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Abstract - VANETs are wireless technologies specifically designed for communication among vehicles and roadside 

infrastructure. VANETs face various challenges, including network connectivity issues due to high mobility and limited 

communication range, especially in dense urban environments. Load balancing in VANETs is crucial for ensuring efficient and 

reliable data communication among vehicles. The dynamic nature of VANETs, characterized by rapidly changing network 

topologies and varying traffic loads, poses unique challenges for achieving optimal communication performance. In this paper, 

a Stochastic Lagrangian Krill Herd Optimized Quadratic Associative Boost Classification (SLKHO-QABC) method is introduced 

for resource-efficient load balancing in VANETs. The main objective of the proposed method is designed for load-balanced data 

transmission in VANETs with minimum end-to-end delay. The SLKHO-QABC method includes two major processes namely 

resource optimization and classification in VANET. Initially, the Stochastic Universal Sampled Lagrangian Krill Herd 

Optimization is used to determine the resource-efficient vehicle nodes based on fitness functions. With the optimal vehicle nodes, 

the load capacity is identified through classification. Quadratic Associative Boost Classification is utilized to categorize the less 

or heavy-loaded vehicle nodes based on the likelihood ratio test. Finally, the vehicle node with a higher load broadcasts an 

information packet to the lesser-loaded vehicle node during the time of flight, which is used to achieve efficient load balancing 

in VANET. Experimental analysis is performed for various parameters. Performance comparison analyses show that the 

proposed SLKHO-QABC method improves the load balancing efficiency throughput and minimizes energy utilization, packet 

loss rate, and end-to-end delay. SLKHO-QABC method improves the load balancing efficiency by 5.5.% and throughput by 40%, 

reduces the Packet loss rate by 31%, energy consumption by 18%, and end-to-end delay by 18.5%. 

Keywords - VANETs, load balancing, data communication, Stochastic Universal Sampled Lagrangian Krill Herd Optimization, 

Quadratic Associative boost Classification, likelihood ratio test, time of flight method. 

1. Introduction  
VANET refers to a kind of ad hoc network that permits 

communication among vehicles and pavement infrastructure. 

In VANETs, all vehicles are utilized to share and exchange 

information. Load balancing in VANETs is essential to ensure 

network resources are utilized optimally and prevent 

congestion in specific regions. Different approaches have 

been developed. A Modified Social Spider Optimization (M-

SSO) algorithm was introduced in [1] to enhance data 

transmission efficiency. The algorithm successfully increased 

throughput but did not include load balancing aware 

transmission strategies to optimize delivery ratio and reduce 

transmission delay.  An integration PSO-SVNS-LBGB was 

introduced in [2] to find the optimal path.  However, it fails to 

address the multi-objective optimization needed for further 

enhancing throughput and minimizing delay. A new DFACO 

method was presented [3] for achieving data transmission with 

minimal time and solution cost. However, achieving higher 

performance in terms of data transmission with minimal delay 

remains a challenging issue. A novel HFCHBO algorithm was 

developed in [4] to effectively establish victorious routing 

paths for data broadcast among vehicles. However, load 

balancing performance was not improved. A hybrid 

optimization approach, integrated with ensemble learning, 

was introduced in [5] to enhance throughput and reduce 

latency. However, resource optimization posed a significant 

challenge in this context. Server-Based Network Congestion 

Handling Mechanism (SBNC) was introduced in [6] to 

enhance network performance. But it failed to enhance energy 

consumption. ANFC and quantum glowworm swarm 

optimization-basis of routing were developed in [7] to enhance 

data communication. However, the designed routing method 

failed to improve the network throughput.MFO algorithm and 

K-Means clustering were developed in [8] for handling 
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clustering optimization issues. However, it failed to reduce the 

delay. A hybrid optimization algorithm was designed in [9] for 

energy-aware load balancing. However, it failed to enhance 

the throughput performance.  Whale Optimization Algorithm 

was introduced in [10] to select an optimum Cluster Head 

(CH) and improve data transmission. However, multi-

objective functions remained unsolved in optimization 

techniques due to the rapid changes in vehicle topologies. The 

Rider Integrated Cuckoo Search (RI-CS) optimization 

algorithm was designed [11] to attain optimal route selection 

with minimal cost. VGBC, depending on the honey bee 

method, was developed [12] to minimize computational 

overhead. However, it did not address the minimization of 

communication workload. 

The QoSR with Particle Swarm Optimization (QoSR-

PSO) method was designed [13] to enhance the packet 

delivery ratio as well as minimize delay. An optimized and 

effective routing protocol was developed [14] to enhance 

throughput. However, it failed to analyze the average packet 

drop ratio results. A two-level communication routing 

algorithm was introduced in [15] to improve information 

transmission efficiency. However optimizing load balancing 

to reduce latency further posed a challenging task. The 

specific challenges of load balancing in vanet are due to the 

dynamic and unpredictable nature of vehicular networks. It 

includes Dynamic Network Topology, Scalability, Security, 
Limited Resources. 

1.1. Research gap 

An essential challenge associated with load-balanced data 

transmission in VANETs is minimum energy consumption. A 

Modified Social Spider Optimization (M-SSO) algorithm was 

used to enhance data transmission efficiency. However it 

failed to improve the efficiency of load balancing. An 

integration PSO-SVNS-LBGB was introduced to find the 

optimal path. However, the designed method did not reduce 

the energy consumption. To overcome the above issue, the 

SLKHO-QABC method is designed. 

2. Literature Review 
An Improved Harmony Search Optimization (EHSO) 

algorithm was introduced in [16] for data transmission among 

nodes. However, it failed to address load-aware data 

transmission. Optimization for Congestion Control System 

applying Machine Learning [OCCS-ML] was designed in [17] 

to diminish road accidents. However, bandwidth efficiency 

and packet loss in vehicular communication remained major 

concerns. The Lightweight Load Balancing method developed 

in [18] aimed to minimize the average Packet Loss Ratio. 

However, it did not improve throughput and network lifetime. 

