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Abstract - Achieving an optimal balance between convergence speed and solution quality remains a critical challenge in complex 

optimization problems. This work proposes an enhanced hybrid metaheuristic that synergistically combines a typical Grey Wolf 

Optimization (GWO) algorithm together with an Artificial Bee Colony (ABC) mechanism. The key innovation lies in utilizing 

GWO's exploratory strength to generate an advantageous initial food source distribution for the ABC mechanism, leading to 

accelerated convergence and improved solution quality. To evaluate the algorithm's performance, it is applied to the parameter 

tuning of a Fuzzy Logic Controller (FLC) for an inverted pendulum on the cart system. Comparative performance evaluations, 

executed via MATLAB/Simulink simulations, demonstrate that the developed hybrid algorithm significantly surpasses the 

capabilities of standard ABC and existing GWO-ABC hybrid implementations. This highlights the proposed method's 

effectiveness in addressing a broad spectrum of optimization tasks. 
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1. Introduction  
With the rapid advancement of both economic and social 

domains, complex optimization problems have become 

increasingly ubiquitous [1]. Contemporary optimization 

challenges are distinguished by their multi-faceted nature, 

involving high-dimensional variables, multiple objectives, 

diverse constraints, and varied optimization metrics. The 

objective of any optimization problem is to locate the best 

possible solution within the set of admissible solutions.  

Optimization algorithms are designed to tackle a wide 

range of global optimization problems, which may be 

categorized as single or multi-objective, constrained or 

unconstrained, and combinatorial [2]. These problems arise 

across diverse sectors, including ICT, engineering disciplines, 

resource extraction, and logistical scheduling [2]. The primary 

objective of any optimization algorithm is to determine the 

most favorable solution in the search space. While finding a 

true global optimum is computationally expensive, the best 

acceptable solution can be selected from a set of candidates. 

The complexity of optimization problems continues to 

increase in the modern world. Therefore, optimization 

algorithms must evolve efficiently to handle a growing set of 

complex problems while mitigating computational costs 

associated with global optimization [3]. Compared to 

traditional optimization algorithms, nature-inspired 

optimization techniques have dominated the field of 

optimization. These techniques, known as metaheuristic 

algorithms, are primarily categorized into three main groups: 

Evolutionary Algorithms (EA), Physics-based Algorithms, 

and Swarm Intelligence-based (SI) Algorithms [4]. Swarm 

Intelligence (SI) algorithms are inspired by the collective 

behavior and natural rules of social organisms, such as flocks 

of birds or colonies of bees. Examples of SI algorithms include 

the Moth-Flame Optimization Algorithm (MFO) [5, 6] White 

Shark Optimizer (WSO) [7], Sparrow Search Algorithm 

(SSA) [8], Bat Algorithm (BA) [17]. Among SI algorithms, 

the Particle Swarm Optimization (PSO) [9, 18, 19] and Ant 

Colony Optimization (ACO) [21] method is one of the most 

widely adopted. It models a population of particles that 

iteratively update their positions based on the best solutions 

found, mimicking the behavior of a swarm searching for food. 

The Grey Wolf Optimizer (GWO) [10], a contemporary 

nature-inspired algorithm, mimics the structured predatory 

behavior exhibited by grey wolves in the wild. GWO has been 

widely applied in optimization problems due to its advantages, 

such as having fewer parameters and fast convergence speed. 

However, despite these strengths, GWO struggles with global 

exploration and is prone to getting trapped in local optima. 

http://www.internationaljournalssrg.org/
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The Artificial Bee Colony (ABC) method, a population-

based metaheuristic within the swarm intelligence paradigm, 

emulates the collective foraging behavior observed in 

honeybee colonies. It is widely recognized for its potent global 

exploration capabilities and straightforward implementation 

[11]. However, ABC often suffers from slow convergence in 

later iterations and inefficient exploitation of promising 

solutions, leading to suboptimal performance in highly 

complex optimization tasks. Therefore, integrating GWO and 

ABC can potentially improve the trade-off between global 

exploration and local exploitation, thereby increasing 

optimization performance. 

