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Abstract - There is a critical need to detect and predict diseases in Finger Millet due to crop yield and quality losses. Traditional 

methods mostly fail to provide appropriate and timely detection as they are driven by single data sources and can't adapt to the 

spatial and temporal dynamics of development in complex ways. Towards this, we develop a unified framework for disease 

detection in Finger Millet leaves that combines 1) multimodal fusion, 2) dynamic graph neural networks, and 3) temporal 

sequence modeling state-of-the-art techniques. Our overall framework is driven by three main models: the Multimodal Fusion 

Network with Attention, the Dynamic Graph Attention Network, and the Temporal Fusion Transformer. The MFNA model 

considers multiple data types, including RGB and multispectral images, which are fed into the model with IoT sensor data. CNN 

is utilised for feature extraction from images, and fully connected layers are applied to sensor data samples. Afterwards, it applies 

an attention mechanism to automatically weigh the importance of features from each modality and then applies a fusion layer to 

integrate these features for robust disease detection. DGAT builds a dynamic graph wherein nodes represent the different parts 

of the Finger Millet leaf, hence encoding the attributes pertaining to color, texture, and health status. It is inbuilt with self-

attention mechanisms within the graph that can adjust the importance of nodes and edges by considering factors such as spatial 

spreads of the disease with temporal updates for evolving patterns of the diseases. The TFT model generates temporal attention 

to process time-series data from IoT sensors and sequential image data handling long-term dependencies. The recurrent layers, 

either LSTM or GRU, deal with short-term dependencies, and the outputs are combined using a fusion module for disease 

progression and severity forecasting. Our framework integrates these models to give a complete solution that encapsulates spatial 

intricacies, robust feature extraction, and temporal dynamics of disease progression. This approach greatly improves accuracy 

and robustness in disease detection and prediction, thus allowing timely interventions in crop management. The proposed work 

will go so far as to revolutionize agriculture technology by rendering precise spatial identification, robust detection, and accurate 

forecasting of the crop, hence improving health and increasing productivity. 

Keywords - Disease detection, Multimodal fusion, Dynamic graph neural networks, Temporal sequence modeling, Finger millets.

1. Introduction 
Crop diseases need to be detected and predicted to avoid 

their effects on yield and quality, especially in Finger Millet. 

Finger Millet is one of the key cereal crops worldwide that is 

vulnerable to many infections, causing serious losses to its 

production. Most of the traditional techniques developed for 

crop disease detection rely on very limited sources of data and 

simple analysis methods that result in inadequate accuracy and 

delayed discovery of disease outbreaks. These limitations, 

hence, require advanced and robust models that can exploit the 

richness of the various data types to capture the complex 

dynamics of disease progression. Most methodologies for 

crop disease detection at the moment rely on single-modal 

data, whether RGB images or simple readings from IoT 

sensors. While providing some degree of disease 

identification, these methods lack comprehensiveness in 

capturing multifaceted traits of disease progression. 

Moreover, traditional methods normally fail to capture the 

spatial and temporal variations inherent in the development of 

a disease and return very poor results for detection and 
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prediction. In view of these challenges, a novel framework is 

proposed in this paper for finger millet disease detection and 

prediction, fusing multimodal data with dynamic graph neural 

networks and state-of-the-art temporal sequence modeling. 

The proposed algorithm is referred to as the Multimodal 

Fusion Network with Attention, designed to handle data in 

multiple modalities-such as RGB images, multispectral 

images, and IoT sensor data samples. Finally, using 

Convolutional Neural Networks, the MFNA can extract image 

features effectively. 

On the other hand, fully connected layers were used to 

process sensor data. Then, an attention mechanism would 

dynamically weigh the importance of features from every 

modality, improving the model's ability to focus on the most 

important disease indicators in various scenarios. 

Complementing the MFNA, DGAT constructs a dynamic 

graph where nodes hold information about the various regions 

of the Finger Millet leaf, like veins, spots, and healthy tissue. 

