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Abstract - Photovoltaic (PV) systems have seen widespread adoption due to their renewable and sustainable nature. However, 

their efficiency is strongly influenced by the optimal sizing and placement of PV modules. Inconsistent configurations can result 

in reduced energy output and lower economic performance. While various optimization techniques have been proposed in the 

literature, a clear, comparative understanding of these methods remains limited. This review addresses that gap by systematically 

analyzing and categorizing existing optimization approaches-including mathematical modeling, heuristic algorithms, 

metaheuristic methods, machine learning, and hybrid techniques-aimed at maximizing energy harvesting efficiency in PV 

systems. 
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1. Introduction 
The escalating demand for electricity, propelled by 

various factors such as increasing electrification, industrial 

expansion, urban growth, economic advancement, and 

technological progress, underscores the pressing need for 

sustainable power solutions. As societies worldwide continue 

to develop and modernize, reliance on electricity becomes 

increasingly critical for everyday activities, from powering 

homes and businesses to driving innovation and 

communication networks [1]. 2023 global electricity 

consumption surged to 30,500 TWh, marking a significant 

2.2% increase from the previous year [2]. This growth reflects 

both the expanding global economy and the rising living 

standards in many regions [3]. However, this increased 

demand for electricity also amplifies energy provision and 

consumption challenges. These challenges are intricately 

linked to a spectrum of environmental issues that extend 

beyond just the generation and consumption of electricity. 

Climate change, driven primarily by the burning of fossil fuels 

for energy, presents a significant threat to ecosystems, weather 

patterns, and overall planetary health [4]. This is showcased 

by the record-breaking carbon dioxide emissions the 

International Energy Agency reported in 2022. With 

emissions soaring to a record-breaking 36.8 gigatons, 

representing a 0.9% increase from the preceding year, the 

urgency of addressing climate change becomes indisputable 

[5]. This increase in emissions can be directly linked to 

expanded global economic activities and rises in energy 

demands. Furthermore, fossil fuels are responsible for an 

estimated 74% of all CO2 emissions [6]. Beyond the 

overarching issue of climate change, the repercussions of 

these carbon emissions extend to other environmental and 

public health challenges. Air pollution from power plants and 

other sources significantly contributes to respiratory illnesses 

and premature deaths worldwide [7-8]. Acid rain, ozone 

depletion, and deforestation further exacerbate the 

environmental impacts of energy production and 

consumption. The release of hazardous substances, notably 

radioactive materials from nuclear power plants, introduces an 

additional dimension of complexity to the environmental 

landscape. To address the complex challenges posed by our 

current energy landscape, a transition towards renewable 

energy sources such as solar, wind, bioenergy and 

hydroelectric power is becoming necessary by the day [9]. 

Bioenergy, derived from organic materials such as agricultural 

residues and woody plants, emerges as a versatile option 

thanks to its capability to provide renewable electricity, 

heating, and transportation fuels. Its widespread application is 

reflected in the fact that around 75% of the renewable energy 

produced worldwide is derived from biomass sources [10]. 

Wind energy, which harnesses the kinetic energy of air 

through turbines, has grown significantly, fulfilling a 

substantial portion of global electricity demand, particularly 

in Europe. Significant investments in this sector have 

propelled its integration into power systems, bolstering its 

contribution to the overall energy mix. As of 2023, the 
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cumulative installed capacity of wind generation reached 599 

GW globally, with an annual addition of 53.9 GW [11]. 

Projections indicate a continued upward trajectory, with 

anticipated installed capacity reaching 664.5 GW by the 

conclusion of 2019, marking an additional capacity of 107.8 

GW and a notable increase of 44.9% compared to the previous 

year [12]. Hydropower, harnessed from the waterfall 

potential, stands as a prominent renewable energy option, 

renowned for its high efficiency and significant contribution 

to global electricity derived from renewable sources [13]. 