Deep Reinforcement Learning-based Intelligent QoS-

optimized efficient routing algorithm was employed in [19] to 

enhance network quality of service. However, the method did 

not achieve throughput. The Giraffe Kicking Optimization 

(GKO) was developed in [20] to improve throughput and 

minimize data transmission delay. However, the multi-

objective version of the GKO algorithm has not been 

addressed. 

A Q-learning-based routing protocol was developed in 

[21] to minimize historical traffic flows. However, handling 

multidimensional resources for intelligent routing in VANETs 

remained a challenging task. A particle swarm optimization-

based multipath routing method was introduced in [22] to 

minimize time delay in data transmission.  An integration of 

swarm intelligence-based optimization strategies was 

developed in [23]. However, it did not minimize data 

transmission complexity and cooperative communication 

among the vehicles. 

The Spatio-Temporal Autonomous Load Balancing 

(STALB) routing protocol was introduced in [24] to minimize 

average latency and overload ratio. However, it did not 

achieve higher throughput performance. A capacity-based 

load-distribution method was developed in [25] to perform 

load-balancing with the aim of minimizing energy 

consumption and network delay. However, it did not 

implement learning-based scheduling to enhance energy 

consumption and network performance further. 

Chaotic Harris Hawks Optimization Algorithm was 

introduced in [26] for efficient energy usage.  A Q-learning-

basis of routing protocol was designed [27] to reduce end-to-

end communication latency. An integrated approach was 

examined in [28] to improve energy efficiency. However, it 

failed to minimize the communication overhead.  

 An intelligent machine learning-based routing method 

was developed for VANET with the aim of achieving higher 

throughput and reducing overall average delay [29]. However, 

the efficiency of the method was not improved in high-density 

environments.  A new routing technique was designed [30] to 

enhance the Quality of Service during communication, which 

aims for a higher packet delivery ratio. An algorithm for 

Vehicular Edge Computing (VEC) with network slicing and 

load-balancing based on resource utilization, denoted as 

VECSlic-LB was proposed in [31] specifically dedicated to 

offloading tasks from vehicles to edge nodes at gNBs or RSUs 

but failed to reduce the energy consumption. An efficient 

algorithm, TAASLB-traffic-aware adaptive server load 

balancing, was designed in [32] to balance the flows to the 

servers in a data center network. However, end-to-end delay 

was not minimized. A Server-Based Network Congestion 

Handling Mechanism (SBNC) was developed in [6] VANETs 

to bridge this gap. However, load balancing efficiency was not 

enhanced. 

2.1. The Novelty of the SLKHO-QABC Method  

The major novelty of the proposed SLKHOQABC 

method is summarized as follows, 
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• To improve the resource-efficient load-balancing data 

transmission in VANET, the SLKHOQABC method is 

designed based on optimization and classification.  

• First, Stochastic Universal Sampled Lagrangian Krill 

Herd Optimization (SLKHO) is applied to identify 

resource-efficient vehicle nodes based on energy, 

bandwidth, and signal strength. Stochastic Universal 

Sampling is employed within the Krill Herd Optimization 

framework to select the optimal vehicle nodes in terms of 

resources. This approach aims to enhance throughput and 

minimize delays. 

• Quadratic Associative Boost Ensemble Classification is 

employed for analyzing the load capacity. The Time of 

Flight method is applied to determine the nearest node for 

load balancing, consequently enhancing load balancing 

efficiency and minimizing packet loss.     

• Finally, an extensive simulation is carried out to estimate 

the performance of our SLKHOQABC method and other 

related works. The simulation result demonstrates that our 

SLKHOQABC method is highly efficient than the other 

methods. 

3. Proposed Methodology 
Wireless communication technology is advancing rapidly 

in various sectors, especially regarding effective data 

transmission. In VANET, load balancing is the process of 

distributing the data among a set of nodes to ensure optimal 

utilization of available resources and to prevent congestion or 

overloading of any single node or link. Ensuring load 

balancing in VANETs becomes challenging due to highly 

dynamic topology and constrained bandwidth. Incorporating a 

novel SLKHO-QABC method for load-balanced data 

transmission in VANETs helps improve network efficiency, 

reduce packet loss, and enhance overall network performance. 

Figure 1 depicts the architecture of the SLKHO-QABC 

method that helps for improving the load balanced data 

communication in VANET.   

Let us consider the VANET network organized into the 

undirected graph 𝐺 = (𝑣, 𝑒)’ where ‘𝑣’ indicates a number of 

vehicle nodes. 𝑉𝑛1, 𝑉𝑛2, 𝑉𝑛3, … . , 𝑉𝑛𝑛 and ‘𝑒’ denotes the 

edges. 

 

Fig. 1 Architecture of the SLKHO-QABC method 

To achieve the load-balanced data communication in 

VANET, the resource of vehicle nodes is optimized by 

applying a Metaheuristic Krill Herd Optimization. Followed 

by the resource optimal vehicles nodes are identified from the 

entire network. Then, the   Quadratic Associative 

Classification is applied to find the load capacity of the virtual 

machine.  Finally, the data packets  𝐷𝑃𝑖 =
 𝐷𝑝1, 𝐷𝑝2, 𝐷𝑝2 , … , 𝐷𝑝𝑛 are transmitted to the destination node 

(𝐷𝑛) through resource-optimal and lesser-loaded nodes𝑁𝑛𝑖 =
 𝑁𝑛1, 𝑁𝑛2, … , 𝑁𝑛𝑛.  

3.1.Stochastic Universal Sampled Lagrangian Krill Herd 

Optimization 

The initial process of the SLKHO-QABC method is to 

perform effective resource node selection using Metaheuristic 

Krill Herd Optimization. Krill Herd Optimization is a nature-

Number of Vehicles Nodes 

Stochastic Universal Sampled Lagrangian Krill 

Herd Optimization 

Select Resource Efficient Nodes 

Quadratic Associative Boost Classification 

Load Balanced Data Transmission 
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inspired metaheuristic optimization method that depends on 

the collective activities of krill swarms. This optimization 

simulates the social interactions and movement patterns of 

krill to solve multi-objective optimization problems. The main 

advantages of Krill Herd Optimization than the other 

optimization techniques are providing global optimization 

capabilities, diversity maintenance, efficiency, robustness, 

and user-friendly implementation.  

