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Abstract - Remote sensing technologies have become crucial for forest management, providing large-scale data through satellite 

and aerial imagery. Automated semantic segmentation of trees enables efficient monitoring, although the task remains 

challenging due to varying tree spectral signatures, the limited availability of labeled datasets, and geometric distortions. In the 

domain of precision agriculture, major research efforts have focused on monitoring agricultural fields, classifying land use, and 

optimizing crop yields. In terms of accuracy and reliability, deep learning algorithms now perform noticeably better than 

conventional machine learning techniques for remote sensing image analysis. Recent advances in image segmentation, a key 

field in computer vision, have enabled more accurate identification and categorization of objects in remote sensing images. 

While many studies rely on frontal or asymmetrical image views, this review focuses on deep-learning approaches using top-

down datasets for species and land cover segmentation. Models such as U-Net, SiU-Net, and DeepLabV3+ demonstrate notable 

performance improvements, achieving mean average precisions of 0.921, 0.970, and 0.976, respectively. Compared to earlier 

conventional approaches, these models show a significant leap in accuracy, particularly in handling fine-grained details and 

large-scale environmental variations. Furthermore, independent validation using tree species proportion maps highlights the 

practical reliability of these models in estimating species presence, absence, and distribution, thereby reinforcing their 

importance in advancing remote sensing-based ecological and agricultural monitoring. 

Keywords - Remote Sensing, Multispectral Data, Hyperspectral Data, Deep Learning, Image Classification. 

1. Introduction  
The forest ecosystems provide vital services, 

necessitating sustainable management policies to maintain 

their ecological and economic roles. Effective strategies 

require understanding regional and national forest dynamics, 

particularly under climate change [1]. Remote sensing, 

alongside field inventories, efficiently gathers forest data. 

Machine learning and deep learning have shown promise in 

satellite-based environmental monitoring [2]. Mapping Land 

Use and Land Cover (LULC) is crucial for tracking urban 

sprawl, negatively affecting agriculture, water infiltration, and 

open spaces. Current LULC mapping methods use deep 

learning, machine learning and satellite imagery techniques 

[3]. Forests are critical for climate stability, making their 

accurate assessment a global priority. Remote sensing 

surpasses traditional methods like aerial surveys in monitoring 

forest changes. Previously, manual analysis dominated, but 

recent advances in artificial intelligence introduced Deep 

Learning (DL) and satellite technologies [4]. Many countries, 

particularly in Europe, rely on land cover classification and 

management to boost agricultural yields. Land cover maps 

provide spatial data on features like forests and croplands, 

while dynamic maps capture temporal changes [5]. Land use 

maps detail human activity affecting land cover.  

Improved spatial resolution enables more detailed 

satellite image analysis, shifting from object-based to pixel-

level semantic segmentation. Sentinel-2’s publicly available 

multispectral imagery has advanced land-cover research [8]. 

Over the last two decades, deep learning has enhanced 

computer vision tasks like preprocessing, segmentation and 

scene understanding. However, DL techniques depend on 

extensive, high-quality datasets. RGB imaging struggles in 

low light or fog, necessitating alternative techniques [9]. 

Image segmentation is vital for visual-based applications, 

including remote sensing, autonomous driving, medical 

imaging, and augmented reality [11]. Machine Learning 

(ML), a key artificial intelligence subset, underpins many 

remote sensing analyses. Numerous ML algorithms have been 

developed for various applications in recent years [13]. The 

study reviews previous research on remote sensing, satellite 

imagery, and learning models, detailing the classification 
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methods and modal architectures employed. It analyses model 

performance based on accuracy results, highlighting the best-

performing models. Additionally, it discusses the advantages, 

limitations, and notable strengths of the models evaluated. 

This revision explicitly highlights the research gap in terms of 

current limitations in forest monitoring and LULC mapping 

methods. It also introduces the problem of achieving accurate 

assessments in the context of low-resolution data, climate 

change, and the need for improved deep learning and satellite-

based techniques. 

2. Methodology  
2.1. Land Cover Segmentation  

The methodology is separated into two sections: the 

characteristic designs of the suggested SiU-Net and traditional 

models (DeepLabV3+ and U-Net) and their performance 

evaluation with test data. The deep learning models section 

focuses on network architecture, especially the input nodes 

and encoders for SiU-Net. Comparing model performance 

qualitatively and quantitatively, validating SiU-Net’s 

superiority and reviewing each model’s architecture and class-

specific features.  

DeepLabV3+ and U-Net, both encoder-decoder models, 

are widely used for semantic segmentation due to their ability 

to restore localization and boundary details. SiU-Net, built on 

U-Net, incorporates ReLUs, Batch Normalization (BN), and 3 

× 3 convolutions [1]. The DeepLab series tackles multiscale 

issues using Atrous Spatial Pyramid Pooling (ASPP). 