Globally, hydropower facilities exhibit a lower Levelized Cost 

of Energy (LCOE) compared to fossil-fuel-fired thermal 

combustion facilities. In 2018, the LCOE of hydropower was 

recorded at US$0.047 per kWh, positioning it as the most cost-

effective electricity source in numerous markets. As of 2022, 

hydropower accounts for 60% of global renewable energy 

production, with wind and solar constituting 9% and biomass 

and other renewables contributing 31% [14]. Ocean energy, 

encompassing various technologies such as wave and tidal 

energy, holds the potential for low environmental impact 

electricity generation, although technological and cost 

challenges persist. 

In addition to offering a workable way to cut greenhouse 

gas emissions and lessen the effects of climate change, the 

move to renewable energy sources is essential for supporting 

environmental preservation initiatives. Moreover, embracing 

renewable energy sources fosters significant socio-economic 

benefits across diverse nations, including job creation and 

economic growth. Recognizing the immense potential of 

renewables, many countries have embarked on initiatives to 

capitalize on these resources, driving innovation in technology 

for energy and encouraging practices of sustainable 

development on a global scale [15-16]. This concerted effort 

towards renewable energy adoption not only guarantees a 

future with cleaner and more sustainable energy but also 

catalyzes positive socio-economic transformations 

worldwide. 

Solar energy emerges as a strategic solution for powering 

diverse sectors, with solar photovoltaic (PV) technology 

anticipated to dominate the green energy sector in the 

forthcoming decades. Harnessing solar energy through 

photovoltaic panels for electricity generation stands as a 

promising domain within the renewable energy sector, 

attracting significant attention due to its rapid growth potential 

and substantial investment opportunities. This trend is evident 

in the increasingly competitive global photovoltaic market, 

particularly notable in regions like Europe, China, and the US 

[17]. In 2020, solar PV energy production surged by an 

impressive 22%, surpassing 1000 TWh and setting a record 

growth rate of 179 TWh [18]. This substantial expansion 

underscores the growing significance of solar photovoltaics, 

positioning it as the fastest-growing renewable energy 

technology globally by 2023 [19]. Despite being the second-

largest renewable electricity source after hydropower, solar 

photovoltaics contributed 3.6% to the global electricity output 

in 2016. This trajectory highlights the escalating potential for 

widespread adoption of solar PV technology in addressing 

global energy needs [20]. In addition to its rapid adoption, 

solar PV presents notable economic and environmental 

benefits. Economically, the decreasing cost of PV technology 

has made it increasingly competitive with traditional energy 

sources, encouraging both utility-scale and decentralized 

installations. Environmentally, solar PV is a clean energy 

source that directly supports emission reduction targets 

because it emits no greenhouse gases while in operation.  

These advantages, combined with its modularity and 

adaptability to different geographical contexts, make solar PV 

an essential component of global energy transition strategies. 

Nevertheless, while its growth has been promising, gaps 

remain in optimizing PV deployment for maximum economic 

and environmental returns. Addressing this challenge is 

central to the present study, which investigates [insert your 

specific research focus here-e.g., “the efficiency of grid-

connected PV systems under varying climatic conditions” or 

“policy implications for PV adoption in emerging markets”. 

This development reflects a pivotal transition towards 

sustainable energy solutions and underscores the growing 

prominence of solar power in the global energy market. 

2. Work Related to Placement Optimization of 

PV 
One of the main goals when trying to install a 

photovoltaic system is to find an optimal location that could 

help reach all the desired objectives. For this purpose, various 

papers investigated the use of the optimal mathematical model 

to get the most optimal results. In [29-31], the main objective 

was determining the optimal placement and size of 

photovoltaic sources. The first focuses on minimizing phase 

asymmetries within the grid [29], while the second addresses 

PV grid charging systems, considering voltage and current 

limitations, varying weather conditions, and operational 

periods [30]. The voltage, current, and thermal line limitations 

[29], the weather conditions [30], energy prices, and operating 

periods [30] are considered constraints to these objectives.  