The behavior is inspired by the behavior of krill in nature 

is to search the food concentrations. They tend to move 

towards regions with higher food concentrations (better 

solutions) while avoiding regions with lower food 

concentrations (poorer solutions). This collective movement 

allows the population to explore the search space efficiently 

and converge towards optimal solutions over time.  

Optimization process begins to generate a population of 

krills. Here, krills are related to vehicle nodes in VANET. So, 

an initial population of vehicle nodes is generated as follows,   

𝑉𝑛𝑖 = 𝑉𝑛1, 𝑉𝑛2, 𝑉𝑛3, … . , 𝑉𝑛𝑛 (1) 

Where, 𝑉𝑛𝑖 indicates a number of vehicle nodes. After the 

population generation, the fitness of every vehicle node is 

estimated depending on multiple objective functions.  

𝑓(𝑥) = [𝐸𝑖
𝑅𝑒𝑠 , 𝐵𝑤𝑖

𝑎𝑣𝑎𝑖𝑙 , 𝑆𝑆𝑖   ] (2) 

Where, 𝑓(𝑥) denotes multiple objective functions, 𝐸𝑖
𝑅𝑒𝑠 

indicates a residual energy level of ‘‘𝑖𝑡ℎ’vehicle nodes, 

𝐵𝑤𝑖
𝑎𝑣𝑎𝑖𝑙  indicates the bandwidth availability of ‘𝑖𝑡ℎ’vehicle 

nodes, 𝑆𝑆𝑖 denotes a signal strength of ‘𝑖𝑡ℎ’vehicle nodes.  

The residual energy of the vehicle node is estimated by 

subtracting the consumed energy from the initial energy of the 

vehicle node. 

𝐸𝑖
𝑅𝑒𝑠 = [𝐸𝑖

𝐼𝑛𝑖] − [𝐸𝑖
𝐶𝑜𝑛𝑠] (3) 

Where,  𝐸𝑖
𝑅𝑒𝑠 indicates a residual energy level of 

‘𝑖𝑡ℎ’vehicle nodes, 𝐸𝑖
𝐼𝑛𝑖denotes a primary energy of vehicle 

nodes, 𝐸𝑖
𝐶𝑜𝑛𝑠denotes the utilized energy of vehicle nodes.   

Bandwidth is the highest information transfer rate of a 

network per unit time.  The bandwidth availability is estimated 

as the total available bandwidth minus the consumed 

bandwidth.   

𝐵𝑤𝑖
𝑎𝑣𝑎𝑖𝑙 = [𝐵𝑤𝑖

𝐼𝑛𝑖] − [𝐵𝑤𝑖
𝐶𝑜𝑛𝑠] (4) 

Where,  𝐵𝑤𝑖
𝑎𝑣𝑎𝑖𝑙  designates the bandwidth availability, 

𝐵𝑤𝑖
𝐼𝑛𝑖 indicates an initial bandwidth, 𝐵𝑤𝑖

𝐶𝑜𝑛𝑠 represents the 

consumed bandwidth. 

Friis transmission equation is used as a fundamental 

formula for estimating the signal strength of the vehicle node 

in wireless communication systems. It is mathematically 

formulated as follows,  

𝑆𝑆𝑖  =  𝑆𝑡𝑖 ∗ 𝑔𝑡 ∗ 𝑔𝑟 ∗ (
𝜆

4𝜋𝐷
)

2

 (5) 

Where, 𝑆𝑆𝑖 denotes a received signal strength or power of 

𝑖𝑡ℎ’vehicle nodes,𝑆𝑡𝑖 the transmitted signal strength of 

𝑖𝑡ℎ’vehicle nodes, 𝑔𝑡 and 𝑔𝑟 indicates a gain of transmitter and 

receiver antenna, 𝜆is the wavelength of the signal, 𝐷 is the 

distance among the transmitter and receiver. After computing 

the resource of the vehicle node, fitness is measured with a set 

of criterion functions as follows, 

𝐹𝐹 =  ((𝐸𝑖
𝑅𝑒𝑠 > 𝑇𝐸)&&(𝐵𝑤𝑖

𝑎𝑣𝑎𝑖𝑙 > 𝑇𝐵)&&(𝑆𝑆𝑖 >

𝑇𝑆𝑆𝑖
)) (6) 

Where 𝐹𝐹 indicates fitness function,𝑇𝐸 , 𝑇𝐵, 

𝑇𝑆𝑆𝑖
represents the threshold for residual energy, bandwidth 

availability, signal strength or power of nodes, respectively.  

After fitness measurement, the population's current best 

krill is chosen by applying a stochastic universal sampling 

procedure. The chosen of individuals are performed 

depending on probability evaluation as follows,  

 𝑃𝑠 =
𝐹𝐹𝑖

∑ 𝐹𝐹𝑗
𝑛
𝑗=1

 (7) 

Where,  𝑃𝑠 indicates a selection probability computed 

depending on the ratio of each individual node fitness ′𝐹𝐹𝑖’ to 

average fitness of a population in 𝑗𝑡ℎ individual ‘𝐹𝐹𝑗‘. As 

population generation varies, the fitness values as well as 

selection probabilities as well change. This means the greatest 

individuals are chosen through  𝑃𝑠. Likewise, the best 

individuals are chosen to identify the best global solution in 

the current methodology.   

For each current best individual, there are three major 

behaviors executed, such as manipulation of additional krill 

individuals, activities of searching food sources, as well as 

random diffusion. Lagrangian model is employed to an n-

dimensional decision space for integrating the above-said 

actions as follows, 

𝑑𝑉𝑘

𝑑𝑡
= 𝐼𝑘 + 𝐹𝑆𝑘 + 𝑅𝐷𝑘 (8) 

Where, 
𝑑𝑉𝑘

𝑑𝑡
 denotes a Lagrangian model, 𝐼𝑘 indicates a 

manipulation of other krill individuals, 𝐹𝑆𝑘 denotes activities 

of searching for food sources, 𝑅𝐷𝑘 denotes a random 

diffusion.  
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For manipulation of additional krill individuals, the 

motion of krill is persuaded through other krill is expressed as 

below, 

𝐼𝑘𝑛𝑒𝑤
= 𝑉𝑚𝑥  𝜗𝑖 + 𝑤𝑛 ∗ 𝐼𝑘𝑜𝑙𝑑

 (9) 

Where, 𝐼𝑘𝑛𝑒𝑤
 denotes a motion of krill is induced through 

other krill, 𝑉𝑚𝑥  denotes a represents the maximum induced 

velocity, 𝑤indicates inertia weight as well as value range is 

(0,1), 𝜗𝑖 indicates which individual is concerned through the 

induction direction of surrounding neighbors, 𝐼𝑘𝑜𝑙𝑑
 denotes 

formerly induced movement. 

