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Abstract - This paper proposes a novel hybrid metaheuristic optimization technique to accelerate convergence speed. The 

proposed method effectively reduces convergence time and mitigates premature convergence by employing a rapid auxiliary 

optimization algorithm to generate an informed initial population. This innovative approach is implemented within two 

prominent bio-inspired algorithms, Particle Swarm Optimization (PSO) and the Bat Algorithm (BA). Specifically, the BA, known 

for its rapid convergence, is incorporated into the PSO's initialization stage, resulting in a substantial reduction in convergence 

duration. This efficient hybrid optimization strategy is applied to designing a PID-type Fuzzy Logic Controller (FLC), optimizing 

critical parameters, including scaling factors, membership functions, and fuzzy rules. The methodology is rigorously analyzed 

theoretically and through its application to the challenging nonlinear Ball and Beam (B&B) system. Extensive simulation studies 

encompassing a variety of operational scenarios demonstrate the superior control performance achieved over several 

conventional controllers, highlighting the practical applicability of the proposed hybrid control strategy. 

Keywords - Metaheuristic-based optimization, Convergence time, Hybrid integration, Initialization, PID family–type FLC. 

1. Introduction 
Optimizing the performance of control systems obviously 

needs more specific adjustments of controller parameters to 

conform to inherently competing performance objectives: 

rapid response, robust stability, and high steady-state 

accuracy. Determining optimal controller parameters 

represents a significant and fundamental challenge in control 

system design. The performance characteristics of the 

resulting closed-loop system are directly and critically 

dependent on the effectiveness of this tuning process.  

This principle is universally applicable, encompassing 

traditional Proportional-Integral-Derivative (PID) regulators 

and sophisticated intelligent controllers, such as Fuzzy Logic 

Controllers (FLC) and artificial neural network ones, which 

demand precise scaling factor calibration [1-8]. 

Parameter tuning within the traditional PID control, a 

prevalent feedback control strategy, necessitates the 

adjustment of proportional, integral, and derivative gain 

coefficients. Tuning methodologies are principally 

categorized as empirical or model-based ones. Empirical 

techniques like the Ziegler-Nichols method rely on 

experimentally derived system response data. Conversely, 

model-based techniques leverage analytical plant models for 

parameter determination. The overarching objective of this 

process is to minimize tracking errors, attenuate overshoot, 

and ensure a stable and rapid system response to both setpoint 

variations and external disturbances. However, iterative 

manual tuning, often referred to as the "trial-and-error" 

method, presents significant challenges, including prolonged 

tuning times and suboptimal control performance. To mitigate 

these limitations, contemporary control systems frequently 

incorporate adaptive tuning algorithms. These algorithms 

enable real-time parameter optimization, thereby 

accommodating dynamic variations in operational conditions 

and enhancing overall system performance [2-5]. Similarly, 

the FLCs, particularly PID family-type fuzzy controllers, 

require the determination of input and output scaling factors 

analogous to the PID gains [8-10]. Consequently, efficient and 

systematic parameter optimization methodologies are 

essential. Various techniques have been employed for this 

purpose. For PID control systems that lack precise transfer 

function models, integrating optimization algorithms offers a 

viable solution. Figure 1 illustrates a schematic representation 

of a biomimetic optimization algorithm applied to PID 

controller tuning. Typically, each PID controller requires the 

optimization of three parameters: proportional gain (Kp), 

integral gain (Ki), and derivative gain (Kd), which serve as the 

optimization variables within the chosen algorithm [3]. 
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Fig. 1 Tuning a PID controller using optimization mechanisms 

The FLCs are intelligent control systems, and they have 

been widely used in many applications of control [11, 15, 16] 

because they enable the design of controllers without requiring 

exact models of the systems. Often, the FLCs are used in 

conjunction with standard PID controllers [11] to tune the 

proportional (Kp), integral (Ki), and derivative (Kd) gains to 

improve the control action when there is a change in the model 

of the plant. In addition, biomimetic optimization algorithms 

are used today with FLCs, as shown in Figure 2 [3], to 

optimise the fuzzy controller's input and output scaling factors 

to obtain better performance. 
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Fig. 2 Tuning a FLC using optimization methods 