By respecting these constraints, electrical phases in the 

grid are balanced to avoid problems such as power quality 

problems, and at the same time, make sure that the charging 

systems or grid can safely handle the maximum voltage and 

current provided. Moreover, considering factors such as 

weather conditions and operational periods could be useful in 

determining when and where solar panels can generate the 

maximum energy efficiency and reliability. To accomplish 

these goals the studies, use genetic algorithm techniques [30] 

and Particle Swarm Optimization (PSO) algorithms [29, 31]. 

Compared to the losses observed in the cases of TLABC, PFA, 

and ALOA, respectively, active power losses for PSO 

algorithms have decreased to 17.50%, 17.48%, and 8.82% 

[29]. Furthermore, compared to TLABC and ALOA, the cost 
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savings are roughly 15.21% and 6.70% higher, respectively 

[29]. When using genetic algorithm approaches [30], the grid's 

strain from EV charging is reduced by 94% to 99%, while the 

charging price is cut by about 16%. Finally, the results 

revealed that the optimal PV-Inverter configuration is a total 

capacity of 2260 kVA [31]. Overall, these findings show 

significant improvements when it comes to reducing losses 

and grid burden while optimizing configurations, which 

consequently offers considerable benefits in terms of 

efficiency and grid sustainability. 

  Another parameter that could be taken into 

consideration for the optimization of photovoltaic sources is 

the required expenses. The cost could be divided into 2 

different categories: the cost needed for the implementation 

[32-34] and the cost after the utilization of the sources [35, 

36]. As mentioned before, the primary objective shared among 

these papers [32-34] is the minimization of the system's 

electricity cost. One of these papers introduces parameters 

representing the optimal number of PV panels, DC/AC 

inverters, and module placement within the area, respectively 

[32]. The importance of these parameters remains in 

determining the most efficient set-up for the power system. 

However, these objectives are constrained by factors such as 

PV array size and battery capacity [33]. These constraints 

show that while the goal is to minimize electricity costs, 

limitations imposed by the space for panels and the storage 

capacity of batteries to achieve optimal results should also be 

considered. To approach these objectives, each of the three 

papers employs specific techniques: the CPSO algorithm [32], 

single-variable optimization/two-variable optimizations [33], 

and genetic algorithms [34]. As a result, the optimal size of 

the PV array is 89,000 m2, resulting in a total cost of 

$210M/PV array is considered as cost-effective above an 

FBCF of $18 /gal ($4.7 /L), and the battery storage is cost-

effective above an FBCF of $19 /gal ($5 /L) [33]. These results 

are considered prominent findings as they suggest that 

investing in solar panels becomes financially beneficial when 

the fuel-based charge factor (FBCF) exceeds $18 per gallon, 

and battery storage becomes economically viable when the 

FBCF surpasses $19 per gallon. This is an important finding 

that indicates that adopting the recommended battery and PV 

system configuration can lead to substantial yearly savings on 

energy expenses. Finally, for [34], the optimal battery 435 

capacity and PV size for a household, the annual energy cost 

saving is $2457.80. 

On the other hand, other research [35-36] focuses on a 

singular objective, reflected in minimizing the total energy 

cost while simultaneously maximizing profit for the RDG 

(Renewable Distributed Generation) owner. These objectives 

are restricted by the fact that the battery is limited to either 

charging or discharging, the power Flow, the bus Voltage, the 

branch Load, and the RDG Capacity. To achieve these 

objectives, various studies in the literature employ the 

following techniques two different techniques: MILP (Mixed-

Integer Linear Programming) [35] and a hybrid metaheuristic 

algorithm [36]. These methods take into account various 

constraints such as bus voltage, power flow, and RDG 

capacity [36]. In [35], households with both solar panels and 

batteries (category D) save the most money. This important 

finding shows the benefits of using solar panels and batteries 

for household energy systems. 

