
SSRG International Journal of Electrical and Electronics Engineering Volume 12 Issue 4, 210-221, April 2025

ISSN: 2348-8379/ https://doi.org/10.14445/23488379/IJEEE-V12I4P115 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Lossless Compression of Grayscale Images via

Representation of Bit Planes as Minimized Boolean

Functions

M. Swathi Pai1, Shyam P. Joy2, Jacob Augustine3

1,3School of Computer Science and Engineering, Presidency University, Bengaluru, Karnataka, India.
1Department of Artificial Intelligence and Machine Learning,

NITTE (Deemed to be University) NMAM Institute of Technology, Karnataka, India.
2Department of Artificial Intelligence and Machine Learning, CMR Institute of Technology, Bengaluru, Karnataka, India.

1Corresponding Author : swathi.pai@nitte.edu.in

Received: 11 February 2025 Revised: 13 March 2025 Accepted: 15 April 2025 Published: 29 April 2025

Abstract - Electronic Design Automation (EDA) research has made great strides owing to the industrial growth in the VLSI

domain. Boolean function minimization is an important area in this domain. Many engineering problems can be formulated as

logic functions, and the tools available in this domain can be applied to solve them. Image compression is formulated as a logic

minimization problem by converting blocks of the bit planes of the grayscale image into Boolean functions and representing

them in minimal form. An encoding scheme called logic coding was developed by this approach, which extended the block coding

scheme. In this paper, we provide a comprehensive survey of research work that happened in this direction. A Python

implementation of the basic logic coding scheme is also presented. Experimental results reveal that there are many blocks in the

bit planes that are not compressible by these techniques. This data motivates us to explore options not tried by other researchers,

although it is not a very active area of research. Lossless compression of images is an important area for medical images, and

there is scope for further research. Medical images are an area where lossless compression is mandated; hence, it is still a

relevant problem to research. This exploration is done with the intention to enhance existing logic coding techniques by applying

other Boolean function representation schemes and a combination of various techniques to achieve better compression. Also, in

areas such as deep learning and Natural Language Processing where binary multi-dimensional space is used, Boolean function

representation could open further possibilities.

Keywords - Logic minimization, Boolean functions, Lossless image compression, PyEDA, Block coding.

1. Introduction
Compression of binary [1, 2], grayscale [3-5] and color

images [6, 7] images have been the focus of researchers for

decades. Large amounts of data are generated in the digital

representation of images. For efficient transmission and

storage of digital images, it is required to reduce or compress

the image data [8]. Several techniques for the compression of

image data were proposed, and consequently, many standards

were established to achieve the goal of compression with

interoperability [9-11].

Image data has considerable redundancy, owing to the

fact that adjacent pixels are very likely to be similar. Various

compression techniques proposed, attempt to capture this

redundancy in some way to achieve reduction of data. While

a particular technique does well on a certain class of images,

it may not do well in another class of images. Images with

smooth variations (pixel values change gradually) are

compressed well by most of the techniques, whereas regions

with rapid variations in pixel values are not handled easily.

There is a need for compression techniques that do not incur

loss of information, and those with Loss.

While the lossless techniques are mandatory in certain

applications such as medical images, lossy compression

techniques can be used in most generic applications. Lossy

compression techniques achieve better compression as they

allow information loss. Though a lot of research has happened

in this area, new techniques have been proposed. Converting

image pixels into logic functions and representing them in

compact form was one of the new lossless compression

approaches proposed [11] and further explored by many

researchers. We believe most of the lossless compression

algorithms capture mostly one-dimensional redundancy, while

the logic minimization approach captures redundancy in two

dimensions. As various methods available to represent logic

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

M. Swathi Pai et al. / IJEEE, 12(4), 210-221, 2025

211

functions are not explored for lossless compression of images,

we believe there is potential for further research. Exploration

in this direction may open up avenues for applying switching

theoretical techniques in other areas of image processing.

2. Bit Plane Encoding of Grayscale Image
Bit plane coding of grayscale images [6] involves

separating the individual bits of pixel values into distinct

binary images. Digital images are typically represented as a

matrix of pixel values. For an 8-bit grayscale image, each pixel

is represented by a number ranging from 0 to 255. Actually,

each of these elements may be depicted as being in an

individual ‘bit plane.’ For example, the Most Significant Bit

plane (MSB) includes the most significant bit of each pixel,

and the Least Significant Bit plane (LSB) includes the least

significant bit of each pixel. In the 8-bit per pixel image, there

are 8 different bit planes, each one of which forms a binary

image. In these planes, a bit is set as 1 if the corresponding bit

in the pixel’s binary setting is 1 and 0 if this bit is 0.

The higher bit planes (closer to the MSB) contain more

significant image information (such as contours and edges),

while the lower bit planes (closer to the LSB) contain finer

details. It reveals that the bit planes corresponding to the most

significant bits contribute most of the information regarding

an image. Lena is a widely used standard test image in image

processing. It is an 8-bit grayscale image that can be

decomposed into 8 distinct bit planes, as shown in Figure 1.

The 7th plane will show the most significant information, such

as the overall shape and structure of the image, while the 0th

plane will have less critical information, mostly fine details.

As you move from the MSB (7th plane) to the LSB (0th plane),

the planes contain progressively less information relevant to

human perception. In bit-plane encoding, the most significant

bit planes can be compressed using lossless techniques,

ensuring that no important visual information is lost.

The least significant bit planes may be compressed using

lossy methods or even omitted to reduce the data size while

maintaining acceptable image quality. Bit plane coding

effectively leverages the fact that not all bits in an image are

equally important for human perception. Separating the image

into bit planes and selectively compressing them makes it

possible to achieve efficient compression. Lena, with its

diverse range of details and textures, serves as an excellent

example to demonstrate the effectiveness of bit plane coding

in preserving critical information while reducing overall data

size. In general, these bit planes are compressed using Binary

Image Compression Techniques.

3. Block Coding of Images and Related Work

The block coding of binary images was proposed by Kunt

and Johnsen. In this approach, a two-level image is divided

into blocks of size n x m. A prefix code was used to code the

three types of blocks: all black, all-white, and mixed.

In the case of mixed blocks, the bits in the block are stored

as such after the code. Figure 2 shows an example of

generalized block coding proposed. Kunt and Johnsen also

extended this approach for grayscale images by splitting

images into bit-planes [6]

Fig. 1 8-Bit planes of lena

Fig. 2 Illustrating the principle of generalized block coding

Mohamed and Fahmy also suggested a binary image

compression technique involving tiling up the image into

mathematically efficient nonoverlapping rectangular zones. In

this technique, both the x and y coordinates of the diagonally

opposite corners of each rectangle are considered. This

method’s success mostly depends on how well the partitioning

algorithm performs.

4. Compact Representation of Boolean

(Switching) Functions
Switching functions or Boolean functions can be

represented in many ways. Minimization of Boolean functions

M. Swathi Pai et al. / IJEEE, 12(4), 210-221, 2025

212

is of great importance in VLSI design. Several minimization

approaches were developed for the compact representation of

Boolean functions [12]. Cube based approach was developed

by Brayton et al. [13, 14] and implemented in the ESPRESSO

minimizer primarily to handle Boolean function with a large

number of variables.

