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Abstract - Electronic Design Automation (EDA) research has made great strides owing to the industrial growth in the VLSI 

domain. Boolean function minimization is an important area in this domain. Many engineering problems can be formulated as 

logic functions, and the tools available in this domain can be applied to solve them. Image compression is formulated as a logic 

minimization problem by converting blocks of the bit planes of the grayscale image into Boolean functions and representing 

them in minimal form. An encoding scheme called logic coding was developed by this approach, which extended the block coding 

scheme. In this paper, we provide a comprehensive survey of research work that happened in this direction. A Python 

implementation of the basic logic coding scheme is also presented. Experimental results reveal that there are many blocks in the 

bit planes that are not compressible by these techniques. This data motivates us to explore options not tried by other researchers, 

although it is not a very active area of research. Lossless compression of images is an important area for medical images, and 

there is scope for further research. Medical images are an area where lossless compression is mandated; hence, it is still a 

relevant problem to research. This exploration is done with the intention to enhance existing logic coding techniques by applying 

other Boolean function representation schemes and a combination of various techniques to achieve better compression. Also, in 

areas such as deep learning and Natural Language Processing where binary multi-dimensional space is used, Boolean function 

representation could open further possibilities. 

Keywords - Logic minimization, Boolean functions, Lossless image compression, PyEDA, Block coding. 

1. Introduction 
Compression of binary [1, 2], grayscale [3-5] and color 

images [6, 7] images have been the focus of researchers for 

decades. Large amounts of data are generated in the digital 

representation of images. For efficient transmission and 

storage of digital images, it is required to reduce or compress 

the image data [8]. Several techniques for the compression of 

image data were proposed, and consequently, many standards 

were established to achieve the goal of compression with 

interoperability [9-11].  

Image data has considerable redundancy, owing to the 

fact that adjacent pixels are very likely to be similar. Various 

compression techniques proposed, attempt to capture this 

redundancy in some way to achieve reduction of data. While 

a particular technique does well on a certain class of images, 

it may not do well in another class of images. Images with 

smooth variations (pixel values change gradually) are 

compressed well by most of the techniques, whereas regions 

with rapid variations in pixel values are not handled easily. 

There is a need for compression techniques that do not incur 

loss of information, and those with Loss.  

While the lossless techniques are mandatory in certain 

applications such as medical images, lossy compression 

techniques can be used in most generic applications. Lossy 

compression techniques achieve better compression as they 

allow information loss. Though a lot of research has happened 

in this area, new techniques have been proposed. Converting 

image pixels into logic functions and representing them in 

compact form was one of the new lossless compression 

approaches proposed [11] and further explored by many 

researchers. We believe most of the lossless compression 

algorithms capture mostly one-dimensional redundancy, while 

the logic minimization approach captures redundancy in two 

dimensions. As various methods available to represent logic 
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functions are not explored for lossless compression of images, 

we believe there is potential for further research. Exploration 

in this direction may open up avenues for applying switching 

theoretical techniques in other areas of image processing. 

2. Bit Plane Encoding of Grayscale Image 
Bit plane coding of grayscale images [6] involves 

separating the individual bits of pixel values into distinct 

binary images. Digital images are typically represented as a 

matrix of pixel values. For an 8-bit grayscale image, each pixel 

is represented by a number ranging from 0 to 255. Actually, 

each of these elements may be depicted as being in an 

individual ‘bit plane.’ For example, the Most Significant Bit 

plane (MSB) includes the most significant bit of each pixel, 

and the Least Significant Bit plane (LSB) includes the least 

significant bit of each pixel. In the 8-bit per pixel image, there 

are 8 different bit planes, each one of which forms a binary 

image. In these planes, a bit is set as 1 if the corresponding bit 

in the pixel’s binary setting is 1 and 0 if this bit is 0.  

The higher bit planes (closer to the MSB) contain more 

significant image information (such as contours and edges), 

while the lower bit planes (closer to the LSB) contain finer 

details. It reveals that the bit planes corresponding to the most 

significant bits contribute most of the information regarding 

an image. Lena is a widely used standard test image in image 

processing. It is an 8-bit grayscale image that can be 

decomposed into 8 distinct bit planes, as shown in Figure 1. 

The 7th plane will show the most significant information, such 

as the overall shape and structure of the image, while the 0th 

plane will have less critical information, mostly fine details. 

As you move from the MSB (7th plane) to the LSB (0th plane), 

the planes contain progressively less information relevant to 

human perception. In bit-plane encoding, the most significant 

bit planes can be compressed using lossless techniques, 

ensuring that no important visual information is lost.  

The least significant bit planes may be compressed using 

lossy methods or even omitted to reduce the data size while 

maintaining acceptable image quality. Bit plane coding 

effectively leverages the fact that not all bits in an image are 

equally important for human perception. Separating the image 

into bit planes and selectively compressing them makes it 

possible to achieve efficient compression. Lena, with its 

diverse range of details and textures, serves as an excellent 

example to demonstrate the effectiveness of bit plane coding 

in preserving critical information while reducing overall data 

size. In general, these bit planes are compressed using Binary 

Image Compression Techniques. 

3. Block Coding of Images and Related Work 

The block coding of binary images was proposed by Kunt 

and Johnsen. In this approach, a two-level image is divided 

into blocks of size n x m. A prefix code was used to code the 

three types of blocks: all black, all-white, and mixed.  

