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Abstract - Internal Combustion Engine (ICE) vehicles are gradually being replaced by Electric Vehicles (EVs), propelling the 

shift to environmentally friendly transportation. The environmental impact of ICE vehicles has accelerated the adoption of EVs 

to mitigate Carbon Dioxide (CO2) emissions, necessitating the optimal planning of Electric Vehicle Charging Stations (EVCS). 

This study explores strategies to improve power generation and voltage stability in distribution networks by integrating EVCS 

with distributed solar Photovoltaic (PV) systems. To minimize power losses and identify the optimal placement of EVCS in IEEE 

33-bus and 69-bus systems, Evolutionary Programming (EP), Particle Swarm Optimization (PSO) and Grey Wolf Optimization 

(GWO) are three optimization techniques that have been compared. To reduce the dependency on the grid and accommodate 

additional charging demand, the EVCS is being integrated with PV systems. The results demonstrate that GWO outperforms 

PSO and EP. GWO achieved the lowest power losses and the highest voltage profile improvements. These findings provide 

valuable insights into efforts to optimize EVCS placement, integrate it with sustainable energy systems, and improve power 

system efficiency. 

Keywords - Grey Wolf Optimization, Particle Swarm Optimization, Evolutionary Programming, Optimal placement of electrical 

vehicle charging station, Photovoltaic.

1. Introduction 
There is a shift among automotive producers from fossil 

fuels to green energy due to the environmental issues 

associated with fossil fuels. The ability to cut greenhouse gas 

emissions, enhance air quality and reduce the dependency on 

fossil fuels has led to the increasing popularity of Electric 

Vehicles (EVs) as an environmentally friendly transportation 

option [1-3]. Electric-powered passenger cars accounted for 

9% of global sales in 2021, with projections estimating an 

increase to 75% by 2040 [4]. Many policies and initiatives 

have been introduced to promote EV adoption and expand 

charging infrastructure to satisfy charging needs. To 

accommodate widespread EV adoption, it is essential to 

establish the appropriate number and capacity of EV Charging 

Stations (EVCS). There are three types of EVCS: level 1 

(120V) for standard outlets, level 2 (240V) for faster public or 

residential charging, and DC fast charging for high-speed 

charging during long-distance travel [5]. The function of these 

chargers installed at these stations is to deliver DC power to 

EVs for recharging. For instance, a 50-kW charger usually 

takes about 30 minutes to fully recharge an EV’s 28kWh 

battery to 80% capacity. Slower chargers took around 1 to 2 

hours to charge the same battery capacity, while FCs provided 

quicker charging, significantly reducing waiting times and 

offering greater convenience. However, it poses significant 

challenges for the distribution network [6]. Chargers installed 

at these stations deliver DC power to EVs for recharging, and 

the time required for charging depends on the delivered power 

[7]. The placement and capacity of EVCSs directly impacted 

the performance and stability of the electrical grid. The 

placement and capacity of EVCSs directly influenced grid 

performance, affecting bus voltage, system load, and energy 

losses as more vehicles charge simultaneously [8, 9]. To 

preserve grid stability and prevent excessive load stress on the 

power system, proper installation and strategic placement of 

EVCSs were essential [10]. EV charging stations caused 

significant disruptions in the distribution network, which 

include voltage deviations, severe harmonic distortions, 
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higher peak demands, and reduced overall system stability 

without proper planning [11]. To minimize the effect on the 

distribution network, careful consideration of the placement 

and the size of EVCSs was crucial. Effective placement 

strategies may enhance user accessibility and charging 

convenience, which helps mitigate grid instability, making 

them the key aspect of sustainable EV infrastructure 

development.  

Different optimization strategies to locate the optimal 

location for EVCS have been conducted in several research. 

In Indonesia, a robust model for EVCS planning using the 

Control Variates (CV) technique was adopted to select the 

optimal location for EVCSs at Surabaya [12]. The model using 

this technique resulted in 13% better and 10 times faster than 

the non-robust method. This was beneficial for designing 

EVCS in areas with unstable power supply. There was another 

study that estimated EVCS location by spectral clustering and 

Gaussian Mixture Model (GMM) based on the total number 

of charging stations in [13]. The location used for the study 

was in Ankara, Turkey, and it considered EV density, road and 

traffic flow to increase accuracy.  

These factors were concluded to guide efficient EVCS for 

urban planning. In the other research, a multi-objective 

optimization methodology using the Bat Algorithm and Pareto 

Frontier was used to identify the optimal placement of semi-

fast EVCS within a distribution network [14]. The 

methodology comprised EV penetration levels, user behavior 

uncertainties, and Geographic Information System (GIS) data. 

