step 4 : Select the top n_components eigenvectors 

corresponding to the largest eigenvalues. 

Step 5 : Project the dataset X onto the selected 

eigenvectors. 

Step 6 : Return the transformed data and the principal 

components. 

End Algorithm 

2.4.3. Autoencoder 

The two main components of an autoencoder are an 

encoder and a decoder. While the encoder’s task is to 

compress the input data while minimizing information loss, 

the decoder’s task is to reconstruct the original data using the 

compressed representation. Autoencoders are used 

extensively in various fields, including data compression, 

anomaly detection, dimensionality reduction, image 

denoising, feature extraction, and image colorization [30].  

The input layer, encoder hidden layer, latent space 

(compressed data), decoder hidden layer, and output layer are 

the five main components of a basic autoencoder architecture. 

Notably, in order to ensure compression and prevent simple 

data replication, the number of neurons in the output layer 

must match that in the input layer. Mathematically, the process 

can be described as: 

Where the input vector is denoted by x, the encoder 

function by f(x), the compressed representation by z, the 

decoder function by g(z), and the reconstructed output by x′. 

A more sophisticated variation, deep autoencoders, contains 

several hidden layers in both the encoder and the decoder. 

These layers must mirror each other, with the same number of 

neurons on both sides. Different types of autoencoders are 

described here. 

 
Fig. 20 Autoencoder 

Autoencoder Algorithm 

Algorithm Autoencoder (X, encoder_layers, decoder_layers, 

learning_rate, epochs): 

Input: 

        - X: dataset with n samples 

        - encoder_layers: architecture of the encoder (e.g., 

number of hidden layers) 

        - decoder_layers: architecture of the decoder 

        - learning_rate: the learning rate for optimization 

        - epochs: number of training epochs 

Output: 

        - Compressed representation (latent space) 

        - Reconstructed data 

Step 1 : Initialize the encoder and decoder networks with the 

given layers. 

Step 2 : Perform forward propagation: 

- Pass the input X through the encoder to get the 

compressed representation. 

- Pass the compressed representation through the 

decoder to reconstruct X. 

Step 3 : Compute the reconstruction loss (e.g., Mean 

Squared Error). 

Step 4 : Perform backpropagation to update weights using 

gradient descent. 

Step 5 : Repeat steps 2-4 for the specified number of epochs. 

Step 6 : Return the compressed representation and 

reconstructed data. 

End Algorithm
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Fig. 21 Various autoencoders 

Table 1. Various autoencoders tasks and characteristics 

Method Task Characteristics References 

Basic 

Autoencoder 
Compress and reconstruct data 

Simple architecture with encoder and decoder. Used for 

dimensionality reduction and feature learning. 
[30] 

Denoising 

Autoencoder 

(DAE) 

Remove noise from input data 

Trained with corrupted input and learns to recover the 

original clean data. Useful for noise reduction and data 

preprocessing. 

[31] 

Sparse 

Autoencoder 
Feature extraction 

Encourages sparsity in hidden layers, where only a small 

subset of neurons activates. Typically used for feature 

extraction and learning sparse representations. 

[32] 

Variational 

Autoencoder 

(VAE) 

Generate new data samples 

Assumes latent variables follow a Gaussian distribution. A 

generative model is used for sampling new data similar to the 

training set, enabling probabilistic modeling. 

[33] 

Convolutional 

Autoencoder 

(CAE) 

Capture spatial hierarchies in 

image data 

Incorporates convolutional layers, making it suitable for 

image data. Effective for capturing spatial dependencies in 

images. 

[34] 

Contractive 

Autoencoder 

Enforce robustness to small 

changes in input 

Adds a penalty term to the loss function to minimize the 

derivative of the hidden representations. Promotes robustness 

to small input variations. 

[35] 

Stacked 

Autoencoder 

Create deep networks for 

complex data representations 

Multiple layers of autoencoders are stacked. Each layer’s 

output is the input to the next, enabling the learning of more 

complex data representations. 

[36] 

Undercomplete 

Autoencoder 

Compress data into a smaller 

representation 

The latent space is smaller than the input, enforcing data 

compression. Used for efficient data representation. 
[37] 

Overcomplete 

Autoencoder 
Capture complex features 

Has more hidden units than input dimensions. Regularization 

is required to avoid learning the identity function and ensure 

meaningful feature extraction. 

[38] 

Autoencoder

Basic Autoencoder
Denoising 

Autoencoder 
(DAE)

Sparse 
Autoencoder

Variational 
Autoencoder 

(VAE)

Convolutional 
Autoencoder 

(CAE)

Contractive 
Autoencoder

Stacked 
Autoencoder

Undercomplete 
Autoencoder

Overcomplete 
Autoencoder

Multimodal 
Autoencoder

Sequence-to-
Sequence 

Autoencoder

LSTM 
Autoencoder

Hierarchical 
Autoencoder
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Multimodal 

Autoencoder 

Combine different modalities 

of data (e.g., image, text) 

Trained on multiple modalities to create a shared latent space. 

Useful for cross-domain data representation. 
[39] 

Sequence-to-

Sequence 

Autoencoder 

Model sequential data like 

time series or text 

The input and output are sequences. Used for tasks like time 

series prediction, machine translation, and other sequence-

based tasks. 

[40] 

LSTM 

Autoencoder 

Capture temporal 

dependencies in sequential 

data 

Uses LSTM units to handle time dependencies. Often applied 

in time series data or sequential modeling tasks. 
[41] 

Hierarchical 

Autoencoder 

Extract information at different 

levels of granularity 

Input is broken down into hierarchical layers, allowing for 

multilevel data representation. Effective for hierarchical data 

structures. 

[42] 

2.4.4. Isolation Forest 

To isolate observations, Isolation Forest randomly selects 

a feature and then randomly selects a split value between the 
feature's minimum and maximum values. This makes the 

algorithm especially useful for anomaly detection. Here’s an 

overview of how the algorithm works: 

 Isolation Trees: The algorithm constructs an ensemble of 

isolation trees for a given dataset. Each tree is created by 

recursively splitting the data points until each point is 

isolated in a leaf node. 

 Path Length: The algorithm determines the path length for 

each data point, which is the separation between the root 

node and the leaf node in each tree where the point ends. 

 Anomaly Score: The average path length across all trees is 

the anomaly score for a given data point. Due to their rapid 

isolation, points with shorter average path lengths are 

regarded as anomalies. The anomaly score s (x, n) for a 

data point x in a forest of n trees is computed as follows.  

𝑠(𝑥, 𝑛) = 2
−

𝐸(ℎ(𝑥)

𝑐(𝑛)  (6)                   

Where E(h(x) is the average path length of x and c(n) is 

the average path length of unsuccessful searches in a Binary 

Search Tree, defined as: 

 
Fig. 22 Illustrates the relationship between the expected path length, 

E(h(x)), and the anomaly score, s 

Here, c(n) represents the average path length defined in 

Equation 7 [43].  

𝑐(𝑛) = 2𝐻(𝑛 − 1) − (2(𝑛 − 1)/𝑛) (7) 

With H(i) being the i-th harmonic number, we can 

calculate it using the following: 

𝐻(𝑖) = 𝑙𝑛(𝑖) + 𝛾 (𝐸𝑢𝑙𝑒𝑟′𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝛾 ≈ 0.577) (8)                                          

 In Equation (6): 

 When E(h(x)) → c(n), s → 0.5; 

 When E(h(x)) → 0, s → 1; and 

 When E(h(x)) → n − 1, s → 0. 

When the expected path length E(h(x)) matches the 

average path length c(n), the anomaly score s is equal to 0.5, 

regardless of the value of n. s is monotonic to h(x). Figure 22 

illustrates the relationship between E(h(x)) and s, and the 

following conditions are applied where 0 < s ≤ 1 for 0 < h(x) 

≤ n − 1. Using the anomaly scores, we are able to make the 

following assessment: 

 If instances return s very close to 1, then they are definitely 

anomalies, 

 If instances have a much smaller than 0.5, then they are 

quite safe to be regarded as normal instances and 

 If all the instances return ≈ 0.5, then the entire sample does 

not really have any distinct anomaly. 