In the case of mixed blocks, the bits in the block are stored 

as such after the code. Figure 2 shows an example of 

generalized block coding proposed. Kunt and Johnsen also 

extended this approach for grayscale images by splitting 

images into bit-planes [6] 

 
Fig. 1 8-Bit planes of lena 

 
Fig. 2 Illustrating the principle of generalized block coding 

Mohamed and Fahmy also suggested a binary image 

compression technique involving tiling up the image into 

mathematically efficient nonoverlapping rectangular zones. In 

this technique, both the x and y coordinates of the diagonally 

opposite corners of each rectangle are considered. This 

method’s success mostly depends on how well the partitioning 

algorithm performs. 

4. Compact Representation of Boolean 

(Switching) Functions 
Switching functions or Boolean functions can be 

represented in many ways. Minimization of Boolean functions 
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is of great importance in VLSI design. Several minimization 

approaches were developed for the compact representation of 

Boolean functions [12]. Cube based approach was developed 

by Brayton et al. [13, 14] and implemented in the ESPRESSO 

minimizer primarily to handle Boolean function with a large 

number of variables.  

In Figure 3, a simple Boolean function of three variables 

and its mapping onto vertices of the binary cube is shown 

where the arrows indicate the cyclic sequence in which the 

vertices are visited, starting from the origin (000 vertexes), for 

assigning the bits of the data stream (Boolean function value) 

to the vertices. The vertices mapped to a 1 are shown by the 

dark dots. Minimization is achieved if the geometric 

representation can be compactly described with less than 2k 

bits. In this example, the 8-bit sequence can be represented by 

a single cube, xx0. 

 
Fig. 3 Mapping a bit stream to a 3-D cube 

Another well-known representation for switching 

functions is Binary Decision Diagrams [17]. BDD is an 

abbreviation for Binary Decision Diagram, also sometimes 

called a branching program, and it is a data structure 

representing Boolean functions. But at a higher level, they 

represent sets or relations in a compact form, which high-level 

BDDs signify.  

Unlike a lot of other compression techniques, it is 

possible to perform operations on the compressed data using 

BDDs without the need for data to be uncompressed. A 

Boolean function in this format can be represented by a rooted-

directed acyclic graph containing decision nodes and two 

terminal nodes.  

These terminal nodes are usually numbered as 0, 

designating FALSE, and 1, designating TRUE. An important 

characteristic of a BDD is whether all the paths starting in the 

root node correspond to the same type of variable order. It is 

considered reduced if two optimization rules are applied. It is 

consists of two steps:  

 Join all isomorphic subgraphs, and  

 Delete the node with all of the children nodes are similar 

to each other.  

When the general public uses the abbreviation BDD, it 

usually means a Reduced Ordered Binary Decision Diagram 

(ROBDD), where both ordering and reduction are reflected. 

An ROBDD is, however, canonical, which means that only 

one ROBDD exists for each function and order of variables. It 

is, therefore, most useful when applied to tasks such as FE and 

FT mapping. OBDD is a data structure similar to quadtree 

[19]. These data structures are graphs with nodes and leaves, 

which are used in the compact representation of Boolean 

functions. BDD has been extended for multiple valued logic 

functions also. 

5. Logic Coding 
Jacob et al. proposed logic coding of images by 

augmenting block coding of binary images with logic 

minimization. In this approach, the gray level image is divided 

into bit planes and logic coding is applied to bit planes. In this 

technique, picture information is represented as switching 

functions in minimized form. Though multiple possible 

representations of switching functions have been described in 

the previous section, here it has been investigated only the 

possibility of using minimized two-level cubical 

representation of switching functions for representing picture 

information. The technique has been named as Logic Coding. 

Data compression is achieved primarily through a logic 

minimization operation hence the name logic coding. 

The steps of this compression scheme are illustrated in the 

flowchart presented in Figure 4. In this method, the image is 

segmented in its bit planes or binary images that are further 

divisible in smaller dimensions of blocks 𝑛 × 𝑚, where 𝑛 and 

𝑚 are integer powers of 2. These blocks are categorized into 

three distinct types: 

 All-black: blocks with only black pixels, 

 All-white: blocks with only white pixels and 

 Mixed: blocks with a combination of black and white 

pixels 

Simple codes can be employed as codes for the first two 

types of blocks. In the case of mixed blocks, their bits are 

considered as the output of Boolean switching functions which 

can be in the form of a truth table. These functions are then 

optimized using the well-known cube-based two-level logic 

minimizer ESPRESSO [15]. The minimized cubes, which are, 

in fact, the implicants (product terms) of the switching 

functions, are coded with a code set that respects the prefix 

property in order to give the compressed data. If this method 
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does not produce compressed pixel data for a particular block, 

the block’s pixels are saved without transformation. The 

presented technique of partitions and using smaller blocks for 

bit planes can be compared to the Block Coding method for 

graphics described in [12] in section 3.  

In Block Coding, all-white and all-black blocks are 

termed 1-bit and 2-bit prefix code blocks. Small blocks of size 

𝑛 ×   are of n×m bits and are stored in direct memory with a 2-

bit prefix code. This method uses a statistical sub-optimal 

coding technique based on a high probability of generating an 

all-black and an all-white block. Logic coding extends this by 

compressing mixed blocks even further with Boolean 

minimization; hence, it is more efficient than Block Coding. 