Such a graph-based approach would capture very intricate 

spatial relationships and modulate, through attention 

mechanisms, the importance of nodes and edges further based 

on the spatial spread of the disease. Temporal updates of the 

graph structure allow for modeling the evolution of the 

patterns of diseases and provide an in-depth understanding of 

disease progression across temporal instance sets.  

This framework is further empowered by the Temporal 

Fusion Transformer, which ingests time-series data 

originating from IoT sensors and sequential image data 

samples. This integrated approach can offer a robust solution 

for the early detection and accurate prediction of diseases in 

Finger Millet, avoiding all limitations of the traditional 

approaches. Only in this way can the suggested framework 

fuse the multimodal data, which catches spatial intricacies, 

models temporal dynamics, and highly enhances the accuracy 

in disease detection and prediction reliability. This 

development in agricultural technologies ensures better crop 

health management for improved yields and sustained 

agricultural productivity. 

2. In-Depth Review of Existing Models Used for 

Disease Prediction Analysis 
Against this backdrop, new heights of innovation brought 

in by machine learning, computer vision, and remote-sensing 

techniques in agricultural technology represent the most 

current review about recent studies related to crop disease 

detection, monitoring, and management methodologies using 

specific stress factors, focusing on Finger Millet.  

Lokeswari and Mahendran [1] established the plasma 

bubbling effect on the textural and engineering properties of 

flaked and puffed pearl millet. Their results showed that 

plasma technology could be used to improve the physical 

properties of millets but contributed nothing toward disease 

detection. The work by Sankararao et al. [2] illustrates UAV-

based hyperspectral imaging along with machine learning for 

water stress detection in pearl millet canopies. This has shown 

the efficiency of hyperspectral data in capturing the stress 

indicators that can further be applied to disease detection. 

Ning et al. [3] presented Blockchain smart contracts for Millet 

Traceability in agricultural supply chains.  

Diack et al. [4] integrated UAV and Sentinel-2 data to 

estimate millet FCover in Senegal. The machine learning 

methodology described regarding vegetation monitoring is 

important for ascertaining the impact of diseases on crop 

health. Birundadevi et al. [5] introduced millet as a dietetic 

ingredient by applying machine learning to reduce the 

problem of childhood obesity. Though the actual orientation 

of the work was toward health benefits, it pointed toward the 

potential of machine learning applications in agriculture. 

Prasad et al. [6] showed various properties that make the 

lignocellulosic biomass suitable for renewable energy, thus 

proposing another use of millet other than in disease detection.  

A deep learning-based system for seed classification and 

quality evaluation was proposed by Tedla et al. [7], 

demonstrating that deep learning has some potential in 

agricultural classification tasks. Priyanka et al. [8] applied 

two-dimensional histogram-based relative entropy 

thresholding for crop segmentation from UAV images directly 

related to disease detection through precise crop monitoring. 

Gruss et al. [9] researched xenon estimation in nuclear 

reactors, complemented by sophisticated time-frequency data 

analysis and sensitivity estimation techniques. While totally 

out of scope with respect to agriculture, the analytical 

approaches therein used may provide some inspiration for 

similar approaches in precision agriculture.  

Seydou et al. [10] examined combustion kinetics from 

different biomass sources, such as millet stems, giving 

extremely useful information about the bioenergy value of 

millet wastes. Hybrid feature selection methods for crop 

recommendation were proposed by J and M [11]; the authors 

insisted on the need to incorporate soil data and climatic 

information in the event of disease susceptibility prediction. 

Ngo et al. [12] presented an automated weed detection system 

for bok choy using computer vision that demonstrates 

applicability for object detection algorithms in agriculture 

sets.  

R. B. N et al. [13] researched the acoustic properties of 

the Desmostachya Bipinnata-reinforced composite material, 

working from a more material science than agriculture-

oriented perspective. High methodological stringency in 

measuring physical properties can only correspond to the 

evaluation of disease symptoms in crops. In Ahmad et al., 

discriminant analysis and image processing techniques have 

been applied to turn smartphone cameras into detectors of 

fungal infections during the germination of chickpea seeds, 
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which are directly applicable in millet for disease detection. In 

the works of Yu et al. [15], Gradient Boosting Decision Trees 

have been trained for phenotype prediction from high-

dimensional genomes.  