Isolation Forest algorithm 

Algorithm Isolation_Forest (X, n_trees, max_samples) 

Input: 

        X: Dataset with n samples 

        n_trees: Number of isolation trees to create 

        max_samples: Maximum number of samples to use in 

each tree 

Output: 

        Anomaly scores for each data point in X 

Step 1 : Initialize a list to store isolation trees 

        trees ← [] 



Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025 

25 

Step 2 : Build n_trees isolation trees 

        for i = 1 to n_trees do 

            // Randomly select max_samples from X 

            sample_X ← Random_Sample (X, max_samples) 

            // Build an isolation tree using sample_X 

            tree ← Build_Tree(sample_X) 

            // Add the tree to the list of trees 

            trees. append (tree) 

        end for 

Step 3 : Compute the path length for each data point in X 

        path_lengths ← [] 

        for each data_point in X do 

            total_path_length ← 0 

            for each tree in trees do 

                path_length←Calculate_Path_Length(tree, 

data_point) 

                total_path_length←total_path_length+path_length 

            end for 

            // Average path length across all trees 

            avg_path_length ← total_path_length / n_trees 

            path_lengths.append (avg_path_length) 

        end for 

Step 4 : Calculate the anomaly score for each data point 

        anomaly_scores ← [] 

        for each avg_path_length in path_lengths do 

            score← Calculate_Anomaly_Score(avg_path_length) 

            anomaly_scores. Append (score) 

        end for 

Step 5 : Return anomaly_scores 

End Algorithm 

 

2.4.5. One Class SVM 

The One-Class Support Vector Machine (OCSVM) is a 

specialized type of support vector machine used for anomaly 

detection. It learns a decision function that can classify new 

data as either similar to or different from the training data, 

making it suitable for novelty detection [44, 45]. The 

following is the working procedure: 

 Kernel Function: In OCSVM, the kernel function K(x,y) 

plays a crucial role by mapping the input data into a higher-

dimensional space. This transformation makes separating 

normal data from anomalies easier by defining a clear 

boundary. Commonly used kernels include the Radial 

Basis Function (RBF), polynomial, and linear kernels, 

which help capture complex patterns in the data. 

 Decision Function: f(x) = w.ϕ(x) −ρ is the definition of the 

decision function, where w denotes the weight vector, ρ the 

offset, and ϕ(x) is the feature map.  

 Optimization Issue: The issue with OCSVM optimization 

is: 

𝑚𝑖𝑛
𝜔,𝜌,𝜉𝑖

1

2

||𝑤||2 +
1

𝑣𝑙
∑ 𝜉𝑖 − 𝜌𝑙

𝑖=1  (9)                                                                                                             

Subject to: (w.ϕ(xi))≥ρ−ξi, ξi≥0, i=1,…, l 

Where ξi are slack variables that deal with data points that 

are misclassified and fall inside the margin, and ν is a 

parameter that controls the trade-off between maximizing the 

margin and minimizing the number of anomalies.  

 Kernel trick: Finding the best boundary in a high-

dimensional space to distinguish between normal and 

outlier data points allows for detecting anomalies. 

 

 
Fig. 23 OC-SVM, plotting the decision boundary, normal data points 

and support vectors 

One Class-SVM algorithm 

Algorithm One Class SVM (X, kernel, nu): 

Input: 

        - X: dataset with n samples 

        - kernel: kernel function (e.g., linear, RBF) 

        - nu: an upper bound on the fraction of anomalies 

Output: 

        - Anomaly score for each data point 

Step 1 : Train the SVM on the dataset X using the specified 

kernel and nu. 

Step 2 : For each data point x_i in X: 

        - Compute the decision function value f(x_i). 

        - If f(x_i) < 0, classify x_i as an outlier. 

Step 3 : Return the anomaly score for each data point based 

on the decision function. 

End Algorithm 

 

2.4.6. Local Outlier Factor 

The LOF algorithm measures the local density deviation 

of a data point relative to its neighbors. By comparing a point's 

density to that of its surrounding neighbors, LOF can identify 

points that have a significantly lower density than their 

neighbors as potential anomalies [46]. The following is the 

working procedure. 

 k-Distance: For every point p, the distance to its k-th 

nearest neighbor is computed 

 Reachability Distance: The reachability distance between 

a point p and a point o is determined by: 

 Reach-dist k (p,o) = max{k-distance (o), d(p,o)} 



Mohammad Nazmul Alam et al. / IJEEE, 12(4), 12-46, 2025 

26 

 Local Reachability Density(LRD): The inverse of the 

average reachability distance determined by the k-nearest 

neighbors is the local reachability density of point p.  

𝑙𝑟𝑑𝑘(𝑝) = (
∑ 𝑟𝑒𝑎𝑐ℎ−𝑑𝑖𝑠𝑡𝑘(𝑝,𝑜)𝑜∈𝑁𝑘(𝑝)

|𝑁𝑘(𝑝)|
)

−1

 (10) 

LOF Score: A point’s local reachability density is divided 

by the local reachability density of its k-nearest neighbors to 

determine its average LOF score, which is: 

𝐿𝑂𝐹𝑘(𝑝) = (
∑

𝑙𝑟𝑑
𝑘(𝑜)

𝑙𝑟𝑑
𝑘(𝑝)

𝑜∈𝑁𝑘(𝑝)

|𝑁𝑘(𝑝)|
)  (11) 

 Anomalies: To find anomalies, LOF calculates a data 

point’s local density deviation from its neighbors.                  

Local Outlier Factor Algorithm 

Algorithm LOF (data, k): 

Input:  

        data: A set of data points 

        k: The number of nearest neighbors 

Output:  

        LOF scores for each data point 

Step 1 : For each point p in data: 

        1.1. Calculate the k-distance of p 

               k-distance(p) = distance to the k-th nearest neighbor 

of p 

Step 2 : For each point p in data: 

        2.1. Initialize a list reachability_distances 

        2.2. For each point o in the k-nearest neighbors of p: 

            2.2.1. Calculate the reachability distance 

                Reach-distk(p, o) = max(k-distance(o), distance(p, 

o)) 

            2.2.2. Append Reach-distk(p, o) to 

reachability_distances 

        2.3. Calculate the local reachability density (LRD) of p 

            LRD(p) = 1 / (average of reachability_distances) 

Step 3 : For each point p in data: 

        3.1. Initialize sum_LRD_neighbors = 0 

        3.2. For each point o in the k-nearest neighbors of p: 

            3.2.1. Calculate the local reachability density of 

neighbor o 

                LRD(o) = 1 / (average of reachability distances to k-

neighbors of o) 

            3.2.2. sum_LRD_neighbors += LRD(o) 

        3.3. Calculate the LOF score for p 

            LOF(p) = (sum_LRD_neighbors / k) / LRD(p) 

Step 4 : Return the LOF scores for all points in the data 

 

2.4.7. t-SNE Algorithm 

t-SNE algorithm is used to reduce high-dimensional data 

to a lower-dimensional space for visualization while 

preserving relationships between data points [47]. There are 

several advantages of t-SNE over PCA, such as working with 

similar local data points close to each other in the lower 

dimensional space rather than global variance. It can handle 

non-linear data, whereas PCA uses a linear method. It is good 

for complex and high-dimensional data. It can create better 

visualization than PCA because it can visualize in 2D or 3D 

by grouping similar points together while separating 

dissimilar points, but PCA spreads the variances across the 

components linearly. Another important thing is that t-SNE 

has a parameter called perplexity that allows the user to 

balance between local and global aspects of the data [48]. This 

makes t-SNE flexible and suitable for different kinds of 

datasets. The t-SNE algorithm is given below. 

t-SNE Algorithm 

Algorithm t-SNE (X, perplexity, learning_rate, iterations): 

Input: 

        - X: dataset with n samples (high-dimensional data) 

        - perplexity: balance between local and global aspects of 

the data 

        - learning_rate: step size for optimization 

        - iterations: number of iterations to run 

Output: 

        - Low-dimensional representation of the data (2D or 3D)     

Step 1 : Compute pairwise affinities between data points in 

the high-dimensional space: 

        1.1 For each data point, compute the probability 

distribution of its neighbors. 

        1.2 Use perplexity to determine the similarity between 

points.         

Step 2 : Initialize the low-dimensional map (e.g., 2D or 3D) 

randomly: 

        2.1 Generate random starting positions for the n samples 

in the lower-dimensional space. 

Step 3 : Minimize the Kullback-Leibler (KL) divergence 

between the high-dimensional and low-dimensional 

distributions using gradient descent: 

        3.1 For each iteration: 

            - Calculate the similarity of points in the lower-

dimensional space. 

            - Compute the gradient of the KL divergence between 

high-dimensional and low-dimensional similarities. 

            - Update the positions of the points in the low-

dimensional map based on the gradient and learning rate.    

Step 4 : Repeat Step 3 for the specified number of iterations. 

Step 5 : Return the final low-dimensional representation of 

the data. 

End Algorithm 

 

2.4.8. Association Rule Mining 

Association rule mining is a data mining technique 

utilized to uncover intriguing relationships or associations 

among items or variables within a dataset. It identifies 

frequent patterns and dependencies among data items, which 

can be categorized into items-individual entities like products 

in a store, words in a document, or items in a basket-and 
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transactions, which represent collections of items that capture 

a customer’s purchase, a user’s web page visit, or any event 

involving items.  