 
Fig. 4 Compression scheme 

A possible interpretation of this technique may be given 

below. Generation of a switching function from a block of 

pixels of a bit plane can be viewed as the process of mapping 

the sequence of 2k pixels of the block to the vertices of a 

hypercube of dimension k. This is the geometric representation 

of a switching function where the set of vertices mapped to 1 

(black pixels) constitutes the ON-set, and the other set of 

vertices mapped to 0 (white pixels) constitute the OFF-set of 

the corresponding switching function. 

5.1. Preprocessing the Image 
The idea of Gray coding helps to reduce the transitions on 

the bit planes for the advantage of the lossless coder. Gray 

coding increases the probability of all-black and all-white 

blocks in the bit planes [12]. This is effective in compression 

by the experiment. In this experiment, monochrome images 

with 256 possible intensity values, each represented by 8 bits, 

are considered. However, it is important to know that not all 

256 intensity values may not be in an image. To optimize 

compression, an additional preprocessing step can be 

introduced, essentially recoding the intensity values. In this 

step, the intensity values that show in the image are given 

successive integer values beginning from 0 so that the values 

are adjacent. This recoding process costs 256 additional bits to 

indicate which intensity values are active and which of them 

are inactive. When converted using dual port RAMs, these 

intensity values may be subjected to Gray coding for better 

compaction after recoding. 

An example can be used to explain how this recording is 

done. Example: Consider an image represented by 3 bits/pixel 

whose pixels can have 8 possible gray values. Suppose only 4 

gray levels appear on a particular image, say 0, 3, 4, 5. If we 

can map these gray levels to 0, 1, 2, and 3 and replace the 

image's pixel values with the new values, the recoded image is 

obtained. Only pixel values ranging from 0 to 3 are present on 

the recorded image, and hence, 2 bits/pixel is sufficient. In 

other words, the process of recoding has helped to reduce the 

number of bits/pixels from 3 to 2. The information regarding 

the gray levels present and absent can be indicated by 8 bits 

i.e., 10011100. The presence of a gray level is indicated by 1 

and absence by 0. 

5.2.  Function Generation and Logic Coding of Mixed Type 

Blocks 

In the switching-theoretic approach, there is a block of 

mixed type of size 𝑛 × 𝑚 is converted into a Boolean 

switching function with log2(nm) variables. The bitstream of 

n x m pixels is considered as the output of the Boolean 

function. The dimensions n and 𝑚 are selected as integer 

powers of 2 to be sure log2(nm) it is an integer. The 

computation of the truth table for the switching function is 

done by placing the pixels in the block and using gray codes 

to represent the minterms of the function. This is done to 

ensure that physically neighboring pixels are associated with 

neighbouring minterms, helping in the function minimization 
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process. Clusters of 2𝛼 logically adjacent minterms form α-

cube therefore, reduces the complexity. The scanning is done 

in row-wise order, with the orientation of scanning being 

opposite for successive rows (as shown in Figure 5(a)) so that 

the pixel at the edge of each row is mapped onto the successive 

minterm in the following logic sequence. In Figure 5 there is 

an illustration showing how the process of converting a 4 × 8 

block of 32 pixel arrangement with 32 binary values into a 

switching function of five variables. An example of this 

scheme is given in Figure 5(a) for a mixed-type block from a 

bit plane. 

 
Fig. 5 Function generation and logic coding 

As seen in the Figure 5(b), Gray code is applied to 

allocate minterms to the pixels to convert to Boolean 

switching function. Figure 5(c) shows the Karnaugh map 

representing the offset minterms, and the function is made 

simple by grouping these minterms into cubes. As shown in 

Figure 5(d), ON-set and OFF-set cubes minimized using 

ESPRESSO logic minimizer are presented along with the 

alphabet count. For a specific function corresponding to a 

pixel block, the count of cubes in the minimized ON-set and 

OFF-set is different.  

The set with a smaller number of cubes is chosen to 

encode because ON-set and OFF-set represent the same 

Boolean function. Bits are included in the block header to 

specify which set; ON-set or OFF-set has been used for the 

compressed stream. This choice makes the representation of 

data more efficient. In this example, the OFF-set has a lesser 

number of cubes and, hence, is chosen for encoding. Figure 

5(e) shows the particular allotment of prefix codes 0, 10, and 

11 to the cube alphabets 0, 1, and X based on the frequency of 

occurrence of the symbols in cubes of function corresponding 

to the block. The number of bits required to represent the 32-

pixel block is reduced from 32 bits to 15 bits plus overheads, 

using logic coding. The total bits required to represent the 

blocks are shown in Figure 5. 

5.3. Format of the Compressed Image 

The compressed image format has a global header that 

indicates the size of the image and, if there are any, a 256-bit 

overhead, which indicates how intensity values have been 

recoded during preprocessing. This overhead is missing if 

recoding is not done. Many blocks in a bit plane are often 

compressible through logic minimization or because all the 

bits are black or white; there are times, however, that a block 

cannot be compressed. This, actually, can cause a net increase 

for the entire bit plane when encoded. Such cases are more 

frequent in the planes corresponding to the two or three LSBs. 