A significant challenge lies in the convergence rate of 

biomimetic optimization algorithms. These algorithms, 

particularly those exhibiting global optimization capabilities, 

often exhibit protracted convergence times. Research efforts 

must focus on improving existing algorithms to mitigate this 

issue and enhance the control performance of the 

aforementioned controllers. This study investigates a novel 

strategy involving the implementation of a rapid sub-

optimization algorithm as an initialization phase for the global 

optimization algorithm. This hybrid approach is anticipated to 

accelerate convergence substantially. While fundamental 

optimization algorithms, such as Genetic Algorithms (GA) 

and Particle Swarm Optimization (PSO), have been 

extensively studied and applied in domestic research [12-16], 

a substantial portion of these investigations primarily focus on 

basic algorithm implementation, neglecting in-depth analyses 

of convergence speed. Moreover, applying these optimization 

algorithms to FLC tuning has been largely limited to 

coefficient adjustments, overlooking other critical aspects of 

FLC design, such as membership function definition and 

fuzzy rule optimization. This paper proposes a comprehensive 

methodology to enhance the control quality of an FLC, 

especially FLCs based on the PID family. The remainder of 

this paper is structured as follows. Section 2 outlines the 

fundamental principles of the traditional PSO algorithm. 

Section 3 details a step-by-step design procedure for an 

enhanced PSO algorithm, accompanied by relevant analyses 

and explanations. Subsequently, Section 4 presents a case 

study illustrating the application of the proposed control 

methodology to the classic ball and beam balancing system. 

Finally, Section 5 offers concluding remarks and discusses 

potential avenues for future research.  

2. Traditional PSO Algorithm  
Particle Swarm Optimization (PSO), one of the most 

efficient metaheuristic optimization methods, operates 

following a mechanism inspired by the social behavior of bird 

or fish flocks searching for food. This algorithm is based on 

the interaction between inter-particles within the swarm for 

food navigation, and such a characteristic is different from 

other evolutionary optimization methods, such as the Genetic 

Algorithm (GA). Each particle within the PSO swarm 

represents a potential solution characterized by a position 

vector within the search domain. The particle's trajectory is 

dynamically adjusted based on two key metrics: the particle's 

personal best position (pbest), representing the optimal 

solution encountered by that individual, and the global best 

position (gbest), which can be considered the optimal solution 

discovered by the entire swarm. A typical PSO algorithm, with 

its flowchart presented in Figure 3, can be described in several 

main phases below: 

Phase 1: Initialization: A population of particles is 

randomly distributed within the search space. 

Phase 2: Calculate and evaluate the fitness function: The 

objective function is evaluated for each particle, yielding a 

fitness value. Each particle updates its pbest if its current 

fitness value surpasses its previous best. The gbest is 

concurrently updated if a particle discovers a superior solution 

compared to the current global best. 

Phase 3: Position and Velocity Update: Each particle's 

position and velocity are updated according to its pbest, gbest, 

and algorithm-specific parameters, typically involving inertia 

and acceleration coefficients. 

Phase 4: Termination Check: The algorithm terminates if 

a predefined stopping criterion is met, such as reaching a 

maximum number of iterations or achieving a satisfactory 

fitness convergence. Otherwise, the process returns to phase 

2. 
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Fig. 3 The flowchart of a typical PSO algorithm 

3. Enhanced PSO Algorithm 
3.1. Evaluation of the Convergence of PSO 

Building upon the established advantages of the PSO 

algorithm, specifically its algorithmic simplicity and ease of 

implementation, this study explores enhancements to reduce 

convergence time. A common challenge in optimization 

algorithms, including PSO, is premature convergence to local 

optima, particularly when the initial population or iteration 

count is inadequate. As illustrated in Figure 4, insufficient 

population diversity can preclude the algorithm from 

exploring regions containing either local or global optima, 

leading to suboptimal solutions. Additionally, the stochastic 

initialization of particle positions can contribute to prolonged 

convergence. While increasing population size or iteration 

count may mitigate these issues, it inevitably incurs a 

substantial computational overhead, extending the algorithm's 

execution time. 
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Fig. 4 Representation of convergence for a typical PSO  

3.2. Improving the Convergence of a PSO Algorithm 

Figure 5 conceptually depicts the proposed methodology 

for enhancing the convergence rate of the PSO algorithm. This 

approach assumes the presence of a local optimum within the 

search space. Convergence acceleration is achieved by biasing 

the initial population's distribution towards a known optimal 

point, which may be either a local or global optimum.  

This initial optimal point is determined by applying a 

computationally efficient optimization algorithm significantly 

faster than standard PSO or, in certain contexts, estimated 

heuristically via iterative trial-and-error adjustments. 