The greatest savings are achieved when households have 

both solar panels and batteries installed, especially when the 

solar panels are large. This shows the importance of 

maximizing the capacity of both solar panels and batteries to 

get the maximum cost savings. However, if households opt for 

small or medium-sized solar panel systems, those with only 

solar panels (category B) record more benefits. This result 

suggests that the effectiveness of different configurations 

varies based on the solar panel system's size. On the other 

hand, households that only have batteries (category C) don't 

show any advantages. In fact, they end up with slightly lower 

savings compared to households without any of these 

technologies. Finally, multiple other research in the literature 

[37-41] focuses on a central objective of minimizing the cost 

associated with each unit, resource, microgrid, and operating 

expense of electric vehicles (EVs).  

This objective is pursued while adhering to constraints 

such as CO2 emissions and LLP (Line Losses Probability) 

over a year [38], total energy generation, and the overall 

electricity generation capacity of the plant [40]. To address 

these challenges, each paper employs specific techniques. 

These include Particle Swarm Optimization (PSO) combined 

with the ε-constraint method [38], a hybrid optimization 

algorithm tailored for energy storage management [40], the 

utilization of P-graphs [39], and GA, GWO, ALO, and MVO 

[41]. Using these techniques, the optimal size of the 

components is 11.4kWp of PV generator, 42kWh of battery 

bank and 6 kW of diesel generator. The ACS of the optimal 

system is 8585.14 $, COE is 0.38 $/kWh, and the cost of the 

battery bank is the dominant cost of the system with 51.4% of 

the ACS [38]. For [39], the solar panel area is 7.98 m2, the 

inverter capacity is 527.78 W, and the battery capacity is 

6274.96 Wh. 

3. Work Related to Size Optimization of PV 
Multiple studies address two common and primary 

objective functions, emphasising maximizing the voltage 

stability index or network voltage profile and minimizing 

active electric/power losses. These functions encompass 

various variables, including the injection of active and reactive 

power from distributed generators [42] and the presence of 

photovoltaic (PV) generators at each node in the electrical 

system (considered as binary variables) [43]. This use of 

variables suggests that focusing on incorporating renewable 

energy sources like distributed and PV generators into the 

system is considered crucial for sustainability. Additionally, 

these objectives encounter different constraints, such as power 
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flow limitations [42], voltage safety thresholds at the 

distribution network nodes and geographical constraints [42]. 

These constraints emphasize maintaining stability and safety 

within the electrical system while considering factors like 

power flow and voltage levels. 

The number of PV sources (limited to 5) [43], the line 

thermal limits [44], the RDG capacity, and the total plant cost 

that should not exceed 50 million INR /MW [45] are also 

considered as constraints when it comes to the aimed 

objectives. These limitations on PV sources and cost 

demonstrate how complex balancing renewable energy 

integration with financial and technical constraints could be. 

To address these objectives, each paper employs a 

specific technique, including the NSGA-II technique [42], the 

fuzzy logic [46], the linear programming models (MILP) [43], 

the hybrid algorithm (BAPSO) [47], the multi-period optimal 

power flow modeling [48] and genetic algorithms [45]. 

Following these constraints and methods, the results have 

differed for each paper. For [43], node 46 has been determined 

to be the best location, having a peak power of 5760 kWp. 

For [46], there was a notable decrease in power losses, 

and the voltage stability index was improved in the presence 

of PVS. These results show the importance of photovoltaic 

systems in decreasing losses and increasing voltage stability, 

emphasizing the positive impact on the system’s performance. 

Nodes 5, 10, and 12 were chosen using the variable in [43] to 

best position the three PV sources, which have maximum 

powers of 779 kVA, 344 kVA, and 664 kVA, respectively, for 

the Manizales region. This shows that selecting the optimal 

location has been successful, leading to robustness in 

addressing local energy needs. For [47], it was found that 10% 

and 10.825%, respectively, of active power transmission 

losses could be minimized with and without DG. Finally, [48] 

concluded that without making several PV changes 

throughout the course of the operating time horizon, a single 

ideal PV adjustment reduces losses, enhances the voltage 

profile, and encourages safe operation. In addition, the energy 

produced could be considered to determine the optimal size 

for our photovoltaic sources. In [49], the paper aims to 

minimize the life cycle cost over the course of a full year, 

enabling life-cycle cost optimization. To accomplish this, the 

authors adopted the U.S. National Renewable Energy 

Laboratory's Renewable Energy Optimization (REopt) 