 
Fig. 6 Format of encoded block 

In such cases, the entire bit plane is stored as it is (without 

compression) in the compressed file. A two-bit global header 

associated with each bit plane indicates whether it is in the 

original or compressed form. These two bits indicate whether 

a bit plane is all-black, all-white, logically compressible, or 

incompressible. For each logically compressible bit plane, the 

blocks are encoded in the specific format shown in Figure 6. 

The block header bits are interpreted as follows. The first two 

bits indicate the block type and are interpreted as follows: 

• 00: all-black block 

• 01: all-white block 

• 10:compressible block (minimization yields 

compression) 

• 11: incompressible block (minimization fails to compress 

the block) 

For all-black and all-white blocks, only the first two bits 

are present. In the last case(type 11) of an incompressible 
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block, the n x m bits of the block are stored directly after the 

2-bit code for the block type. If the block is compressible by 

logic minimization (type 10), then the next one-bit field, 

phase, indicates whether the minimized ON-set or OFF-set is 

selected, as indicated below: 

• 0: ON-set 

• 1: OFF-set 

The code allotment field, 1 or 2 bits in length, fixes prefix 

codes to the cube alphabets 0, 1, and X. This allocation is 

dynamic, meaning the prefix code set is used for each block. 

{0,10,11}, where the single-bit code  0 is linked to the 

character most frequently used in string s. This approach 

improves the compression because it prioritises the most 

frequently occurring alphabet. These codes could be assigned 

in three ways depending on the degree of distinction and type 

of analysis, as described in Table 1. A special prefix code is 

used to show which of the three applicable arrangements 

relates to the block in question. Additionally, the p-bit field is 

caused to convey the number of cubes, and it defines the 

amount of minimized cubes in the ON-set or OFF-set of the 

block according to the phase bit field.  

Table 1. Prefix code allotment to symbols 

Allotment Indicator 
Code Allotment 

0 1 X 

0 0 10 11 

10 11 0 10 

11 10 11 0 

 

The p-value varies between 1 and 6 in the experiments, 

depending on the block size. The encoded cubes are placed 

after this. For example, for the block shown in Figure 5, the 

bits in the encoded block are as follows. Since the block is 

mixed type and is compressible, the first two-bit field will be 

10. As the OFF-set is smaller, that would be chosen for 

encoding making the phase bit 1. Since the cube alphabet 0 has 

the maximum frequency in the OFF-set cubes, we will choose 

the first of the 3 possible code allotments for the cube alphabet. 

In the case of a 4 x 8 block, more than 3 cubes generally fail 

to produce any compression. Hence, p = 2 bits will be 

sufficient to indicate the number of cubes. Finally, the two 

OFF-set cubes, X0X01, and 0X001, are encoded. The 

compressed format, therefore, is 10,1,0,10,11011010, 

0110010, and consists of 21 bits, whereas the original block 

has 32 bits. 

5.4. Decompression Scheme 
The bit planes are recovered from their compressed form 

by decoding the coded blocks of each bit plane. Recovery of 

the pixels is obvious in the case of all-black and all-white 

blocks and incompressible mixed-type blocks since they are 

stored without applying logic minimization. 

For decoding logic-coded blocks of a bit plane, the values 

of the corresponding minimized function for all possible 

minterms of the block are reconstructed. This is done using the 

cube subsuming operation whereby the computed values are 

placed in respective pixels on the block. If a minterm is 

contained in any cube in the minimized ON-set (OFF-set) of 

the block, the corresponding pixel is given the value of 1 (0). 

Otherwise, the pixel is set to a value of 0 (1). It is also possible 

to view this decoding process as a reverse of the truth table to 

minimize the switching function.  

Figure 7 illustrates the above recovery process that 

explains how, from a minimized cubical form, through the 

process of cube subsuming, an image block can be 

reconstructed. An example of a 4×8 block is given in Figure 

7(a). The block type and phase bits indicate that the block is 

minimized and the OFF-set cubes have been encoded. From 

the knowledge of the code allotment to the cube alphabets and 

the number of cubes, the encoded OFF-set cubes can be easily 

recovered, as shown in Figure 7. To expand the function to its 

truth table form, the minterms of the function using a Gray 

counter are generated and check whether each minterm 

subsumes the minimized cubes of the OFF-set. If a minterm 

subsumes any of the cubes in the OFF-set the function takes 

the value 0 for the minterm and this value is assigned to the 

corresponding pixel in the 4x8 block. All minterms that do not 

subsume the OFF-set (and hence the corresponding pixels) 

evaluate to 1. 