The inverted pendulum system is one of the fundamental 

theoretical and practical models in control theory and 

engineering, known for its instability and nonlinear dynamics 

[12-14]. The main challenge lies in maintaining the pendulum 

in an upright position while the cart moves along the 

horizontal axis. This problem has significant applications in 

robotics, transportation systems, and aerospace engineering, 

making it a crucial benchmark for testing advanced control 

strategies [15]. 

While the inverted pendulum system is employed as the 

application domain for this investigation, the primary research 

objective transcends mere system stabilization. It functions as 

a controlled experimental platform designed to facilitate the 

examination and refinement of advanced optimization 

methodologies. Specifically, this study aims to evaluate the 

efficacy of hybridizing the GWO and the ABC algorithm, with 

the intent of augmenting their performance in addressing the 

challenges inherent in complex, high-dimensional 

optimization problems. The inverted pendulum on the cart 

system using an FLC controller, therefore, serves as a rigorous 

benchmark, enabling the systematic assessment of the 

proposed hybrid algorithm's capacity to navigate intricate 

search landscapes and deliver superior optimization outcomes. 

This approach allows for the abstraction of findings beyond 

the specific control application, enabling the extrapolation of 

observed performance enhancements to a wider range of 

complex optimization tasks encountered in diverse scientific 

and engineering contexts. 

2. Methodology 
2.1. Mathematical Modeling of an Inverted Pendulum 

System 

As shown in Figure 1, the dynamic configuration of the 

inverted pendulum system includes two fundamental parts: the 

horizontally mobile cart and the vertically attached pole. The 

cart is typically driven by a motor to provide translational 

motion. The second component, the pole, is a rod with one end 

attached to a mass m, while the other end is connected to the 

cart via a rotational joint, allowing the rod to rotate freely. In 

this mechanical setup, the system is influenced by a single 

external force, F, which is generated by the torque output of 

the electric motor driving the cart's motion. 

 
Fig. 1 Configuration of the inverted pendulum mechanism 

 

The equations for the dynamic behavior of the inverted 

pendulum can be obtained through the Euler-Lagrange 

method, leading to the following results: 

{
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To maintain the desired angle between the pendulum and 

the Y-axis, a Fuzzy Logic Controller (FLC) is developed to 

generate the control force F for the cart. This approach will be 

presented in the following section. 
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  (2) 

Equation (2) is used to represent the mathematical 

formulation of the inverted pendulum system, capturing the 

dynamics of the system based on the applied forces and the 

motion of both the cart and the Pole. 

2.2. Control Strategy 

The control strategy integrates the Fuzzy Logic 

Controller (FLC) with the proposed mABC algorithm, where 

mABC is employed to optimize the FLC's processing 

parameters [20]. The main objective is to stabilize the system 

within an acceptable range, ensuring that both the cart's 

position and the pendulum's angular deviation are 

appropriately controlled. A hybrid control structure is plotted 

in Figure 2. The optimization of mABC is guided by the ITAE 

criterion, which involves integrating the product of time and 

the absolute error, and is defined as follows (3) [16]: 

𝐽 = ∫(𝑒𝑥(𝑡) + 𝜌. 𝑒𝜃(𝑡)) . 𝑡𝑑𝑡 (3) 

Here, 𝑒𝑥 and 𝑒𝜃represent the deviation errors in the cart-

pendulum system, corresponding to the cart's displacement 

and the pendulum's angular variation, respectively.
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Fig. 2 Control strategy for balancing the inverted pendulum system 

The ITAE criterion prioritizes long-term errors by 

assigning greater weight to errors that persist over time. 

Consequently, systems optimized using ITAE tend to reduce 

prolonged deviations, resulting in faster stabilization. 

Moreover, ITAE facilitates the design of controllers that 

exhibit smoother responses and fewer oscillations compared 

to other performance indices such as IAE or ITSE. For the 

fuzzy controller, each input variable is assigned three fuzzy 

sets, while the output variable is represented by seven fuzzy 

sets. This configuration results in a total of 81 fuzzy rule sets. 

3. Overview of the Adopted Metaheuristic 

Techniques 
3.1. Grey Wolf Optimizer Algorithm (GWO) 

The Grey Wolf Optimizer (GWO) is a meta-heuristic 

algorithm modeled after the social behavior of grey wolves. 