Hierarchical clustering defined charging station zones, while 

scenario reduction techniques enhanced computational 

efficiency. The mid-term and long-term planning strategies 

were compared and analyzed. 

A real-time modelling and integration approach for 

Electric Vehicle Charging Stations (EVCS) in distribution 

networks was introduced in [15]. This method considered 

important factors such as Voltage Stability Indices (VSI), 

Voltage Sensitivity Factor (VSF), and current limitations. 

Using topography-based distribution load flow analysis and 

Typhoon HIL simulations, the best bus locations for charging 

stations were identified, network performance was accessed, 

and system stability and reliability were ensured. A study in 

[16] proposed an optimal way to size and place solar-powered 

EVCS using the Artificial Bee Colony (ABC) algorithm.  

The approach integrated Photovoltaic (PV) location 

modelling and EV modelling with voltage-dependent 

characteristics to find the most efficient and effective solution. 

To determine the best locations and capacities for fast-

charging stations, further research in [17] explored the use of 

the Grey Wolf Optimization (GWO) algorithm. The objective 

was to cut down transportation costs and inefficiencies. The 

algorithm also aimed to minimize energy losses and maintain 

stable voltage and power quality. On the other hand, research 

in [18] applied the Particle Swarm Optimization (PSO) 

algorithm to optimize the size and placement of Distributed 

Generation (DG). Different Durgapur city, India zones have 

been chosen as the study samples. The result showed that 

integrating DG with EV infrastructure improved energy 

efficiency and enhanced the overall performance of charging 

stations. 

Apart from the strategic placement of EVCSs challenge, 

increasing grid stress has remained a significant challenge as 

the popularity of EVs increases. One possible solution has 

been integrating Renewable Energy (RE) sources into 

charging infrastructure. Integrating RE with EVCS charging 

stations would be a more sustainable and efficient solution. 

PV systems could generate clean electricity, reducing 

dependence on the grid and lowering emissions [19]. Several 

studies have explored PV-powered charging stations to 

resolve the issues of grid overloading while enhancing station 

profitability and decreasing user charging costs [20]. In 

addition, incorporating PV panels, batteries, and transformers 

has been proven to relieve the grid burden by balancing high 

EV loads with local energy generation and storage [21].  

An energy management framework for PV-EVCS using 

a PV Distributed Generator (PV-DG) and an Energy Storage 

System (ESS) in a radial distribution network was proposed in 

[22]. The study demonstrated that the approach enhances 

energy stability and reduces grid dependency. The MATLAB 

simulation confirmed improved voltage profiles and reduced 

power line stress. Similarly, a study in [23] investigated the 

capacity optimization of PV and Battery Storage (BS) for 

EVCS across multiple locations. The variations in charging 

behavior were considered. Using a robust optimization model, 

the study highlighted behavioral dispersion affecting PV-BS 

integration. It showed that the location-specific charging 

patterns significantly impact economic efficiency. The study 

also demonstrated improvements in voltage stability and 

reduced annual operational costs.   

The author in [24] analyzed PV-EVCS performance 

under different solar irradiation conditions in India, 

emphasizing the role of solar availability in affecting the 

economic feasibility of PV-powered charging stations. The 

research in [25] introduced an optimal dispatch model for PV-

assisted EVCS, optimizing charging schedules to minimize 

costs while ensuring efficient battery utilization. Moreover, 

[26] proposed a hybrid approach to further enhance PV-EVCS 

performance. Although significant advancements have been 

made in optimizing EVCS placement and integrating RE 

sauces, most existing studies address these aspects separately. 

Limited research has addressed the simultaneous optimization 

of EVCS placement and RE integration within distribution 

networks. This creates a research gap, as neglecting the 

combined impact of location, sizing and energy source 

integration may result in suboptimal grid performance and 

increased operational costs.  
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This research introduces a novel approach that 

simultaneously optimizes EVCS placement and integrates PV 

systems within the distribution network, bridging the gap in 

the existing literature. Unlike prior studies that separately 

tackle either placement or renewable integration, this work 

considers the dual impact on grid dependability, voltage 

stability, and power losses. The study evaluates the 

effectiveness of GWO, PSO, and EP in determining optimal 

EVCS locations across IEEE 33-bus and 69-bus systems, 

exploring various scenarios with and without PV integration.  

These algorithms were selected due to their proven 

effectiveness in handling complex, nonlinear optimization 

problems, adaptability to multi-objective functions, and 

balance between exploration and exploitation. The proposed 

approach mitigates grid stress, reduces energy losses, and 

enhances voltage profiles by strategically placing PV systems 

at weak buses. The methodology also takes into consideration 

crucial technical limitations, which include voltage limits, 

current flow restrictions and power balance requirements, 

which are often overlooked in isolated optimization models. 