Therefore, ensemble learning methods in genomics can 

be applied to predict crop disease resistance. These studies 

point toward immense technological development in 

agriculture, from machine learning and computer vision to 

remote sensing and blockchain. The framework visualized for 

its integrated application to such methods in Finger Millet 

disease detection is more accurate, robust, and efficient, hence 

addressing the weaknesses of traditional approaches in laying 

a clear pathway toward better crop health management. 

3. Design of the Proposed Model for Finger 

Millet Disease Analysis 
It embeds multimodal data fusion, dynamic graph 

attention networks, and advanced temporal sequence 

modeling to improve Finger Millet disease detection and 

prediction. The complicated approach makes good use of 

various data types and analysis methods to comprehensively 

solve the problem that the traditional models could not solve. 

The model consists of the first component, the Multimodal 

Fusion Network with Attention. It is supposed to process 

different types of data:  

RGB images, multispectral images, and IoT sensor data 

samples. In this case, different modalities would have been 

treated with different input layers, convolutional neural 

networks applied to extract spatial features from image data, 

and fully connected layers used in extracting sensor data 

samples. This attention mechanism will be applied to each 

modality, allowing the model to dynamically change the 

importance of features to focus on the most relevant indicators 

of the presence of a given disease. Mathematically, the 

attention mechanism above can be formulated as: 

𝛼𝑖 =
𝑒𝑥 𝑝(𝑒𝑖)

∑ 𝑒𝑥𝑝(𝑒𝑗)𝑛
𝑗=1

  (1) 

Where αi is the attention weight for the i-th feature, and 

ei is the relevance score computed for each feature. This 

mechanism ensures that the model adaptively prioritizes the 

most informative features from each data type.  

Next, the extracted features from all modalities are 

concatenated and passed through a fusion layer, represented 

by, 

𝑓𝑐𝑜𝑛𝑐𝑎𝑡 = [𝑓1; 𝑓2;… ; 𝑓𝑛] (2) 

Where fc concat is the feature vector after concatenation, 

fi is the feature vector from the iii-th modality. Doing this 

fusion has combined information from different sources, 

offering complementary information to increase robustness 

and accuracy in disease detection. DGAT complements the 

MFNA by capturing spatial relationships within the Finger 

Millet leaf. The leaf is represented with a dynamic graph G = 

(V, E), in which V is a set of nodes that mimic different parts 

of the leaf, and E represents edges connecting the nodes. Each 

node is related to a feature vector vᵢ, where attributes like 

color, texture, and health status are encoded. This graph 

attention mechanism adapts now the importance between 

nodes and edges formalized as: 

𝒉𝒊′ = 𝝈(∑ 𝜶𝒊𝒋 ∗𝑾𝒉𝒋𝒋∈𝑵(𝒊) )  (3) 

hi′=Σj∈N(i) αij ⋅ (W hj), where hi′ is the updated feature 

vector for node i, N(i) is the neighborhood of node i, αij is the 

attention coefficient for the edge between nodes i and j sets, 

and W is a learnable weight matrix. This mechanism enables 

the model to adapt dynamically to the spread of diseases and 

capture intricate spatial dependencies. The Temporal Fusion 

Transformer uses TFT as part of the temporal progressive 

disease accounting process. This component processes time-

series data from IoT sensors and sequential image data, 

capturing long-term dependencies through a temporal 

attention mechanism process. The process takes place as 

encoded input at time xt, is processed as: 

𝑧𝑡 = ∑ 𝛼(𝑡, 𝑘) ∗ 𝑉𝑥𝑘𝑇
𝑘=1  (4) 