approach [49]. Consequently, the battery costs are over $3000 

for 3 kWh storage capacity, which is approximately $1060 per 

kWh. On the other hand, using a smart domestic water heater 

and a smart AC together costs only $450.  Moreover, in [50], 

the paper introduces a method to optimize battery energy 

storage system (BESS) sizing in photovoltaic (PV) integrated 

distribution networks to mitigate voltage rise. An enhanced 

opposition-based firefly algorithm (EOFA) aims to minimize 

voltage fluctuations by optimizing BESS output power hourly 

while considering the state of charge constraints.  

The approach enhances the original firefly algorithm with 

opposition-based learning and inertia weight. This method 

provides a solution to voltage rise issues in PV-integrated 

networks, improving system stability and reliability [50]. 

According to the findings, EOFA is more successful than FA 

and GSA at determining the ideal BESS size, providing a 

minimum BESS size of 2.39 MWh and a minimum number of 

hours (78 hours) at voltage values above 1.05 PU. Overall, 

these results highlight the success of the optimization efforts 

in integrating renewable energy sources, particularly 

photovoltaic systems, into the electrical grid. We've identified 

optimal locations and capacities for PV installations, 

significantly reduced power losses, improved voltage 

stability, and established streamlined strategies for system 

operation, all of which contribute to a more efficient and 

sustainable energy infrastructure. 

Finally [51, 52] focused on enhancing the reliability of 

high-power systems and reducing the cost of PV systems. 

Various factors are considered, such as space availability, 

system size, budget constraints [51], load requirements [52], 

and energy limitations. To address these concerns, the papers 

utilize two distinct approaches: SAPV/GCPV system sizing 

procedures [51] and MILP (Mixed-Integer Linear 

Programming) [52]. For [52], It has been demonstrated that 

the suggested ideal PV system can provide 8672.4 hours of 

power per year for homes out of 8760 and 10 hours at a cost 

of 0.437 USD/kWh, which is 29.5% less than the price of the 

diesel generators that are currently in use. Table 1 represents 

a summary of previous research investigating PV size and 

location optimization. 

Table 1. Summary of size and location PV optimization techniques  

Paper Objectives Optimization Approaches 

[25] 
Minimize the difference between the experimental data and 

simulated data obtained by estimated parameters. 
IJAYA 

[29] 

Photovoltaic-based distributed generation (PVDG) should be 

installed in the best possible location and scale to minimize grid 

phase asymmetries. 5 t reduces power losses, improves the voltage 

profile, creates symmetry in the system's voltage profile, and offers 

the most cost savings. 

Particle Swarm Optimization (PSO) 

Algorithm 
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[30] 

Determine the ideal dimensions for the energy storage unit (ESU) 

and photovoltaic (PV) array for a grid-connected electric vehicle 

(EV) charging system in an office setting. 

PSO 

[31] Determine the optimal size and location of the BESS Genetic Algorithm technique 

[32] Minimization of the cost of the system CPSO Algorithm 

[33] The system cost is minimized 
Single-variable optimization/TWO-

VARIABLE OPTIMIZATIONS 

[34] Minimize the total annual cost of electricity Genetic algorithm 

[35] Minimize the total energy cost MILP 

[36] 
Minimizing the distribution network's overall energy loss while 

increasing the RDG owner's profit 

The suggested hybrid metaheuristic 

method combines the gravitational search 

algorithm with the phasor particle swarm 

optimization. 

[37] To minimize the cost of each unit of electricity generated  

[38] Minimize total system cost, unmet load, and CO2 emissions 
Particle Swarm Optimization (PSO) and 

ε-constraint method 

[39] Minimize resource use and cost of microgrid P-Graph 

[40] 
Minimizing the running costs of EV charging stations that are 

connected to PV and ESS 

An algorithm for hybrid optimization in 

energy storage management 

[41] Minimize the LCOP GA, GWO, ALO, and MVO 

[42] 
Two main objective functions: 1- to minimize the active power 

losses 2-maximize the voltage stability index 

NSGA-II Technique (algorithms for 

multi-objective optimization) 

[43] 
Reducing electric power losses during system operation was the 

primary goal. 
Linear programming model (MILP) 

[44] 
Minimize the active power losses and maximize the voltage stability 

index. 