Implementation of this methodology necessitates 

modification of the random initialization step within the PSO 

algorithm's initialization phase, as illustrated in Figure 3. The 

procedural steps for executing the enhanced PSO algorithm 

are as follows: 

Step 1: Employ a rapid optimization algorithm, utilizing 

a reduced number of initialization units (e.g., population 

members or individuals) to generate an acceptable set of near-

optimal parameters. In this work, the Bat Algorithm (BA) is 

selected as a fast optimization mechanism. Drawing 

inspiration from how bats use echolocation to find their way 

and hunt, the BA offers a distinctive method for solving 

optimization problems in control systems. It simulates a group 

of virtual bats that change their flight characteristics – speed, 

sound frequency, and loudness – to search for the best 

solutions. Because the BA naturally balances a broad search 

with focused refinement and tends to find good solutions 

quickly, it shows great potential for tackling intricate control 

system design issues, like fine-tuning parameters and 

optimizing controller performance. Thus, this algorithm is 

embedded in the initial phase of the PSO mechanism, creating 

an enhanced optimization method. 

Step 2: Incorporate the near-optimal parameter set 

obtained in Step 1 into the initialization parameters of the 

subsequent PSO algorithm. 

Step 3: Execute the standard PSO algorithm, adhering to 

the fundamental procedural steps outlined in Section 2 (refer 

to Figure 3). 



Ngoc-Khoat Nguyen / IJEEE, 12(4), 308-316, 2025 

 

311 

Global 

optimization 

position

Local 

optimization 

position

 
Fig. 5 Representation of convergence for the proposed PSO 
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Fig. 6 The enhanced hybrid PSO algorithm flowchart  

4. Results and Discussion 
4.1.  Ball and Beam System – A Typical Control System 

Example  

In this section, the proposed control methodology will be 

applied to a typical control object: a Ball and Beam (B&B) 

system. This model is selected because it is considered a 

classical benchmark in control theory with dominant 

characteristics of nonlinearities and instabilities [11-18]. 

Figure 7 describes a simple physical model of such a B&B 

system. This model comprises four objects: a beam, a ball, a 

level arm, and a gear. The ball can roll along the length of the 

beam. The gear uses a servo motor, which can turn and is 

characterised by an angle denoted as θ (see Figure 7). The 

control objective is keeping the ball at several desired 

setpoints by swinging the beam from regulating the servo gear.  
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Fig. 7 A typical model of a B&B system 

Consider Figure 7, with parameters given in the 

Appendix, neglecting the effect of the second derivative of α 

on the second derivative of r; the dynamics of such a B&B 

system are governed by the following: 

(i) The Lagrangian equation, which is established for the 

motion of the ball following the Lagrangian mechanics as: 

𝐿 = 𝑇 − 𝑉 = (
𝐽

𝑅2
+𝑚) 𝑟̈ + 𝑚𝑔 𝑠𝑖𝑛 𝛼 − 𝑚𝑟𝛼̇2 = 0 (1) 

Where: 

L [J]: Lagrangian mechanics 

T [J]: kinetic energy 

V [J]: potential energy 

l [m]:  the beam’s length 

J [kg.m2]: the inertia of the ball 

g [m/s2]: acceleration of gravity 

d [m]: the offset of lever arm 

R [m]: radius of the ball 

m [kg]: the ball’s mass 

r [m]: real ball’s position 

α [rad]: the angle of the beam 

θ [rad]: the angle of the servo gear 

(ii) Linearizing (1) regarding a balancing state of the 

beam, a linear approximation of the system can be obtained 

below: 

(
𝐽

𝑅2
+𝑚) 𝑟̈ + 𝑚𝑔 𝑠𝑖𝑛 𝛼 = −𝑚𝑔𝛼 (2) 

Where the beam angle α can be calculated in an 

approximated relationship with the angle of the gear θ as 

follows: 

𝛼 =
𝑑

𝑙
𝜃 (3) 
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(iii) The relationship between the position of the ball 

(controlled output) and the angle of the gear (input) can be 

deduced below: 

 {

(
𝐽

𝑅2
+𝑚) 𝑟̈ = −

𝑚𝑔𝑑

𝑙
𝜃

𝑟 = ∫ [−∫
𝑚𝑔𝑑

𝑙(
𝐽

𝑅2
+𝑚)

𝜃𝑑𝑡
𝑡

0
]

𝑡

0
𝑑𝑡

  (4) 

The above-approximated representation is a typical 

nonlinearity with double integration. Therefore, stable control 

is more challenging.  