Next behavior 𝐹𝑆𝑘is to get food, as follows: 

𝐹𝑆𝑘𝑛𝑒𝑤
= 𝑆𝑚𝑥  𝜑𝑖 + 𝑤𝑓 ∗ 𝐹𝑆𝑘𝑜𝑙𝑑

 (10) 

Where, 𝐹𝑆𝑘𝑛𝑒𝑤
denotes a behavior of searching for a food 

source, 𝑆𝑚𝑥 denotes the highest foraging speed, as well as its 

value is constant, (i.e.,) 0.02 (m/s),𝜑𝑖 indicates the foraging 

direction, 𝑤𝑓 represents inertia weight of foraging 

movement,𝐹𝑆𝑘𝑜𝑙𝑑
 indicates the previous foraging movement.  

The final behavior random diffusion is executed as 

follows, 

𝑅𝐷𝑘𝑛𝑒𝑤
= 𝐷𝑆𝑚𝑥 (1 −

𝑡

𝑡𝑚𝑥
)  𝛽 (11) 

Where, 𝑅𝐷𝑘𝑛𝑒𝑤
denotes a behavior of random diffusion, 

𝐷𝑆𝑚𝑥 denotes a maximum random diffusion speed, 𝑡 indicates 

a current iteration, 𝑡𝑚𝑥 represents the maximum number of 

iterations, 𝛽 indicates the direction of random diffusion.  

Based on the above-said behavior, the position of krill is 

modernized as below, 

𝑋𝑡+1 = 𝑋𝑡 + ∆𝑡
𝑑𝑉𝑘

𝑑𝑡
 (12) 

∆𝑡 = 𝜌 ∑(𝑢𝑗 − 𝑙𝑗) (13) 

Where, 𝑋𝑡+1  updated position of krill, 𝑋𝑡 denotes a 

current position of krill, ∆𝑡 denotes a time interval related to 

the specific application, step factor ‘𝜌’ is constant among 0 

and 2, 𝑢𝑗 and  𝑙𝑗 denotes upper as well as lower bounds of 

equivalent variables.  

After that, the fitness for every krill is computed along 

with its newly updated location.  This procedure is iterated till 

maximum iteration obtains achieved.  Lastly, the resource-

optimal vehicle node is selected. The flowchart of the 

Stochastic Universal Sampled Lagrangian Krill Herd 

Optimization is given below, 

Figure 2 illustrates an overall flow diagram of Stochastic 

Universal Sampled Lagrangian Krill Herd Optimization based 

resource optimal node selection. The algorithmic description 

of the Stochastic Universal Sampled Lagrangian Krill Herd 

Optimization is described as follows, 

 
Fig. 2 Flow diagram of stochastic universal sampled lagrangian krill 

herd optimization 

Algorithm 1 described above outlines the process of 

resource-optimal node selection. Initially, populations of 

vehicle nodes are randomly generated at search space (i.e., 

network). For every vehicle node, fitness is computed based 

on multiple objective functions. The current best vehicle 

nodes are then selected based on fitness estimation. Following 

this, the three behavior models of the krills are estimated. 

Afterwards, locations of krills are modernized. Fitness is 

calculated for recently generated locations. This procedure is 

Start 

Initialize population of vehicle 

nodes 

For each Vn 

Calculate he fitness based on multi-objective 

functions 

Select the Vn based on fitness 

Compute three behaviors Ik, FSk, RDk 

Update the position Xc+1 

Is tmx Reached? 

Select resource optimal node 

End 

No 

Ye

s 
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frequent till maximum iteration is attained. Finally, the global 

best individual is chosen as the best vehicle node for 

improving data transmission with minimal delay. 

Algorithm 1:   Stochastic Universal Sampled 

Lagrangian Krill Herd Optimization 

Input     : Number of vehicle nodes 

                𝑉𝑛1, 𝑉𝑛2, 𝑉𝑛3, … . , 𝑉𝑛n,  

Output  :  Select resource-efficient vehicle nodes 

Begin  

Step 1    :  Initialize the population of vehicle nodes 

𝑉𝑛1, 𝑉𝑛2, 𝑉𝑛3, … . , 𝑉𝑛n 

Step 2    :  For each𝑉𝑛𝑖 

Step 3     :  Calculate  𝐸𝑖
𝑅𝑒𝑠 and 𝐵𝑤𝑖

𝑎𝑣𝑎𝑖𝑙  , 𝑆𝑆𝑖using (3)(4)(5)   

Step 4    : Compute the fitness using (6) 

Step 5    : Select current best using (7) 

Step 6    : While (𝑡 < 𝑡𝑚𝑥)  do 

Step 7    : For each individual 

Step 8    : Compute  𝐼𝑘, 𝐹𝑆𝑘 , 𝑅𝐷𝑘  using (9) (10) (11) 

Step 9    : Update the positions of the krill  using  (12) (13) 

Step 10  : Go to step 4 

Step 11  : End for 

Step 12  : t= t+1 

Step 13  : end while 

Step 14  : end for 

Step 15  : End  

 

3.2. Quadratic Associative Boost Classification based Load 

Balanced Data Transmission 

After optimizing the resources of the vehicle nodes, the 

neighboring node with the least load capacity and minimal 

distance is identified by applying a quadratic associative boost 

classification. Quadratic Associative Boost Classification is 

an ML ensemble classification that translates weak learners 

into strong learners.  The weak learner is a base classifier that 

is complex to give accurate categorization. In contrast, the 

strong learner is a classifier that gives true categorization. 