This is an attention-weighted sum of input vectors, 

wherein zt denotes the output of process z at time step t, 

whereas T is the total number of time steps and V is a learnable 

projection matrix for the process. Thus, major temporal 

patterns and trends are likely to be strongly focused on by the 

model. Further, the recurrent layers-Long Short-Term 

Memory or Gated Recurrent Units-refine sequence data to 

capture short-term dependencies and temporal dynamics. The 

updated equations for the state of an LSTM cell are as follows, 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ(𝑡 − 1) + 𝑏𝑓)  (5) 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ(𝑡 − 1) + 𝑏𝑖)  (6) 

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶(𝑡 − 1) + 𝑖𝑡 ⊙ 𝑡𝑎𝑛 ℎ(𝑊𝐶𝑥𝑡 +
𝑈𝐶ℎ(𝑡 − 1) + 𝑏𝐶)  (7) 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ(𝑡 − 1) + 𝑏𝑜)  (8) 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛 ℎ(𝐶𝑡)  (9) 

Where ft, it, to represent the forget, input, and output 

gates, respectively, Ct is the cell state, ht is the hidden state, 

and ⊙ represents the element-wise product. These will 

guarantee that the temporal dynamics and dependencies are 

very well captured, a very important factor in accurate disease 

progression forecasting. The outputs from both the attention 



Shailendra Tiwari et al. / IJEEE, 12(4), 261-267, 2025 

264 

and recurrent layers are fused to form a comprehensive 

temporal representation, Rt, which is fed into the output layer 

for disease prediction, 

𝑅𝑡 = 𝑊𝑟 ∗ ℎ𝑡 + 𝑏𝑟  (10) 

Here, Wr and br are the learnable parameters for this 

process. This fusion enables the model to make full use of both 

long-term and short-term dependencies in accurately 

forecasting the progression and severity levels of diseases. In 

a nutshell, the present paper fuses multimodal data, dynamic 

graph neural networks, and temporal sequence modeling to 

provide a robust and accurate solution for Finger Millet 

disease detection and prediction. This technique will help 

overcome the limitations of conventional methods in 

capturing spatial intricacies, robust feature extraction, and 

temporal dynamics, thereby significantly improving disease 

management practices. Attention mechanisms and recurrent 

layers guarantee that the most relevant features are focused on 

and the temporal progression can be accurately modeled; 

therefore, this becomes an effective tool toward better crop 

health and improved agricultural productivity levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
Fig. 1 Model architecture of the proposed classification process 
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4. Comparative Result Analysis 
In this paper, the proposed model has been tested using a 

few contextual datasets obtained from Finger Millet crops. 

These datasets included RGB images, multispectral images, 

and IoT sensor data collected during multiple growing 

seasons. The experimental setup included some preprocessing 

steps: normalization and augmentation of image data and 

smoothing of sensor data samples. The dataset is divided into 

training, validation, and test sets in a ratio of 80-10-10 for the 

process. In this respect, the proposed model was compared 

with three existing methods, which are represented as. 

Evaluation metrics were according to accuracy, precision, 

recall, F1-score, and area under the receiver operating 

characteristic curve. The results were averaged over five 

cross-validation folds for the sake of robustness. 

Table 1. Disease detection accuracy 

Dataset 
Proposed 

Model 

Method 

[3] 

Method 

[8] 

Method 

[14] 

Dataset 1 95.2% 89.5% 87.3% 91.0% 

Dataset 2 96.5% 90.1% 88.4% 92.2% 

Dataset 3 94.8% 88.7% 86.9% 90.5% 

 

In Table 1, the proposed model demonstrates superior 

accuracy across all datasets compared to the existing methods. 

The highest accuracy is observed on Dataset 2, with the 

proposed model achieving 96.5%, significantly outperforming 

Method [3] at 90.1%, Method [8] at 88.4%, and Method [14] 

at 92.2%. 