In Figure 3, a simple Boolean function of three variables

and its mapping onto vertices of the binary cube is shown

where the arrows indicate the cyclic sequence in which the

vertices are visited, starting from the origin (000 vertexes), for

assigning the bits of the data stream (Boolean function value)

to the vertices. The vertices mapped to a 1 are shown by the

dark dots. Minimization is achieved if the geometric

representation can be compactly described with less than 2k

bits. In this example, the 8-bit sequence can be represented by

a single cube, xx0.

Fig. 3 Mapping a bit stream to a 3-D cube

Another well-known representation for switching

functions is Binary Decision Diagrams [17]. BDD is an

abbreviation for Binary Decision Diagram, also sometimes

called a branching program, and it is a data structure

representing Boolean functions. But at a higher level, they

represent sets or relations in a compact form, which high-level

BDDs signify.

Unlike a lot of other compression techniques, it is

possible to perform operations on the compressed data using

BDDs without the need for data to be uncompressed. A

Boolean function in this format can be represented by a rooted-

directed acyclic graph containing decision nodes and two

terminal nodes.

These terminal nodes are usually numbered as 0,

designating FALSE, and 1, designating TRUE. An important

characteristic of a BDD is whether all the paths starting in the

root node correspond to the same type of variable order. It is

considered reduced if two optimization rules are applied. It is

consists of two steps:

 Join all isomorphic subgraphs, and

 Delete the node with all of the children nodes are similar

to each other.

When the general public uses the abbreviation BDD, it

usually means a Reduced Ordered Binary Decision Diagram

(ROBDD), where both ordering and reduction are reflected.

An ROBDD is, however, canonical, which means that only

one ROBDD exists for each function and order of variables. It

is, therefore, most useful when applied to tasks such as FE and

FT mapping. OBDD is a data structure similar to quadtree

[19]. These data structures are graphs with nodes and leaves,

which are used in the compact representation of Boolean

functions. BDD has been extended for multiple valued logic

functions also.

5. Logic Coding
Jacob et al. proposed logic coding of images by

augmenting block coding of binary images with logic

minimization. In this approach, the gray level image is divided

into bit planes and logic coding is applied to bit planes. In this

technique, picture information is represented as switching

functions in minimized form. Though multiple possible

representations of switching functions have been described in

the previous section, here it has been investigated only the

possibility of using minimized two-level cubical

representation of switching functions for representing picture

information. The technique has been named as Logic Coding.

Data compression is achieved primarily through a logic

minimization operation hence the name logic coding.

The steps of this compression scheme are illustrated in the

flowchart presented in Figure 4. In this method, the image is

segmented in its bit planes or binary images that are further

divisible in smaller dimensions of blocks 𝑛 × 𝑚, where 𝑛 and

𝑚 are integer powers of 2. These blocks are categorized into

three distinct types:

 All-black: blocks with only black pixels,

 All-white: blocks with only white pixels and

 Mixed: blocks with a combination of black and white

pixels

Simple codes can be employed as codes for the first two

types of blocks. In the case of mixed blocks, their bits are

considered as the output of Boolean switching functions which

can be in the form of a truth table. These functions are then

optimized using the well-known cube-based two-level logic

minimizer ESPRESSO [15]. The minimized cubes, which are,

in fact, the implicants (product terms) of the switching

functions, are coded with a code set that respects the prefix

property in order to give the compressed data. If this method

M. Swathi Pai et al. / IJEEE, 12(4), 210-221, 2025

213

does not produce compressed pixel data for a particular block,

the block’s pixels are saved without transformation. The

presented technique of partitions and using smaller blocks for

bit planes can be compared to the Block Coding method for

graphics described in [12] in section 3.

In Block Coding, all-white and all-black blocks are

termed 1-bit and 2-bit prefix code blocks. Small blocks of size

𝑛 × are of n×m bits and are stored in direct memory with a 2-

bit prefix code. This method uses a statistical sub-optimal

coding technique based on a high probability of generating an

all-black and an all-white block. Logic coding extends this by

compressing mixed blocks even further with Boolean

minimization; hence, it is more efficient than Block Coding.

Fig. 4 Compression scheme

A possible interpretation of this technique may be given

below. Generation of a switching function from a block of

pixels of a bit plane can be viewed as the process of mapping

the sequence of 2k pixels of the block to the vertices of a

hypercube of dimension k. This is the geometric representation

of a switching function where the set of vertices mapped to 1

(black pixels) constitutes the ON-set, and the other set of

vertices mapped to 0 (white pixels) constitute the OFF-set of

the corresponding switching function.

5.1. Preprocessing the Image
The idea of Gray coding helps to reduce the transitions on

the bit planes for the advantage of the lossless coder. Gray

coding increases the probability of all-black and all-white

blocks in the bit planes [12]. This is effective in compression

by the experiment. In this experiment, monochrome images

with 256 possible intensity values, each represented by 8 bits,

are considered. However, it is important to know that not all

256 intensity values may not be in an image. To optimize

compression, an additional preprocessing step can be

introduced, essentially recoding the intensity values. In this

step, the intensity values that show in the image are given

successive integer values beginning from 0 so that the values

are adjacent. This recoding process costs 256 additional bits to

indicate which intensity values are active and which of them

are inactive. When converted using dual port RAMs, these

intensity values may be subjected to Gray coding for better

compaction after recoding.

An example can be used to explain how this recording is

done. Example: Consider an image represented by 3 bits/pixel

whose pixels can have 8 possible gray values. Suppose only 4

gray levels appear on a particular image, say 0, 3, 4, 5. If we

can map these gray levels to 0, 1, 2, and 3 and replace the

image's pixel values with the new values, the recoded image is

obtained. Only pixel values ranging from 0 to 3 are present on

the recorded image, and hence, 2 bits/pixel is sufficient. In

other words, the process of recoding has helped to reduce the

number of bits/pixels from 3 to 2. The information regarding

the gray levels present and absent can be indicated by 8 bits

i.e., 10011100. The presence of a gray level is indicated by 1

and absence by 0.

5.2. Function Generation and Logic Coding of Mixed Type

Blocks

In the switching-theoretic approach, there is a block of

mixed type of size 𝑛 × 𝑚 is converted into a Boolean

switching function with log2(nm) variables. The bitstream of

n x m pixels is considered as the output of the Boolean

function. The dimensions n and 𝑚 are selected as integer

powers of 2 to be sure log2(nm) it is an integer. The

computation of the truth table for the switching function is

done by placing the pixels in the block and using gray codes

to represent the minterms of the function. This is done to

ensure that physically neighboring pixels are associated with

neighbouring minterms, helping in the function minimization

M. Swathi Pai et al. / IJEEE, 12(4), 210-221, 2025

214

process. Clusters of 2𝛼 logically adjacent minterms form α-

cube therefore, reduces the complexity. The scanning is done

in row-wise order, with the orientation of scanning being

opposite for successive rows (as shown in Figure 5(a)) so that

the pixel at the edge of each row is mapped onto the successive

minterm in the following logic sequence. In Figure 5 there is

an illustration showing how the process of converting a 4 × 8

block of 32 pixel arrangement with 32 binary values into a

switching function of five variables. An example of this

scheme is given in Figure 5(a) for a mixed-type block from a

bit plane.