DeepLabV3+ enhances accuracy and speed by expanding the 

receptive field without increasing parameters or reducing 

spatial resolution, and it refines low-level features for better 

boundary detection [7].   

Multispectral imagery offers a broader spectral range, 

improving segmentation over RGB, especially for water 

bodies. However, using all 20 channels provided limited gains 

in the Kaggle challenge, where upsampling lower-resolution 

bands risks data loss. Advanced models like SharpMask, U-

Net, and RefineNet embed hierarchical features into decoders 

for improved segmentation, while DeepLabV3+ leverages 

spatial pyramid pooling for multiscale feature extraction. 

Multispectral images, captured using specialized 

instruments or filters, span RGB, near-infrared (750–900 nm), 

and thermal infrared (10410–12510 nm) ranges. Given the 

time-intensive nature of data collection and the need for large 

datasets for Deep Convolutional Neural Networks (DCNN), 

data augmentation was used to increase data volume, enhance 

regularization, and reduce overfitting. Techniques like 

Translation, Rotation, Flip, Crop, Scale and Gaussian noise 

added diversity.  Annotation, essential for DCNNs, was 

performed using the bounding box method with free, open-

source tools. The annotations were stored in darknet format 

for YOLO v3 compatibility [9].  

 
Fig. 1 Block diagram of U-Net method. [1, 7-11] 

Figure 1 depicts a standard architecture for semantic 

segmentation models designed to assign a class label to every 

pixel in the input image.  The model employs an encoder-

decoder structure: the encoder extracts features through 

convolutional layers and down-sampling, capturing high-level 

semantic information, while the decoder up-samples these 

features to generate a pixel-wise segmentation map.  A crucial 

component is the bottleneck, where the most abstract 

representation of the image is processed. The final output has 

finer and more accurate segmentations due to skipping 

connections between the relevant encoder and decoder layers, 

which aid in recovering fine-grained features lost during 

down.  Preprocessing steps are often applied to the input 

image before feeding it to the network. Table 1 demonstrates 

the comparative analysis of three semantic segmentation 

architectures: DeepLabv3+, U-Net, and SIU-Net. It highlights 

their key architectural features, techniques used, context and 

resolution handling, typical use cases, and performance 

characteristics.  DeepLabv3+ excels in complex scenes with 

its ASPP module; U-Net is efficient for precise segmentation, 

especially in medical imaging, while SIU-Net uses attention 

mechanisms for fine-grained detail segmentation. Sampling 

strategies in machine learning select relevant training data, 

enhancing speed and accuracy. In remote sensing, they 

identify representative sites over large areas. Low-resolution 

satellite data like MODIS (500 m per pixel) supports global 

mapping, while Landsat provides detailed land cover analysis. 
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Table 1. Key differences summary of DeepLabV3+, U-Net, and SiU-Net. [1, 7-11] 

Feature DeepLabV3+ U-Net SiU-Net 

Architecture 
Encoder-Decoder with ASPP 

and refinement. 

Encoder-decoder with skip 

connections. 

U-Net variant with spatial 

attention. 

Key Technique 
Atrous convolutions 

(dilated) + ASPP 

Skip connections, upsampling 

(transposed convolution). 

Attention mechanisms for region 

focus. 

Context Handling Multi-scale context via ASPP 
Strong local context retention 

via skips. 

Focuses on fine details with 

attention. 

Resolution 

Handling 

Multi-scale context with global 

receptive fields. 

Maintains high spatial resolution 

with skips. 

Improves segmentation of fine 

details through attention. 

Use Cases 
General semantic segmentation 

(e.g: urban, large-scale) 

Medical image segmentation, 

fine boundaries. 

Single image segmentation, 

small object focus. 

Performance 
Strong on large datasets, and 

complex scenes. 

Efficient for small datasets, 

precise segmentation 

Optimized for accuracy on fine-

grained tasks. 

 

Sentinel-2 acquires multispectral imagery across 13 

bands, spanning the visible to shortwave infrared spectrum, 

with spatial resolutions resampled to 10 meters. Traditional 

machine learning methods, like K-Means clustering, are 

effective for land cover classification. Pseudo-labeling assigns 

probabilities to pixels when labeled data is scarce, setting zero 

for misclassified pixels.   

U-Net [1,7,8], FPN, and DeepLab with a ResNet50 

backbone and 128 × 128 input size are commonly used for 

segmentation. Implemented using Pytorch, these architectures 

show strong performance in remote sensing. Precision, recall, 

and F1-score assess model quality, while IoU (Jaccard Index) 

measures segmentation accuracy by dividing the intersection 

of predicted and ground truth masks by their union [10]. 