Key metrics in this process include support, a measure of 

how frequently an item set (a combination of items) appears 

in the dataset, reflecting the popularity or occurrence of the 

item set, and confidence, which assesses the strength of the 

association between two item sets by indicating how often one 

item set is found alongside another. An association rule is 

expressed in the format ''If {Antecedent} then {Consequent},'' 

linking two item sets with a specified support and confidence 

level. Frequent item sets are those that meet a minimum 

support threshold and are considered significant for generating 

association rules.  

The Apriori algorithm is a widely used method for 

association rule mining, employing a level-wise approach to 

discover frequent item sets by iteratively pruning infrequent 

ones based on the Apriori property, which states that if an item 

set is frequent, all its subsets must also be frequent.  

For instance, in a retail dataset with customer 

transactions, frequent item sets may indicate that customers 

who purchase milk and bread are also likely to buy eggs, 

leading to the association rule: “If {milk, bread} then {eggs}” 

with corresponding support and confidence values. 

Association rule mining has diverse applications across 

various domains, including market basket analysis to identify 

product associations in retail sales, recommender systems for 

suggesting related items or content, healthcare for discovering 

patterns in patient diagnoses and treatments, and web usage 

mining to analyze user behavior for targeted marketing 

strategies [49, 50]. Based on the association rules, we discover 

the following. Customers who buy bread are likely to buy milk 

(66.67% confidence), customers who buy milk are likely to 

buy bread (50% confidence), and customers who buy bread 

are somewhat likely to buy Eggs (33.33% confidence). 

 
Fig. 24 Association rule mining analysis 

Table 2. Sales datasets 

Transaction ID Items Purchased 

1 Bread, Milk, Eggs 

2 Milk, Eggs 

3 Bread, Diapers, Beer 

4 Bread, Milk, Diapers 

5 Milk, Beer 
 

Association Rule Mining Algorithm (Apriori) 

Algorithm Apriori (T, min_support, min_confidence): 

Input: 

        - T: transactional dataset 

        - min_support: minimum support threshold 

        - min_confidence: minimum confidence threshold 

Output: 

        - Frequent itemsets and strong association rules 

Step 1 : Find all frequent itemsets: 

        - Generate candidate itemsets and prune those below  

the min support. 

Step 2 : Generate strong association rules: 

        - For each frequent itemset, generate rules. 

        - Compute confidence for each rule and retain those with 

confidence >= min_confidence. 

Step 3 : Return the frequent itemsets and strong association 

rules. 

End Algorithm 
 

2.5. Semi-Supervised 

  
Fig. 25 Taxonomy of semi-supervised learning
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There is an algorithm that can handle training data that is 

partially labeled, unlabeled, and partially labeled. We refer to 

this type of learning as semi-supervised learning. Supervised 

and unsupervised learning are typically combined to create 

semi-supervised learning. Google Photos service, for instance. 

The same person can be automatically identified once you 

upload a family photo here. Techniques for semi-supervised 

learning include self-training, graph-based approaches, 

generative models, and transductive support vector machines. 

A detailed semi-supervised taxonomy is given in Figure 25. 

2.6. Semi-Supervised Learning Algorithms and Tasks 

SSL is an advanced machine learning paradigm that 

leverages a small set of labeled data alongside a large volume 

of unlabeled data to enhance model performance. It bridges 

the gap between supervised and unsupervised learning by 

incorporating techniques such as self-training, consistency 

regularization, and graph-based methods to efficiently infer 

patterns from unlabeled data. SSL is particularly effective in 

domains where labeled data is scarce or expensive to obtain, 

such as medical diagnosis, speech recognition, and anomaly 

detection. Key algorithms include pseudo-labeling, entropy 

minimization, and contrastive learning, which iteratively 

refine decision boundaries while maintaining robustness 

against overfitting. The primary objective of SSL tasks is to 

improve generalization by utilizing the intrinsic structure of 

data, ultimately reducing dependency on extensive human 

annotations. 

 
Fig. 26 Semi-supervised learning [10] 

2.6.1. Self-Training 

 

 

 

 
 

 
Fig. 27 Self-training semi-supervised learning process 

A common method is self-training, in which a model is 

first trained on labeled data and then uses the unlabeled data 

to make predictions. The model is then iteratively retrained by 

treating the most confident predictions as additional labeled 

examples [51]. It is helpful because, in email spam filters, an 

initial model is typically trained using a small set of labeled 

emails (spam and non-spam). The model then labels large 

volumes of unlabeled emails with high confidence. These 

confidently predicted labels are added to the training data to 

iteratively improve the spam filter’s accuracy. The working 

process begins by using a labeled dataset DL to train a 

classifier h. Once trained, the classifier also processes an 

unlabeled dataset DU, assigning pseudo-labels to the unlabeled 

examples based on its predictions.  

These pseudo-labeled samples XU
pseudo are then added 

back to the labeled dataset DL, expanding the training data and 

enabling the classifier to iteratively improve with larger, albeit 

partially pseudo-labeled datasets that include both human-

labeled data and machine-generated pseudo-labeled data. This 

cycle of training and pseudo-labeling continues over multiple 

iterations until a predefined stopping criterion is reached, such 

as a maximum number of iterations T or a convergence 

criterion, indicating stable performance. 

2.6.2. Graph-Based Methods 

Graph-based methods use data points as nodes and their 

similarities as edges, constructing a graph where labeled and 

unlabeled data interact to propagate label information across 

the graph [52]. For example, in social network analysis, in 

social networks like Facebook or LinkedIn, graph-based semi-

supervised learning is used to infer user attributes (e.g., 

interests, job titles) by modeling the network of user 

connections. Labeled user profiles can propagate information 

to unlabeled profiles based on network structure, improving 

predictions of interests or job roles. 

2.6.3. Generative Models 

Generative models attempt to model the joint distribution 

of the input features and labels, utilizing unlabeled data to 

better capture the underlying structure of the data [53]. For 

example, in medical imaging and medical diagnosis, 

generative models like Variational Autoencoders (VAEs) can 

be applied to tasks such as classifying types of tumors. With 

limited labeled MRI scans of tumors, the generative model can 

learn the distribution of both labeled and unlabeled images to 

generate new examples, improving the model’s ability to 

differentiate between benign and malignant tumors. 

2.6.4. Transductive Support Vector Machine 

Transductive Support Vector Machines (TSVMs) are 

extensions of Support Vector Machines (SVMs) tailored for 

semi-supervised learning. Unlike traditional SVMs, which 

rely solely on labeled data, TSVMs utilize both labeled and 

unlabeled data to enhance classification accuracy. They work 

by finding a hyperplane that separates the class while 

considering the distribution of the unlabeled data to define a 

more effective decision boundary. TSVMs aim to maximize 

the margin between classes using information from the entire 

dataset. Being transductive, TSVMs focus on the specific test 

set available during training, unlike inductive models that 

generalize to unseen data. Despite their computational 
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intensity, TSVMs have proven useful in areas like text and 

image classification, offering improved accuracy and 

robustness in scenarios where labeled data is hard to find. We 

can categorise it as a hybrid approach because it bridges the 

gap between supervised SVM and semi-supervised by 

incorporating unlabeled data. 

2.7. Reinforcement  

In reinforcement learning, the machine gradually updates 

some of its programs. But, the program automatically 

understands when to stop updating. That is, it realizes that the 

program may terminate on its own if it proceeds further, and 

then it starts to slow down on its own. A program moves 

forward when it understands that the state of the program is 

well and stops when it understands the danger. Reinforcement 

learning is the term for this kind of learning [1]. For example, 

consider an intelligent agent on which a reinforcement 

learning algorithm is applied. Agents can observe their 

surroundings, choose and carry out actions, and either receive 

rewards or penalties for receiving unfavorable ones. After that, 

it must figure out for itself the best course of action to 

maximize rewards over time. This is referred to as the 

principle in reinforcement learning. What an agent should do 

in a particular circumstance is specified by a policy. In other 

words, the trainer can offer a positive reward if the agent is 

trained to play a game. The game offers no reward in any other 

way, a positive reward when it is won and a negative reward 

when lost [2].  

2.8. Reinforcement Learning Algorithms and Tasks 

 RL algorithms, such as Q-learning, DQN, Policy 

Gradient Methods, and PPO, leverage techniques like value 

iteration, policy optimization, and experience replay to 

enhance learning efficiency and stability. Tasks in RL span 

from robotics control and autonomous navigation to 

algorithmic trading and real-time strategy games, where an 

agent must balance exploration-exploitation trade-offs to 

maximize cumulative rewards.  