Developed by Mirjalili et al. in 2014, the efficacy of this 

approach has been demonstrated across a diverse spectrum of 

optimization problems. The GWO stands out from other 

population-based optimization techniques due to its unique 

hunting strategy and the distinct way its operations are 

mathematically modeled. In its hunting strategy, GWO 

mimics the social hierarchy and cooperative hunting tactics 

observed in grey wolves. The wolf pack is organized into four 

distinct ranks: alpha (α), beta (β), delta (δ), and omega (ω). 

Each level has distinct responsibilities within the pack. The 

alpha wolves (α) serve as leaders, making decisions and 

guiding the entire pack. The beta wolves (β) hold the second-

highest rank, assisting the alpha wolves and potentially 

replacing them when necessary. The delta wolves (δ) occupy 

the third hierarchical level, following the directions of the 

alpha and beta wolves. The omega wolves (ω) are at the lowest 

rank, representing the majority of the pack. 

The GWO algorithm operates through three core stages: 

initialization, exploration, and exploitation, which guide the 

search for optimal solutions-an approach commonly found in 

Swarm Intelligence (SI)-based methods [10]. The 

mathematical representation of the algorithm is outlined as 

follows. 

3.1.1. Grey Wolf Encircling the Prey Phase 

During the initial stage of the hunting process, grey 

wolves approach their target by gradually reducing the 

distance between themselves and the prey. This behavior is 

mathematically modeled by adjusting each wolf's position 

according to its relative distance from the prey. 

𝐷 = |𝐶. 𝑋𝑝𝑟𝑒𝑦 − 𝑋(𝑡)| (4) 

𝑋(𝑡 + 1) = 𝑋𝑝𝑟𝑒𝑦 − 𝐴.𝐷 (5) 

The position of the prey is represented by 𝑋𝑝𝑟𝑒𝑦, while 

𝑋(𝑡) denotes the current position of a grey wolf at iteration t, 

and 𝑋(𝑡 + 1) indicates its updated position in the subsequent 

iteration. The distance between the grey wolf and the prey is 

expressed as D. The encircling mechanism is controlled by 

two primary coefficients. 

 A: the convergence coefficient, which determines the 

coordination between wide-ranging exploration and 

focused local search. When |A| > 1, the wolves explore 

globally, while |A| < 1 leads to local exploitation. 

 C: the oscillation coefficient, which affects the direction 

and movement toward the prey. 

The mathematical representation of this behavior is as 

follows: 

𝐴 = 2. 𝛼. 𝑟1 − 𝛼 (6) 

𝐶 = 2. 𝑟2 (7) 

𝛼 = 2 − 2.
𝑖𝑡𝑒𝑟

𝑚𝑎𝑥_ 𝑖𝑡𝑒𝑟
 (8) 

As part of this formulation, 𝑟1, 𝑟2 ∈ [0,1] represents 

random variables while 𝛼 serving as a control parameter that 

decreases linearly from 2 to 0 throughout the iterations. This 

mechanism enables the wolves to iteratively adjust their 

positions relative to the prey, promoting a gradual 

convergence toward the optimal solution. 
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3.1.2. Grey Wolf Hunting Phase 

The hunting phase in the GWO is directed by the top three 

wolves in the hierarchy: alpha (𝛼), beta (𝛽), and delta (𝛿), who 

are assumed to possess the most accurate information about 

the prey's location. The remaining wolves in the pack adjust 

their positions accordingly, following the guidance provided 

by these leading individuals. Mathematically, the position of 

each wolf is updated by considering the average influence of 

𝛼, 𝛽, and 𝛿. This process is represented by the following 

equations: 

{

𝐷𝛼 = |𝐶𝛼 . 𝑋𝛼 − 𝑋|

𝐷𝛽 = |𝐶𝛽 . 𝑋𝛽 − 𝑋|

𝐷𝛿 = |𝐶𝛿 . 𝑋𝛿 − 𝑋|

   (9) 

{

𝑋1 = |𝑋𝛼 − 𝐴1. 𝐷𝛼|

𝑋2 = |𝑋𝛽 − 𝐴2. 𝐷𝛽|

𝑋3 = |𝑋𝛿 − 𝐴3. 𝐷𝛿|

 (10) 

𝑋(𝑡 + 1) =
𝑋1+𝑋2+𝑋3

3
 (11) 

Where: 

 𝑋𝛼 , 𝑋𝛽 , 𝑋𝛿  represent the positions of the top three wolves. 