The comparative analysis of GWO, PSO and EP provides a 

deeper insight into the trade-offs between computational 

efficiency and solution accuracy. With thorough testing, the 

study aims to provide useful information for grid operators 

and policymakers to facilitate the development of resilient and 

sustainable distribution networks. The findings will not only 

support the growth of EV infrastructure but also encourage the 

use of clean energy sources. This will expedite the shift to a 

future with reduced carbon emissions.  

The approach of EVCS placement and PV system 

integration marks a major advancement in tackling the 

difficulties associated with modern power systems, which 

have extensive implications for sustainable energy 

management and smart grid development. The remaining 

content of this paper is organized as follows: The 

methodology, which comprises problem formulation, case 

study specifics and methods of optimization applied, is 

presented in Section II. The results are discussed in Section 

III, and a summary of the conclusions and suggestions is 

provided in Section IV. 

2. Methodology 
This section presents the comprehensive methodology for 

determining the optimal placement of EVCS with integrated 

PV systems in IEEE 33-bus and 69-bus distribution networks. 

The methodology is structured into five main parts: system 

modelling, optimization techniques, proposed method, 

number of EVCS, and load modelling of EVs. 

2.1. System Modelling 

In order to identify the optimal location for EVCS in this 

investigation, the distribution network was modelled using the 

IEEE 33-bus and IEEE 69-bus test systems. The 33-bus 

system serves as a smaller-scale test, while the 69-bus system 

provides insights into a larger and more complex network. In 

order to determine the baseline power losses and voltage 

profiles without the use of EVCS or PV integration, the 

Newton Raphson Load Flow (NRLF) technique was utilized 

to perform the initial load flow study.

  
(a)                                                                                            (b) 

Fig. 1 Single line diagram, (a) IEEE 33-bus system, and (b) IEEE 69-bus system. 

The overall active power demand of the IEEE 33-bus 

distribution system, as illustrated in Figure 1, is 4.58 MW, 

whereas the reactive power demand is 2.839MVar. The lowest 

voltage magnitude, recorded at bus 18, is 0.952 p.u., with total 

power losses amounting to 0.13482 MW in the base case 

scenario. Likewise, Figure 2 displays the IEEE 69-bus 

distribution system’s total active power consumption of 3.802 

MW and the reactive power demand of 2.695 MVar. The 

power flow analysis demonstrates that bus 65 has the lowest 

voltage magnitude, roughly 0.909 p.u., while the total power 

loss for the base case is 0.22463 MW. 

2.2. Optimization Technique 

Optimization techniques are essential for solving 

complex problems in power system optimization. Three 

optimization techniques, namely Evolutionary Programming 

(EP), Particle Swarm Optimization (PSO), and Grey Wolf 

Optimization (GWO), are used in this study to identify the best 

placement of EVCS in the distribution system. 

2.2.1. Particle Swarm Optimization (PSO) 

Kennedy and Eberhart created the early PSO methods a 

stochastic optimization technique based on swarming 
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behavior [27]. It provides solutions to complex numerical 

issues involving the maximization or minimization of 

nonlinear limits [28]. Due to the numerous advantages PSO 

offers over alternative heuristic optimization methods, it was 

selected to minimize the optimization problem in this work. 

In this method, particles traverse a multi-dimensional 

problem field at a specific speed. Every particle has the ability 

to interact, changing its speed in response to the patterns of 

movement of other particles and itself. This dynamic motion 

prevents the swarm from getting stuck in local minima. 

Throughout PSO iterations, each particle preserves its position 

within the solution space. During each iteration, if a particle's 

current position surpasses previous values, it is stored as its 

personal best 𝑷𝑩𝒆𝒔𝒕,𝒊. The variable 𝑮𝑩𝒆𝒔𝒕,𝒊 holds the best value 

for the objective function. Positions and velocities are updated 

in each iteration. The equations of motion and velocity update 

in the PSO algorithm are formulated as in Equations (1), (2), 

and (3): 

𝐗𝒊
𝒌+𝟏 = 𝐗𝒊

𝒌 + 𝐕𝒊
𝒌+𝟏 (1) 