Non-dominated Sorting Genetic 

Algorithm NSGA-II 

[45] 
To minimize the monthly discrepancy between power generation and 

demand in every Madhya Pradesh district 
Genetic algorithm (GA) 

[46] 
Minimize active power losses and improve the max voltage stability 

index. 

On non-dominated sorting 

genetic algorithm and fuzzy 

logic(NSGA-II/FL) algorithm 

[47] 
The optimal location for the solar power plants such that the overall 

power loss 

The hybrid algorithm (BAPSO), which 

combines the Bat Algorithm (BA) and 

Particle Swarm Optimization (PSO), is 

intended to maximize the capacity and 

placement of solar generation for a 

microgrid's effective operation. 

[48] 

Minimization of energy losses in Distribution Networks (DNS) 

considering the reactive power control of Photovoltaic Generation 

(PVG) that can be applied to both short-term and long-term 

operation planning. 

Multi-Period Optimal Power Flow 

(MOPF) modeling 

[49] 
Minimize the life-cycle cost of timesteps for a full year to enable the 

life-cycle cost optimization. 

The U.S. National Renewable Energy 

Laboratory’s Renewable Energy 

Optimization (report) 

[50] 

The goal of the first optimization is to get the best battery output 

power on an hourly basis, and the goal of the second optimization is 

to achieve the best BESS capacity while taking the BESS's state of 

charge constraint into account. 

Firefly algorithm (EOFA) 

[51] High power reliability: reduce cost 
SAPV and GCPV systems sizing 

procedures 

[52] Minimizes the total annual cost of the stand-alone PV systems MILP 
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[53] 
Minimum field area, minimum plant cost, minimum cost per unit of 

energy, and maximum yearly incident energy 
General programming problem 

[54] 
Employing the global optimization approach to strategically position 

solar arrays on the rooftops of buildings on a large scale. 
The Differential Evolution (DE) algorithm 

[55] 
The problem's objective is improving the network's voltage profile 

and reducing active and reactive power losses. 

The suggested hybrid metaheuristic 

method combines the gravitational search 

algorithm with the phasor particle swarm 

optimization. 

 
Fig 1. Optimization of placement and size of photovoltaic source parameters 

4. Key Factors Influencing the Location and Size 

of PV Installations 
Factors impacting the positioning of PV installations are 

primarily solar irradiation, proximity to substations, terrain 

slope, road accessibility, distance from urban zones, and land 

utilization.  

The size of a PV system impacts its efficiency and 

performance, with factors such as shading, distance between 

panels, and the placement of PV plants affecting the 

effectiveness of the PV power plant [56, 57]. When 

determining the location of PV installations, environmental 

considerations include the solar resource's temporal and 

spatial fluctuation, protected natural areas, climate, and 

proximity to other facilities [58, 59].  

The economic implications of the size and location of PV 

systems are influenced by the costs related to both the 

installation and the operation of the power plants, as well as 

the energy prices [56, 60]. 

4.1. Key Factors Influencing the Location of PV 

Installations 

SelecChoosing optimal sites for solar PV power plants is 

influenced by various factors. These factors include solar 

irradiation, distance to substations, terrain slope, road 

accessibility, proximity to urban centers, and land usage. 

Researchers have employed advanced techniques such as 

Geographic Information Systems (GIS) and Multi-Criteria 

Decision Making (MCDM) to identify prime locations for 

large-scale photovoltaic installations. This approach 

emphasizes the significance of factors such as solar irradiation 

and proximity to substations in assessing potential sites [61]. 

Furthermore, the latest modifications to solar application 

support programs have led to shifts in the spatial distribution 

of photovoltaic installations. New installations are 

increasingly concentrated in built-up areas, reflecting 

evolving policy incentives and preferences [58]. 