 
Fig. 7 Decoding of a logic-coded block 

5.5. Bits Required to Code Logically Compressed Blocks 
The bits required to represent the cubes in the case of an 

n x m pixel block can be computed as follows. Let the number 

of minimized cubes of the N variable function to be encoded 

be C ( 0 ≤ C ≤ 2N−1 ) where N= log2(nm). The symbols 0, 1, 
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and X of the cubes will be coded using the prefix codes 0, 10, 

and 11. The bits required to represent the cubes will vary 

depending on the frequency of occurrence of the cube 

alphabets. The symbol with maximum frequency is allotted 

the one-bit code and the other two-bit codes. Let n1 be the 

count of the alphabet with maximum frequency and n2 and n3 

the counts of the other two alphabets for the C cubes to be 

encoded. Now the number of bits BITCOUNT required to 

code the cubes can be written as, 

BITCOUNT = n1 + 2 × (n2 + n3) (1) 

Based on this calculation, the upper and lower bounds of 

the bit requirement, excluding overheads, can be easily 

computed to represent an n x m block logically minimized to 

C cubes. It is obvious that n1 + n2 + n3 = CN 

The Upper Bound (UB) corresponds to the situation when 

all the symbols are equally likely or the frequency of 

occurrence of the symbols is the same i.e., CN/3. So the upper 

bound is, 

𝑈𝐵 =
𝐶𝑁

3
+

2𝐶𝑁

3
+

2𝐶𝑁

3
= 1.67 𝐶𝑁 𝑏𝑖𝑡𝑠 

The possible Lower Bound ( LB ) occurs when only two 

of the 3 possible symbols occur in the C cubes, and each 

symbol can be coded with only 1 bit/symbol, i.e., LB = CN 

bits. 

6. Review of Related Literature 
Agaian et al. [20] presented a lossless compression 

technique by extending the logic coding approach, drawing 

ideas from the lossy compression technique, where transform-

based techniques are used. In their approach, the steps 

involved are pre-processing, image segmentation into blocks 

and bit planes, followed by transform and encoding. 

Preprocessing consists of linear prediction, histogram 

compression by zero probability removal and gray coding of 

intensities. After these steps, a transform-based technique 

developed by authors [3] is applied. 

Yang et al. [16, 21] proposed a lossless image 

compression approach using multilevel logic synthesis instead 

of two-level minimization. Pre-processing and other entropy 

coders are used. Experimental results are provided on several 

test images. The authors concluded multilevel minimization 

do not offer compression improvements over two-level 

minimizers. 

Starkey and Bryant [22] explored an approach of using 

OBDD to represent images with the intention of achieving 

compression. The number of nodes and bits required to store 

the ROBDD representation of the image is explained. A 

comparison of compression results achieved for test images 

using bintree and ROBDD is presented, and it is concluded 

that ROBDD gives better compression. Authors also present 

how a sequence of frames similar to the video can be 

represented efficiently by using ROBDD, indicating the 

possibility of achieving video compression. 

Villarroya and Nebot [23] presented a lossless 

compression technique using an OBDD representation of the 

Boolean function generated from binary images. Their 

approach is based on the original idea of Starkey et al. [22], 

further enhanced with a more efficient encoding scheme for 

OBDD. Also, it is argued that the minimization of the Boolean 

function in OBDD representation is less compute-intensive 

compared to other methods of logic minimization presented 

earlier in this paper.  

The authors also presented a method to use sequential 

logic instead of combinational logic to represent Boolean 

functions generated from binary images. OBDD 

representation of sequential functions is used. Experimental 

results using standard CCITT [24] fax images are also 

presented. P. Mateu et al. [25] proposed a method wherein the 

image is represented as a sequential logic function and 

minimized to obtain its compact representation. Boolean 

functions are represented using OBDD to reduce the cost of 

computation. OBDD of sequential function is obtained, 

reduced and then coded efficiently to reduce redundancy. 

Luca et al. [28] presented data compression via logic 

synthesis. This approach synthesises the logic core to produce 

the given data string. Authors draw the idea from Kolgomorov 

complexity wherein the shortest program to generate the given 

bit string is found. This approach finds the logic function that 

generates the given binary data. Further, logic synthesis 

techniques are used to minimize this logic function and 

eliminate redundancy. Results are presented with experiments 

done on different benchmark data such as linear, linear plus 

noise, quadratic, and Random (XOR intensive). 

Falkowski [26] presented an approach for binary image 

compression extending logic coding combined with Reed-

Muller spectra. In his approach, the mixed blocks are 

converted to a Boolean function and a generalized approach 

that combines logic coding with other techniques of Reed-

Muller weights-based patterns. The author combines logic 

coding (cubes), minterm coding, walsh, triangular, Reed-

Muller (GPMPRM) transform and reference row technique in 

this approach. In this approach, the image blocks are divided 

into sizes varying from 8x8 to 4x4 based on criteria developed 

and different coding techniques are applied. The author 

implemented the technique in C language and tested it on 

standard CCITT images. Results are compared with 

techniques using OBDD1 [22] and OBDD2 [17]. Falkowsky’s 

approach uses only switching theoretic techniques, whereas 

the OBDD2 approach uses arithmetic coding for the last phase. 
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Further, Falkowski presented a lossless compression 

technique for grayscale images using a compact representation 

of logic functions [27]. This is an extension of the author's 

technique for binary images [26]. In this approach, the 

grayscale image is subjected to prepossessing steps of file 

extraction, recoding of intensitiesand predictive coding.  

The GAP predictor, used in the CALIC [28], is used for 

interior pixel prediction in an image. This predictor is 

adaptively based on the intensity gradients around the target 

pixels, thereby improving its predictive capability. After that, 

the grayscale image is segmented into bit planes [6] that reflect 

the intensity values of the image within the ranges of 0 and 

255.  