Advanced RL frameworks integrate deep learning, 

model-based planning, and meta-learning to adapt to complex, 

high-dimensional environments with minimal supervision, 

pushing the boundaries of AI-driven decision-making. An 

excellent illustration of reinforcement learning is the AlphaGo 

program from DeepMind. It garnered media attention when it 

defeated world go champion Lee Seidl in March 2016. After 

analyzing millions of games and playing numerous games 

against itself, it discovered its winning formula. However, 

during the match against the champion, it ceased to learn. 

AlphaGo merely put the lessons it had learned into practice. 

Additionally, a lot of robots learn to move by using 

reinforcement learning algorithms. Q-learning, deterministic 

Q-learning, Monte Carlo methods, temporal difference 

methods, and SARSA are examples of reinforcement learning 

techniques frequently employed in various applications. A 

detailed taxonomy of RL is provided in Figure 29. 

 

 

 

 

 

 

 

 

 

 
Fig. 28 Reinforcement learning [1] 

 
Fig. 29 Taxonomy of reinforcement learning 
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2.8.1. Q-Learning (QL) 

Finding the optimal strategy for a given Markov Decision 

Process (MDP) is the aim of the model-free reinforcement 

learning algorithm Q-Learning. It learns by iteratively 

updating the values of state-action pairs, or Q-values, based 

on the observed rewards and transitions. Q-Learning uses a 

table called a Q-table to store and update the Q-values. The Q-

values represent the anticipated future rewards for carrying out 

a particular action in a particular state. Through iterative 

interactions with the environment and Q-value updates, Q-

Learning can converge to an optimal policy that maximizes 

the cumulative reward. 

Q-values, also known as action values, are a fundamental 

concept in reinforcement learning. In the context of Q-

Learning and related algorithms, Q-values represent the 

expected cumulative reward an agent can obtain by carrying 

out a specific action in a specific state. Formally, the expected 

total of future rewards the agent will receive by starting in 

state s, acting in a, and then following a particular policy is 

known as the Q-value Q (s, a) for a given state-action pair (s, 

a). The following is a common recursive definition of the Q-

value.  

Q (s, a) = R (s, a) + γ * max (Q (s’, a’)) (12) 

Where: 

 The immediate reward received when acting in state s. is 

denoted by R (s, a),  

 The discount factor, γ (gamma), establishes the relative 

importance of future rewards compared to immediate 

rewards. After action a in state s. s’ is the next state 

reached. max (Q (s’, a’)) represents the maximum Q-

value among all possible actions a’ in state s’  

By iteratively updating the Q-values based on observed 

rewards and transitions, reinforcement learning algorithms 

aim to find the optimal policy that maximizes the cumulative 

reward. The agent uses the Q-values to make action-selection 

decisions, often employing exploration-exploitation trade-offs 

to balance between trying out new actions and exploiting the 

knowledge gained so far.  

The Q-values are typically stored in a table called the Q-

table in discrete state and action spaces, while in continuous 

spaces, they can be approximated using function 

approximators like neural networks in algorithms such as 

Deep Q-Networks (DQN). For example, in optimal route 

planning, suppose there is a delivery robot that needs to 

navigate through a complex maze-like environment to deliver 

packages efficiently. Then, Q-Learning can be used to find the 

optimal path for the robot by updating Q-values based on 

rewards (e.g., reaching the destination) and penalties (e.g., 

hitting obstacles). The robot explores the environment, 

gradually learning the best actions to take in each state to reach 

the destination quickly. 

2.8.2. Deterministic Q-Learning (DQL) 

Deterministic Q-Learning is a variant of the standard Q-

Learning algorithm designed specifically for environments 

with continuous action spaces. Traditional Q-Learning, which 

works well for discrete actions, selects the action based on the 

maximum Q-value for each state. However, finding the 

maximum Q-value in continuous action spaces is not easy. To 

address this problem, DQL approximates the Q-values using a 

function approximator, such as a deep neural network. After 

receiving the state as input, the neural network produces the 

Q-values for each possible course of action. The action with 

the highest Q-value is selected for each state during training. 

2.8.3. Monte-Carlo Methods (MCM) 

Monte Carlo methods are a model-free, value-based class 

of reinforcement learning algorithms that learn by averaging 

the rewards obtained from complete environmental interaction 

episodes. Unlike Q-Learning, which updates the values based 

on each step, Monte-Carlo methods wait until the end of an 

episode to update the Q-values. The basic idea is to estimate a 

state-action pair's expected return (cumulative reward) by 

averaging the actual returns observed across multiple 

episodes. This approach is particularly useful when the 

dynamics of the environment are unknown or when the agent 

can only receive rewards at the end of an episode.  

2.8.4. Temporal Difference Methods (TDM) 

Temporal Difference Methods are a class of 

reinforcement learning algorithms that update the Q-values 

based on the observed rewards and the estimated value of the 

subsequent state. Unlike Monte-Carlo methods, which wait 

until the end of an episode, Temporal Difference methods 

update the Q-values after each time step. The update is based 

on the current estimate of the Q-value and the target value, 

which combines the immediate reward with the estimated Q-

value of the subsequent state. This technique allows Temporal 

Difference methods to learn online by progressively updating 

the Q-values as the agent interacts with the environment. 

2.8.5. SARSA 

SARSA is an on-policy reinforcement learning algorithm 

that stands for “State-Action-Reward-State-Action.”. It is 

similar to Q-Learning even though its update rule is different. 

When updating the Q-values in Sarsa, the following factors 

are considered: the current state, the action taken in that state, 

the reward received, the subsequent state, and the next action 

chosen in compliance with the policy. The update rule 

considers both the observed reward and the estimated Q-value 

of the next state-action pair. Sarsa is particularly well-suited 

for environments with stochastic transitions because it can 

adjust its policy in real time and learn directly from 

interactions. 

2.9. Ensemble Learning 

Ensemble learning is a machine learning fusion technique 

shown in Figure 30 that combines knowledge from several 
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learning models to enable more precise and effective decision-

making. Ensemble machine learning and statistics approaches 

combine several learning algorithms to produce better 

predictive results than anyone learning algorithm alone [54]. 

Ensemble methods, which train multiple learners and then 

combine them for use, boosting, and bagging as 

representatives, are one type of advanced learning technique 

[55]. An ensemble approach is typically far more accurate than 

a single learner, and it has already produced impressive results 

in a number of real-world tasks.  

The ensemble method teaches multiple students how to 

solve the same problem. Ensemble learning is distinct from 

traditional learning approaches that seek to generate a learner 

from training data. It is also referred to as committee-based 

learning or learning multiple classifier systems. Bias, 

variance, and noise are the primary causes of error in learning 

models [56]. Integrated machine learning techniques ensure 

the accuracy and stability of machine learning algorithms, 

which reduce these error-inducing factors.  

 

 

 

 

 

 

 

 

 

 
Fig. 30 Ensemble learning architecture [11] 

Ensemble learning is like this scenario where an 

individual wants to buy a laptop. Instead of directly 

purchasing the laptop recommended by the salesperson at the 

showroom, the person takes a more comprehensive approach 

to make an informed decision.  

He seeks opinions from friends, family, and colleagues, 

researches various portals to explore different laptop models, 

and visits review sites to gather more insights. In essence, he 

gathers multiple perspectives and reviews before concluding. 

This approach of considering diverse opinions and reviews to 

make a better decision can be linked to the concept of 

ensemble learning. Ensemble learning methods can be 

classified into three primary categories [57, 58]. 

2.9.1. Bagging 

Bagging involves training multiple decision trees on 

different subsets of the same dataset and combining their 

predictions through averaging. The term “Bagging” is derived 

from “Bootstrap AGGregatING,” emphasizing the use of 

bootstrapping and aggregation. Some examples of bagging 

methods include Bagged Decision Trees (canonical bagging), 

Random Forest, and Extra Trees. 

Bagging Algorithm 

1. Initialize empty list of models: models = [] 

2. for i = 1 to n_estimators do 

3.     Create bootstrap sample from the training dataset 

4.     Train a base model (e.g., Decision Tree) on the 

bootstrap sample 

5.     Add the trained model to the models list 

6. end for 

7. Initialize empty list of predictions: all_predictions = [] 

8. for each test sample in test_set do 

9.     Initialize empty list for sample_predictions =[] 

10.    for each model in models, do 

11.        prediction = model.predict(test_sample) 

12.        Append prediction to sample_predictions 

13.    end for 

14.    final_prediction = majority_vote(sample_predictions)  

 # For classification 

        or 

        final_prediction = average(sample_predictions)  # For 

regression 

15.    Append final_prediction to all_predictions 

16. end for 

17. return all_predictions 

 

2.9.2. Stacking 

Training various model types on the same dataset and 

using other models to Figure out how to best combine their 

predictions is known as stacking. Stacking techniques include 

super ensembles, blending, and stacked models.  