Fig. 5 Function generation and logic coding

As seen in the Figure 5(b), Gray code is applied to

allocate minterms to the pixels to convert to Boolean

switching function. Figure 5(c) shows the Karnaugh map

representing the offset minterms, and the function is made

simple by grouping these minterms into cubes. As shown in

Figure 5(d), ON-set and OFF-set cubes minimized using

ESPRESSO logic minimizer are presented along with the

alphabet count. For a specific function corresponding to a

pixel block, the count of cubes in the minimized ON-set and

OFF-set is different.

The set with a smaller number of cubes is chosen to

encode because ON-set and OFF-set represent the same

Boolean function. Bits are included in the block header to

specify which set; ON-set or OFF-set has been used for the

compressed stream. This choice makes the representation of

data more efficient. In this example, the OFF-set has a lesser

number of cubes and, hence, is chosen for encoding. Figure

5(e) shows the particular allotment of prefix codes 0, 10, and

11 to the cube alphabets 0, 1, and X based on the frequency of

occurrence of the symbols in cubes of function corresponding

to the block. The number of bits required to represent the 32-

pixel block is reduced from 32 bits to 15 bits plus overheads,

using logic coding. The total bits required to represent the

blocks are shown in Figure 5.

5.3. Format of the Compressed Image

The compressed image format has a global header that

indicates the size of the image and, if there are any, a 256-bit

overhead, which indicates how intensity values have been

recoded during preprocessing. This overhead is missing if

recoding is not done. Many blocks in a bit plane are often

compressible through logic minimization or because all the

bits are black or white; there are times, however, that a block

cannot be compressed. This, actually, can cause a net increase

for the entire bit plane when encoded. Such cases are more

frequent in the planes corresponding to the two or three LSBs.

Fig. 6 Format of encoded block

In such cases, the entire bit plane is stored as it is (without

compression) in the compressed file. A two-bit global header

associated with each bit plane indicates whether it is in the

original or compressed form. These two bits indicate whether

a bit plane is all-black, all-white, logically compressible, or

incompressible. For each logically compressible bit plane, the

blocks are encoded in the specific format shown in Figure 6.

The block header bits are interpreted as follows. The first two

bits indicate the block type and are interpreted as follows:

• 00: all-black block

• 01: all-white block

• 10:compressible block (minimization yields

compression)

• 11: incompressible block (minimization fails to compress

the block)

For all-black and all-white blocks, only the first two bits

are present. In the last case(type 11) of an incompressible

M. Swathi Pai et al. / IJEEE, 12(4), 210-221, 2025

215

block, the n x m bits of the block are stored directly after the

2-bit code for the block type. If the block is compressible by

logic minimization (type 10), then the next one-bit field,

phase, indicates whether the minimized ON-set or OFF-set is

selected, as indicated below:

• 0: ON-set

• 1: OFF-set

The code allotment field, 1 or 2 bits in length, fixes prefix

codes to the cube alphabets 0, 1, and X. This allocation is

dynamic, meaning the prefix code set is used for each block.

{0,10,11}, where the single-bit code 0 is linked to the

character most frequently used in string s. This approach

improves the compression because it prioritises the most

frequently occurring alphabet. These codes could be assigned

in three ways depending on the degree of distinction and type

of analysis, as described in Table 1. A special prefix code is

used to show which of the three applicable arrangements

relates to the block in question. Additionally, the p-bit field is

caused to convey the number of cubes, and it defines the

amount of minimized cubes in the ON-set or OFF-set of the

block according to the phase bit field.

Table 1. Prefix code allotment to symbols

Allotment Indicator
Code Allotment

0 1 X

0 0 10 11

10 11 0 10

11 10 11 0

The p-value varies between 1 and 6 in the experiments,

depending on the block size. The encoded cubes are placed

after this. For example, for the block shown in Figure 5, the

bits in the encoded block are as follows. Since the block is

mixed type and is compressible, the first two-bit field will be

10. As the OFF-set is smaller, that would be chosen for

encoding making the phase bit 1. Since the cube alphabet 0 has

the maximum frequency in the OFF-set cubes, we will choose

the first of the 3 possible code allotments for the cube alphabet.

In the case of a 4 x 8 block, more than 3 cubes generally fail

to produce any compression. Hence, p = 2 bits will be

sufficient to indicate the number of cubes. Finally, the two

OFF-set cubes, X0X01, and 0X001, are encoded. The

compressed format, therefore, is 10,1,0,10,11011010,

0110010, and consists of 21 bits, whereas the original block

has 32 bits.

5.4. Decompression Scheme
The bit planes are recovered from their compressed form

by decoding the coded blocks of each bit plane. Recovery of

the pixels is obvious in the case of all-black and all-white

blocks and incompressible mixed-type blocks since they are

stored without applying logic minimization.

For decoding logic-coded blocks of a bit plane, the values

of the corresponding minimized function for all possible

minterms of the block are reconstructed. This is done using the

cube subsuming operation whereby the computed values are

placed in respective pixels on the block. If a minterm is

contained in any cube in the minimized ON-set (OFF-set) of

the block, the corresponding pixel is given the value of 1 (0).

Otherwise, the pixel is set to a value of 0 (1). It is also possible

to view this decoding process as a reverse of the truth table to

minimize the switching function.

Figure 7 illustrates the above recovery process that

explains how, from a minimized cubical form, through the

process of cube subsuming, an image block can be

reconstructed. An example of a 4×8 block is given in Figure

7(a). The block type and phase bits indicate that the block is

minimized and the OFF-set cubes have been encoded. From

the knowledge of the code allotment to the cube alphabets and

the number of cubes, the encoded OFF-set cubes can be easily

recovered, as shown in Figure 7. To expand the function to its

truth table form, the minterms of the function using a Gray

counter are generated and check whether each minterm

subsumes the minimized cubes of the OFF-set. If a minterm

subsumes any of the cubes in the OFF-set the function takes

the value 0 for the minterm and this value is assigned to the

corresponding pixel in the 4x8 block. All minterms that do not

subsume the OFF-set (and hence the corresponding pixels)

evaluate to 1.

Fig. 7 Decoding of a logic-coded block

5.5. Bits Required to Code Logically Compressed Blocks
The bits required to represent the cubes in the case of an

n x m pixel block can be computed as follows. Let the number

of minimized cubes of the N variable function to be encoded

be C (0 ≤ C ≤ 2N−1) where N= log2(nm). The symbols 0, 1,

M. Swathi Pai et al. / IJEEE, 12(4), 210-221, 2025

216

and X of the cubes will be coded using the prefix codes 0, 10,

and 11. The bits required to represent the cubes will vary

depending on the frequency of occurrence of the cube

alphabets. The symbol with maximum frequency is allotted

the one-bit code and the other two-bit codes. Let n1 be the

count of the alphabet with maximum frequency and n2 and n3

the counts of the other two alphabets for the C cubes to be

encoded. Now the number of bits BITCOUNT required to

code the cubes can be written as,

BITCOUNT = n1 + 2 × (n2 + n3) (1)

Based on this calculation, the upper and lower bounds of

the bit requirement, excluding overheads, can be easily

computed to represent an n x m block logically minimized to

C cubes. It is obvious that n1 + n2 + n3 = CN

The Upper Bound (UB) corresponds to the situation when

all the symbols are equally likely or the frequency of

occurrence of the symbols is the same i.e., CN/3. So the upper

bound is,

𝑈𝐵 =
𝐶𝑁

3
+

2𝐶𝑁

3
+

2𝐶𝑁

3
= 1.67 𝐶𝑁 𝑏𝑖𝑡𝑠

The possible Lower Bound (LB) occurs when only two

of the 3 possible symbols occur in the C cubes, and each

symbol can be coded with only 1 bit/symbol, i.e., LB = CN

bits.