Semantic segmentation assigns class labels to each pixel, 

combining object detection with segmentation. FCN is 

foundational for models like U-Net, which is known for its 

encoder-decoder structure and skip connections.   

DeepLabV3 enhances segmentation with atrous 

convolution and Spatial Pyramid Pooling (SPP) for multiscale 

feature handling, modifying ResNet-101 to retain high-

resolution features. It splits feature maps into spatial bins to 

manage various input sizes. U-Net also follows an encoder-

decoder structure but uses a symmetric design to avoid direct 

connections between upsampling and downsampling paths. 

DeepLabV3 combines parallel and cascaded atrous 

convolution modules, using color variables for top-view 

human segmentation. These models reconstruct outputs via 

upsampling techniques, integrating atrous separable 

convolutions to capture context without extra parameters [11]. 

Figure 2 describes the block diagram of a semantic 

segmentation method incorporating an Atrous Spatial 

Pyramid Pooling (ASPP) module. The process begins with an 

input image, which is preprocessed before being fed into a 

backbone network (e.g., ResNet, MobileNet).  The backbone 

extracts hierarchical feature maps, which are then passed 

through the ASPP module. ASPP utilizes several parallel 

atrous convolutions with different dilation rates to extract 

contextual information at multiple spatial scales. ASPP output 

is then fed into a decoder to generate the final output, a pixel-

wise segmentation map highlighting different objects or 

regions in the image. 

 
Fig. 2 Block Diagram of DeepLabV3+ method. [1, 7-11] 

2.2. Spectral-Spatial Deep Learning 

The decoder uses transposed convolutions (upsampling) 

with skip connections that link encoder and decoder features 

at each level, maintaining identical input-output dimensions. 

UNet++ enhances segmentation accuracy over UNet by 

introducing deep supervision and refined skip paths, which 

reduce the semantic gap and support multi-level 

concatenation. It also uses weight regularization to mitigate 

overfitting and boost generalization. Evaluated loss functions 

include Kullback-Leibler divergence, pseudo-Huber (PH), 

mean absolute error, mean squared error and focal loss. Data 

processing and evaluation utilized the raster, sf, keras 

(TensorFlow), GDAL/OGR, and Orfeo ToolBox libraries [2]. 
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Fig. 3 CNN architecture diagram. [2, 12-16] 

Deep Learning (DL) models are composed of M layers, 

each containing N nodes, which enable the step-by-step 

representation of data. A fully connected network, also known 

as a Multilayer Perceptron (MLP), connects all nodes across 

layers using weighted connections. Using multitemporal 

satellite imagery, MLP classifies poplar plantations using data 

from the 2017 polygon. TensorFlow optimized the MLP and 

trained on 2000 polygons (1000 each for poplar and non-

poplar) through trial and error. A 17-layer MLP with varied 

nodes and activation functions achieved better accuracy. The 

first layer applied a threshold to set negatives to zero; the 

second used Tanh activation. Dropout layers prevented 

overfitting by disabling random nodes [12]. 

Figure 3 depicts the architecture of a basic CNN model 

for image classification.  The network begins with an input 

image, which is processed through a series of layers. First, 

convolutional layers apply learnable filters to extract spatial 

hierarchies of features.  The network can learn intricate 

patterns due to the non-linearity introduced by ReLU 

activation functions. In order to reduce computational 

complexity and provide some invariance to slight spatial 

variations in the input, pooling layers downsample the feature 

maps. These convolutional and pooling layers are repeated to 

form a feature extraction stage.  Finally, the extracted features 

are passed through fully connected layers that perform high-

level reasoning and ultimately output a predicted class/label 

for the input image. DL frameworks evolve rapidly, offering 

efficient training with automated gradients for CPU/GPU and 

prebuilt neural network classes. CNN-based studies in LULC 

classification benefit from rich datasets. Remote Sensing (RS) 

CNN research covers image segmentation and object 

detection. Usage analysis shows 60% of segmentation studies 

use multispectral satellite images, followed by aerial (18%), 

multi-data (8%), UAV (7%), RADAR (4%), LiDAR (2%), 

and panchromatic (1%) images. Open datasets significantly 

influence land cover research. 

Other studies utilized specialized space-borne datasets for 

large-scale research, with Google Earth being the most 

common source, followed by Worldview-4, Gaofen1-2, and 

Quickbird-2. Region-based CNN (R-CNN) architectures, such 

as fast R-CNN, faster R-CNN, and mask R-CNN, were the 

most prominent in the reviewed designs. Land cover mapping 

comprised 39% of the applications, followed by agriculture 

(15%), urban areas (11%), wetlands (12%), forests (10%), 

disasters (3%), and soil (2%).  