Figure 3 Portrays graphic construction of quadratic associative 

boost classification for precise classification with minimum 

time consumption.  The proposed boost ensemble technique 

assumes input as the number of resource-optimal vehicle 

nodes.  

{𝑉𝑛𝑖 , 𝑌}    

where   𝑉𝑛𝑖 = 𝑉𝑛1, 𝑉𝑛2, … , 𝑉𝑛𝑚 and 𝑌 indicates 

ensemble classification results. In Figure 4, the boost  method 

primarily constructs the ‘k’ set of weak learners 

 𝐿1, 𝐿2,𝐿3, … . 𝐿𝑘   as well as results are summed to construct 

strong categorization outcomes. Boost ensemble method 

employs weak learners as quadratic associative classifiers. For 

each optimal vehicle node with respect to available resources, 

the load capacity is computed based on the number of data 

packets performed through the node during a given time 

period.  

𝐿𝑖
𝑐𝑎𝑝  =  (

𝑁𝐶𝑑𝑝

𝑇
) (14) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Schematic structure of quadratic associative boost classification 

Where, 𝐿𝑖
𝑐𝑎𝑝denotes a load of vehicle nodes, 𝑁𝐶𝑑𝑝 

designates a number of data packets that the node carries,  𝑇 

indicates the time in seconds (S).   𝐿1, 𝐿2,𝐿3, … . 𝐿𝑘   

The quadratic classifier performs the likelihood ratio test 

for the load capacity of vehicle nodes and the threshold value.  

𝐿 = (2𝜋𝜔2)−𝑚/2 exp (− ∑
(𝐿𝑖

𝑐𝑎𝑝−𝐿𝑖
𝑇)

2

2𝜔2
𝑛
𝑖=1 ) (15)    

Where 𝐿 represents the likelihood ratio test, 𝜔 represents 

deviation, 𝐿𝑖
𝑇indicates a threshold of the load capacity, 𝐿𝑖

𝑇 

represents the load capacity of nodes.  

Based on the likelihood ratio test, the quadratic classifier 

utilizes the association rule mining concept to improve the 

accuracy of node classification based on support and 

confidence values. Here, the rule indicates a likelihood ratio 

test. Let us consider the 𝑉𝑛𝑖 ⇒ 𝑄 where 𝑉𝑛𝑖 denotes the 

number of vehicle nodes, and 𝑄  denotes the output of the base 

learner.  The support is an indication of how the vehicle nodes 

are more related to that particular class based on the rule, i.e., 

the Likelihood ratio test, which is formulated as follows, 

𝑠𝑢𝑝(𝑉𝑛𝑖 ⇒  𝑄) = (
 𝑉𝑛𝑖 𝑠𝑎𝑡𝑖𝑠𝑓𝑦 𝑡ℎ𝑒 𝑟𝑢𝑙𝑒

n
) (16) 

Where, 𝑠𝑢𝑝(𝑉𝑛𝑖 ⇒ 𝑄) denotes a support value of an 𝑉𝑛𝑖 

and output class 𝑄, ‘n’ denotes the number of nodes, 

𝑉𝑛𝑖  𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑡ℎ𝑒 𝑟𝑢𝑙𝑒 indicates a vehicle node satisfies the 

rule ‘i.e. better likelihood ratio test ’.  

Number of resource optimal vehicle nodes 

Construct the base classifiers 

L1 L2 Lk 

Construct the base classifiers 

 

Obtain ensemble 

Classification result 
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Depend on support value, confidence is measured as 

below, 

𝐶𝑜𝑛(𝑉𝑛𝑖 ⇒  𝑄) = (
𝑉𝑛𝑖 𝑠𝑎𝑡𝑖𝑠𝑓𝑦 𝑡ℎ𝑒 𝑟𝑢𝑙𝑒

𝑉𝑛𝑖 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑦 𝑡ℎ𝑒 𝑟𝑢𝑙𝑒
) (17) 

Where, 𝐶𝑜𝑛(𝑉𝑛𝑖 ⇒ 𝑄) represents the confidence of how 

the nodes𝑉𝑛𝑖 is more related to the particular class. If the 

estimated support and confidence are lower than the threshold 

range, the node is classified as less loaded. Otherwise, it is 

classified as a heavy-loaded vehicle node. In this way, less-

loaded and heavy-loaded vehicle nodes are identified. The 

observed weak learner outcomes are summed up to create 

strong classification outcomes, as follows.   

𝑌 = ∑ 𝑄𝑖
𝑘
𝑖=1  (18) 

Where 𝑌indicates ensemble output,𝑄𝑖  indicates the output 

of weak learners. For every weak learner, the weight is 

initialized as follows,  

𝑌 = ∑ 𝑄𝑖
𝑘
𝑖=1 ∗ ℎ𝑖 (19) 

Where,‘ℎ𝑖 ’ denotes the weight assigned to the weak 

learner results. After combining, an error is calculated as the 

dissimilarity among expected and actual outcomes. The error 

rate is computed as below,  

𝐸𝑅 = (𝑌𝑒𝑥 − 𝑌)2 (20) 

Where 𝐸𝑅  denotes an error, 𝑌𝑒𝑥 represents the expected 

results, 𝑌 denotes the actual results. Depending on 𝐸𝑅 value, 

the primary weight gets modernized. If a weak learner 

correctly classifies nodes, its weight is decreased. Otherwise, 

the primary weight value is enhanced. Therefore, weak learner 

results with minimum error are selected to contribute more to 

the final classification result, leading to higher accuracy.  In 

this way, less-loaded and heavy-loaded nodes are classified. 

To balance the traffic load, heavy-loaded vehicle nodes 

distribute the data packets to the nearest less-loaded vehicle 

nodes. This helps to enhance data broadcast through minimal 

delay. The ToF method is used to identify the nearest lesser-

loaded nodes in a network. Each heavy-loaded node 

distributes beacon communication to other less-loaded nodes. 

Then, the nearest vehicle nodes receive the beacon message 

and send a reply. 