𝐕𝒊
𝒌+𝟏 = 𝝎𝒌 × 𝐕𝒊

𝒌+𝟏 + 𝑪𝟏 × 𝒓𝒂𝒏𝒅𝟏 × (𝑷𝑩𝒆𝒔𝒕,𝒊
𝒌 − 𝐗𝒊

𝒌) +

𝑪𝟐 × 𝒓𝒂𝒏𝒅𝟐 × (𝑮𝑩𝒆𝒔𝒕,𝒊
𝒌 −  𝐗𝒊

𝒌) (2) 

𝛚𝐤 =  𝛚𝐦𝐚𝐱 −  (
𝛚𝐦𝐚𝐱− 𝛚𝐦𝐢𝐧 

𝐤𝐦𝐚𝐱
) × 𝐤 (3) 

Where 𝝎 stands for the inertia weight, the 𝑪𝟏 and 𝑪𝟐 

stand for the acceleration coefficients, respectively. The local 

best of particle 𝒊 is indicated by 𝑷𝑩𝒆𝒔𝒕,𝒊, and the 𝑮𝑩𝒆𝒔𝒕,𝒊 

represents the particle group’s global best position. The 

random variables 𝒓𝒂𝒏𝒅𝟏 and 𝒓𝒂𝒏𝒅𝟐 are evenly distributed 

between 0 and 1. The objective is to minimize power outages 

by iteratively updating the positions of particles, which 

represent the potential locations for EVCS. 

2.2.2. Grey Wolf Optimization (GWO) 

GWO algorithm introduced in [29] is inspired by wolves' 

cooperative behavior and communication strategies within a 

pack to address complex optimization problems. The 

algorithm represents potential solutions as wolf individuals, 

and their positions are updated iteratively by simulating the 

hunting process. The alpha, beta, and delta wolves represent 

the best solutions discovered so far, and their movements have 

an impact on the search space’s exploration and exploitation. 

The algorithm is intended to converge towards the optimal 

solution by balancing exploration and exploitation by 

imitating wolf pack dynamics. There are binary GWO and 

non-binary GWO [30]. The non-binary GWO is used in this 

work. The solutions to the optimization problems can be better 

presented as continuous values. 

In this study, the initial values for the GWO algorithm in 

terms of the number of search agents (SearchAgents_no) is set 

to 20, the maximum number of potential iterations 

(𝑴𝒂𝒙_𝒊𝒕𝒆𝒓) is set to 100, for Test System 1, the dimension 

(𝒅𝒊𝒎) is 4, and for Test System 2, it is 8. The upper (𝒖𝒃) and 

lower (𝒍𝒃) boundaries are set to 33 and 2, respectively. The 

initial iteration (𝟏) is set to 0.  The objective function (𝒇𝑶𝒃𝒋), 

each wolf positions and convergence (𝐜𝐨𝐧𝐯𝐞𝐫𝐠𝐞𝐧𝐜𝐞_𝐜𝐮𝐫𝐯𝐞) 

are initialized. The random positions of bus locations 

(𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏𝒔) are also generated. The power loss function is 

then used to determine each wolf’s fitness value. The 

algorithm continuously refines the wolves’ positions by 

mimicking the haunting behavior, effectively balancing 

exploration and exploitation. Adjusting the change rate 

parameter (a) is performed iteratively, following the 

expression in Equation (4). 

𝐚 = 𝟐 −  𝐥( 
𝟐

𝐌𝐚𝐱_𝐈𝐭𝐞𝐫
 ) (4) 

The alpha, beta and delta wolves, which signify the most 

optimal solutions, lead the population’s movement throughout 

the optimization process. This process continues until it meets 

the maximum iteration. The final positions of the wolves, 

particularly the alpha wolf, provide the optimized solution for 

minimizing power loss. 

2.2.3. Evolutionary Programming 

EP is derived from the fundamental concepts of natural 

evolution and starts with the population’s initialization of 

potential solutions, each representing different configurations 

of EVCS. This population is subjected to iterative mutation, 

evaluation, and selection processes to evolve towards optimal 

solutions. The mutation step introduces random variations in 

the solutions, allowing exploration of the solution space. The 

EP algorithm simulates power flows and accesses the 

performance of each solution. Each solution is then evaluated 

using a fitness function aimed at minimizing power losses 

while ensuring voltage profiles remain within permissible 

limits. 

The fitness function 𝐹 is formally defined as: 

𝐅 = 𝐰𝟏  ×  𝐏𝐥𝐨𝐬𝐬 + 𝐰𝟐  ×  ∑ |𝐕𝐢 − 𝐕𝐫𝐞𝐟|𝐧
𝐢=𝟏  (5) 

Where 𝐏𝐥𝐨𝐬𝐬 denotes the total power losses, 𝑽𝒊 denotes the 

voltage at bus 𝒊, 𝑽𝒓𝒆𝒇 is the reference voltage, and 𝒘𝟏 and 𝒘𝟐 

are weighting factors. The selection process involves the 

selection of the best-performing solutions based on their 

fitness values. This is to ensure that only high-quality 

solutions propagate to subsequent generations. The iteration 

proceeds until a predefined stopping condition, such as 

achieving the convergence criterion or the maximum number 

of generations, is satisfied. 