Approximately 8% of the case studies focused on 

geology, water mapping, benthic habitats, rock types, and 

mining classification. Among backbone models, VGG 

variations were the most popular (34%), followed by ResNet 

(30%), with less use of Inception, SegNet, LeNet, and 

GoogleNet. CNNs also supported tasks like image 

registration, change detection, data fusion, and super-

resolution. Their effectiveness in panchromatic/multispectral 

data fusion stems from their ability to model complex data 

relationships. In recent years, DL methods have performed 

well in satellite image change recognition applications [13]. 

 
Fig. 4 SVM Architecture Diagram. [2, 12-16] 

Input image 

Convolutional Layer 

Activation (ReLU) 

Pooling 

Convolutional Layer 

Activation (ReLU) 

Pooling 

Fully Connected 

Output layer 

Predicted class/label 

Input Image 

Region proposal 

Extract region features 

SVM classifier 

Bounding box regression 

Final Predicted Objects 



Nita Nimbarte et al. / IJEEE, 12(5), 45-57, 2025 

49 

Figure 4 describes a standard object detection pipeline 

utilizing a Support Vector Machine (SVM) classifier. The 

process begins with an input image and generates region 

proposals, which are potential bounding boxes that may 

contain objects. Features are then extracted from these 

regions, typically using methods such as Histogram of 

Oriented Gradients (HOG) or deep learning-based feature 

extractors. Finally, an SVM classifier evaluates each region to 

determine whether it contains an object of interest. Finally, 

bounding box regression is employed to refine the location 

and size of the predicted bounding boxes, resulting in the final 

predicted objects with accurate locations and class labels. 

Pan-sharpening combines a high-resolution Panchromatic 

(PAN) image with a Multispectral (MS) image to produce a 

composite with improved spectral and spatial details. MS 

images contain multiple spectral bands, while PAN images 

have a higher spatial resolution but only one band. Pan-

sharpening techniques include spectral, spatial, and spatial-

spatial methods, enhancing data integration from sensors and 

platforms. Deep Learning (DL), particularly neural networks, 

has been applied in remote sensing for object detection, 

classification, and image fusion. Sentinel-2 provides 13 

spectral bands at varying resolutions, enabling fine-scale 

analyses and detailed change detection despite spatial 

resolution limits [14]. 

The presented methodology involves preprocessing 

multi-temporal Sentinel-1 and Sentinel-2 data, extracting 

reference data from the National Forest Inventory (NFI), and 

developing machine learning models through parameter 

tuning and validation. Image composites for winter (post-

deciduous senescence) and summer (post-foliation) reflect 

seasonal landscape changes. Google Earth Engine (GEE) 

facilitated satellite imagery preprocessing, including NDVI 

computation and noise removal using median composites. 

Selected bands (visible, NIR, and SWIR) supported a 

hierarchical classification process for tree species, forest type 

and forest cover. A Random Forest (RF) classifier handled 

supervised pixel categorization, mitigating overfitting with its 

ensemble decision tree approach [15]. Hyperspectral data 

identified tree species, emphasizing European aspen.  

The process involved individual tree delineation, ground-

reference reconciliation, model fitting, and unlabeled tree 

classification. LiDAR-derived CHM filtered tree height and 

shadows, applying the Dalponte and Coomes algorithm for 

crown delineation. CNN models used square patches around 

treetops for classification, testing patch sizes from 4 to 10 m. 

Larger patches included multiple trees, enhancing 

classification potential. CNNs handle hyperspectral data by 

extracting features from pixel spectra (1D-CNN) or spatial 

dimensions (2D-CNN), though 2D-CNNs increase parameters 

without fully leveraging spectral data. 3D-CNNs, combining 

spatial and spectral information, demonstrated superior results 

by generating feature cubes. DL models were compared with 

ANN, RF, SVM, and GBM for remote sensing tasks. 

Implementations used NVIDIA V100 GPGPU with PyTorch, 

fastai2, and Light GBM, highlighting CNN applications in 

RGB imagery interpretability [16]. 

2.3. Land Use and Land Cover 

The Mini France dataset provides VHR aerial images and 

labels, serving as the first benchmark for semi-supervised 

learning in Land Use and Land Cover (LULC) classification. 

Sentinel-2 data includes RGB and NIR bands at 10 m/pixel, 

while other bands range from 20 to 60 m/pixel. High label 

quality presents challenges with temporal changes and 

invisible classes. CNNs have proven effective for LULC 

mapping but require substantial training data. Random Forest 

(RF) is a popular alternative, offering fast training, resistance 

to overfitting, and straightforward feature importance 

analysis. Geographic Object-Based Image Analysis 

(GEOBIA) categorizes image pixels using object 

segmentation, leveraging texture and spectral characteristics 

through Simple Non-Iterative Clustering (SNIC) [3].  