4.2. Impact of Size on Efficiency and Performance 

The effectiveness of PV power plants is attributed to 

several crucial factors. These factors include shading, the 

Optimization of 
placement and size of 
Photovoltaic source
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Voltage/Current

Weather

Cost
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Cost to maintain
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Power Flow
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Voltage stability Index

Voltage supply

Number of PV source
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spacing between panels, and the specific location of PV 

installations [58]. Evaluating the performance of PV systems 

is crucial for their continual optimization and maintenance. 

This assessment ensures that photovoltaic systems operate at 

peak efficiency consistently, underscoring the significance of 

regular adjustments and upkeep [57]. Choosing the 

appropriate combination of PV modules and inverters is 

essential in sizing PV systems, and software tools are available 

to streamline this process. However, integrating sizing with 

optimization methods can enhance the design outcomes [62]. 

As the demand for high performance, reliability, and 

economic viability of PV-battery systems grows, sizing 

procedures with minimal input data requirements and low 

complexity have become increasingly prominent [64].  

4.3. Environmental Considerations 

When determining the location of PV installations, 

environmental considerations are pivotal. This includes 

climatic factors, closeness to other facilities, and the existence 

of protected environmental areas [58]. Additionally, 

conducting geographic analyses of PV performance factors 

across extensive regions can empower stakeholders to make 

well-informed decisions. This process highlights the 

significant influence of climatic variables on characteristics 

like module temperature coefficients, mounting 

configurations, and coatings [59]. 

4.4. Economic Implications 

The impact of location extends beyond determining the 

solar irradiation received by solar modules; it also 

significantly influences the costs related to both installing and 

operating power plants [60]. Moreover, the economic 

performance of various PV power plant topologies is shaped 

by solar technology, with location playing a critical role in 

determining the expenses linked to installation and ongoing 

operation [59, 62, 64]. Recent shifts in support schemes for 

solar applications are reshaping the spatial distribution of PV 

installations, with a notable trend towards concentrating new 

installations within built-up areas. This phenomenon 

underscores the significant impact of regulatory changes on 

the placement of PV systems [59]. To summarize, the location 

of PV installations is influenced by factors such as solar 

irradiation, substation distance, and land use, while the size of 

a PV system impacts its efficiency and performance. 

Environmental considerations include climatic aspects and the 

existence of protected environmental areas, and the economic 

implications of the size and location of PV systems are 

influenced by installation and operation costs. 

5. Conclusion 
In conclusion, this paper has presented a comprehensive 

review of optimization techniques for enhancing energy 

harvesting efficiency in PV systems through optimal location 

and size of modules. The literature reveals a rich diversity of 

approaches, including heuristic algorithms, mathematical 

modeling, and emerging machine-learning techniques, each 

contributing unique strengths to the optimization process. 

The analysis underscores that no single method 

universally outperforms others; rather, effectiveness is highly 

context-dependent, influenced by variables such as 

geographical location, solar irradiance variability, shading 

profiles, and system design constraints. This highlights the 

importance of hybrid and adaptive optimization models that 

can dynamically respond to site-specific conditions. 

Key findings from the review suggest that integrated 

frameworks-combining environmental data, predictive 

analytics, and real-time system feedback-hold significant 

promise for pushing the boundaries of PV efficiency. 

Moreover, the synergy between technological advancements 

in data acquisition (e.g., IoT, GIS) and intelligent optimization 

algorithms marks a compelling frontier for future exploration. 

Looking ahead, future research should focus on 

developing standardized performance metrics for comparing 

optimization techniques across different scenarios, enhancing 

model generalizability, and reducing computational costs for 

large-scale implementations. Additionally, exploring the 

integration of PV optimization with smart grid technologies 

and energy storage systems presents a critical avenue for 

supporting resilient and decentralized energy infrastructures. 

Ultimately, advancing the science of PV optimization is not 

only a technical challenge but also a strategic imperative for 

accelerating the global transition to sustainable energy. 
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