2.3. Proposed Method 

The proposed method employs PSO, GWO, and EP 

optimization techniques to determine the most suitable 

locations for EVCS within the IEEE 33-bus and 69-bus 
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systems. These techniques were selected for their proven 

capability in solving optimization challenges in the electricity 

distribution power distribution network. The main intention is 

to lower power losses while maintaining voltage levels within 

±10% of the permissible range. The study compares the 

effectiveness of EP, PSO and GWO by evaluating their 

effectiveness in enhancing voltage stability, cutting down on 

power losses and improving voltage stability. Each technique 

follows a common framework but incorporates specific 

parameters and strategies to enhance performance and 

maintain solution diversity. 

For PSO, a swarm of 20 particles is initialized, with each 

particle representing a potential solution. The parameters 

include an inertia weight of 0.5 and acceleration coefficients 

(c1 and c2) set to 1.5. Particle positions and velocities are 

iteratively updated within the defined search space, ensuring 

solution uniqueness. The GWO method uses 20 search agents, 

constantly shifting their positions up to 100 times under the 

direction of alpha, beta, and delta wolves. A penalty term is 

applied to avoid duplicate locations. EP starts with 20 

individuals undergoing Gaussian mutation to generate 

offspring, followed by a selection process to retain the best 

individuals for subsequent iterations. By standardizing these 

parameters and maintaining search space boundaries from 

buses 2 to 33 in the IEEE 33 bus system and from buses 2 to 

69 in the IEEE 69 bus system, this study establishes a robust 

and uniform optimization framework across all methods. This 

approach enables a comparative analysis of PSO, GWO, and 

EP, highlighting their strengths and suitability for optimizing 

EVCS placement in power distribution networks. 

2.3.1. Objective Function 

This proposal of this study is that the EVCS will be 

positioned thoughtfully across the distribution network to 

attain minimal objective function values as defined in 

Equation (6), which represents the total active power losses 

(𝑷𝒍𝒐𝒔𝒔) accumulated across all branches within the network.  

𝒇 = ∑ 𝑷𝒍𝒐𝒔𝒔𝒋

𝑵

𝒋=𝟏
  (6) 

Where in the 𝒋𝒕𝒉 branch, 𝑷𝒍𝒐𝒔𝒔 represents the active power 

loss, 𝒋 represents the branch index, and 𝑵 represent the 

network’s total number of branches. This formulation allows 

for assessing the impact of EVCS locations on network 

performance, emphasizing the importance of minimizing 

losses and maintaining voltage stability. 

2.3.2. Constraints 

There are three constraints were considered in this study, 

i.e voltage, current and active/ reactive power. 

i. Voltage constraint: To keep the voltage of the bus within 

limits. Voltage has minimum and maximum restrictions 

on each bus, as stated in (7). 

𝑽𝒎𝒊𝒏  <  𝑽𝒊  <  𝑽𝒎𝒂𝒙    where i= 1, 2, 3, …N (7) 

ii. Current flow limit: Every branch within the distribution 

system is subject to defined maximum and minimum 

current limits. To keep the current within limitations, 

Equation (8) is applied. 

𝑰𝒎𝒊𝒏 < 𝑰𝒋 <  𝑰𝒎𝒂𝒙     where j= 1, 2, 3, …N (8) 

iii. The necessity of equality of active power and reactive 

power: Equations (9) and (10) represent the active power 

and reactive power equality limitations for the 

distribution system. 

𝑷𝑮𝑹𝑰𝑫 = ∑ 𝑷𝒊
𝑵𝑩
𝒊=𝟏 + 𝑷𝒍𝒐𝒔𝒔 (9) 

𝑸𝑮𝑹𝑰𝑫 =  ∑ 𝑸𝒊
𝑵𝑩
𝒊=𝟏 + 𝑸𝒍𝒐𝒔𝒔 (10) 

2.3.3. Number of EVCS 

The suitable numbers of EVCS installations for the test 

system are determined using Equation (11). 