The main difficulty comes from instability, which calls 

for strong control strategies to bring disturbance action under 

control and to stabilize the system as well. While it is simply 

constructed physically, its dynamic behavior is complex; thus, 

it provides an excellent platform to test and compare different 

control algorithms. 

4.2. Control Strategy for the B&B System 

As mentioned above, the B&B system is suitable for 

testing the applicability of a robust control strategy. Here, 

three control methodologies have been embedded in the 

system, as shown in Figure 8, including: 

(1) PD regulator, 

(2) PID controller, and 

(3) PD-based FLC. 

The PID regulator has the following form: 

𝑢(𝑡) = 𝐾𝑝. 𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0
+ 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
 (5) 

where 

 Kp, Ki and Kd are three tuning factors; 

 e(t) is the error signal, a difference between the setpoint 

and the output; 

 u(t) denotes the control signal which should be taken to 

an actuator in the control system. 

PID controllers are valuable because they can be finely 

tuned by adjusting their proportional Kp, integral Ki, and 

derivative settings Kd. This adjustment allows engineers to 

strike the right compromise between reacting quickly to 

changes and maintaining a steady, oscillation-free system 

behaviour. In essence, it is possible to make the system 

respond promptly without becoming unstable or overly shaky. 

For systems where oscillation reduction is paramount, PD 

controllers are a good fit. This type of conventional regulator 

is established when there is no integral part in the PID one (5). 

Their derivative component introduces damping, effectively 

minimizing overshoot and oscillations in the system's 

behaviour. This is particularly beneficial for mechanical 

systems like robotic arms and CNC machines, where accurate 

and stable motion is a key requirement. 

Additionally, the PD controllers are beneficial when a 

rapid response to disturbances or setpoint changes is 

necessary. The proportional component acts immediately 

based on the present error, leading to a quicker reaction than 

if only integral control were used. Moreover, the derivative 

component anticipates future errors, allowing for proactive 

control action that further speeds up the initial response. Given 

these characteristics, a PD controller is theoretically well-

suited for the inherently unstable B&B system. 

Building upon this understanding, this research utilizes a 

PD-based Fuzzy Logic Control (FLC) structure. This 

architecture was specifically selected due to its proven 

effectiveness in stabilizing the naturally unstable dynamics of 

the ball and beam system. The whole control system is 

provided in Figure 9. Remember that every single PD-type 

FLC has three parts which need to be determined to ensure 

efficient operation as follows: 

(a) Membership functions. Membership functions in a fuzzy 

controller map crisp inputs to fuzzy sets, quantifying the 

degree of membership within linguistic variables, thus 

enabling the processing of imprecise data. 

(b) The fuzzy logic rules. The decision-making mechanism 

of a fuzzy controller relies on a rule set of "IF-THEN" 

statements. These rules, linking fuzzy inputs to outputs, 

facilitate control by mapping input membership to output 

actions, enabling the system to operate effectively with 

imprecise information. 

(c) The processing factors. Scaling factors are employed in 

FLCs to transform input and output variables between 

their physical domains and the normalized domain of the 

fuzzy inference engine. Input scaling factors normalize 

sensor data to the fuzzy set range, and output scaling 

factors convert the resulting fuzzy control action back to 

physical units, thereby ensuring proper system interface 

and effective control execution. 

The first and second parts have typically existed. In this 

section, following the empirical evaluation of various fuzzy 

logic models, a rule base derived from expert domain 

knowledge was selected, as documented in [2]. 

This rule set demonstrated superior performance in 

achieving the desired ball positioning and system stability. 

The ePSO algorithm and control methodology proposed in the 

previous section is modified, as depicted in Figure 10. After 

running the proposed hybrid optimization mechanism with 

parameters given in the Appendix, the simulation results 

obtained in MATLAB software are illustrated in Figures 11-

17. 
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Fig. 8 Block control system built on MATLAB/Simulink environment 

 
Fig. 9 Proposed hybrid FLC to a control plant 

 
Fig. 10 The proposed FLC applied the ePSO algorithm for a B&B system
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To implement the simulation process, two scenarios are 

applied regarding the setpoints of ball position. Figure 11 

describes two setpoints: a sine wave and a complicated 

random one. 