 
Fig. 4 Process of ToF method 

Figure 4 illustrates the process of the time of flight 

method, where the beacon message distribution between the 

nodes.  Based on message distribution, the distance between 

the nodes is estimated. Time of Flight (ToF) is time 

dissimilarity among beacon messages broadcasted as of 

heavily loaded node ‘ HL(Vn)’ and the reply message sent to 

that node from the less loaded node ‘𝐿𝐿(𝑉𝑛)’. It is calculated 

as given below,  

𝑑 = [TBtr] − [TRrx] (21) 

Where 𝑑 represents a heavy-loaded node and less loaded 

node,TBtrindicates the time for a beacon message broadcasted 

as a heavily loaded node and  TRrx denotes a reply message 

returned from the less loaded node. Therefore, the minimal 

time is used to identify the nearest node. After that, the node 

distributes information packets to the nearest less loaded 

nodes within the network. In this way, load-balanced data 

communication is performed in VANET. The algorithm of 

load balancing is described as follows. 

Algorithm 2:  Quadratic Associative Boost 

Classification-Based Load Balancing  

Input : Number of optimal vehicle nodes 

𝑉𝑛1, 𝑉𝑛2, 𝑉𝑛3 … . . 𝑉𝑛k, number of data packets 

𝑑𝑝1, 𝑑𝑝2, 𝑑𝑝3, … 𝑑𝑝𝑛 

Output    :     Improve the load balancing efficiency   

Begin 

LL(Vn) LL(Vn) 

LL(Vn) 

HL(Vn) 

LL(Vn) 

Beacon message send 

Reply message 
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Step 1     :     For each resource-efficient optimal node  ‘𝑉𝑛k’ 

Step 2    :    Measure the load capacity using (14)  

Step 3    :    Construct ‘𝑘’ number of weak learners 

Step 4    :    Measure the likelihood test using (15) 

Step 5    :    Measure support value using (16) 

Step 6    :    Measure confidence value using (17) 

Step 7    :    𝐼𝑓(𝐶𝑜𝑛 < 𝑇ℎ )then 

Step 8    :    Node is classified as lesser loaded 

Step 9    :    Else 

Step 10  :    Node is classified as heavily loaded  

Step 11  :    End if  

Step 12  :    End for 

Step 13  :    Combine all weak learners 𝑌 = ∑ 𝑄𝑖
𝑘
𝑖=1  

Step 14  :    for each𝑄𝑖  

Step 15  :    Assign the weight ‘ℎ𝑖 ’ 

Step 16  :    Compute the error ‘ 𝐸𝑅’  

Step 17  :    Adjust the weight  

Step 18  :    Find the weak learner with minimum error  

Step 19  :    Return  (strong classification results) 

Step 20  :    end for 

Step 21  :    for each heavy-load vehicle node 

Step 22  :    Send beacon message to other less loaded node 

Step 23  :   Compute the distance using (21) 

Step 24  :    Find the nearest less-loaded vehicles 

Step 25  :   Distribute the data packets to 

                   less-loaded vehicles 

Step 26  :   Return (load balanced data transmission ) 

Step 27  :   End for 

Step 28  :   End 

Algorithm 2 illustrates the various processes involved in 

load balancing during data transmission. For each vehicle 

node, the load capacity is estimated. The proposed ensemble 

technique sets the number of weak learners depend on input 

amount of vehicle nodes. Then, the likelihood ratio test is 

computed for each vehicle node. By applying association rule 

mining, the support value and confidence value are computed. 

If the estimated support and confidence are lower than the 

threshold range, the node is classified as less loaded.  

Otherwise, it is classified as a heavily loaded vehicle 

node. The results from weak learners are summed, and 

weights are assigned. The error of each weak learner result is 

measured. Weak learner through minimum error is chosen as 

the last strong categorization result.  

Then, the heavily loaded node distributes the data packets 

to the nearest less loaded node to enhance data broadcast and 

reduce delay. 

4. Results and Discussions 
Simulations of the SLKHO-QABC technique and 

conventional techniques M-SSO and PSO-SVNS-LBGA are 

executed in the NS2.34 simulator. The simulation duration is 

set to 300 seconds. The nodes' movement speed is configured 

to be within the range of 0-20 m/sec. The number of data 

packets considered for simulation varies from 100 to 1000. 

Simulation parameters, along with their respective values, are 

given in Table 1. 

Table 1. Simulation parameters settings 

Simulation 

Parameters 
Values 

Network Simulator NS2.34 

Simulation Area 1500 m * 1500 m 

Number of Vehicle  

Nodes 

100, 200, 300, 400, 500, 600, 

700, 800, 900, 1000 

Number of  

Data Packets 
5000, 10000….50000 

Mobility Model Random Waypoint Model 

Nodes Speed 0–20 m/s 

Simulation Time 300 sec 

Routing Protocol DSR 

Number of Runs 10 

 

5. Performance Comparison Analyses  
Performance of SLKHO-QABC method re compared 

through M-SSO and PSO-SVNS-LBGA with 

dissimilarparameters. 

5.1. Energy Consumption 

It is measured as the amount of energy utilized through 

vehicle nodes for distributing information packets. It is 

calculated as below,  

𝐸𝐶 = ∑ 𝑉𝑛𝑖
𝑛
𝑖=1 ∗  𝐶𝐸(𝑉𝑛) (22) 

Where 𝐸𝐶 indicates energy consumption, 𝑛 indicates a 

vehicle node,  ′𝐶𝐸(𝑉𝑛) indicates the amount of energy 

utilized by a single vehicle node (𝑉𝑛).It is measured in joule 

(J).  

5.2. Load Balancing Efficiency 

It typically refers to how effectively the data packets are 

distributed among the nodes in the network to avoid 

congestion and optimize resource utilization. It is calculated 

as the ratio of the number of data packets correctly distributed 

among vehicle nodes to the total number of data packets.  