𝑵𝑪𝑺 =
𝒑×𝑵𝑬𝑽×𝒄𝒉𝒕𝒊𝒎𝒆

𝒔𝒕×𝑪𝑬𝑽𝑪𝑺
 (11) 

Where the number of EVCS is denoted by 𝑵𝑪𝑺, 𝒑 presents 

an EV’s average power, 𝑵𝑬𝑽 denotes the total units of EVs 

that need to be charged and 𝑪𝑬𝑽𝑪𝑺 indicates the charging 

station’s capacity; additionally, 𝒔𝒕 refers to the CS serving 

time and 𝒄𝒉𝒕𝒊𝒎𝒆 represents the charging time. The calculated 

number of EVCS is rounded up. 

2.3.4. Load Modelling of EVs 

The entire distribution system load, which includes both 

the existing distribution load and the is modelled using 

Equation (12). 

𝐏𝐭𝐨𝐭𝐚𝐥 =  ∑ 𝐏𝐢𝐞𝐱𝐭 + 𝐏𝐢𝐂𝐒
𝐍𝐁
𝐢=𝟏  (12) 

Where Ptotal is the total power demand, the number of 

busses is indicated by NB, 𝑷𝒊𝒆𝒙𝒕 is the existing load at the ith 

bus, and PiCS is the EVCS load at the ith bus, which is 

determined using Equation (13). 

𝑷𝒊𝒄𝒔 =  𝑵𝑬𝑽  × 𝑷𝒄𝒉𝒂𝒓𝒈𝒆𝒓 × 𝜼𝒆𝒇𝒇 (13) 

Where NEV is the number of charging ports, Pcharger is the 

power rating of each individual charger, and ƞeff is the 

efficiency of the charging station. 

3. Results and Discussion 
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A thorough examination of the simulation results is 

provided in this section for optimal EVCS placement in IEEE 

33 bus and IEEE 66 bus systems through the utilization of 

three different algorithms: PSO, GWO, and EP. In this work, 

every bus has the possibility to locate the EVCS except for bus 

1 (slack bus). The optimal number of EVCS units is 

determined as 4 and 8 for the IEEE 33-bus and 69-bus 

systems, respectively, depending on optimization limitations 

and system load needs. 

3.1. Case Studies and Simulation Setup 

This research introduces the following four case studies: 

Case 1 : IEEE-33 bus system without PV integration 

Case 2 : IEEE-33 bus system with 0.1 MW PV integration at 

the weakest bus, bus 18 

Case 3 : IEEE-69 bus system without PV integration 

Case 4 : IEEE-69 bus system with 0.1 MW PV integration at 

weakest busses 27, 61 and 65 

The system’s performance under these conditions is 

analyzed based on power loss, voltage profile, and algorithmic 

efficiency. 

Table 1. Comparative results across case scenarios 

Case 
Test 

System 
Algorithm EVCS Location 

Ploss 

(MW) 

Vmax  

(p.u) 

Vmin  

(p.u) 

1 33 

Base - 0.135 0.993 (Bus 2) 0.952 (Bus 18) 

PSO 2, 3, 19 and 20 0.148 0.992 (Bus 2) 0.951 (Bus 18) 

GWO 2, 3, 19 and 20 0.148 0.992 (Bus 2) 0.951 (Bus 18) 

EP 2, 19, 22 and 23 0.160 0.992 (Bus 2) 0.949 (Bus 18) 

2 33 

Base - 0.127 0.993 (Bus 2) 0.955 (Bus 18) 

PSO 2, 3, 19 and 20 0.139 0.992 (Bus 2) 0.954 (Bus 18) 

GWO 2, 3, 19 and 20 0.139 0.992 (Bus 2) 0.954 (Bus 18) 

EP 2, 19, 22 and 23 0.151 0.992 (Bus 2) 0.952 (Bus 18) 

3 69 

Base - 0.224 1.000 (Bus 2) 0.909 (Bus 65) 

PSO 2, 5, 31, 39, 43, 47, 48, and 49 0.227 1.000 (Bus 2) 0.909 (Bus 65) 

GWO 2, 4, 28, 29, 30, 36, 39 and 47 0.225 1.000 (Bus 2) 0.909 (Bus 65) 

EP 2, 3, 9, 28, 34, 40, 42 and 48 0.234 1.000 (Bus 2) 0.908 (Bus 65) 

4 69 

Base - 0.187 1.000 (Bus 2) 0.919 (Bus 65) 

PSO 4, 29, 33, 36, 38, 39, 40 and 47 0.189 1.000 (Bus 2) 0.919 (Bus 65) 

GWO 2, 4, 29. 31, 36, 37, 38 and 47 0.188 1.000 (Bus 2) 0.919 (Bus 65) 

EP 2, 4, 6, 28, 29, 32, 33 and 45 0.192 1.000 (Bus 2) 0.919 us 65) 