For SAR data preprocessing, SNAP toolbox methods and 

the GLCM module compute texture features from VV and VH 

polarizations, aiding the classification of land cover groups 

such as forests, cropland, and urban areas. Object-based 

classification using eCognition® v.9.01 follows a three-step 

process: segmentation, object hierarchy creation, and 

classification. Parameters like scale and compactness help 

identify homogenous land patches, producing realistic 

classifications comparable to natural-colour Sentinel-2 

composites [17]. 

GEOBIA emphasizes geo-centric, multi-source, and 

context-aware analysis. It uses segmentation to divide data 

into homogeneous regions, serving as a step toward extracting 

meaningful objects. Traditional segmentation includes pixel-, 

edge-, and region-based methods. GEOBIA distinguishes 

between scenes (real-world objects) and images (sensor 

representations). Unlike the geo-relational model, which 

separates spatial and attribute data, the object-oriented data 

model treats real-world entities as interconnected objects. 

Optimization in GEOBIA aims to create image objects that 

align with predefined ontologies, classifying segments by 

spatial, spectral, and topological properties rather than 

individual pixels [18]. 

Sentinel-1 imagery was sourced from the Alaska Satellite 

Facility (ASF), while Sentinel-2 data was accessed and 

preprocessed using the Google Earth Engine (GEE) Python 

API. Preprocessing of Sentinel-1 data was conducted using 

SNAP version 8.0.3, an open-source tool developed by the 

European Space Agency (ESA). Classification tasks were 

performed using the Scikit-learn Python library. The SAR 

dataset comprised time-series Sentinel-1A/B Ground Range 

Detected (GRD) images with VV and VH polarizations, 

acquired in Interferometric Wide (IW) mode.  



Nita Nimbarte et al. / IJEEE, 12(5), 45-57, 2025 

50 

Bilinear interpolation was used to resample both the final 

image and the DEM. The RF classifier, implemented using 

Scikit-learn’s RF function, was applied for pixel-based forest 

cover classification. RF, a decision-tree-based machine 

learning method, is widely used for land cover mapping and 

forest classification. To enhance ecosystem monitoring and 

vegetation analysis, combined S1 and S2 time series were 

evaluated for classifying forest tree species, aiding short- and 

long-term disturbance impact assessments [19]. 

Table 2 summarises the workflow for land cover 

classification using remote sensing data.  It starts with data 

acquisition and preprocessing, followed by selecting training 

data for supervised methods.  Feature extraction and 

classification are then performed, with post-processing 

refining the results.  Finally, accuracy is assessed, and the 

classified data is interpreted for applications such as land use 

planning. 

Table 2. LULC Classification workflow [3, 17-21] 

Steps Description 

Data Acquisition 

Collect remote sensing data 

(satellite imagery, aerial photos, 

LiDAR). 

Pre-processing 

Process raw data (radiometric 

correction, geometric 

correction, cloud removal). 

Training Data 

Selection (for 

supervised 

classification) 

Manually select sample regions 

that represent different land 

use/cover classes. 

Feature Extraction 

Extract relevant features 

(spectral bands, vegetation 

indices like NDVI). 

Classification 

Apply classification algorithm 

(supervised, unsupervised, 

object-based, or deep learning). 

Post-Processing 

Refine results with techniques 

like majority filtering, 

smoothing, or object merging. 

Accuracy Assessment 

Assess classification accuracy 

using metrics like confusion 

matrix, Kappa coefficient, etc. 

Interpretation 

Analyze results for decision-

making (e.g; land use planning, 

environmental monitoring). 

 

An aerial LiDAR scanner captured the orthophoto, which 

required geometric calibration using 34 Ground Control 

Points (GCPs) from identifiable locations like corners and 

power lines. ArcGIS 10.5 was used for the geometric 

adjustment. The goal of classification models is to label each 

pixel based on training samples and ground truth data, 

typically using spectral information. Object-Based Image 

Analysis (OBIA) can also enhance classification by dividing 

the image into homogeneous groups, incorporating texture, 

shape, and spatial features. However, both pixel-based and 

OBIA methods face challenges like segmentation 

optimization and speckle noise. Deep learning techniques, 

particularly Convolutional Neural Networks (CNNs), have 

been introduced to overcome these. CNNs, which simulate 

human vision through shared weights and local receptive 

fields, were used to classify ultra-high-resolution aerial 

orthophotos, with performance evaluated using overall 

accuracy, Kappa coefficient, and per-class accuracy. The 

CNN model used a convolutional layer, two dense classifiers, 

batch normalization, and max pooling, with training via 

stochastic gradient descent and backpropagation [20]. 