Wolf in the population. 

 𝐶𝛼 , 𝐶𝛽 , 𝐶𝛿 and 𝐴1, 𝐴2, 𝐴3 are computed using the same 

equations as in the encircling phase. 

 𝑋(𝑡 + 1)is the updated position of the wolf in the next 

iteration. 

 
Fig. 3 The mechanism of the GWO algorithm 

Through this strategy, the grey wolves are guided toward 

favorable areas within the search domain, thereby enhancing 

the algorithm's ability to effectively exploit regions that are 

likely to contain optimal solutions. GWO is characterized by 

its simplicity in design and the limited number of parameters 

needed for configuration. Its hierarchical leadership system 

allows for rapid convergence toward optimal solutions. This 

makes GWO particularly suitable for real-world optimization 

problems that require fast computation. However, despite 

these advantages, GWO also has some limitations. One 

notable drawback is its tendency to become trapped in local 

optima, which may affect its performance in complex, high-

dimensional search spaces. 

3.2. Artificial Bee Colony Algorithm (ABC) 

Proposed by Karaboga, the Artificial Bee Colony (ABC) 

algorithm draws inspiration from the natural foraging patterns 

observed in honeybee swarms. Its optimization performance 

is highly influenced by the choice of control parameters, 

where suitable parameter tuning plays a crucial role in 

enhancing search effectiveness. The algorithm categorizes the 

artificial bees into three primary roles: employed bees, 

onlooker bees, and scout bees. 

3.2.1. Employed Bees Phase 

Employed bees are linked to particular food sources, and 

they evaluate their quality and communicate this information 

to other members of the colony via the 'waggle dance' upon 

returning to the hive. They generate new candidate solutions 

in the neighborhood of their current positions by applying the 

following update equation: 

𝑣𝑖𝑗 = 𝑥𝑖𝑗 + 𝜙𝑖𝑗(𝑥𝑘𝑗 − 𝑥𝑖𝑗) (12) 

Where: 

 𝑘 ≠ 𝑖is the index of a randomly selected neighboring 

solution. 

 𝑗 ∈ {1, . . . , 𝐷}is the index of a dimension (variable) in the 

solution. 

 𝜙𝑖𝑗 is a randomly generated number within the range [-

1,1]. 

If the fitness of the new solution exceeds that of the 

current one, the employed bee adopts the new solution; 

otherwise, the previous solution is preserved. 

3.2.2. The Second Phase: Onlooker Bees 

Onlooker bees do not engage in direct exploration of food 

sources but stay within the hive to gather information shared 

by employed bees. Using this information, they choose a food 

source to exploit further and attempt to enhance its quality. 

Each onlooker bee selects a solution (food source) according 

to a probability determined by the following equation: 

𝑝𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑛
𝑆𝑁
𝑛=1

 (13) 

Where: 

 𝑝𝑖represents the probability of selecting food source ith. 

 𝑓𝑖𝑡𝑖 denotes the fitness value of solution ith. 

 𝑓𝑖𝑡𝑛is the total number of available solutions in the 

population. 

Once a solution is selected, the onlooker bee generates a 

new solution using the same update Equation (12) as 

employed bees. 
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The fitness value fit used by Karaboga [11, 12] is defined 

using a well-known formula, as presented below. The purpose 

of this formulation is to ensure that the fitness value remains 

positive even when the objective function takes negative 

values. 