The author presents a set of coding schemes to encode the 

bit planes. As a first step, the transition count of pixels along 

the horizontal and vertical directions is measured. Depending 

on this count, the bit-plane is encoded as such, using minterm 

coding or dividing it into blocks of size 8x8 pixels and code. 

If segmented into blocks, a coding scheme is devised to have 

5 types.  

These are 8x8 blocks or further subdivided in the 

combination of 4x8 and 4x4 based on transition count and an 

empirical threshold. Variable length headers are also designed 

to represent the type. A block or sub-block may be coded using 

any of the following schemes.  

They are minterm coding (if the number of 1s is very low), 

all white blocks indicated by headers, and coordinate coding. 

At a block size of 4x8, if appropriate based on the count of 1s, 

Multiple-Valued Logic (MVL) product term encoding. If the 

block is incompressible, it is further divided into 4x4, and any 

of the following approaches are used depending on the count 

of 1s. They are uniform block, minterm coding, pattern coding, 

MVL product term, reference row technique and 

incompressible. 

In pattern matching, four possible patterns are indicated: 

Walsh, Reed-Muller, Triangular, and Special. The 4x4 block 

code can have direct match, inverse match, Direct match with 

one correction, and inverse match with one correction. The 

decompression technique is straightforward. Experimental 

results are presented for standard images and compared against 

well-known techniques such as Winzip, BPTC, LOCO, and 

S+P. Some of the images the proposed technique outperforms 

established techniques.  

We feel this technique achieves good results, using too 

many combinations of methods and does not explore many of 

the available Boolean function manipulation techniques. We 

would like to explore purely switching theoretic techniques to 

replace pattern-matching techniques. Behrouz Z et al. [29] 

implemented image compression using logic minimization and 

compared results. Their system is called YALMIC. The 

picture data is changed with logical operations like AND, OR, 

and XOR. These transformations are used on pixel values or 

picture areas to encode data in a more compact and efficient 

fashion.  

The converted picture data is expressed as Boolean 

expressions, which are built around logical actions between 

pixels or image components. Each phrase represents a certain 

feature of the picture data. The produced Boolean expressions 

are then analyzed using Boolean minimization techniques. 

These approaches seek to simplify expressions by minimizing 

duplication and complexity, while preserving the critical 

information necessary for accurate picture reconstruction.  

The minimized Boolean statements encode the picture 

data. The technique compresses images while keeping fidelity 

by lowering expression size and complexity. The encoded 

representation is decoded during picture reconstruction by 

reversing the logical changes and rebuilding the original image 

data using the reduced Boolean expressions.  

This approach guarantees that the rebuilt image closely 

resembles the original image while minimizing data loss. 

Overall, the paper’s compression technique uses digital logic 

concepts, namely logical transformations and Boolean 

reduction, to produce effective picture compression while 

maintaining image quality. The specifics of the algorithm may 

differ depending on the implementation details and 

optimizations used by the authors. 

N Kumar and S Gupta [30] presented a lossless 

compression technique for Grayscale images using logic 

coding and further enhancements. The image is subjected to 

pre-processing of prediction, bit-plane splitting and 

partitioning into rectangular blocks. The blocks of pixels are 

converted to boolean functions and minimized using the 

Quine-McClusky technique.  

The predictor employed in preprocessing is MED, which 

is used in LOCO-1 (Low Complexity Lossless Coder [31]). 

Results are presented using standard images and compared 

against UNIX compress (LZW) and JPEGLS [32] based on 

LOCO. 

El Qawasmeh [33] describes creating and analysing a 

unique compression approach based on Boolean reduction. 

The suggested compression approach starts by expressing data 

as Boolean expressions, with each bit or set of bits acting as a 

variable in the equation. Boolean minimization methods, such 

as Quine-McCluskey or Espresso, are then used to simplify 

these expressions while retaining the original data semantics.  

Experiments with diverse datasets, such as text, photos, 

and sensor data, are used to assess the compression technique’s 

performance. Compression ratios, compression speeds, and 

reconstruction accuracy are tested and compared to baseline 
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procedures. The experimental findings show that the suggested 

compression approach based on Boolean minimizations 

provides considerable compression ratios for many data types. 

Furthermore, the compression process is competitively 

fast, making it suited for real-time operations. Reconstruction 

accuracy has also been demonstrated to be good, showing low 

data loss during compression and decompression. Compared 

to standard compression methods, the suggested methodology 

outperforms them regarding compression efficiency and 

computing complexity. 

7. Experimental Results 
Both mechanisms of the Logic Coding compression and 

decompression was done in Python 3.12 using LINUX 

operating system. The methods were tested with standard test 

images of Lena, Barbara, Bridge and Cameraman. ESPRESSO 

2.1 was used, which is available in a Python package PyEDA 

(https://pyeda.readthedocs.io/en/latest/).  

Table 2 below also presents the results of the compression 

experiments done with fixed block sizes. The table also 

compares Logic Coding and JPEG’s lossless mode in terms of 

performance and advantages of the proposed method. 

Compression Ratio is calculated using the formula: 

Compression Ratio =  
Size of an original image

Size of compressed image
 

For comparison, the PVRG-JPEG Codec 1.1, developed 

by the Portable Video Research Group at Stanford University, 

was utilized (available at havefun.stanford.edu:/pub/jpeg/JPE 

Gv1.2.tar.Z). JPEG was run in its lossless mode, with seven 

possible predictor types being explored. Figures 3 and 4 below 

depict the minimum and maximum attainable vertical 

compression ratios during the above tests in Table 2.  