The sine wave with a unit amplitude and a frequency of 

0.2 rad/s for a simulation time of 100s. The random number is 

employed as the second setpoint with a variance of 0.2 and a 

sample time of 50s for a simulation time of 500s.  

 
Fig. 11 Two scenarios of the setpoints applied to this control model  

a) Sine wave setpoint, b) Random setpoint 

As illustrated in Figures 12-14, the traditional controllers 

(PD and PID) can force the output to be tracked at the setpoint 

with somewhat good performance in the first simulation case.  

It is recognized in Figure 12 that the track of the PD 

controller is somewhat better than that of the PID regulator. 

This is explained by particular dynamic characteristics of the 

B&B system with a double integral as given in (4).  

Meanwhile, Figures 12-13 describe the dynamic response of 

the ball’s position output.  

Analysis of the output reveals tight setpoint tracking, 

validating the improved control efficacy of the proposed FLC. 

This is evidenced by a substantial decrease in deviation from 

the desired trajectory when contrasted with the performance 

of PD and PID controllers.  

To evaluate in a more obvious representation, Figure 14 

shows the ITAE (Integral of Time and Absolute Error) 

criterion, calculated in (6), which is considered to be one of 

the most effective control performances.  

𝐼𝑇𝐴𝐸 = ∫ 𝑡 ∗ |𝑒(𝑡)|
𝜏𝑠𝑖𝑚
0

𝑑𝑡 (6) 

As a result of this control standard, the two conventional 

PD/PID controllers obtain ITAE values of nearly 600; 

meanwhile, the proposed hybrid FLC controller earns a much 

smaller number of 30. It means that the desired value of ITAE 

is less than 20 times the conventional ones.  In the second 

random simulation scenario, a more complicated case, the 

proposed FLC continues attaining much better control quality, 

as shown in Figures 15-17. Obviously, the PD and PID 

controllers cause the results with bad performances, such as 

fluctuations and high overshoots.  

In contrast, the proposed hybrid one, FLC, continues 

obtaining more exceptional performances, i.e., no overshoot 

and good steady time. Simultaneously, the measured value of 

the ITAE standard demonstrates a substantial decrease, 

several orders of magnitude lower than that observed with the 

two classical controllers, thereby validating the superior 

efficacy of the proposed FLC. 

 
Fig. 12 Simulation result of the PD/PID in the first scenario 

 
Fig. 13 Simulation result of the proposed FLC in the first scenario 
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Fig. 14 Comparative ITAE of different controllers in the first scenario 

 
Fig. 15 Simulation result of the PD/PID in the second scenario 

 
Fig. 16 Simulation result of the proposed FLC in the second scenario 

 
Fig. 17 Comparative ITAE of different controllers in the second 

simulation scenario 

5. Conclusions and Future Works 
This paper has dealt with improving metaheuristic 

method-based optimization algorithms, focusing on 

minimizing the convergence times.  

This is implemented by modifying the initialization phase 

of the optimization algorithms. Some of the paper’s major 

contributions can be deduced as follows: 

(1) Design a procedure to reduce convergence time to 

enhance the implementation speed of the control strategy 

by applying the improved optimization methods. 

(2) Apply the new finding above to a typical PSO algorithm 

to improve its control quality. A step-by-step given by 

flowchart for such an improved PSO mechanism has been 

proposed. 

(3) An example of balancing a ball and beam system with 

nonlinearities applying the proposed ePSO has been 

conducted to verify the dominant control performances of 

the studied hybrid control strategy. 

The next phases developed from this work will be the 

extension of improving ideas to other metaheuristic 

computation-based optimizations such as Genetic Algorithm 

(GA), Artificial Bee Colony (ABC), and Ant Colony 

Optimization (ACO).  

In this future perspective, not only theory but also 

practical applications of the proposed control methodologies 

will be taken into consideration.     
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Appendix: Simulation parameters 

B&B system 

m = 0.0027 kg; r = 0.02 m; d = 0.0508 m; g = 9.81 m/s2; l = 1.0 m; J = 6.207*10-7 kg*m2 

PSO algorithm 

N = 12; npar = 3; c1 = 1.45; w = 0.65; max_iteration = 15; Lb = [0.1 0.1 0.1]; Ub = [5 5 5]; 

BA algorithm 

Dim = 3; max_iter_BA = 3; N_BA = 12; Lb = [0.1 0.1 0.1]; Ub = [5 5 5]; Fmax = 3; Fmin = 0; r0 = 0.1%. 
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