𝑓𝑖𝑡𝑖 = {

1

𝑓𝑖+1
 𝑖𝑓 𝑓𝑖 ≥ 0

1 + |𝑓𝑖| 𝑖𝑓 𝑓𝑖 < 0
 (14) 

3.2.3. Scout Bees Phase 

The scout bee phase plays a vital role in the Artificial Bee 

Colony (ABC) algorithm by supporting exploration and 

preventing early convergence. In contrast to employed and 

onlooker bees, scout bees do not depend on information shared 

by other bees. Rather, they perform random searches within 

the solution space to identify new possible solutions. If a 

solution does not show improvement after a specified number 

of iterations (referred to as the limit), the associated employed 

bee is converted into a scout bee and generates a new solution 

through random exploration using (15): 

𝑥𝑖𝑗 = 𝑥(𝑥𝑗,𝑚𝑖𝑛𝑗,𝑚𝑎𝑥)𝑗,𝑚𝑖𝑛 (15) 

Where: 

 𝑥𝑗,𝑚𝑖𝑛and 𝑥𝑗,𝑚𝑎𝑥 represent the lower and upper bounds of 

the variable x, respectively. 

 𝜙 is a random number uniformly distributed within the 

range [0,1]. 

By replacing the entire solution vector with newly 

generated values, the scout bee contributes to increasing 

population diversity and helps reduce the likelihood of 

stagnation in local optima. 

3.3. The Modified Artificial Bee Colony  - mABC 

Meta-heuristic algorithms are based on two core 

principles, exploration and exploitation, which work together 

to effectively search the solution space and generate solutions. 

Exploration aims to diversify the solutions by broadening the 

search space to include more varied candidate solutions. In 

contrast, exploitation focuses on narrowing the search scope 

by reducing differences between candidate solutions. 

Exploration relates to globalizing the search space, while 

exploitation localizes the search space [11]. Achieving a 

balance between these two attributes is crucial for enhancing 

the quality of solutions in optimization algorithms. If an 

algorithm places too much focus on exploration while 

underemphasizing exploitation, the high variability among 

solutions in successive iterations may prevent the algorithm 

from identifying the optimal solution. Ideally, the disparity 

between solutions should diminish progressively to facilitate 

convergence toward the best solution. Therefore, the 

performance of a meta-heuristic algorithm is primarily 

determined by achieving an appropriate trade-off between 

exploration and exploitation. 

 
Fig. 4 The flowchart of the proposed modified ABC algorithm 

 

Similarly, the Artificial Bee Colony (ABC) optimization 

algorithm functions as a meta-heuristic method. In cases 

where an optimization problem involves multiple local 

optima, an imbalance between exploration and exploitation 

may result in slow convergence and suboptimal solution 

quality. This paper presents an enhanced version of the ABC 

algorithm (mABC) aimed at reducing the computational time 
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associated with the standard ABC algorithm. An additional 

phase is introduced as a parameter initialization step for the 

ABC process. As shown in Figure 4, mABC is initialized 

through a preliminary optimization step, which aims to 

generate the initial parameters for the ABC algorithm using an 

effective optimization technique. A viable approach for this 

purpose is to employ a faster optimization method, such as the 

GWO. Theoretically, GWO is a relatively simple optimization 

technique that can achieve faster execution times than ABC. 

The preliminary optimization process is designed to identify a 

viable solution for the problem, producing a set of parameters 

that converge towards the optimal solutions, either local or 

global. 
 

4. Results and Discussion  
This study proposes an optimization method for the Fuzzy 

Logic Controller (FLC) parameters using an enhanced ABC 

algorithm. The optimization process for determining the 

optimal parameters of the FLC using the mABC algorithm is 

compared with the GWO, ABC, and Ant Colony Optimization 

(ACO) algorithms [21], with the search space parameters 

described in Table 1. The effectiveness of the proposed 

algorithm is evaluated through two different experimental 

scenarios, each with specific control requirements for the 

inverted pendulum system. The simulation process is 

conducted using MATLAB/Simulink software to collect data 

and analyze the results. Table 2 outlines the experimental 

parameters of the inverted pendulum system utilized in this 

study. Figure 5 illustrates the optimization process, showing 

that the mABC algorithm achieves faster optimization speed 

compared to the other algorithms discussed. The mABC 

benefits from the fast initialization of parameters from the 

GWO algorithm, which shortens the initial optimization 

phase. It then capitalizes on the exploration capabilities to 

handle potential solution sources and discover new solutions 

when previous ones no longer provide optimal results. As a 

result, the mABC provides a better optimal solution than the 

GWO algorithm. 