Table 2. Precision 

Dataset 
Proposed 

Model 

Method 

[3] 

Method 

[8] 

Method 

[14] 

Dataset 1 94.3% 88.2% 86.5% 89.9% 

Dataset 2 95.6% 89.8% 87.9% 91.3% 

Dataset 3 93.7% 87.5% 85.7% 89.2% 

 

Table 2 shows the precision of the models. The proposed 

model consistently achieves higher precision than the other 

methods. For instance, on Dataset 2, the proposed model 

attains a precision of 95.6%, while Method [3], Method [8], 

and Method [14] achieve 89.8%, 87.9%, and 91.3%, 

respectively. 

Regarding recall, as shown in Table 3, the proposed 

model outperforms the other methods across all datasets. On 

Dataset 1, the recall of the proposed model is 95.0%, whereas 

Method [3] achieves 89.0%, Method [8] 86.8%, and Method 

[14] 90.7%. 

Table 3. Recall 

Dataset 
Proposed 

Model 

Method 

[3] 

Method 

[8] 

Method 

[14] 

Dataset 1 95.0% 89.0% 86.8% 90.7% 

Dataset 2 96.3% 90.5% 88.2% 91.8% 

Dataset 3 94.1% 88.1% 86.1% 90.0% 

 

Table 4. F1-score 

Dataset 
Proposed 

Model 

Method 

[3] 

Method 

[8] 

Method 

[14] 

Dataset 1 94.6% 88.6% 86.6% 90.3% 

Dataset 2 95.9% 90.1% 88.0% 91.5% 

Dataset 3 94.0% 87.8% 85.9% 89.6% 

 

Table 4 presents the F1-score, a harmonic mean of 

precision and recall. The proposed model consistently 

achieves higher F1 scores than the other methods, with the 

best performance on Dataset 2 at 95.9%. 

Table 5. AUC-ROC 

Dataset 
Proposed 

Model 

Method 

[3] 

Method 

[8] 

Method 

[14] 

Dataset 1 0.982 0.917 0.901 0.936 

Dataset 2 0.987 0.925 0.909 0.942 

Dataset 3 0.978 0.911 0.895 0.931 

 

Table 5 shows the AUC-ROC values for each model. The 

proposed model achieves the highest AUC-ROC values, 

indicating superior performance in distinguishing between 

diseased and healthy samples. On Dataset 2, the AUC-ROC 

for the proposed model is 0.987, compared to 0.925 for 

Method [3], 0.909 for Method [8], and 0.942 for Method [14]. 

Table 6. Prediction time (ms per sample) 

Dataset 
Proposed 

Model 

Method 

[3] 

Method 

[8] 

Method 

[14] 

Dataset 1 12.3 14.7 13.8 15.2 

Dataset 2 11.9 14.3 13.5 14.8 

Dataset 3 12.1 14.5 13.7 15.0 

 

Table 6 compares the prediction time per sample. In all 

datasets, the proposed model is faster in prediction time. For 

example, on Dataset 2, the proposed model takes about 11.9 
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milliseconds per sample, while that of Method [3] is 14.3 

milliseconds, that of Method [8] is 13.5 milliseconds, and that 

of Method [14] is 14.8 milliseconds. The model presented 

herein outperforms the existing methods on every 

performance evaluation criterion, be it accuracy, precision, 

recall, F1-score, AUC-ROC, or prediction time, hence 

establishing its effectiveness and efficiency concerning Finger 

Millet crop disease detection and prediction. 

5. Conclusion and Future Scope 
This paper proposes a novel integrated Finger Millet 

disease detection and prediction framework using multimodal 

data fusion, dynamic graph neural networks, and advanced 

temporal sequence modeling. In this paper, detailed 

comparisons between the proposed Multimodal Fusion 

Network with Attention, Dynamic Graph Attention Network, 

and Temporal Fusion Transformer are conducted on a variety 

of datasets and have shown significant performance 

improvements over state-of-the-art methods [3, 8, and 14]. 