6. Review of Related Literature
Agaian et al. [20] presented a lossless compression

technique by extending the logic coding approach, drawing

ideas from the lossy compression technique, where transform-

based techniques are used. In their approach, the steps

involved are pre-processing, image segmentation into blocks

and bit planes, followed by transform and encoding.

Preprocessing consists of linear prediction, histogram

compression by zero probability removal and gray coding of

intensities. After these steps, a transform-based technique

developed by authors [3] is applied.

Yang et al. [16, 21] proposed a lossless image

compression approach using multilevel logic synthesis instead

of two-level minimization. Pre-processing and other entropy

coders are used. Experimental results are provided on several

test images. The authors concluded multilevel minimization

do not offer compression improvements over two-level

minimizers.

Starkey and Bryant [22] explored an approach of using

OBDD to represent images with the intention of achieving

compression. The number of nodes and bits required to store

the ROBDD representation of the image is explained. A

comparison of compression results achieved for test images

using bintree and ROBDD is presented, and it is concluded

that ROBDD gives better compression. Authors also present

how a sequence of frames similar to the video can be

represented efficiently by using ROBDD, indicating the

possibility of achieving video compression.

Villarroya and Nebot [23] presented a lossless

compression technique using an OBDD representation of the

Boolean function generated from binary images. Their

approach is based on the original idea of Starkey et al. [22],

further enhanced with a more efficient encoding scheme for

OBDD. Also, it is argued that the minimization of the Boolean

function in OBDD representation is less compute-intensive

compared to other methods of logic minimization presented

earlier in this paper.

The authors also presented a method to use sequential

logic instead of combinational logic to represent Boolean

functions generated from binary images. OBDD

representation of sequential functions is used. Experimental

results using standard CCITT [24] fax images are also

presented. P. Mateu et al. [25] proposed a method wherein the

image is represented as a sequential logic function and

minimized to obtain its compact representation. Boolean

functions are represented using OBDD to reduce the cost of

computation. OBDD of sequential function is obtained,

reduced and then coded efficiently to reduce redundancy.

Luca et al. [28] presented data compression via logic

synthesis. This approach synthesises the logic core to produce

the given data string. Authors draw the idea from Kolgomorov

complexity wherein the shortest program to generate the given

bit string is found. This approach finds the logic function that

generates the given binary data. Further, logic synthesis

techniques are used to minimize this logic function and

eliminate redundancy. Results are presented with experiments

done on different benchmark data such as linear, linear plus

noise, quadratic, and Random (XOR intensive).

Falkowski [26] presented an approach for binary image

compression extending logic coding combined with Reed-

Muller spectra. In his approach, the mixed blocks are

converted to a Boolean function and a generalized approach

that combines logic coding with other techniques of Reed-

Muller weights-based patterns. The author combines logic

coding (cubes), minterm coding, walsh, triangular, Reed-

Muller (GPMPRM) transform and reference row technique in

this approach. In this approach, the image blocks are divided

into sizes varying from 8x8 to 4x4 based on criteria developed

and different coding techniques are applied. The author

implemented the technique in C language and tested it on

standard CCITT images. Results are compared with

techniques using OBDD1 [22] and OBDD2 [17]. Falkowsky’s

approach uses only switching theoretic techniques, whereas

the OBDD2 approach uses arithmetic coding for the last phase.

M. Swathi Pai et al. / IJEEE, 12(4), 210-221, 2025

217

Further, Falkowski presented a lossless compression

technique for grayscale images using a compact representation

of logic functions [27]. This is an extension of the author's

technique for binary images [26]. In this approach, the

grayscale image is subjected to prepossessing steps of file

extraction, recoding of intensitiesand predictive coding.

The GAP predictor, used in the CALIC [28], is used for

interior pixel prediction in an image. This predictor is

adaptively based on the intensity gradients around the target

pixels, thereby improving its predictive capability. After that,

the grayscale image is segmented into bit planes [6] that reflect

the intensity values of the image within the ranges of 0 and

255.

The author presents a set of coding schemes to encode the

bit planes. As a first step, the transition count of pixels along

the horizontal and vertical directions is measured. Depending

on this count, the bit-plane is encoded as such, using minterm

coding or dividing it into blocks of size 8x8 pixels and code.

If segmented into blocks, a coding scheme is devised to have

5 types.

These are 8x8 blocks or further subdivided in the

combination of 4x8 and 4x4 based on transition count and an

empirical threshold. Variable length headers are also designed

to represent the type. A block or sub-block may be coded using

any of the following schemes.

They are minterm coding (if the number of 1s is very low),

all white blocks indicated by headers, and coordinate coding.

At a block size of 4x8, if appropriate based on the count of 1s,

Multiple-Valued Logic (MVL) product term encoding. If the

block is incompressible, it is further divided into 4x4, and any

of the following approaches are used depending on the count

of 1s. They are uniform block, minterm coding, pattern coding,

MVL product term, reference row technique and

incompressible.

In pattern matching, four possible patterns are indicated:

Walsh, Reed-Muller, Triangular, and Special. The 4x4 block

code can have direct match, inverse match, Direct match with

one correction, and inverse match with one correction. The

decompression technique is straightforward. Experimental

results are presented for standard images and compared against

well-known techniques such as Winzip, BPTC, LOCO, and

S+P. Some of the images the proposed technique outperforms

established techniques.

We feel this technique achieves good results, using too

many combinations of methods and does not explore many of

the available Boolean function manipulation techniques. We

would like to explore purely switching theoretic techniques to

replace pattern-matching techniques. Behrouz Z et al. [29]

implemented image compression using logic minimization and

compared results. Their system is called YALMIC. The

picture data is changed with logical operations like AND, OR,

and XOR. These transformations are used on pixel values or

picture areas to encode data in a more compact and efficient

fashion.

The converted picture data is expressed as Boolean

expressions, which are built around logical actions between

pixels or image components. Each phrase represents a certain

feature of the picture data. The produced Boolean expressions

are then analyzed using Boolean minimization techniques.

These approaches seek to simplify expressions by minimizing

duplication and complexity, while preserving the critical

information necessary for accurate picture reconstruction.

The minimized Boolean statements encode the picture

data. The technique compresses images while keeping fidelity

by lowering expression size and complexity. The encoded

representation is decoded during picture reconstruction by

reversing the logical changes and rebuilding the original image

data using the reduced Boolean expressions.

This approach guarantees that the rebuilt image closely

resembles the original image while minimizing data loss.

Overall, the paper’s compression technique uses digital logic

concepts, namely logical transformations and Boolean

reduction, to produce effective picture compression while

maintaining image quality. The specifics of the algorithm may

differ depending on the implementation details and

optimizations used by the authors.