3.2. Selection of Weakest Busses and Stability Assessment 

The weakest buses were identified based on voltage 

magnitude and sensitivity analysis. Buses with the lowest 

voltage magnitudes in the base case were selected to assess the 

effect on the system stability of PV integration and EVCS 

location. The integration of EVCS introduces additional load, 

influencing voltage profiles and power losses. To mitigate 

these impacts, PV generation is incorporated at the weakest 

buses to counterbalance the increased demand and maintain 

system stability. A power flow analysis under different load 

conditions was conducted, revealing that the weakest buses 

exhibited higher voltage drops and were more susceptible to 

stability issues. Integrating PV at these buses provided local 

generation support, reducing dependency on upstream supply 

and improving voltage regulation. This strategy ensures a 

balanced load distribution, minimizing adverse effects on the 

grid. 

3.3. Comparative Performance Study 

The comparative analysis demonstrates that GWO 

generally outperforms PSO and EP in reducing power losses 

and sustaining higher voltage profiles. Optimal locations 

obtained by GWO, PSO and EP are shown in Table 1. These 

findings demonstrate that the GWO algorithm exhibits higher 

effectiveness in optimizing EVCS placement, including 

scenarios involving PV integration, across both IEEE 33-bus 

and 69-bus power systems. The base cases without any EVCS 

or PV-EVCS integrations show the lowest power losses, 

which is used as a basis to identify the impact when an 

additional load from EVCS is introduced into the system. 

However, integrating PV systems into EVCSs helps mitigate 

some of these impacts by providing additional power 

generation, improving voltage profiles, and enhancing overall 

system stability. 

In case 1, buses 2, 3, 19 and 20 are identified as the best 

locations for EVCS for both GWO and PSO, while the EP 

determined the optimal placements at busses 2, 19, 22 and 23. 

The power analysis is implemented with the existing loads by 

allocating the EVCS in the 33-bus system. Additionally, the 

system showed the highest voltage profile at 0.951 p.u, and its 

power losses were lowest at 0.135 MW. However, the 

integration of EVCS led to an increase in power losses.  

Among the optimization algorithms, PSO and GWO are 

equally effective in achieving a power loss of 0.148 MW, and 

both maintain voltage levels within acceptable limits. 

However, the EP algorithm shows a marginally lower 
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minimum voltage, indicating slightly less favorable voltage 

stability. Notably, as shown in Figure 2(a), the GWO 

algorithm is the most efficient, converging in 19 iterations 

compared to PSO with 29 iterations. 

 
   (a)                                                                                  (b) 

Fig. 2 Convergence curve for minimizing power losses in the IEEE 33-bus system, (a) Without PV integration, and (b) With PV integration. 

In case 2, the integration of PV systems on weak buses 

within the 33-bus system is investigated. The GWO and PSO 

exhibit similar power losses of 0.139MW and maintain 

acceptable voltage levels at bus 18. In contrast, the EP 

algorithm shows higher power loss and lower minimum 

voltage. GWO demonstrated good performance by converging 

in 33 iterations, while PSO requires 57 iterations, as shown in 

Figure 2(b). Thus, the GWO algorithm provides a good 

balance between minimizing power loss and faster 

convergence. Figure 3 illustrates the 33-bus system’s voltage 

profile for cases 1 and 2 using four different algorithms, i.e., 

base, GWO, PSO and EP. The results indicate that the voltage 

profile improved significantly for all cases by introducing a 

0.1 MW PV capacity at the weakest bus, bus 18.The lowest 

power loss of 0.225 MW is achieved by GWO in Case 3, and 

voltage levels are kept within allowable limits. PSO has a 

slightly higher power loss of 0.227 MW but maintains the 

same voltage stability. The EP algorithm, with a power loss of 

0.234 MW and a marginally lower minimum voltage, shows 

less favorable performance. 

 
(a)                                                                                             (b) 

Fig. 3 Network voltage profile within the 33-bus system, (a) Without PV integration, and (b) With PV integration on week busses. 

Lastly, in case 4, the GWO algorithm demonstrates the 

most effective performance, achieving the lowest power loss 

of 0.188 MW, followed by PSO with a power loss of 0.189 

MW. The EP algorithm again shows the highest power losses, 
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indicating the lowest optimization performance compared to 

PSO and GWO. In order to optimize the location of EVCSs 

within the 69-bus system, the GWO algorithm proves to be the 

most effective method, achieving the ideal balance between 

preserving voltage stability and reducing power losses. 

 
(a)                                                                 (b) 

Fig. 4 Network voltage profile for 69-bus system, (a) Without PV integration, and (b) With PV integration on week busses. 