2.9.3. Boosting 

Iteratively adding ensemble members that alter the 

predictions of earlier models and produce a weighted average 

of those predictions is known as “boosting”. A family of 

algorithms known as “boosting” has the ability to turn weak 

learners into strong ones. Examples: Stochastic Gradient 

Boosting, Gradient Boosting Machines, and AdaBoost 

(canonical boosting).  

2.10. Neural Network  

An artificial neural network or neural network is a set of 

algorithms created to detect hidden patterns and relationships 

within data, operating in a way that mimics the human brain 

[59]. The Taxonomy of NN is in Figure 31. These networks 

are made up of interconnected neurons, whether natural or 

synthetic. Neural networks can adapt to changing inputs, 

delivering the most effective results without modifying the 

output parameters. It can give optimal solutions to nonlinear 

types of problems. Rooted in artificial intelligence, neural 

networks are becoming increasingly popular in designing 

trading systems due to their flexibility and learning abilities. 

It uses three or more layers.  The input layer receives input, 

one or more hidden layers process it, and the output layer 

generates the output from the preceding layer. Weight, 

summing, and activation functions are used in neural networks 

to predict or classify data based on input. Throughout the 

Learner 1 

Learner 2 

Learner 𝑛 

Combination 
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learning process, weight is used to assess each input feature's 

significance. It modifies the impact of each input on the 

neuron's output and regulates the influence of features. The 

more significant features are given more weight in order to 

increase their influence. In order to reduce the error between 

the expected and actual outputs, it is also utilized for learning 

and adaptation through the backpropagation process. The 

weighted sum of each neuron's inputs is calculated by the 

summing function.  

To provide the model greater flexibility in fitting the data 

for precise prediction, a bias term is applied in the summing 

function prior to applying the activation function. The neural 

network is made non-linear by applying the activation 

function.  

No matter how many layers the model has, it would act 

like a linear regression model without the activation function. 

It converts the summing function's output into a value that can 

either be used as the final output or passed to the following 

layer. The Figure below lists the various kinds of activation 

functions. These are some of the most widely used activation 

functions in deep learning and machine learning, each with 

unique properties and uses [60-62]. 

 Rectified Linear Unit (ReLU): The function outputs 0 for 

negative inputs and the input itself for positive values. 

 Softmax: Often used in classification, showing 

probabilities over a set of classes. 

 Sigmoid: A squashing function that maps any input to a 

range between 0 and 1. 

 Linear: A direct linear mapping. 

 Tanh: Maps inputs to a range between -1 and 1, showing 

an ''S''-shaped curve like the sigmoid but centered at zero. 

 Softplus: A smooth approximation of ReLU that outputs 

positive values for all inputs and is differentiable across the 

entire range.

 
Fig. 31 Taxonomy of neural network 
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Fig. 32 Neural network architecture 

 
Fig. 33 Various activation functions in NN 

2.10.1. Supervised Neural Network  

The supervised learning policy is the foundation of the 

Supervised Neural Network (SNN). It gains knowledge from 

labeled data, which ensures that every input data set produces 

accurate results. Using a training set, the network is trained to 

translate input data into the appropriate output. If there is a 

discrepancy between the expected and actual outputs, the 

neural network's parameters are adjusted and fed into the 

network once more. Feed Forward Networks (FNNs), which 

transfer data from input to output in a single direction, are used 

by supervised neural networks. It is good for classification and 

regression. Image classification is a typical example of SNN. 

FNN, CNN, RNN, LSTM networks, and DBNs are the basic 

types of SNN, and all use feed-forward network strategies. 

 
Fig. 34 Supervised neural network 

2.10.2. Unsupervised Neural Network 

Unsupervised neural networks learn from input data 

based on its structure and patterns without the need for label 

data. Neural networks create groups based on correlations 

with similar data. It is primarily employed for dimensionality 

reduction, association, and clustering. Common UNN types 

include autoencoders, SOMs, and GANs. 

 
Fig. 35 Unsupervised neural network 

2.10.3. Reinforcement Neural Network 

This is a goal-oriented model, aiming to maximize 

cumulative rewards over time. In this learning, the correct 

output is not provided; instead, it learns from the environment 

through the process of trial and error by receiving feedback in 

the form of rewards and penalties. Reinforcement learning can 

be used as a standalone algorithm in the traditional form; 

however, when neural network function is used in 

reinforcement learning, it is called a reinforcement neural 

network. 

It is also called deep reinforcement learning, using a 

neural network system. The detailed description and Figure 36 

are given in the section on reinforcement learning. Q-learning, 

Deep Q-Networks, Policy Gradient Methods, and Actor-Critic 

Methods are examples of reinforcement neural network 

models [1, 10]. 

 
Fig. 36 Reinforcement neural network 

2.10.4. Convolutional Neural Network 

CNN, also known as Convolutional Networks or simply 

Convnet, are widely used. Convolutional networks, which are 

multilayer perceptions, are appropriate for pattern 

classification. The most widely used deep learning 

architecture at the moment is this one. Deep learning has 

garnered attention recently due to its enormous popularity and 

efficacy.  
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Fig. 37 CNN architecture 

 
Fig. 38 Image classification using CNN [20] 

Since AlexNet's launch in 2012, interest in convolutional 

networks has increased dramatically. The researchers 

upgraded from an 8-layer AlexNet to a 152-layer ResNet 

move-on in just three years [63, 64]. Convolutional networks 

are currently used to model image-related issues. It has been 

effectively used in image processing, face recognition, natural 

language processing, recommender systems, and other fields. 

Its primary benefit is its ability to recognize significant 

features automatically without human oversight. For instance, 

it automatically learns distinct features for each class when 

presented with numerous photos of dogs and cats.  

The development of these networks is motivated by 

neurobiological principles, which date back to Hubel and 

Wiesel's groundbreaking research on the orientation-selective 

neurons in the visual cortex of cats. Yann LeCun and others 

were the first to invent it in the 1980s. One of the earliest real-

world uses of CNNs for handwritten digit recognition was 

LeCun's work, specifically the LeNet-5 architecture. LeCun 

and his group used an older concept based on ideas from 

David H. Hubel and Torsten Wiesel, who were awarded the 

1981 Nobel Prize in Physiology or Medicine for their 

groundbreaking 1968 paper. They looked into the visual 

cortex of animals and discovered links between smaller areas 

of the visual field and the activity of a tiny but distinct brain 

area. With greater degrees of translation, scaling, skewing, and 

other distortions, it is specially made to detect two-

dimensional shapes invariantly. The working policy of the 

four main components of the CNN above are as follows:  

 Input Layer: Like other ANNs, the input layer of CNN 

stores the pixel values of the input image, which are then 

sent into the network for processing.  

 Convolutional Layer: This layer computes the output of 

neurons attached to particular, localized areas of the input 

image in order to identify features. In order to create feature 

maps that emphasize patterns like edges or textures, each 

neuron computes the scalar product between its set of 

weights, a kernel made by random numbers with discrete 

values and the corresponding region of the input. Then, to 

add non-linearity, the Rectified Linear Unit (ReLU) 

activation function-which is frequently employed in 

CNNs-is applied element-by-element, converting negative 

values to zero while maintaining positive values. The main 

function of the ReLU layer is to provide nonlinear 

transformation to CNN for capturing complex patterns of 

images [20]. Different types of convolution and its 

applicability is explained in Table 1. 

 Pooling Layer: By down-sampling, the pooling layer 

shrinks the feature maps' spatial dimensions. By reducing 

the number of calculations and parameters, this procedure 

helps to avoid overfitting and increases computational 

efficiency. Usually, pooling keeps the most important 

aspects while eliminating the less crucial ones. Three types 

of pooling methods are commonly used in this layer: min, 

max, and global average pooling methods. 

 Fully-Connected Layer: The fully-connected layers receive 

the output from the convolutional and pooling layers and 

produce class scores based on extracted features, much like 

the structure found in conventional ANNs. The input image 

is then classified using these scores. Between these layers, 

ReLU activation functions are frequently used to advance. 

There are various types of convolution. Each convolution 

type plays a unique role in different applications, 

leveraging specialized patterns and data structures to 

optimize performance for specific tasks. 