𝐿𝐵𝐸 = ∑
𝐷𝑝  𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑

𝐷𝑃𝑖
∗ 100𝑛

𝑖=1   (23)  

Where 𝐿𝐵𝐸 symbolizes the Load balancing efficiency, 

𝐷𝑃𝑖  indicates the number of data packets. It is calculated in 

percentage (%). Packet loss rate:  It is calculated as the ratio 

of the number of data packets lost to the whole number of data 

packets sent. It is calculated as below, 

𝑅𝐴𝐿𝑆𝑆 = ∑
𝐷𝑝  𝑙𝑜𝑠𝑡

𝐷𝑃𝑖
∗ 100𝑛

𝑖=1   (24)  
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Where, 𝑅𝐴𝐿𝑆𝑆 indicates packet loss rate, 

𝐷𝑝 𝑙𝑜𝑠𝑡symbolize the number of data packets lost. It is 

measured in percentage (%).       

5.3. Throughput 

It is calculated as the size of packets successfully received 

at the destination within the specific time period. It is 

measured in bits per second (bps). 

𝑇𝑝𝑢𝑡 =  (
𝐷𝑝 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 (𝑏𝑖𝑡𝑠)

𝑡 (𝑠𝑒𝑐)
)  (25) 

Where, ‘𝑇𝑝𝑢𝑡’ denotes the size of data packets 

successfully delivered in terms of bits at destination and time 

(t) in seconds (sec).  

5.4. End-to-End Delay 

It is referred to as the time taken through the algorithm to 

deliver packets from source to destination.  

𝐷𝐸𝐷  = [𝐷𝑃𝑎𝑟𝑟  (𝑇) − 𝐷𝑃𝑠𝑒𝑑(𝑇)] (26) 

Where, 𝐷𝐸𝐷  denotes End-to-End Delay, 

𝐷𝑃𝑎𝑟𝑟(𝑇)symbolize data packet arrival time, 𝐷𝑃𝑠𝑒𝑑(𝑇) 

indicates data packet sending time.  It is calculated in 

milliseconds (ms). 

Figure 5 illustrates the result outcomes of 𝐸𝐶versus 

number of vehicle nodes. The graph compares 𝐸𝐶of SLKHO-

QABC method, M-SSO, and PSO-SVNS-LBGA. Among 

these methods, the SLKHOQABC method demonstrates 

better performance than conventional methods.  

Considering 50 sensor nodes for measuring energy 

consumption, the SLKHO-QABC method exhibits an energy 

consumption of 10.5 joules for data packet distribution.  

In contrast, the energy consumption using M-SSO 

and PSO-SVNS-LBGA was observed to be 16.5 joules and 

12.5 joules, respectively.  

Table 2. 𝑬𝑪 

Number of 

Nodes 

𝑬𝑪 (Joule) 

SLKHO-

QABC 

M-

SSO 

PSO-SVNS-

LBGA 

50 10.5 16.5 12.5 

100 12.23 18.56 14.2 

150 14.2 18.74 16.41 

200 15.82 20.2 17.2 

250 16.33 22.02 19.65 

300 18.2 23.65 21.2 

350 20.56 25.02 23.01 

400 22.45 27.52 25.02 

450 24.2 30.1 27.65 

500 26.32 31.05 28.14 

 
Fig. 5 Impact of EC 

Various statistical results were observed and compared. 

Finally, the comparison reveals which𝐸𝐶performance of the 

SLKHO-QABC method is significantly minimized by 24% and 

12% to the M-SSO and PSO-SVNS-LBGA. This is because 

of the SLKHO-QABC method's ability to identify resource-

effective nodes for effectual data broadcast using Stochastic 

Universal Sampled Lagrangian Krill Herd Optimization. By 

selecting nodes with higher residual energy, the method 

enhances data transmission performance and contributes to 

increasing network lifetime. 

Table 3. 𝑳𝑩𝑬 

Number of Data 

Packets 

𝑳𝑩𝑬 (%) 

SLKHO-

QABC 

M-

SSO 

PSO-SVNS-

LBGA 

100 95 90 92 

200 95.6 88.45 90.36 

300 94.65 87.56 91.2 

400 95.12 89.1 91.63 

500 94.13 88.56 90.1 

600 94.56 87.2 91.75 

700 95.12 88.1 90.52 

800 94.6 87.02 89.85 

900 95.65 89.1 91.36 

1000 94.52 88.74 90.56 

 
Fig. 6 Impact of load balancing efficiency 
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Figure 6 illustrates the result analysis of 𝐿𝐵𝐸 versus the 

number of data packets. The outcomes demonstrate variations 

among three methods, namely SLKHO-QABC, M-SSO, and 

PSO-SVNS-LBGA. Overall, the SLKHO-QABC method 

outperforms the other two existing methods, consistently 

achieving higher load balancing efficiency. Specifically, when 

100 data packets are considered, the SLKHOQABC method 

demonstrates 95% efficiency, while methods M-SSO and 

PSO-SVNS-LBGA  achieve 90% and 92%, respectively. Ten 

dissimilar outcomes were examined for every technique. 

Comparing examined outcomes of the SLKHO-QABC method 

with other existing methods, the average comparison reveals a 

significant increase in load balancing efficiency of 7% and 4% 

compared to methods M-SSO and PSO-SVNS-LBGA, 

respectively. This is because of the Quadratic Associative 

Boost Classification application for identifying heavily and 

less loaded vehicle nodes. Subsequently, the ToF method is 

employed to determine neighboring less loaded vehicle nodes 

for forwarding data packets, enhancing efficiency. 

Table 4. 𝑹𝑨𝑳𝑺𝑺 

Number of Data 

Packets 

𝑹𝑨𝑳𝑺𝑺(%) 

SLKHO-

QABC 

M-

SSO 

PSO-SVNS-

LBGA 

100 5 8 7 

200 4.5 8.5 6 

300 6 8.66 7.33 

400 4.5 8 6.25 

500 5.8 8.4 7 

600 5.83 9.16 7.16 

700 5.71 9.85 7.42 

800 5.62 9.5 7.75 

900 5.88 9.44 7.22 

1000 6.5 11.4 8.5 

 

 
Fig. 7 Impact of 𝑹𝑨𝑳𝑺𝑺 

Figure 7 depicts the graphical analysis of 𝑅𝐴𝐿𝑆𝑆 using 

three different methods. The figure demonstrates which 

𝑅𝐴𝐿𝑆𝑆 of SLKHO-QABC technique are minimized compared 

to conventional methods. This improvement is achieved by the 

SLKHO-QABC method through load capacity analysis of 

vehicle nodes before distributing data packets to all vehicle 

nodes. By employing Quadratic Associative Boost 

Classification, less or heavily loaded vehicle nodes within the 

network are identified. Additionally, the ToF technique is 

employed to identify neighboring vehicle nodes with lower 

load capacity for data packet distribution. This approach 

enhances data transmission and minimizes loss rates. The 

average of ten comparison outcomes denotes which 𝑅𝐴𝐿𝑆𝑆 the 

SLKHO-QABC method is significantly reduced by 39% and 

23% to the M-SSO and PSO-SVNS-LBGA. 