Figure 4 depicts the voltage profile of 69- the bus system 

for case 3 and case 4, considering PV integration at the 

weakest busses of 27, 61 and 65, each with a capacity of 0.1 

MW. The improved voltage profile in the network is 

contributed by the integration of PVCS.  This enables these 

generators to dispatch power to a portion of the load, reducing 

dependence on the main grid. The GWO algorithm 

demonstrates proficiency in pinpointing optimal positions for 

EVCS and effectively maintaining voltage stability following 

the additional loads introduced by the EVCS.

 
Fig. 5 Power losses difference 

Figure 5 illustrates the power losses across four different 

cases, analysed using GWO, PSO and EP optimization 

techniques, in comparison to the base case for both the 33-bus 

and 69-bus test systems. Table 2 shows that in both Cases 1 

and 2, PSO and GWO show increases in a power loss of 9.63% 

and 9.45%, respectively, significantly outperforming the EP 

algorithm. In Case 3, GWO demonstrates the lowest 

increment in power loss at 0.45%, followed by PSO at 1.34% 

and EP at 4.46%, highlighting GWO's superior performance. 

Similarly, in Case 4, GWO again has the lowest increment in 

power loss at 0.53%, with PSO at 1.07% and EP at 2.67%. The 

GWO consistently showed the least increase in power losses 

among the optimization techniques, promoting its 

effectiveness in minimizing losses. 

3.4. Ethical Considerations and Practical Implications of 

PV-EVCS Integration 
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The integration of PV with EVCS has significant ethical 

and practical implications. From an environmental standpoint, 

this approach promotes sustainability by reducing reliance on 

fossil fuel-based power generation. This aligns with global 

initiatives to encourage the use of RE sources and lower 

carbon emissions. From a socio-economic perspective, 

strategically placed EVCS enhances accessibility and 

encourages EV adoption. However, a well-spread distribution 

must be ensured to prevent an imbalance in EVCS availability, 

particularly in rural areas. Policymakers and grid operators 

need to establish regulatory frameworks that promote the well-

spread and efficient deployment of PV-EVCS infrastructure. 

These frameworks should ensure fair access to charging 

facilities while supporting the integration of RE sources into 

the grid. By adopting comprehensive regulations, stakeholders 

can address technical challenges, create more sustainability 

and promote an accessible energy ecosystem.Besides the 

strategic EVCS location, addressing grid stability is crucial to 

prevent excessive strain on existing networks. By integrating 

demand-side management and real-time monitoring within 

smart grid technologies, the PV-EVCS system's performance 

can improve significantly. This approach helps to maintain a 

balance between load demand and supply capacity. 

Table 2. Comparative analysis of the increment power losses for all algorithms and base case 

Case Base (MW) EP (MW) Increase PSO (MW) Increase GWO (MW) Increase 

1 0.135 0.16 18.52% 0.148 9.63% 0.148 9.63% 

2 0.127 0.151 18.90% 0.139 9.45% 0.139 9.45% 

3 0.224 0.234 4.46% 0.227 1.34% 0.225 0.45% 

4 0.187 0.192 2.67% 0.189 1.07% 0.188 0.53% 

4. Conclusion 
This research offers a comprehensive comparison of the 

performance of PSO, GWO, and EP in determining the 

optimal placement of EVCS, improving voltage profiles and 

reducing power losses in IEEE 33-bus and IEEE 69-bus power 

systems. The results showed that the GWO algorithm 

outperformed PSO and EP in terms of performance by 

effectively reducing power losses and enhancing voltage 

profiles. This established it as the most efficient optimization 

technique for determining the optimal placement of EVCS. 

Additionally, integrating PV systems into the EVCS 

effectively mitigated some of the power losses associated with 

the charging loads, contributing to better voltage stability and 

overall system performance. By combining both strategic 

EVCS location and integration with PV systems, this approach 

will subsequently attract users to use EVs and, in the long run, 

contribute to sustainable development goals. For future 

research, hybrid optimization techniques that combine the 

strengths of multiple algorithms to enhance power system 

optimization shall be investigated to further increase the 

efficiency. Additionally, testing these techniques in larger and 

more complex power networks is crucial to validate their 

effectiveness and scalability. Consideration of real-world 

applications is also suggested, which includes optimizing 

EVCS placement in urban and suburban areas by segmenting 

networks into zones that reflect actual EV usage patterns. This 

approach would ensure a more accurate representation of 

charging demand, supporting the development of resilient and 

efficient charging infrastructure in diverse geographical 

settings. 
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