Input Layer  

Raw Image Data  

Conv Layer 1  

Extract Edges & 

Basic Patterns  

Pooling Layer 1  

Reduce Size, 

Retain Features  

Cony Layer 2  

Detect Shapes & Complex 

Patterns  

Reduce Size, 

Focus on Key 

Features  

Pooling Layer 2  
Fully Connected 

Layer  

Combine Features 

for Classification  

Class Probabilities 

or Prediction 

Output Layer  
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Table 3. Different types of convolution 

Type Dimension Purpose Applications 

1D Convolution 1D Sequential patterns Time-series, audio, NLP 

2D Convolution 2D Spatial patterns in images Image processing, CNNs 

3D Convolution 3D Spatiotemporal data Video, medical imaging 

Transpose Convolution 2D/3D Upsampling, image reconstruction GANs, image segmentation 

Dilated Convolution 2D/3D Wider receptive fields Semantic segmentation, contextual learning 

Separable Convolution 2D/3D Efficient computation Lightweight models (e.g., MobileNets) 

Grouped Convolution 2D/3D Parallel feature learning ResNeXt, efficient deep learning 

Circular Convolution 1D/2D Periodic data patterns Signal processing with periodicity 

Convolutional Neural Network (CNN) Algorithm 

Algorithm CNN (X, Y, num_epochs, learning_rate): 

Input: 

        - X: training data points (image data) 

        - Y: corresponding labels (classification or regression) 

        - num_epochs: number of training iterations 

        - learning_rate: learning rate for optimization 

Output: 

        - Trained model (weights and biases) 

Step 1 : Initialize the CNN architecture 

  - Define convolutional layers, activation functions (e.g., 

ReLU), pooling layers, and fully connected layers 

Step 2 : Forward propagation 

  - Pass input X through the layers: 

  - Convolution -> Activation -> Pooling -> Fully 

Connected -> Output layer 

   - Compute the predicted output y_pred for each sample 

in X 

Step 3 : Compute the loss 

  - Use a loss function (e.g., cross-entropy for 

classification or MSE for regression) to measure the 

difference between y_pred and Y 

Step 4 : Backward propagation 

  - Use backpropagation to compute gradients of the loss 

with respect to the model parameters (weights and 

biases) 

Step 5 : Update the model parameters 

  - Use an optimization algorithm (e.g., Stochastic 

Gradient Descent) to update weights and biases 

Step 6 : Repeat steps 2-5 for num_epochs iterations 

Step 7 : Make prediction for a new data point x_new 

  - Pass x_new through the trained CNN to get the 

predicted class or value y_new 

    Return y_new as the prediction 

End Algorithm 

Table 4. Different ML algorithms and its application with pros and cons 

Algorithm 
Year of 

Invention 
Inventor Application Pros Cons Ref. 

Linear  

Regression 
1805 

Adrien-Marie 

Legendre 

Predicting sales, 

risk assessment 

Simple, interpretable, 

fast to train. 

Sensitive to outliers, 

assumes linearity. 
[19, 20] 

PCA 1933 Karl Pearson 

Image 

compression, 

exploratory  

data analysis 

Reduces  

dimensionality,  

helps with visualization, 

and eliminates 

multicollinearity. 

Loss of information 

assumes linearity. 
[28, 29] 

ANN 

1943 

(concept), 

1986 

Warren 

McCulloch, 

Walter Pitts, 

Geoffrey  

Hinton 

Image 

recognition, 

speech 

recognition, 

game AI 

Can model complex 

patterns, 

adaptable for a  

variety of tasks. 

It requires large  

datasets, is 

computationally 

expensive, and is difficult 

to interpret. 

[59-62] 

KNN 1951 
Evelyn Fix, 

Joseph Hodges 

Recommendation 

systems, 

classification 

 tasks 

Simple to understand,  

no training required. 

Computationally 

expensive,  

sensitive to irrelevant  

features and noise. 

[14,15] 

k-Means 

Clustering 
1957 Stuart Lloyd 

Market 

segmentation, 

image 

compression 

Simple, fast, and works 

well for  

simple clusters. 

Struggles with complex 

datasets, sensitive to 

initialization  

and outliers. 

[26, 27] 

Logistic  

Regression 
1958 David Cox 

Binary 

classification 

tasks, medical 

Works well for binary 

classification, 

interpretable. 

Assumes linear decision 

boundary struggles with 

large or non-linear 

[21] 
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diagnosis datasets. 

Naive  

Bayes 

2nd half of 

the 18th 

century 

Thomas Bayes 

(concept),  

others later 

developed. 

Spam detection, 

text  

classification 

Simple, fast,  

works well with  

high-dimensional data, 

interpretable. 

Assumes feature 

independence may struggle 

with complex datasets. 

[1] 

Decision  

Trees 
1963 Ross Quinlan 

Credit scoring, 

customer 

segmentation 

Easy to interpret, 

requires little data 

preprocessing, and 

handles both numerical 

and categorical data. 

Prone to overfitting, 

sensitive to small variations 

in data. 

[1, 9] 

Recurrent  

Neural  

Networks  

(RNN) 

1980 John Hopfield 

Natural language 

processing, time 

series analysis 

Effective for sequential 

data, captures time 

dependencies. 

Prone to 

vanishing/exploding 

gradient problems, 

struggles with long-term 

dependencies. 

[2, 65] 

Autoencoders 1980s 

Geoff Hinton, 

Yann LeCun, 

others 

Dimensionality 

reduction, 

denoising data 

Effective for 

unsupervised feature 

learning dimensionality 

reduction. 

Prone to overfitting, 

difficult to interpret, 

requires careful tuning. 

[30] 

Reinforcement 

Learning (Q-

Learning) 

1989 Chris Watkins 
Game playing, 

robotic control 

Good for sequential 

decision-making 

problems and learn 

optimal policies  

through trial and error. 

Slow to converge,  

can be unstable, 

and requires a large 

number of  

interactions with the 

environment. 

[1] 

Support  

Vector 

Machine 

(SVM) 

1992 
Vladimir 

Vapnik 

Text 

classification, 

image  

recognition 

Effective in high-

dimensional spaces, 

robust to overfitting  

with proper tuning. 

It can be slow, difficult to 

tune, and doesn’t  

work well with noisy data. 

[2, 18] 

Random  

Forest 
1995 Tin Kam Ho 

Fraud detection, 

feature selection 

Reduces overfitting 

compared to decision 

trees and handles large 

datasets well. 

Slower in making 

predictions,  

difficult to interpret  

individual trees. 

[25] 

AdaBoost 1996 
Yoav Freund, 

Robert Schapire 

Face detection, 

web search 

ranking 

Good accuracy, 

especially for simple 

classifiers, reduces bias. 

Sensitive to noisy data and 

outliers, it requires good 

weak  

classifiers. 

[57] 

DBSCAN 1996 

Martin Ester, 

Hans-Peter 

Kriegel 

Geospatial data 

analysis,  

anomaly  

detection 

It can find clusters of 

arbitrary shapes that are 

robust to outliers. 

Struggles with varying 

densities of clusters, 

sensitive to the  

choice of parameters. 

[1] 

Gradient 

Boosting  

Machines  

(GBM) 

1997 
Jerome H. 

Friedman 

Customer churn 

prediction, risk 

modeling 

High accuracy,  

performs well with 

structured/tabular data. 

Prone to overfitting, 

sensitive to noisy data, 

slow to train. 

[57] 

Long  

Short-Term 

Memory  

(LSTM) 

1997 

Sepp Hochreiter, 

J rgen 

Schmidhuber 

Language 

modeling, speech 

recognition 

It solves the vanishing 

gradient problem and is 

effective for long-term 

sequential data. 

Computationally 

expensive, slower to train, 

and difficult to interpret. 

[2] 

CNN 1998 Yann LeCun 

Image and video 

recognition, 

medical image 

analysis 

Excellent for image 

processing tasks, 

automatically extracts 

features. 

It requires large  

amounts of data and 

computation and  

is prone to  

overfitting on small 

datasets. 

[63] 
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LOF 2000 

Markus M. 

Breunig, Hans-

Peter Kriegel 

Fraud detection, 

network security 

It detects anomalies by 

considering local 

density and is  

adaptive to clusters. 

Sensitive to the  

choice of parameters,  

struggles with  

very large datasets. 

[46] 

t-SNE 2008 

Geoffrey Hinton, 

Laurens van der 

Maaten 

Visualizing  

high- 

dimensional data 

Great for visualizing 

high-dimensional  

data. 

Computationally 

expensive, it  

doesn’t preserve global  

structure well. 

[47] 

iForest 2008 

Fei Tony Liu, 

Kai Ming Ting, 

Zhi-Hua Zhou 

Anomaly 

detection, fraud 

detection. 