Scenario 1: Balancing control of the pendulum while 

maintaining the desired cart position at a fixed value. 𝑥∗ =
0.25(𝑚) 

Scenario 2: Balancing control of the pendulum with the 

cart position varying across four discrete levels: 𝑥0
∗ =

0(𝑚),𝑥1
∗ = 0.2(𝑚),𝑥3

∗ = 0.45(𝑚), 𝑥4
∗ = 0.3(𝑚). 

 
Table 1. Parameters to execute the mABC algorithm 

Parameter Symbol Value 

Maximum iteration 𝑁𝑚𝑎𝑥 50 

Swarm size 𝑁𝑝𝑎𝑟 20 

The upper bound, UB 

𝐾1 7 

𝐾2, 𝐾3, 𝐾4 2 

𝐾5 500 

Lower bound, LB 

𝐾1 2 

𝐾2, 𝐾3, 𝐾4 0.01 

𝐾5 40 
 

Table 2. Physical parameters of the inverted pendulum system 

Symbol Parameters Value 

𝑚𝑐 Mass of the mobile base (cart) 2.4[𝐾𝑔] 
𝑚𝑝 Mass of the pendulum rod 0.23[𝐾𝑔] 

𝑙 Length of the pendulum 0.5[𝑚] 
𝑥(𝑡) Horizontal displacement of the cart [𝑚] 

𝑥
•
(𝑡) The velocity of the cart [

𝑚

𝑠
] 

𝑥
••
(𝑡) Acceleration of the cart [

𝑚

𝑠2
] 

𝜃(𝑡) Angular displacement of the pendulum [𝑅𝑎𝑑] 

𝜃
•

(𝑡) Angular velocity of the pendulum [
𝑟𝑎𝑑

𝑠
] 

𝜃
••

(𝑡) Angular acceleration of the pendulum [
𝑟𝑎𝑑

𝑠2
] 

F The external force applied to the cart. [𝑁] 

 
Fig. 5 Results for the comparative analysis of the proposed algorithm and standard GWO and ABC algorithm 
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Fig. 6 Simulation results for the first scenario 

 
Fig. 7 Pole angle and cart position’s dynamic responses for the second scenario 
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Figure 6 illustrates the cart position deviation and the 

angular deviation of the pendulum from the vertical axis. The 

results show that both the position error and the angular 

deviation are driven to zero within a stable settling time of less 

than 1.5 seconds, demonstrating the effectiveness of the 

proposed control method. The control response of the cart-

pendulum system using the proposed optimization technique 

in the second scenario is illustrated in Figure 7. The results 

indicate that the proposed hybrid control strategy achieves 

high control performance, ensuring the pendulum quickly 

stabilizes even when the cart position changes at different 

levels over time. Not only does the actual position closely 

follow the control signal, but the pendulum's angular deviation 

is also completely eliminated within a reasonably short 

settling time. 

 

5. Conclusion and Future Work 
This study has presented an innovative hybrid 

metaheuristic optimization framework meticulously 

engineered through the synergistic integration of the GWO 

and the ABC algorithm. This fusion is strategically designed 

to address the inherent challenge of achieving an optimal 

equilibrium between exploratory diversification and 

exploitative intensification within the metaheuristic search 

process. The resultant hybrid algorithm is subsequently 

deployed to formulate an optimized control paradigm, 

wherein an FLC is employed as the primary mechanism for 

the stabilization of an inverted pendulum system. Rigorous 

simulations executed within the MATLAB/Simulink 

computational environment provide empirical validation of 

the performance efficacy of the developed hybrid control 

methodology. Prospective avenues for future scholarly inquiry 

encompass the refinement of the structural architecture of the 

ABC algorithm, with a specific focus on enhancing its 

adaptability and robustness.  

Additionally, the exploration of seamless integration with 

other advanced optimization paradigms is warranted, aiming 

to harness the synergistic advantages afforded by their 

complementary search characteristics. Furthermore, 

substantive advancements in the design and parameterization 

of FLC components, particularly concerning the morphology 

of membership functions and the logical construction of rule 

bases, hold the potential to yield significant enhancements in 

both control performance metrics and computational 

efficiency, particularly within the context of real-time control 

implementations demanding stringent temporal constraints. 
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