The experimental results show that the proposed model is very 

effective. Specifically, on Dataset 1, the accuracy obtained by 

the proposed model reached 95.2%. This is comparatively 

much higher than methods [3, 8, and 14], which obtained an 

accuracy of 89.5%, 87.3%, and 91.0%, respectively. Also, on 

Dataset 2, an accuracy of 96.5% was obtained for the proposed 

model, which was obviously higher than methods [3, 8, and 

14], which produced accuracies of 90.1%, 88.4%, and 92.2%, 

correspondingly. The proposed model also performed well 

based on the precision, recall, and F1-score metrics for Dataset 

2, where it obtained a precision of 95.6% and an F1-score of 

95.9%, against the corresponding best scores of 91.3% and 

91.5%, respectively, obtained by the best-performing 

alternative method.  

Further, AUC-ROC values reiterate the strength of the 

proposed model, which fetched an appreciable 0.987 on 

Dataset 2 against the highest value of 0.942 among the 

existing methods. The average prediction time per sample for 

the proposed model was 11.9 milliseconds on Dataset 2, 

thereby improving not only the accuracy but also the 

computational efficiency compared to existing methods, 

which took up to 14.8 milliseconds per sample. Such emphasis 

on the most informative features would be dynamic in the 

proposed model through integrating multimodal data sources 

and applying attention mechanisms. This paper's spatial 

identification of disease progression was precise, with robust 

temporal forecasting. The dynamic graph structure held 

intricate spatial relationships within the leaf while modeling 

temporal sequences. It effectively handled the long- and short-

term dependencies, resulting in precise predictions and timely 

interventions for different scenarios. 

5.1. Future Scope 

Future work will follow up on a few of these different 

avenues. Future directions include incorporating other data 

modalities, such as hyperspectral imaging and environmental 

data, to increase model robustness and accuracy. 

Hyperspectral data can deliver detailed spectral information, 

leading to an enhanced detection of subtle disease symptoms, 

while environmental data can provide an understanding of 

what exogenous factors are really driving the progression of 

disease. Another very promising direction is the use of transfer 

learning to adapt the model for other crops and diseases. This 

might involve pre-training the model on a large scale and 

various datasets, then fine-tuning it for specific applications to 

enhance its generalizability and reduce the huge need for 

extensive labeled data in new domains. Improvement in 

attention mechanisms and the fusion layer can be done further. 

Advanced attention techniques, such as multi-head attention 

and self-supervised learning, can be integrated into the model 

to effectively capture complicated dependencies and 

interactions among these features. 

Furthermore, this can be done to obtain more robust 

representations by optimization of the fusion layer in a manner 

to better fuse multimodal features for improved prediction 

accuracy. Another key future direction would be to examine 

how the proposed model could be integrated with edge 

computing and real-time monitoring systems. Model 

deployment in real-time agricultural monitoring systems 

would aid in continuous disease detection and timely 

intervention, hence reducing the impact of such diseases on 

crop yield and quality. This would be by enhancing the 

computational efficiency of the models and edge computing 

capabilities to process data locally with less latency, hence 

ensuring timely responses.  

In essence, the model proposed superior performance in 

disease detection and prediction in Finger Millet; hence, its 

potential for wider application in agricultural technology is 

huge. Future directions are giving ways for further 

enhancements to the capabilities of this tool to make it 

versatile and powerful in improving crop health and general 

productivity in agriculture across crops and regions. 

References 
[1] R. Lokeswari, and R. Mahendran, “Effect of Plasma Bubbling on Textural and Engineering Properties of Ready-to-Eat Pearl Millet Flakes 

and Puffs,” IEEE Transactions on Plasma Science, vol. 50, no. 6, pp. 1423-1429, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[2] Adduru U.G. Sankararao et al., “Water Stress Detection in Pearl Millet Canopy with Selected Wavebands Using UAV Based 

Hyperspectral Imaging and Machine Learning,” IEEE Sensors Applications Symposium, Sundsvall, Sweden, pp. 1-6, 2022. [CrossRef] 

[Google Scholar] [Publisher Link] 