The results obtained by Logic Coding are comparable to 

JPEG lossless; however, it may be pointed out that JPEG 

always employs a decorrelation scheme based on DPCM on 

the original image (one of the 7-predictors is used), whereas 

this scheme does not use any decorrelation. Many techniques 

in the switching theoretic approach (BDD, handling inclined 

edges, etc.) are yet to be tried.  

The motivation for this experiment is to lay the 

foundation for developing a compression technique using only 

switching theoretic techniques and build further from here by 

deploying new approaches for handling incompressible 

blocks. Also, increasing the block size by joining blocks after 

compression is another approach we are exploring now. 

Table 2. Summary of compression results 

Image Lena  Barbara Bridge Cameraman 

Logic Coding 

Compression 

Ratio 
17.4  13.2 19.4 19 

Compression 

Time (s) 
139.6  544.7 537.5 132.9 

Decompression 

Time (s) 
0.1  0.36 0.53 0.10 

Block Coding 

Compression 

Ratio 
12.6  1.8 13.8 17.5 

Compression 

Time (s) 
4.6  5.0 4.5 4.7 

Decompression 

Time (s) 
2.6  2.7 2.6 2.5 

PVRG-JPEG 

Compression 

Ratio (%) 

22.7-

29.4 
 

6.7-

13.7 

24.9-

32.9 
30.7-38.1 

Compression 

Time (s) 
0.4  0.4 0.4 0.4 

Decompression 

Time (s) 
0.3  0.3 0.3 0.3 

Gray 

Levels 
230  216 208 120 

 
The time, which is reported as the compression time, 

contains the preprocessing phase as well. Regarding the 

influence of the proposed logic coding method on CPU time 

consumption for compression, it should be stated that the 

corresponding indices are comparatively high presently. This 

is more so because ESPRESSO in PyEDA is used on a 

standalone basis, thereby entailing a lot of overhead in the 

form of communication and file management.   

An order-of-magnitude improvement in speed can be 

expected by integrating ESPRESSO with our code. It is also 

possible to create a logic minimizer optimized for this purpose. 

For the time being, our focus is to create a compression 

scheme based solely on switching theoretical techniques. 

Decompression is faster than compression because the cube-

subsuming operation that needs to be performed is not 

complex.  

This variation in processing time is evident from the data 

shown in Table 2. However, it must be pointed out that speed 

was not our primary concern, and it is possible to accelerate 

the compression and decompression steps significantly with a 

more efficient and fine-tuned implementation. 
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Table 3. Compression ratios and statistics for bit planes 

Row Bit Plane s7 s6 s5 s4 s3 s2 s1 s0 

1 Block size (n x m) 8 x 4 8 x 4 8 x 4 8 x 4 8 x 4 8 x 4 8x4 8x4 

2 All-black blocks (%) 53.1 23.1 14.5 6.6 0.5 0.0 0.0 0.0 

3 All-white blocks (%) 17.3 21.6 8.1 4.0 0.4 0.0 0.0 0.0 

4 Logically compressible (%) 26.6 43.1 49.5 43.8 27.1 5.1 0.8 0.7 

5 Logically incompressible (%) 2.8 12.0 27.7 45.4 71.8 94.8 99.1 99.2 

6 Compressed to 1 cube (%) 8.4 10.0 10.4 6.64 2.3 0.04 0.0 0.0 

7 Compressed to 2 cubes (%) 8.3 11.8 13.2 9.2 4.4 0.2 0.0 0.0 

8 Compressed to 3 cubes (%) 6.0 11.1 13.0 12.5 7.5 1.0 0.0 0.1 

9 ON-set encoded (%) 16.4 24.2 30.7 20.7 14.4 2.6 0.3 0.3 

10 OFF-set encoded (%) 10.2 19.0 18.8 23.1 12.7 2.5 0.5 0.4 

11 1 isolated minterm (%) 2.9 2.0 3.2 2.0 0.6 0.0 0.0 0.0 

12 2 isolated minterms (%) 2.0 2.3 2.5 0.7 0.6 0.0 0.0 0.0 

13 3 isolated minterms (%) 1.3 1.9 3.3 1.3 0.8 0.0 0.0 0.0 

14 Total compression ratio for the bit plane (%) 69.4 45.3 20.1 2.3 -5.8 -6.3 - - 

15 Compression ratio for block coding with same block size (%) 58.9 32.5 9.6 -3.3 -6.3 -6.3 - - 

16 Bit plane compressible by logic coding? YES YES NO NO NO NO NO NO 

Overall compression ratio for logic coding (%) (assuming expanding bit plans are stored as such) 17.1 

Table 3 gives various statistics on the test images. The 

statistics for the no pre-processing cases (binary coding) for 

the image Lena are given. No data is provided for the two or 

more least significant bit planes of each image, which are 

neither compressible by logic coding nor block coding. The 

second row gives the percentage of blocks (out of a total 65536 

/ (n X m)) belonging to the all-black and all-white category in 

each bit plane.  