N Kumar and S Gupta [30] presented a lossless

compression technique for Grayscale images using logic

coding and further enhancements. The image is subjected to

pre-processing of prediction, bit-plane splitting and

partitioning into rectangular blocks. The blocks of pixels are

converted to boolean functions and minimized using the

Quine-McClusky technique.

The predictor employed in preprocessing is MED, which

is used in LOCO-1 (Low Complexity Lossless Coder [31]).

Results are presented using standard images and compared

against UNIX compress (LZW) and JPEGLS [32] based on

LOCO.

El Qawasmeh [33] describes creating and analysing a

unique compression approach based on Boolean reduction.

The suggested compression approach starts by expressing data

as Boolean expressions, with each bit or set of bits acting as a

variable in the equation. Boolean minimization methods, such

as Quine-McCluskey or Espresso, are then used to simplify

these expressions while retaining the original data semantics.

Experiments with diverse datasets, such as text, photos,

and sensor data, are used to assess the compression technique’s

performance. Compression ratios, compression speeds, and

reconstruction accuracy are tested and compared to baseline

M. Swathi Pai et al. / IJEEE, 12(4), 210-221, 2025

218

procedures. The experimental findings show that the suggested

compression approach based on Boolean minimizations

provides considerable compression ratios for many data types.

Furthermore, the compression process is competitively

fast, making it suited for real-time operations. Reconstruction

accuracy has also been demonstrated to be good, showing low

data loss during compression and decompression. Compared

to standard compression methods, the suggested methodology

outperforms them regarding compression efficiency and

computing complexity.

7. Experimental Results
Both mechanisms of the Logic Coding compression and

decompression was done in Python 3.12 using LINUX

operating system. The methods were tested with standard test

images of Lena, Barbara, Bridge and Cameraman. ESPRESSO

2.1 was used, which is available in a Python package PyEDA

(https://pyeda.readthedocs.io/en/latest/).

Table 2 below also presents the results of the compression

experiments done with fixed block sizes. The table also

compares Logic Coding and JPEG’s lossless mode in terms of

performance and advantages of the proposed method.

Compression Ratio is calculated using the formula:

Compression Ratio =
Size of an original image

Size of compressed image

For comparison, the PVRG-JPEG Codec 1.1, developed

by the Portable Video Research Group at Stanford University,

was utilized (available at havefun.stanford.edu:/pub/jpeg/JPE

Gv1.2.tar.Z). JPEG was run in its lossless mode, with seven

possible predictor types being explored. Figures 3 and 4 below

depict the minimum and maximum attainable vertical

compression ratios during the above tests in Table 2.

The results obtained by Logic Coding are comparable to

JPEG lossless; however, it may be pointed out that JPEG

always employs a decorrelation scheme based on DPCM on

the original image (one of the 7-predictors is used), whereas

this scheme does not use any decorrelation. Many techniques

in the switching theoretic approach (BDD, handling inclined

edges, etc.) are yet to be tried.

The motivation for this experiment is to lay the

foundation for developing a compression technique using only

switching theoretic techniques and build further from here by

deploying new approaches for handling incompressible

blocks. Also, increasing the block size by joining blocks after

compression is another approach we are exploring now.

Table 2. Summary of compression results

Image Lena Barbara Bridge Cameraman

Logic Coding

Compression

Ratio
17.4 13.2 19.4 19

Compression

Time (s)
139.6 544.7 537.5 132.9

Decompression

Time (s)
0.1 0.36 0.53 0.10

Block Coding

Compression

Ratio
12.6 1.8 13.8 17.5

Compression

Time (s)
4.6 5.0 4.5 4.7

Decompression

Time (s)
2.6 2.7 2.6 2.5

PVRG-JPEG

Compression

Ratio (%)

22.7-

29.4

6.7-

13.7

24.9-

32.9
30.7-38.1

Compression

Time (s)
0.4 0.4 0.4 0.4

Decompression

Time (s)
0.3 0.3 0.3 0.3

Gray

Levels
230 216 208 120

The time, which is reported as the compression time,

contains the preprocessing phase as well. Regarding the

influence of the proposed logic coding method on CPU time

consumption for compression, it should be stated that the

corresponding indices are comparatively high presently. This

is more so because ESPRESSO in PyEDA is used on a

standalone basis, thereby entailing a lot of overhead in the

form of communication and file management.

An order-of-magnitude improvement in speed can be

expected by integrating ESPRESSO with our code. It is also

possible to create a logic minimizer optimized for this purpose.

For the time being, our focus is to create a compression

scheme based solely on switching theoretical techniques.

Decompression is faster than compression because the cube-

subsuming operation that needs to be performed is not

complex.

This variation in processing time is evident from the data

shown in Table 2. However, it must be pointed out that speed

was not our primary concern, and it is possible to accelerate

the compression and decompression steps significantly with a

more efficient and fine-tuned implementation.

M. Swathi Pai et al. / IJEEE, 12(4), 210-221, 2025

219

Table 3. Compression ratios and statistics for bit planes

Row Bit Plane s7 s6 s5 s4 s3 s2 s1 s0

1 Block size (n x m) 8 x 4 8 x 4 8 x 4 8 x 4 8 x 4 8 x 4 8x4 8x4

2 All-black blocks (%) 53.1 23.1 14.5 6.6 0.5 0.0 0.0 0.0

3 All-white blocks (%) 17.3 21.6 8.1 4.0 0.4 0.0 0.0 0.0

4 Logically compressible (%) 26.6 43.1 49.5 43.8 27.1 5.1 0.8 0.7

5 Logically incompressible (%) 2.8 12.0 27.7 45.4 71.8 94.8 99.1 99.2

6 Compressed to 1 cube (%) 8.4 10.0 10.4 6.64 2.3 0.04 0.0 0.0

7 Compressed to 2 cubes (%) 8.3 11.8 13.2 9.2 4.4 0.2 0.0 0.0

8 Compressed to 3 cubes (%) 6.0 11.1 13.0 12.5 7.5 1.0 0.0 0.1

9 ON-set encoded (%) 16.4 24.2 30.7 20.7 14.4 2.6 0.3 0.3

10 OFF-set encoded (%) 10.2 19.0 18.8 23.1 12.7 2.5 0.5 0.4

11 1 isolated minterm (%) 2.9 2.0 3.2 2.0 0.6 0.0 0.0 0.0

12 2 isolated minterms (%) 2.0 2.3 2.5 0.7 0.6 0.0 0.0 0.0

13 3 isolated minterms (%) 1.3 1.9 3.3 1.3 0.8 0.0 0.0 0.0

14 Total compression ratio for the bit plane (%) 69.4 45.3 20.1 2.3 -5.8 -6.3 - -

15 Compression ratio for block coding with same block size (%) 58.9 32.5 9.6 -3.3 -6.3 -6.3 - -

16 Bit plane compressible by logic coding? YES YES NO NO NO NO NO NO

Overall compression ratio for logic coding (%) (assuming expanding bit plans are stored as such) 17.1

Table 3 gives various statistics on the test images. The

statistics for the no pre-processing cases (binary coding) for

the image Lena are given. No data is provided for the two or

more least significant bit planes of each image, which are

neither compressible by logic coding nor block coding. The

second row gives the percentage of blocks (out of a total 65536

/ (n X m)) belonging to the all-black and all-white category in

each bit plane.