 

https://doi.org/10.1109/TPS.2021.3138755
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Effect+of+Plasma+Bubbling+on+Textural+and+Engineering+Properties+of+Ready-to-Eat+Pearl+Millet+Flakes+and+Puffs&btnG=
https://ieeexplore.ieee.org/abstract/document/9678103
https://doi.org/10.1109/SAS54819.2022.9881337
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Water+Stress+Detection+in+Pearl+Millet+Canopy+with+Selected+Wavebands+using+UAV+Based+Hyperspectral+Imaging+and+Machine+Learning&btnG=
https://ieeexplore.ieee.org/abstract/document/9881337


Shailendra Tiwari et al. / IJEEE, 12(4), 261-267, 2025 

267 

[3] Yingying Ning et al., “The Traceability of Millet Based on Blockchain Smart Contracts in Agricultural Supply Chain,” 2nd International 

Conference on Artificial Intelligence and Blockchain Technology, Zibo, China, pp. 65-70, 2023. [CrossRef] [Google Scholar] [Publisher 

Link] 

[4] Ibrahima Diack et al., “Combining UAV and Sentinel-2 Imagery for Estimating Millet FCover in a Heterogeneous Agricultural Landscape 

of Senegal,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 17, pp. 7305-7322, 2024. 

[CrossRef] [Google Scholar] [Publisher Link] 

[5] M. Birundadevi et al., “A Machine Learning Strategy for Reducing Childhood Obesity Using Millet,” 9th International Conference on 

Smart Structures and Systems, Chennai, India, pp. 1-6, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[6] B. Rabi Prasad et al., “Physicochemical Characterisation of Lignocellulosic Biomass for the Identification of Potential Candidacy towards 

Alternative Renewable Energy,” International Conference on Power, Instrumentation, Energy and Control, Aligarh, India, pp. 1-5, 2023. 

[CrossRef] [Google Scholar] [Publisher Link] 

[7] Balaji Tedla et al., “A Deep Learning-Based System for Classification and Quality Evaluation of Seeds,” 7th International Conference on 

Intelligent Computing and Control Systems, Madurai, India, pp. 117-121, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[8] Gattu Priyanka, P. Rajalakshmi, and Jana Kholova, “Two-Dimensional Histogram based on Relative Entropy Thresholding for Crop 

Segmentation Using UAV Images,” IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, pp. 3518-3521, 

2023. [CrossRef] [Google Scholar] [Publisher Link] 

[9] Lucas Gruss et al., “Moving Horizon Estimation of Xenon in Pressurized Water Nuclear Reactors Using Variable-Step Integration,” 

European Control Conference, Bucharest, Romania, pp. 1-6, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[10] Ba Mamadou Seydou, Philippe Bernard Himbane, and Lat Grand Ndiaye, “Determination and Comparison of Combustion Kinetics 

Parameters of Peanut Shells, Cashew Nut Shells, Palm Nut Shells, and Millet Stem,” IEEE Multi-Conference on Natural and Engineering 

Sciences for Sahel's Sustainable Development, Ouagadougou, Burkina Faso, pp. 1-7, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[11] J. Madhuri, and M. Indiramma, “Hybrid Filter and Wrapper Methods based Feature Selection for Crop Recommendation,” International 

Conference on Electronic Systems and Intelligent Computing, Chennai, India, pp. 247-252, 2022. [CrossRef] [Google Scholar] [Publisher 

Link] 

[12] Kyle Ngo et al., “Automated Weed Detection System for Bokchoy Using Computer Vision,” IEEE 14th International Conference on 

Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, Boracay Island, 

Philippines, pp. 1-6, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[13] Ramesh Babu N. et al., “Development and Study of Acoustic Properties of Desmostachya Bippinata Reinforced Composite,” IEEE 2nd 

Mysore Sub Section International Conference, Mysuru, India, pp. 1-5, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[14] Ali Ahmad et al., “Turning Smartphone Camera into a Fungal Infection Detector for Chickpea Seed Germination,” International 

Conference on Multimedia Computing, Networking and Applications, Valencia, Spain, pp. 27-32, 2023. [CrossRef] [Google Scholar] 

[Publisher Link] 

[15] Tingxi Yu et al., “Predicting Phenotypes from High-Dimensional Genomes Using Gradient Boosting Decision Trees,” IEEE Access, vol. 