Effective for anomaly 

detection, handles  

high-dimensional 

datasets, and  

scales well. 

It can struggle with  

low anomaly 

contamination and may 

require  

parameter tuning. 

[43] 

Generative 

Adversarial 

Networks  

(GANs) 

2014 Ian Goodfellow 

Image  

generation, data 

augmentation. 

Effective for data 

generation tasks  

(images, text), can  

model complex 

distributions. 

Difficult to train, prone to 

mode collapse, requires 

large datasets. 

[53] 

XGBoost 2014 
Tianqi Chen, 

Carlos Guestrin 

Risk prediction 

and 

recommendation 

systems. 

Highly accurate, 

efficient, works  

well for large datasets, 

and handles missing 

data. 

Computationally 

expensive, can overfit 

without proper tuning, and 

less interpretable than 

simpler models. 

[56] 

Transformer 

Networks 
2017 

Ashish Vaswani 

et al. 

Natural language 

processing, 

machine 

translation. 

State-of-the-art NLP 

tasks capture 

 long-range  

dependencies well. 

Very computationally 

expensive, requires  

large datasets, and is prone 

to overfitting on small 

datasets. 

[98] 

LightGBM 2017 
Microsoft 

Research 

Large-scale 

machine learning 

tasks and 

recommendation 

systems. 

Faster training than 

XGBoost handles large 

datasets with low 

memory usage. 

It can be sensitive to 

overfitting and is not as 

interpretable,  

especially on small 

datasets. 

[99] 

CatBoost 2017 Yandex 

Classification 

tasks, particularly 

with categorical 

features. 

Works well with 

categorical features and 

requires less tuning than 

other gradient-boosting 

methods. 

Computationally intensive, 

less interpretable. 
[99] 

3. Data Preprocessing and Feature Selection 
Data preprocessing is essential for preparing data to build 

an effective model. Handling missing values, label encoding, 

normalization, and standardization techniques are used for 

data preprocessing. However, the usability of techniques 

depends on the nature of the data that will be processed. 

Another crucial phase in data preprocessing, feature selection, 

concentrates on the most informative variables to improve 

model performance. The Chi-Square Test, which assesses 

feature independence from the target variable, is best suited 

for categorical features with a categorical target, whereas the 

correlation coefficient for numerical features aids in 

determining linear relationships between features and the 

target. Since it identifies features with significant variance 

across target classes, Analysis of Variance (ANOVA) is 

helpful for numerical features with a categorical target. 

Mutual Information captures non-linear dependencies with the 

target variable and performs well for both continuous and 

categorical features. The iterative processes of forward 

selection and backward elimination add features according to 

how well they contribute to model accuracy. In contrast, 

backward elimination iteratively eliminates the least 

important features to enhance model performance. Based on 

model training, Recursive Feature Elimination (RFE) selects 

and ranks features by recursively eliminating the least 

significant ones. Lasso Regression is useful for high-

dimensional data because it reduces the coefficients of less 

significant features to zero. Tree-based techniques that rank 

features according to their significance in lowering impurity 

in decision nodes include Random Forest and Gradient 

Boosting. Linear Discriminant Analysis (LDA) is best suited 

for supervised dimensionality reduction when class 
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separability is crucial, whereas Principal Component Analysis 

(PCA) converts features into uncorrelated components, which 

is especially helpful with highly correlated features. Genetic 

algorithms allow the evolutionary search for the best feature 

combinations, making them ideal for large or complex 

datasets. By streamlining feature sets, these techniques 

enhance computational efficiency and model performance 

[11-13].

 
Fig. 39 Data preprocessing techniques 

 
Fig. 40 Feature selection techniques

4. The Global Trend in Machine Learning 
Machine learning is a global trend. We can gauge the 

popularity of each learning method by analyzing the number 

of published research papers in major databases like IEEE, 

Springer, and Scopus over the years. Tracking how often these 

terms have been searched globally on Google over time. 

Analyzing GitHub to observe the growth of repositories or 

projects related to these topics. Check surveys and reports 

(such as those by Kaggle or Stack Overflow) to see which 

techniques are most used by professionals in AI/ML.  

Looking into references in major AI frameworks like 

TensorFlow, PyTorch, or Scikit-learn documentation. The use 

of reinforcement learning has increased recently along with 

supervised learning is in higher rank and popularity of 90% 

recently; unsupervised learning has recently stable and 

popularity of 80%; semi-supervised learning is lower than 

unsupervised learning, and its index is 70% recently [65, 66]. 

The summary of the Machine learning popularity index is 

given in Figure 41. 

 
Fig. 41 Machine learning popularity index 
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5. Machine Learning Applications 
ML is revolutionizing many industries by empowering 

sophisticated systems to examine data, spot trends, and 

formulate well-informed forecasts. In the healthcare sector, 

ML assists in diagnosing illnesses by identifying 

abnormalities in medical images and forecasting patient 

outcomes. Financial institutions employ ML to identify real-

time fraudulent activities, evaluate credit risks, and deliver 

customized banking experiences. In retail and e-commerce, 

ML enhances personalized recommendations and streamlines 

supply chain management. Additionally, ML models interpret 

complex datasets in environmental science to predict weather 

patterns and monitor climate changes. By automating 

decisions and offering valuable insights, ML accelerates 

innovation and operational efficiency, driving the evolution 

toward a data-centric world. Figure 42 shows evidence that the 

medicine and healthcare sector are the most promising areas 

where ML technology has the largest share at 35%, the 

engineering sector showing considerable interest, making upto 

20%, the Financial sector and other fields occupy 15%, 

showing a balanced distribution, the agriculture sector is 

showing notable investment at 10% and 5% specialized 

nanotechnology [65-69]. Based on this statistic, some 

common applications are explained in the following section.

 
Fig. 42 Percentage of machine learning application area

 
Fig. 43 Applications of machine learning 
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5.1. Healthcare 

Machine learning applications have surged in the last few 

years, especially in predictive models for diseases such as 

heart disease, diabetes, and, more recently, COVID-19 [70, 

71]. Deep learning and federated learning have also been 

prominent, particularly for image classification and medical 

diagnostics, personalized treatment, and drug discovery. 

Machine learning can predict and diagnose various diseases, 

including neurodegenerative disorders like Alzheimer's 

disease and Parkinson's disease, as well as serious mental 

health disorders such as psychosis and depression.  

ML is used in genetic research to identify mutations 

linked to diseases, predict genetic risks, and understand 

complex genetic interactions. NLP is used for medical records, 

enabling information extraction from unstructured data. ML 

improved robotic surgery and assistance in real-time. It is 

estimated that every year robotic surgery is growing 18% 

globally. Remote patient monitoring and telehealth improve 

care access and reduce hospital visits. ML helps to reduce 

operation costs and waiting time by optimizing healthcare 

operations [72]. 

5.2. Cybersecurity & IoT 

From 2020 onwards, there has been significant interest in 

applying machine learning to network anomaly detection, 

fraud detection, and IoT data processing, especially with the 

growing number of connected devices. ML is utilized in threat 

detection and intrusion prevention by analyzing network 

traffic [73]. ML can classify and detect malware by analyzing 

code structure and attack patterns. Phishing detection using 

machine learning is a promising application that is available 

and widely used.  

Ml algorithms are used to manage authentication 

protocols to authenticate IoT devices. ML techniques, 

including anomaly detection, identify unusual traffic patterns 

or abnormal device behaviors within IoT networks, which are 

often targeted due to their limited security.ML models predict 

when IoT devices will likely fail, enabling proactive 

maintenance and reducing downtime, which is critical for 

uninterrupted network security.ML models can detect 

fraudulent activities within IoT ecosystems by analyzing user 

behavior, transaction patterns, and device activity. ML 

algorithms help identify and shut down botnets by detecting 

command-and-control traffic patterns. 

5.3. Engineering 

Especially in bioengineering, AI assists in designing 

medical devices and optimizing infrastructure projects. 

Moreover, ML is applied in predictive maintenance, quality 

control and inspection, building and structural health 

monitoring, energy optimization, smart manufacturing, 

robotics and automation systems, aerospace engineering 

design and optimization [74], NLP for engineering 

documents, civil engineering [75] and urban planning using 

ML by creating data-driven approaches that lead to safer, more 

efficient, and environmentally friendly urban environments 

[76]. ML is used in environmental engineering and climate 

prediction. In environmental engineering, ML helps monitor 

and manage resources like water, air, and soil by analyzing 

data from sensors, satellites, and other sources [78] to identify 

patterns, predict contamination events, and improve pollution 

control. Climate prediction assesses the impacts of climate 

change on ecosystems.   