Kunt’s block coding scheme exploits this component. The

percentage of all-black and all-white blocks compressible and

incompressible by logic coding are given in rows 2 and 3,

respectively. The compression ratio computed for logically

compressible blocks (excluding all black and white blocks) for

each bit plane is given in row 4 to indicate the contribution of

logic coding alone.

This is computed using the total number of bits for such

types of blocks in uncompressed form and compressed form.

The existence of a large percentage of logically

incompressible blocks, especially on the lower bit planes,

suggests the possibility of compressing them using other

switching theoretic techniques. Statistics of the blocks

compressed to 1, 2, and 3 cubes are given in rows 7, 9, and 11,

respectively. Though in the case of block sizes of 8 x 4 pixels,

more than 3 cubes in minimized form will not lead to

compression, the percentages of such types of blocks are not

given in the tables.

Logic coding is more successful if the proportion of

blocks compressed to one cube constitutes a larger portion due

to the increased bit saving in such cases. There are cases where

the blocks contain only a few logically isolated pixels (black

or white). Logic minimization has no effect in the case of such

blocks as the isolated pixels correspond to minterms, which

cannot be combined into larger cubes. The percentage of such

types of blocks (which are minimized to 1, 2, or 3 isolated

minterms) are also shown in the tables (rows 13, 14, and l5).

Simpler cube encoding of these cases is possible as the

minimized cubes consists only of minterms which have only

two symbols, 0 and 1. A modification in the coding scheme to

take advantage of this factor is considered. When the

percentage of such types of blocks is significant, special

attention is required to avoid wasting bits.

The average number of cubes per logically compressible

block indicates the nature of compressible blocks. This count

increases as the compressibility of the bit planes through logic

coding decreases. The exact measure of the contribution of

logic coding using a two-level minimization approach is

indicated by the portion of the blocks that are logically

compressible, excluding the blocks with isolated minterms and

the corresponding compression ratio obtained. As logic

minimization in such cases does not contribute beyond what is

possible by coding the coordinates of the pixels, this

differential measure helps to clearly establish the actual

contribution of logic minimization.

M. Swathi Pai et al. / IJEEE, 12(4), 210-221, 2025

220

It may be pointed out that in computing the percentage of

blocks compressed to 1,2 or 3 cubes, the blocks that reduce to

1,2 or 3 isolated minterms were included already. Hence, the

sum of the percentage values of rows 7,8 and 9 will correspond

to the percentage of mixed logically compressible blocks

given in row 4 of Table 3. For example, in Table 3 for bit plane

s5, the percentage of logically compressible blocks, excluding

the case of blocks with isolated minterms, is 49.56. Row 16 in

the table indicates whether a given bit plane is compressible

by logic coding or not. The incompressible bit planes are

stored as they are since logic coding of these result in

expansions. Two bits in the global header are used to indicate

whether an entire bit plane is all-white, all-black, logically

incompressible or logically compressible. Among the

logically compressible blocks the percentage of blocks where

ON-set/OFF-set is chosen for coding is also indicated in the

Tables (rows 9 and 10). The fact that these two cases are more

or less equally likely justifies the allotment of 1 bit in the

header for distinguishing the phase.

For example, in Table 3, for the bit plane s4, the ON-set

is chosen for 20.70 blocks, whereas for the OFF-set, 23.14 of

blocks are encoded. Net compression achieved on each bit

plane by logic coding and Kunt’s block coding scheme are

shown at the bottom of the tables (rows 14 and 15). It can be

noted that logic coding always achieves a better compression

ratio than block coding, giving an experimental justification

for the intuitively obvious assumption made earlier in this

section. In the last row of the tables, the net compression

achieved on the entire image for each case is reported.

8. Conclusion
In this work, we investigated the research trail related to

lossless compression of images using switching function

representation and manipulation. Lossless compression of

images is a fundamental problem in information theory, and

scope for new techniques exists. Though it is not a very active

research area, some researchers have always been fascinated

by the difficult task of achieving better compression.

Research track related to representing images as

switching functions and obtaining their compact

representation to achieve data compression is explored in this

paper. The evolution of this track of research started from

block coding through logic coding to the usage of various logic

synthesis techniques were surveyed. Experiments done by

various researchers over a decade were summarized to find

gaps in this research direction for further exploration.

We have implemented the basic logic coding technique in

Python using the PyEDA library which supports ESPRESSO

logic minimizer. Our investigation indicates that several

options are still unexplored. For example, there could be a

possibility to use a combination of techniques like cubes and

BDD to handle incompressible blocks. Also, regarding the

LSB bit-planes, it may be possible to use XOR function

representation. Medical images require lossless compression,

and the need to improve compression to be achievable is still

an open problem that has not been fully solved. In this paper,

we laid the foundation for further enhancement of logic coding

to achieve better compression for medical images. There are

also many image classes like barcodes and QR codes where

the image by nature is bi-level, and Boolean function

techniques could be handy. Deep Learning and NLP are areas

where multi-dimensional space is used in embedding.

Wherever data is binary in nature, the Boolean function

techniques may be applicable for pursuing another branch of

research direction.

References
[1] Eugene Ageenko, and Pasi Fränti, “Lossless Compression of Large Binary Images in Digital Spatial Libraries,” Computers and Graphics,

vol. 24, no. 1, pp. 91-98, 2000. [CrossRef] [Google Scholar] [Publisher Link]

[2] Pasi Fränti, and Olli Nevalainen, “Compression of Binary Images by Composite Methods Based on Block Coding,” Journal of Visual

Communication and Image Representation, vol. 6, no. 4, pp. 366-377, 1995. [CrossRef] [Google Scholar] [Publisher Link]

[3] David A. Clunie, “Lossless Compression of Grayscale Medical Images: Effectiveness of Traditional and State-of-the-Art Approaches,”

Medical Imaging 2000: PACS Design and Evaluation: Engineering and Clinical Issues, vol. 3980, pp. 74-84, 2000. [CrossRef] [Google

Scholar] [Publisher Link]

[4] Khalid Sayood, Introduction to Data Compression, 5th ed., Morgan Kaufmann, 2017. [Google Scholar] [Publisher Link]

[5] M.J. Weinberger, G. Seroussi, and G. Sapiro, “From Logoi to the JPEG-LS Standard,” Proceedings International Conference on Image

Processing (Cat. 99CH36348), Kobe, Japan, 1999. [CrossRef] [Google Scholar] [Publisher Link]

[6] Rafael C. Gonzalez, Digital Image Processing, Pearson Education India, 2nd ed., 2009. [Google Scholar]

[7] B.J. Falkowski, and Lip-San Lim, “Gray Scale Image Compression Based on Multiple-Valued Input Binary Functions, Walsh and Reed-

Muller Spectra,” Proceedings 30th IEEE International Symposium on Multiple-Valued Logic, Portland, USA, pp. 279-284, 2000.