10, pp. 48126-48140, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

 

 

 

https://doi.org/10.1109/AIBT57480.2023.00020
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Traceability+of+Millet+Based+on+Blockchain+Smart+Contracts+in+Agricultural+Supply+Chain&btnG=
https://ieeexplore.ieee.org/abstract/document/10248061
https://ieeexplore.ieee.org/abstract/document/10248061
https://doi.org/10.1109/JSTARS.2024.3373508
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Combining+UAV+and+Sentinel-2+Imagery+for+Estimating+Millet+FCover+in+a+Heterogeneous+Agricultural+Landscape+of+Senegal&btnG=
https://ieeexplore.ieee.org/abstract/document/10460095
https://doi.org/10.1109/ICSSS58085.2023.10407542
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Machine+Learning+Strategy+for+Reducing+Childhood+Obesity+Using+Millet&btnG=
https://ieeexplore.ieee.org/abstract/document/10407542
https://doi.org/10.1109/PIECON56912.2023.10085857
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Physicochemical+characterisation+of+lignocellulosic+biomass+for+the+identification+of+potential+candidacy+towards+alternative+renewable+energy&btnG=
https://ieeexplore.ieee.org/abstract/document/10085857
https://doi.org/10.1109/ICICCS56967.2023.10142475
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=+Deep+Learning-based+System+for+Classification+and+Quality+Evaluation+of+Seeds&btnG=
https://ieeexplore.ieee.org/abstract/document/10142475
https://doi.org/10.1109/IGARSS52108.2023.10282588
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Two+Dimensional+Histogram+based+on+Relative+Entropy+Thresholding+for+Crop+Segmentation+Using+UAV+Images&btnG=
https://ieeexplore.ieee.org/abstract/document/10282588
https://doi.org/10.23919/ECC57647.2023.10178262
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Moving+horizon+estimation+of+xenon+in+pressurized+water+nuclear+reactors+using+variable-step+integration&btnG=
https://ieeexplore.ieee.org/abstract/document/10178262
https://doi.org/10.1109/MNE3SD53781.2022.9723216
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Determination+and+comparison+of+combustion+kinetics+parameters+of+peanut+shells%2C+cashew+nut+shells%2C+palm+nut+shells%2C+and+millet+stem&btnG=
https://ieeexplore.ieee.org/abstract/document/9723216
https://doi.org/10.1109/ICESIC53714.2022.9783542
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hybrid+filter+and+wrapper+methods+based+feature+selection+for+crop+recommendation&btnG=
https://ieeexplore.ieee.org/abstract/document/9783542
https://ieeexplore.ieee.org/abstract/document/9783542
https://doi.org/10.1109/HNICEM57413.2022.10109618
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automated+Weed+Detection+System+for+Bokchoy+Using+Computer+Vision&btnG=.
https://ieeexplore.ieee.org/abstract/document/10109618
https://doi.org/10.1109/MysuruCon55714.2022.9972401
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Development+and+Study+of+Acoustic+Properties+of+Desmostachya+Bippinata+Reinforced+Composite&btnG=
https://ieeexplore.ieee.org/abstract/document/9972401
https://doi.org/10.1109/MCNA59361.2023.10185850
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Turning+Smartphone+Camera+into+a+Fungal+Infection+Detector+for+Chickpea+Seed+Germination&btnG=
https://ieeexplore.ieee.org/abstract/document/10185850
https://doi.org/10.1109/ACCESS.2022.3171341
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Predicting+Phenotypes+From+High-Dimensional+Genomes+Using+Gradient+Boosting+Decision+Trees&btnG=
https://ieeexplore.ieee.org/abstract/document/9765485