Table 5. Throughput   

Data Packet 

Size (KB) 

Throughput (bps) 

SLKHO-

QABC 

M-

SSO 

PSO-SVNS-

LBGA 

25 315 185 208 

50 358 205 222 

75 412 265 302 

100 585 347 395 

125 623 412 485 

150 725 563 612 

175 825 610 695 

200 985 715 798 

225 1023 810 895 

250 1185 914 1015 

 
Fig. 8 Impact of throughput 

Figure 8 illustrates the simulation analysis of throughput 

versus size of data packets.  Observed outcomes denote which 

proposed SLKHO-QABC method attains superior performance 

in terms of achieving superior. 𝑇𝑝𝑢𝑡 than the existing 

techniques. This important improvement of the SLKHO-

QABC method is attained through effectual communication 

among vehicle nodes within the VANET. Let us take the 

25KB size of the information packet being sent, the result of 

Tput was examined at 315bps, whereas the observed result of 

throughputs using two existing methods was found to be 

185bps and 208bps, respectively. Similarly, the difference 

performance outcomes were performed and compared entire 
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outcomes. Overall comparison outcome shows 𝑇𝑝𝑢𝑡is found to 

be increased by 48% and 32% using the SLKHO-QABC 

method than the conventional methods M-SSO, and PSO-

SVNS-LBGA, respctively.  This is owing to the choice of 

resource-effective nodes and less-loaded vehicle nodes, which 

are determined by employing Stochastic Universal Sampled 

Lagrangian Krill Herd Optimization. This optimization 

technique identifies vehicle nodes with higher residual energy, 

available bandwidth, and stronger signal strength. 

Consequently, it enhances the rate of data delivery per unit of 

time. 

Table 6. 𝑫𝑬𝑫 

Number of Data 

Packets 

𝑫𝑬𝑫(ms) 

SLKHO-

QABC 

M-

SSO 

PSO-SVNS-

LBGA 

100 14 19.6 18 

200 16.2 22.5 21.2 

300 20.6 25.9 23.5 

400 22.3 28 26.5 

500 25.1 30.5 28.9 

600 26.3 32 30.4 

700 28.5 35.7 33.5 

800 30.5 38 36 

900 32 40.2 38.2 

1000 34.6 42.9 40.6 

 
Fig. 9 Impact of 𝑫𝑬𝑫 

Performance analysis of 𝐷𝐸𝐷  using the SLKHO-QABC 

method and the other conventional methods, M-SSO and 

PSO-SVNS-LBGA, are shown in Figure 9. When the number 

of data packets increases (100, 200, 300… 1000), the overall 

𝐷𝐸𝐷  of every three techniques is improved.   

Simulations are conducted with 100 data packs, and the 

delay of data transmission was observed using the 

SLKHOQAB method, which was found to be 14𝑚𝑠. The 

delay of M-SSO and PSO-SVNS-LBGA  were found to 

be 19.6𝑚𝑠 and  18𝑚𝑠respectively. From the observed results, 

the proposed SLKHO-QABC method minimizes the delay by 

21% and 16% when compared to existing M-SSO and PSO-

SVNS-LBGA. This is accomplished by identifying vehicle 

nodes with higher bandwidth availability, greater energy 

efficiency, and stronger signal strength. These selected nodes 

enhance the rate of data communication, facilitating faster 

transmission. Furthermore, load balancing among vehicle 

nodes contributes to the continuous distribution of data with 

reduced delay. 

6. Discussion 
This study compares the proposed SLKHO-QABC 

method with the existing M-SSO and PSO-SVNS-LBGA are 

discussed with NS2.34 simulator based on various parameters, 

such as load balancing efficiency, throughput, and energy 

utilization, packet loss rate, as well as end-to-end delay.  

The proposed SLKHO-QABC method is evaluated on a 

test dataset with different performance metrics, namely, load 

balancing efficiency, throughput, energy utilization, and 

packet loss rate, with respect to different numbers of data 

packets.  

The results confirm that the proposed SLKHO-QABC 

method improved load balancing efficiency by 5.5.%, 
throughput by 40%, and reduced the Packet loss rate by 31% 

when compared to the existing methods M-SSO and PSO-

SVNS-LBGA.  

7. Conclusion and Future work 
VANET includes a variety of applications demanding 

efficient data delivery. Due to the dynamic nature of 

topologies and frequent path disruptions in VANETs, an 

effective approach is essential to establish reliable data 

transmission paths from source to destination. This paper 

introduces the SLKHO-QABC method to address the load 

balancing issue by integrating resource optimization and load 

capacity analysis. Stochastic Universal Sampled Lagrangian 

Krill Herd Optimization is employed to optimize resource 

allocation among vehicle nodes within the network, thereby 

enhancing throughput and minimizing transmission delays.  

Additionally, the load capacity of nodes is evaluated 

using Quadratic Associative Boost Classification to facilitate 

efficient data distribution. These processes collectively 

improve load balancing efficiency and mitigate packet loss 

rates. A comprehensive simulation is conducted by comparing 

the proposed SLKHO-QABC method with existing techniques. 

Results indicate superior performance of SLKHOQAB in 

terms of minimizing energy consumption, transmission delay, 

and packet loss rates while enhancing throughput and load 

balancing efficiency compared to conventional techniques. 

SLKHO-QABC method improves the load balancing 

efficiency by5.5.% and throughput by 40%, reduces the 

Packet loss rate by 31%, energy consumption by 18%, and 

end-to-end delay by 18.5%. 
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