Sentinel-2’s Multispectral Instrument (MSI) includes 

bands with spatial resolutions of 10 m, 20 m, and  60 m, with 

10 m being the highest available. It also features three red-

edge bands for detecting vegetation reflectance in the near-

infrared region. Spectral indices like NDVI, MNDWI, and 

NDBI were used to enhance the categorization of vegetation, 

water, and artificial surfaces, respectively. The SVM method 

finds the optimal decision boundary by identifying training 

data patterns and applying them to evaluation data. RF is an 

ensemble learning algorithm that uses bootstrap aggregation 

for improved predictions. Gradient Boosting Machine (GBM) 

optimizes weak decision trees to generalize models. A 

multilayered Deep Neural Network (DNN) with error 

backpropagation and hyper-parameter optimization was 

employed for classification, with the Softmax function 

normalizing each class’s output to generate a probability 

distribution [21]. 

2.4. Semantic Segmentation 

In precision agriculture, the goal is to distinguish healthy 

trees, aided by the red edge (0.71–0.75μm). Sick trees are 

identified by detecting crown yellowness using the yellow 

band (0.59–0.63μm). The NIR2 band (0.86–1.04μm), less 

influenced by atmospheric conditions, provides better 

vegetation data. Spatial resolution impacts segmentation 

performance, particularly the Ground Sampling Distance 

(GSD) and the sensor’s ground Field-of-View (FOV). The 

WorldView-3 satellite captures images in various resolutions, 

including panchromatic, RGB, multispectral, and SWIR. 

Deep learning-based semantic segmentation models like U-

Net, SegNet, and DeepLabv3+ are widely used. U-Net, with 

four symmetric layers, utilizes a ReLU activation function and 

batch normalization. DLinkNet, a model with dilated 

convolution layers, is designed for near-zero zenith angle 

images, such as those used in road segmentation. DeepLabv3+ 

consolidates multiscale contextual information using atrous 

spatial pyramid pooling and a lighter decoder. RF is 

introduced for performance evaluation, comparing deep 

learning and traditional machine learning approaches [4]. 

Deep learning and UAVs are crucial in automated forest 

monitoring. Images were captured at 100 meters and 

processed with Agisoft Metashape, and GPS-located crowns 
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were identified using orthomosaics. Two indices, normalized 

difference and normalized bands, were computed for crown 

pixels. The Mask R-CNN pipeline was used to classify image 

tiles into 600 x 600 pixel patches [22]. The Hybrid-CNN 

model extracts both spatial and spectral data with components 

like 2D and 3D CNN modules and a Softmax classifier. Band 

selection techniques (RGB, NIR, RGB+NIR, UBS-9) reduced 

dimensionality to address spectral redundancy. Classification 

performance was evaluated using metrics such as overall 

accuracy, precision, and kappa coefficient [23]. The RF model 

utilizes a stepwise RFE process to eliminate irrelevant 

variables, improving prediction accuracy. Bands selected for 

RapidEye, Sentinel-2, PlanetScope, and Landsat 8 were 

optimized for various tasks. RF regression models predicted 

tree species diversity based on field data, with statistical 

metrics like RMSE and R2 used to evaluate model 

performance. The RF algorithm’s variable relevance feature 

helped assess predictors for improved performance [24]. 

Surface characteristics exhibit unique spectral reflectance 

signals, similar to how fingerprints are used for human 

identification due to their consistency over time. Different 

surface objects absorb and reflect electromagnetic radiation 

based on their physical and chemical properties. Spectral 

reflectance measures the energy a surface reflects at specific 

wavelengths. The ASD Fieldspec 4 utilizes three spectral 

detectors that cover the wavelengths of 350-1000nm, 1001-

1800 nm, and 1801-2500 nm. However, spectral 

discontinuities may arise at the boundaries of these ranges due 

to target inhomogeneity and sensor warm-up issues. A 

radiometric inter-channel jump correction method helps to 

mitigate these discrepancies. High spectral resolution sensors 

provide superior feature identification compared to 

multispectral sensors. To assess the potential performance of 

these sensors in vegetation classification and unmixing, 

synthetic remote sensing images were paired with field-

surveyed data. 

Table 3 describes reviews of various image processing or 

analysis approaches, linking their architectural choices with 

feature selection methods and relevant vegetative indices. It 

covers deep learning-based semantic segmentation using 

architectures like U-Net and DeepLabv3+, along with 

traditional Convolutional Neural Networks (CNNs).  Random 

Forest Regression and spectral unmixing are also included, 

showing their preferred data sources and indices.  The table 

highlights the diverse tools and techniques available for 

analyzing image data, particularly in the context of vegetation 

studies. 

Real hyperspectral sensors typically have wider 

bandwidths (5-10 nm), but the synthetic hyperspectral image 

created for this study had 2101 spectral bands (400-2500 nm) 

with a 1 nm spectral resolution. To make the hyperspectral 

images more realistic, a Gaussian spectral response function 

was applied to aggregate the 1 nm spectra into 10 nm bands. 