[CrossRef] [Google Scholar] [Publisher Link]

[8] Majid Rabbani, and Paul W. Jones, Digital Image Compression Techniques, SPIE Press, vol. 7, 1991. [CrossRef] [Google Scholar]

[Publisher Link]

[9] Shahriar Akramullah, Digital Video Concepts, Methods, and Metrics: Quality, Compression, Performance, and Power Trade-off Analysis,

1st ed., Apress Berkeley, CA, 2014. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1016/S0097-8493(99)00140-5
https://scholar.google.com/scholar?q=Lossless+compression+of+large%C2%A8+binary+images+in+digital+spatial+libraries,%E2%80%9D+&hl=en&as_sdt=0,5
https://www.sciencedirect.com/science/article/abs/pii/S0097849399001405?via%3Dihub
https://doi.org/10.1006/jvci.1995.1030
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Compression+of+binary+images+by%C2%A8+composite+methods+based+on+block+coding%2C%E2%80%9D&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1047320385710309?via%3Dihub
https://doi.org/10.1117/12.386389
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lossless+compression+of+grayscale+medical+images%3A+effectiveness+of+traditional+and+state-of-the-art+approaches&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lossless+compression+of+grayscale+medical+images%3A+effectiveness+of+traditional+and+state-of-the-art+approaches&btnG=
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3980/1/Lossless-compression-of-grayscale-medical-images--effectiveness-of-traditional/10.1117/12.386389.short
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B4%5D%09K.+Sayood%2C+Introduction+to+data+compression.+Morgan+Kaufmann%2C+&btnG=
https://www.oreilly.com/library/view/introduction-to-data/9780128097052/?_gl=1*1micf5r*_ga*MTE5NDMxNTY3Mi4xNzQzMDcyNjYx*_ga_092EL089CH*MTc0NDk3NjgyNy4yLjEuMTc0NDk3NjgzNS41Mi4wLjA.
https://doi.org/10.1109/ICIP.1999.819521
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=From+logoi+to+the+jpeg-ls+standard&btnG=
https://ieeexplore.ieee.org/document/819521
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Digital+image+processing.+Pearson+education+India%2C+&btnG=
https://doi.org/10.1109/ISMVL.2000.848632
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Gray+scale+image+compression+based+on+multiple-valued+input+binary+functions%2C+walsh+and+reed-muller+spectra%2C%E2%80%9D&btnG=
https://ieeexplore.ieee.org/document/848632
https://doi.org/10.1117/3.34917
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Digital+image+compression+techniques.+SPIE+press%2C+&btnG=
https://www.spiedigitallibrary.org/ebooks/TT/Digital-Image-Compression-Techniques/eISBN-9780819478528/10.1117/3.34917
https://doi.org/10.1007/978-1-4302-6713-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Video+coding+standards%2C%E2%80%9D+Digital+Video+Concepts%2C+Methods%2C+and+Metrics%3A+Quality%2C+Compression%2C+Performance%2C+and+Power+Trade-off+Analysis%2C&btnG=
https://link.springer.com/book/10.1007/978-1-4302-6713-3

M. Swathi Pai et al. / IJEEE, 12(4), 210-221, 2025

221

[10] J. Mitchell, “Digital Compression and Coding of Continuous Tone Still Images: Requirements and Guidelines,” ITU-T Recommendation,

1992. [Google Scholar] [Publisher Link]

[11] Abd Abrahim Mosslah, Reyadh Hazim Mahdi, and Hind Khalil Abrahem, “Efficient JPEG-LS for Lossless Compression of Rib Cage

with Visual Quality Preservation,” Proceedings of the World Congress on Engineering, IAENG, London, U.K, 2021. [Google Scholar]

[Publisher Link]

[12] Murat Kunt, and O. Johnsen, “Block Coding of Graphics: A Tutorial Review,” Proceedings of the IEEE, vol. 68, no. 7, pp. 770-786, 1980.

[CrossRef] [Google Scholar] [Publisher Link]

[13] S.A. Mohamed, and M.M. Fahmy, “Binary Image Compression using Efficient Partitioning into Rectangular Regions,” IEEE Transactions

on Communications, vol. 43, no. 5, pp. 1888- 1893, 1995. [CrossRef] [Google Scholar] [Publisher Link]

[14] Nripendra N. Biswas, Logic Design Theory, Prentice-Hall, Inc, 1993. [Google Scholar] [Publisher Link]

[15] [17] Robert K. Brayton et al., Logic Minimization Algorithms for VLSI Synthesis, 1st ed., Springer, New York, 1984. [CrossRef] [Google

Scholar] [Publisher Link]

[16] Robert K. Brayton et al., “MIS: A Multiple-Level Logic Optimization System,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 6, no. 6, pp. 1062-1081, 1987. [CrossRef] [Google Scholar] [Publisher Link]

[17] Randal E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams,” ACM Computing Surveys, vol. 24, no. 3,

pp. 293-318, 1992. [CrossRef] [Google Scholar] [Publisher Link]

[18] Heh-Tyan Liaw, and Chen-Shang Lin, “On the OBDD-Representation of General Boolean Functions,” IEEE Transactions on Computers,

vol. 41, no. 6, pp. 661-664, 1992. [CrossRef] [Google Scholar] [Publisher Link]

[19] Hanan Samet, “Data Structures for Quadtree Approximation and Compression,” Communications of the ACM, vol. 28, no. 9, pp. 973-993,

1985. [CrossRef] [Google Scholar] [Publisher Link]

[20] S. Agaian, T. Baran, and K. Panetta, “The Application of Logical Transforms to Lossless Image Compression using Boolean

Minimization,” Proceedings, GSPx and International Signal Processing Conference, pp. 13-31, 2003. [Google Scholar] [Publisher Link]

[21] Jeehong Yang, Serap A. Savari, and Oskar Mencercv, “Lossless Compression using Two-Level and Multilevel Boolean Minimization,”

IEEE Workshop on Signal Processing Systems Design and Implementation, Banff, AB, Canada, pp. 148-152, 2006. [CrossRef] [Google

Scholar] [Publisher Link]

[22] Mike Starkey, Randy Bryant, and Y. Bryant, “Using Ordered Binary Decision Diagrams for Compressing Images and Image Sequences,”

Carnegie-Mellon University, Department of Computer Science, 1995. [Google Scholar] [Publisher Link]

[23] P. Mateu-Villarroya, and J. Prades-Nebot, “Lossless Image Compression using Ordered Binary-Decision Diagrams,” Electronics Letters,

vol. 37, no. 3, 2001. [CrossRef] [Google Scholar] [Publisher Link]

[24] P. Mateu-Villarroya, and J. Prades-Nebot, “Sequential Logic Compression of Images,” Proceedings International Conference on Image

Processing (Cat. No. 01CH37205), Thessaloniki, Greece, 2001. [CrossRef] [Google Scholar] [Publisher Link]

[25] Luca Amarú et al., “Data Compression via Logic Synthesis,” 19th Asia and South Pacific Design Automation Conference, Singapore, vol.