Kunt’s block coding scheme exploits this component. The 

percentage of all-black and all-white blocks compressible and 

incompressible by logic coding are given in rows 2 and 3, 

respectively. The compression ratio computed for logically 

compressible blocks (excluding all black and white blocks) for 

each bit plane is given in row 4 to indicate the contribution of 

logic coding alone.  

This is computed using the total number of bits for such 

types of blocks in uncompressed form and compressed form. 

The existence of a large percentage of logically 

incompressible blocks, especially on the lower bit planes, 

suggests the possibility of compressing them using other 

switching theoretic techniques. Statistics of the blocks 

compressed to 1, 2, and 3 cubes are given in rows 7, 9, and 11, 

respectively. Though in the case of block sizes of 8 x 4 pixels, 

more than 3 cubes in minimized form will not lead to 

compression, the percentages of such types of blocks are not 

given in the tables.  

Logic coding is more successful if the proportion of 

blocks compressed to one cube constitutes a larger portion due 

to the increased bit saving in such cases. There are cases where 

the blocks contain only a few logically isolated pixels (black 

or white). Logic minimization has no effect in the case of such 

blocks as the isolated pixels correspond to minterms, which 

cannot be combined into larger cubes. The percentage of such 

types of blocks (which are minimized to 1, 2, or 3 isolated 

minterms) are also shown in the tables (rows 13, 14, and l5). 

Simpler cube encoding of these cases is possible as the 

minimized cubes consists only of minterms which have only 

two symbols, 0 and 1. A modification in the coding scheme to 

take advantage of this factor is considered. When the 

percentage of such types of blocks is significant, special 

attention is required to avoid wasting bits. 

The average number of cubes per logically compressible 

block indicates the nature of compressible blocks. This count 

increases as the compressibility of the bit planes through logic 

coding decreases. The exact measure of the contribution of 

logic coding using a two-level minimization approach is 

indicated by the portion of the blocks that are logically 

compressible, excluding the blocks with isolated minterms and 

the corresponding compression ratio obtained. As logic 

minimization in such cases does not contribute beyond what is 

possible by coding the coordinates of the pixels, this 

differential measure helps to clearly establish the actual 

contribution of logic minimization.  
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It may be pointed out that in computing the percentage of 

blocks compressed to 1,2 or 3 cubes, the blocks that reduce to 

1,2 or 3 isolated minterms were included already. Hence, the 

sum of the percentage values of rows 7,8 and 9 will correspond 

to the percentage of mixed logically compressible blocks 

given in row 4 of Table 3. For example, in Table 3 for bit plane 

s5, the percentage of logically compressible blocks, excluding 

the case of blocks with isolated minterms, is 49.56. Row 16 in 

the table indicates whether a given bit plane is compressible 

by logic coding or not. The incompressible bit planes are 

stored as they are since logic coding of these result in 

expansions. Two bits in the global header are used to indicate 

whether an entire bit plane is all-white, all-black, logically 

incompressible or logically compressible. Among the 

logically compressible blocks the percentage of blocks where 

ON-set/OFF-set is chosen for coding is also indicated in the 

Tables (rows 9 and 10). The fact that these two cases are more 

or less equally likely justifies the allotment of 1 bit in the 

header for distinguishing the phase.  

For example, in Table 3, for the bit plane s4, the ON-set 

is chosen for 20.70 blocks, whereas for the OFF-set, 23.14 of 

blocks are encoded. Net compression achieved on each bit 

plane by logic coding and Kunt’s block coding scheme are 

shown at the bottom of the tables (rows 14 and 15). It can be 

noted that logic coding always achieves a better compression 

ratio than block coding, giving an experimental justification 

for the intuitively obvious assumption made earlier in this 

section. In the last row of the tables, the net compression 

achieved on the entire image for each case is reported. 

8. Conclusion 
In this work, we investigated the research trail related to 

lossless compression of images using switching function 

representation and manipulation. Lossless compression of 

images is a fundamental problem in information theory, and 

scope for new techniques exists. Though it is not a very active 

research area, some researchers have always been fascinated 

by the difficult task of achieving better compression.  

Research track related to representing images as 

switching functions and obtaining their compact 

representation to achieve data compression is explored in this 

paper. The evolution of this track of research started from 

block coding through logic coding to the usage of various logic 

synthesis techniques were surveyed. Experiments done by 

various researchers over a decade were summarized to find 

gaps in this research direction for further exploration.  

We have implemented the basic logic coding technique in 

Python using the PyEDA library which supports ESPRESSO 

logic minimizer. Our investigation indicates that several 

options are still unexplored. For example, there could be a 

possibility to use a combination of techniques like cubes and 

BDD to handle incompressible blocks. Also, regarding the 

LSB bit-planes, it may be possible to use XOR function 

representation. Medical images require lossless compression, 

and the need to improve compression to be achievable is still 

an open problem that has not been fully solved. In this paper, 

we laid the foundation for further enhancement of logic coding 

to achieve better compression for medical images. There are 

also many image classes like barcodes and QR codes where 

the image by nature is bi-level, and Boolean function 

techniques could be handy. Deep Learning and NLP are areas 

where multi-dimensional space is used in embedding. 

Wherever data is binary in nature, the Boolean function 

techniques may be applicable for pursuing another branch of 

research direction. 
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