The classification was performed using the Spectral Angle 

Mapper (SAM), a physical-based classifier that matches 

pixels to reference spectra through an n-dimensional Spectral 

Angle (SA).  

This method is immune to illumination or albedo effects 

and links directly to end member spectra from the spectral 

library. Each pixel was assigned to the class with the smallest 

SA [25]. The spectrometer used in this study had a wavelength 

range of 350–2500 nm, with spectral resolutions of 3–1.4 nm 

for 350–1000 nm and 6–2 nm for 1000–2500 nm. Spectra 

were collected under dry, sunny, and windless conditions. 

These spectra reflect various biophysical characteristics of 

vegetation, including chlorophyll content, canopy structure, 

nitrogen content and stress-related pigments. Four 

classification models, RF, SVM with radial basis function 

kernel, Back Propagation Neural Network (BPNN), and 

Regularized Logistic Regression (RLR), were implemented 

using the CRAN R package caret [26]. 

Table 3. Description of classification, feature selection, and vegetative indices [4, 22-26] 

Architecture Feature Selection Vegetative Indices 

DL-based semantic segmentation DSTL image and RIT image. NDVI, ARVI, SAVI, RGB, NIR 

CCN architecture - RGB, NIR, RGB+NIR, USB-9 

Random Forest Regression Modelling 
Landsat8 image, Planet Scope image, 

Rapid Eye, Sentinel2 image 

Shannon index, Simpson index and 

Species richness 

Classification and spectral unmixing of 

synthetic images using spectral library 
Hyperspectral and Multispectral 

VNIR, SWIR and VNIR-SWIR. 

IKONOS, Landsat-8 and WorldView-3 

2.5. Image Segment using Deep Learning Model 

The ResNet-50 model was the second used, incorporating 

various weight initialization techniques such as random 

weights and pre-trained ResNet on the ImageNet dataset. This 

transfer learning approach aids in applying prior knowledge to 

more challenging tasks due to limited training data. The 

satellite segmentation model utilized the DeepGlobe dataset, 

enabling the use of learned ResNet weights, with adjustments 

made to the final layers. UNet, known for its scalability in 

semantic segmentation, consists of two paths: a contracting 

path for context and an expanding path for precise 

localization. The contracting path mimics ResNet's 

architecture with skip connections, and the expanding path 

improves feature map resolution via transposed convolution. 

UNet generates the resulting pixel-wise mask. ResNet-50 was 

used as the encoder with 48 convolution layers and one 

MaxPool layer. ResNet helps avoid degradation and vanishing 

gradient issues due to its skip connections in ResBlocks, 
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allowing deeper networks without performance loss [5]. The 

model integrates CNN and FPCRF components, optimizing 

segmentation through coadaptation. The CNN outputs 

segmentation probabilities and feature embedding for 

pairwise potential computation, promoting similar labeling for 

pixels with similar characteristics. FPCRF enhances CNN 

output by modeling spatial correlations between unary 

potential and feature embedding, ultimately outputting the 

marginal distribution for each pixel's class label [27]. 

Based on BDL, the model consists of a segmentation 

component (F) and a translation component (F). The 

segmentation part labels the input images and includes a 

Domain Discriminator (DM) that distinguishes between target 

and source datasets. The translation network, a Cycle GAN 

with two ResNet generators and discriminators, translates 

images between datasets while maintaining consistency 

through cycle loss. The segmentation network, based on 

DeepLabV2 and ResNet101, utilizes ImageNet-pre-trained 

weights. The domain discriminator reduces domain shift, 

encouraging consistent labels across datasets. Cloud-Net, used 

for cloud-covered data, features a U-net-like architecture with 

six convolution blocks and five deconvolution blocks. It was 

trained with Landsat rasters in four spectral layers (red, green, 

blue, NIR) [28]. 

WorldView-3, a commercial satellite, provides high-

resolution imagery: 7.5 m for short-wave infrared, 1.24 m 

multispectral, and 31 cm panchromatic resolution. 

Panchromatic sharpening combines lower-resolution M-band 

images with higher-resolution panchromatic images, 

producing an M-band image with panchromatic resolution 

when rasters overlap. The U-Net architecture is composed of 

a contracting path and an expanding path. The contracting path 

follows a typical convolutional neural network structure, 

incorporating batch normalization to accelerate convergence 

during training. Instead of the commonly used ReLU, the 

Exponential Linear Unit (ELU) is employed as the activation 

function, enhancing learning and increasing robustness to 

noise. With each downsampling step, the number of feature 

channels is doubled. The expanding path performs 

upsampling, applies a convolution with fewer feature 

channels, concatenates the result with the corresponding 

feature map from the contracting path, and follows up with 

batch normalization and ELU activation [29]. 