207, pp. 628-633, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[26] Bogdan J. Falkowski, “Lossless Binary Image Compression using Logic Functions and Spectra,” Computers and Electrical Engineering,

vol. 30, no. 1, pp. 17-43, 2004. [CrossRef] [Google Scholar] [Publisher Link]

[27] Bogdan J. Falkowski, “Compact Representations of Logic Functions for Lossless Compression of Grey-Scale Images,” IEEE Proceedings

Computers and Digital Techniques, vol. 151, no. 3, pp. 221- 230, 2004. [CrossRef] [Google Scholar] [Publisher Link]

[28] X. Wu, and Nasir Memon, “Context-Based, Adaptive, Lossless Image Coding,” IEEE Transactions on Communications, vol. 45, no. 4,

pp. 437-444, 1997. [CrossRef] [Google Scholar] [Publisher Link]

[29] Behrouz Zolfaghari, Hamed Sheidaeian, and Saadat Pour Mozaffari, “Yalmic: Yet another Logic Minimization Based Image Compressor,”

2nd International Conference on Computer Engineering and Technology, Chengdu, China, vol. 44, pp. 90-95, 2010. [CrossRef] [Google

Scholar] [Publisher Link]

[30] Narendra Kumar, and Sachin Gupta, “Use of Local Minimization for Lossless Gray Image Compression,” International Journal of

Computer Science and Information Technologies, vol. 1, no. 4, pp. 203-207, 2010. [Google Scholar] [Publisher Link]

[31] Nasir Memon, and X. Wu, “Recent Developments in Context-Based Predictive Techniques for Lossless Image Compression,” The

Computer Journal, vol. 40, no. 2 and 3, pp. 127-136, 1997. [CrossRef] [Google Scholar] [Publisher Link]

[32] JPE Group, Jpeg Standard for Image Compression, 2024. [Online]. Available: https://jpeg.org/jpeg/

[33] Eyas El Qawasmeh, Pit Pichappan, and Arif Alfitiani, “Development and Investigation of a New Compression Technique using Boolean

Minimizations,” 2nd International Conference on the Applications of Digital Information and Web Technologies, London, UK, pp. 505-

511, 2009. [CrossRef] [Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Digital+compression+and+coding+of+continuous+tone+still+images%3A+Requirements+and+guidelines&btnG=
https://www.iso.org/obp/ui/en/#iso:std:iso-iec:10918:-1:ed-1:v1:en
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%E2%80%9CEfficient+jpeg-ls+for+lossless+compression+of+rib+cage+with+visual+quality+preservation&btnG=
https://www.iaeng.org/publication/WCE2021/WCE2021_pp361-366.pdf
https://doi.org/10.1109/PROC.1980.11743
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Block+coding+of+graphics%3A+A+tutorial+review&btnG=
https://ieeexplore.ieee.org/document/1456012
https://doi.org/10.1109/26.387415
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Binary+image+compression+using+efficient+partitioning+into+rectangular+regions&btnG=
https://ieeexplore.ieee.org/document/387415
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Logic+design+theory.+Prentice-Hall%2C+Inc.%2C+1993&btnG=
https://dl.acm.org/doi/abs/10.5555/134488
https://doi.org/10.1007/978-1-4613-2821-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Logic+Minimization+Algorithms+for+VLSI+Synthesis&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Logic+Minimization+Algorithms+for+VLSI+Synthesis&btnG=
https://link.springer.com/book/10.1007/978-1-4613-2821-6
https://doi.org/10.1109/TCAD.1987.1270347
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mis%3A+A+multiple-level+logic+optimization+system%2C%E2%80%9D+&btnG=
https://ieeexplore.ieee.org/document/1270347
https://doi.org/10.1145/136035.136043
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Symbolic+boolean+manipulation+with+ordered+binary-decision+diagrams%2C%E2%80%9D+&btnG=
https://dl.acm.org/doi/abs/10.1145/136035.136043
https://doi.ieeecomputersociety.org/10.1109/12.144618
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+the+obdd-representation+of+general+boolean+functions&btnG=
https://www.computer.org/csdl/journal/tc/1992/06/t0661/13rRUNvgyV8
https://doi.org/10.1145/4284.4290
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Data+structures+for+quadtree+approximation+and+compression%2C%E2%80%9D+&btnG=
https://www.computer.org/csdl/journal/tc/1992/06/t0661/13rRUNvgyV8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+application+of+logical+transforms+to+lossless+image+compression+using+boolean+minimization%2C%E2%80%9D+&btnG=
https://www.karenpanetta.com/publications/conference-papers/the-application-of-logical-transforms-to-lossless-image-compression-using-boolean-minimization-pdf
https://doi.org/10.1109/SIPS.2006.352571
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%E2%80%9CLossless+compression+using+two-level+and+multilevel+boolean+minimization%2C%E2%80%9D&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%E2%80%9CLossless+compression+using+two-level+and+multilevel+boolean+minimization%2C%E2%80%9D&btnG=
https://ieeexplore.ieee.org/document/4161841
https://scholar.google.com/scholar?cluster=11194612885400258456&hl=en&as_sdt=0,5
https://www.google.co.in/books/edition/Using_Ordered_Binary_decision_Diagrams_f/tsC7pwAACAAJ?hl=en
https://doi.org/10.1049/el:20010094
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lossless+image+compression+using+ordered+binary-decision+diagrams%2C%E2%80%9D+&btnG=
https://digital-library.theiet.org/doi/10.1049/el%3A20010094
https://doi.org/10.1109/ICIP.2001.958532
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%E2%80%9CSequential+logic+compression+of+images%2C&btnG=
https://ieeexplore.ieee.org/document/958532
https://doi.org/10.1109/ASPDAC.2014.6742961
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Data%C2%B4+compression+via+logic+synthesis&btnG=
https://ieeexplore.ieee.org/document/6742961
https://doi.org/10.1016/S0045-7906(03)00035-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Lossless+binary+image+compression+using+logic+functions+and+spectra%2C%E2%80%9D+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0045790603000351?via%3Dihub
https://doi.org/10.1049/ip-cdt:20040257
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Compact+representations+of+logic+functions+for+lossless+compression+of+grey-scale+images%2C&btnG=
https://digital-library.theiet.org/doi/10.1049/ip-cdt_20040257
https://doi.org/10.1109/26.585919
https://scholar.google.com/scholar?q=Context-based,+adaptive,+lossless+image+coding&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/document/585919
https://doi.org/10.1109/ICCET.2010.5485304
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Yet+another+logic+minimization+based+image+compressor%2C%E2%80%9D&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Yet+another+logic+minimization+based+image+compressor%2C%E2%80%9D&btnG=
https://ieeexplore.ieee.org/document/5485304
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Use+of+local+minimization+for+lossless+gray+image+compression%2C%E2%80%9D&btnG=
https://journals.indexcopernicus.com/search/article?articleId=415390
https://doi.org/10.1093/comjnl/40.2_and_3.127
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Recent+developments+in+context-based+predictive+techniques+for+lossless+image+compression&btnG=
https://academic.oup.com/comjnl/article-abstract/40/2_and_3/127/360806?redirectedFrom=fulltext&login=false
https://jpeg.org/jpeg/
https://doi.org/10.1109/ICADIWT.2009.5273949
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%E2%80%9CDevelopment+and+investigation+of+a+new+compression+technique+using+boolean+minimizations&btnG=
https://academic.oup.com/comjnl/article-abstract/40/2_and_3/127/360806?redirectedFrom=fulltext&login=false