ML techniques are applied in mechanical engineering to 

enhance manufacturing efficiency. ML in chemical 

engineering [79] by enhancing process optimization, 

accelerating materials discovery, and improving safety. In 

materials science [77], ML expedites the discovery of new 

chemicals and materials by predicting the properties of 

compounds before they are synthesized. This approach 

significantly shortens the development cycle for new materials 

in fields like pharmaceuticals, polymers, and battery 

technology. 

5.4. Financial Services 

Machine learning helps in fraud detection, algorithmic 

trading, and personalized financial services. By using machine 

learning techniques, we can identify financial fraud. Making 

quick decisions for loan approval by calculating credit score. 

It offers real-time solutions to make complex decisions. ML 

can save time and increase productivity. The customer gets 

24/7 services through chatbot and virtual assistant, and it 

reduces operational costs by the one-time implementation. 

Process automation reduces time and cost and improves 

productivity [80]. Network security is a vital issue in financial 

institutions, and ML can play a significant role in securing the 

system. Money laundering techniques can be prevented by 

ML-enabled monitoring [81]. 

5.5. Agriculture 

AI optimizes crop monitoring, yield prediction, disease 

detection, weed detection, livestock production, species 

recognition, soil management, water management, and 

sustainable farming practices. Weed is called one of the most 

important enemies of crop production. ML can be used for 

weed detection and management. ML can detect weeds with 

the help of sensors and then develop tools and robots to 

destroy them [82]. Crop quality identification for accurate 

pricing. ML can be used to identify the features related to crop 

quality. Different ML techniques are applied to observe the 

features and identify the quality.  

ML is used for species recognition. It can identify and 

classify the plant species automatically. It can reduce the 

human efforts and time. Farming complexes can use ML 

techniques to manage livestock. Sensors will be attached to 

the animals and observe their behavior and food habits. ML is 

also used to optimize livestock production. Agricultural main 

resources such as water and soil play a significant role and can 
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be monitored and managed by ML techniques. ML 

applications are adjusting water level, monitoring soil 

conditions, and weather prediction. 

5.6. Nanotechnology 

ML helps advance materials research and the 

development of nanoscale devices. ML can support 

automation in nanoscale manufacturing processes, improving 

efficiency, reducing costs, and ensuring precision. As ML 

algorithms become more adept at predicting biological 

responses, they could be used to design personalized Nano 

medicines tailored to an individual's genetic profile, 

enhancing treatment efficacy.  

Quantum computing, combined with ML, is expected to 

revolutionize nanotechnology by enabling more accurate 

simulations and predictions for molecular design and 

materials properties at the quantum level. This technology is 

rapidly growing in some specialized sectors like clean energy, 

pharmaceuticals, and semiconductors [83, 84]. 

5.7. Manufacturing 
In order to increase productivity and cut expenses, 

industry 4.0 uses AI for predictive maintenance, quality 

control, defect detection, process and supply chain 

optimization, product design and development, energy 

management, work safety and monitoring, and robotic 

automation. An emerging field is self-optimizing, in which 

machines learn from production data and modify parameters 

independently. ML is used in conjunction with digital twins, 

or virtual copies of physical assets, to simulate and optimize 

processes in real-time [85].  

An integrated supply chain with machine learning is more 

resilient and responsive to interruptions. Real-time monitoring 

and predictive analytics are two applications of machine 

learning that are expanding quickly. The strong use of ML 

techniques is seen in the transition to IIoT, cloud computing, 

additive manufacturing, and augmented and virtual reality 

[86]. 

5.8. Natural Language Understanding 
This application is widely used. Translation of language, 

voice-to-text, text-to-voice conversion, speech recognition, 

voice recognition, and sentiment analysis are all examples of 

NLP applications [13].  

Computers can understand human voices and translate 

them into text in real time and vice versa. Sentiment analysis 

is another popular ML application. Users give product reviews 

on blogs, forums, and social media such as Facebook, Zomato, 

Cars.com, etc. Based on these reviews, businesses and brands 

can recommend and improve their product [91]. Moreover, it 

also can analyze emotions such as happy, very happy, sad, 

angry, interest, not interest, etc.  

5.9. Some Other Applications 

Machine learning has become crucial for personalized 

content, predictive analytics, and customer segmentation. 

Over half of organizations are now using ML for these 

purposes. ML helps in optimizing power grids [89], predicting 

energy demand, and enhancing the efficiency of renewable 

energy systems such as wind and solar power. ML is critical 

in autonomous driving systems, traffic management, route 

optimization, and vehicle predictive maintenance. Machine 

learning with IoT is a promising application for monitoring 

and management of smart cities and transportation. AI-driven 

ML systems help in personalized marketing, customer service 

chatbots, inventory management, and demand forecasting.  

ML applications in education include personalized 

learning systems [90], grading automation, and intelligent 

tutoring systems. ML in recommendation systems is a very 

popular application nowadays. It is mostly used in interactive 

web environments, such as content recommendation and 

personalized shopping, which are widely used in e-commerce 

business [91]. Businesses can analyze customers’ shopping 

behavior, and they can suggest product recommendations.  

Recommend movies based on users watching behavior are 

widely used [92].   

Video and audio editing, gaming, and generating creative 

content such as music [93] or visual art [94] are also gaining 

popularity and being widely used. ML is used in surveillance, 

military robotics, and strategic decision-making. Moreover, 

ML assists in recruitment processes, employee performance 

tracking, and human capital management. 

6. Challenges and Research Directions 
Machine learning systems are deployed in many areas and 

offer opportunities in our everyday life. Despite these new 

opportunities, there are still many challenges in machine 

learning. In model generalization to unseen data, there is an 

underfitting and overfitting issue, specifically in deep learning 

models in noisy data, resulting in poor performance [95].  

Imbalanced datasets with limited labeled data hinder the 

effectiveness of supervised learning. Bias is another challenge 

due to the underrepresented of minority classes. The deep 

learning model requires more interpretable, human-

understandable rationales in decision-making. The vast 

datasets and complex machine learning models require more 

efficient algorithms, hardware acceleration techniques and 

quantum-inspired approaches to increase the scalability and 

computational efficiency [96].  

Lack of adaptation to a dynamic environment requires 

continual learning algorithms to update and evolve over time 

without requiring retraining. Data collection from diverse 

sources such as medical, agriculture, cybersecurity, IoT, and 

industrial sources is not candid, although collecting such 
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useful data is crucial for further analysis and decision-making. 

There should be concrete data collection methods to 

investigate real-world data. We produce huge amounts of data, 

which is called big data, but this data comes in many forms, 

such as structured, semi-structured, and unstructured. Data 

can be poor quality.  

It may contain missing values, unnecessary values, etc. It 

is a big challenge for machine learning to process and make 

unique formats. There are no unified methods to generalize 

this data. Therefore, we need concrete data preprocessing 

methods to use machine learning algorithms effectively in a 

particular domain. Selecting the proper algorithm for diverse 

datasets is another challenge. It can be a single-model or 

multi-model disagreement.  

Multi-model disagreement in machine learning is a 

phenomenon where different models trained on the same 

dataset provide diverse predictions for a given input. It is not 

because of the algorithm but because of the features of the 

datasets. Therefore, the results produced from this model can 

be inaccurate, unexpected and ambiguous for the application. 

Nevertheless, the combined model could be prominent for 

latent work in future [97]. 

 One must handle both the datasets and algorithms to get 

the best result by implementing machine learning in the 

application. It needs to consider the algorithm based on the 

nature and characteristics of the datasets before implementing 

the algorithm. Insufficient and poor-quality data are ultimately 

useless or have little value for the application. Datasets should 

have sufficient information to get insights for making 

decisions. Therefore, handling the datasets properly and fitting 

the appropriate algorithm can make robust machine learning-

based intelligent applications. Nevertheless, the inter-

disciplinary cooperation and continuous investigation and 

improvement of algorithms will be well-positioned to sustain 

its revolutionary influence in the field of artificial and machine 

learning. 

7. Conclusion 
In our study, we have conducted an extensive overview 

of machine learning and neural networks, a vital part of deep 

learning. We have explained the major algorithms that are 

most applicable in various fields. Understanding the 

fundamental concepts and their applicability will help the 

education and research community, practitioners, and research 

scholars gain insights into each algorithm, which has been 

discussed here. The popularity of the ML index shows that 

supervised learning is the most popular based on use and 

applicability.  

Moreover, we have discussed various applications and 

their suitable algorithms. Different techniques, such as dataset 

preprocessing and feature selection, have also been discussed. 

Various activation functions in neural networks have also been 

discussed to clarify their applicability in various experiments. 

Nevertheless, we identified challenges and future directions to 

make burly and highly accurate with biased-free intelligent 

applications. 
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