Table 4 describes various deep learning architectures and 

their applications.  It details using U-Net with ResNet-50 for 

segmentation and classification, combining CNNs with Fully 

connected Conditional Random Fields (FPCRF) for footprint 

generation and distribution analysis.  The table also mentions 

a Bidirectional Long short-term memory (BDL) model for 

translation and domain discrimination, Fully Convolutional 

Networks (FCNs) for image classification, and basic CNNs 

for unspecified tasks, potentially including rapid MFCC 

algorithm calculation.  Each row links a specific architecture 

with its corresponding task and relevant techniques. In speech 

recognition, two primary components, phonograms and 

spectrograms, work together to process speech. A key task is 

identifying the start and end of sentences in noisy 

environments or isolating speech sections from the signal. 

Zero-crossing, where the function’s sign changes, helps detect 

useful signals amidst noise, which can degrade recognition 

performance. Digital filters (line and beginning filters) are 

used to minimise noise. Speech signal segmentation into 

frames, known as “segment-stations”, is common. The rapid 

Fourier transform converts the temporal speech signal into a 

spectral frequency, aiding in separating speech from noise and 

handling acoustic variations. The MFCC algorithm, using 

spectral and phonogram data, applies K-Nearest Neighbors 

(KNN) for extracting valuable information [30]. They adapted 

ILSVRC classifiers for segmentation into Fully Convolutional 

Networks (FCNs), enhancing them with pixel-wise loss and 

in-network upsampling. Training used the PASCAL VOC 

2011 segmentation challenge, with a multinomial logistic loss 

per pixel and mean pixel Intersection over Union (IoU) for 

validation. The FCN architecture improves spatial precision 

by incorporating the feature hierarchy, and a dual-headed 

variant, trained for both semantic and geometric predictions, 

outperforms two independent models in both tasks, with 

learning and inference speeds comparable to each individual 

model [31]. 

Table 4. Description of DL algorithm from reference papers [5, 27-31] 

Architecture Description 

UNet model 

and ResNet-50 

model 

UNet model used for segmentation 

task, ResNet-50 model for both 

classification and encoder for the 

modified UNet model. 

CNN and 

FPCRF model 

CNN model for embedding, for 

building foot print generation is FCN, 

graphical representation of distribution 

are Bayesian networks and Markov 

Random Field (MRF), FPCRF for 

marginal distribution. 

BDL model 

BDL model is divided into two parts 

are translation part F and Domain 

Discrimination (Dm), cloud masking 

network. 

Fully 

convolution 

networks 

ILSVRC classifier into FCNs. 

Multispectral U-Net architecture, 

reflectance indices. 

CNN 

CNN in 1DCNN and 2DCNN, for 

rapid calculation MFCC algorithm is 

used. 

 

2.6. Multispectral and Hyperspectral Imagery 

Sentinel-2 (S-2) and WorldView-2 (WV-2) multispectral 

sensors, offering spatial resolutions of 10-60 meters and 0.46-

1.84 meters, respectively, and capturing data across 13(S-2) 

and 8(WV-2) spectral bands, provide satellite imagery that is 

coordinated in acquisition timing with hyperspectral airborne 
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and RPAS over-flights. In-situ field data was collected during 

these missions for training and validation. Reflectance 

measurements (350-2500 nm) were taken using the ASD 

FieldSpec-3 spectro radiometer over homogeneous areas, with 

accurate sampling to capture species variability. A pre-

processing step includes atmospheric correction, with the 

RPAS radiometer measuring irradiance (400–1000 nm) for the 

Pika–L scene. Principal Component Analysis (PCA) and 

Minimum Noise Fraction (MNF) were applied to 

hyperspectral images to extract key information. Maximum 

Likelihood (ML) and SVM classifiers outperformed others 

like Spectral Angle Mapper (SAM) in seabed mapping. SVM 

is recognized for its robustness and high accuracy relative to 

methods such as deep convolutional neural networks and 

random forests. Mapping accuracy was assessed using the 

Kappa coefficient and a confusion matrix. The Gram-Schmidt 

algorithm was employed to enhance spatial detail, while 

atmospheric correction was performed using FLAASH. The 

Minimum Noise Fraction (MNF) transformation was also 

used to reduce data redundancy [6]. 

The method consists of two stages: 1) Super-resolution of 

MS images and 2) Fusion with PAN images. LRMS images 

are enhanced through a fast iterative super-resolution 

technique, followed by hierarchical fusion to preserve spectral 

information and spatial details. The YUV components reduce 

spectral distortion by matching histograms between the PAN 

and Y components of MS super-resolution images. The final 

high-resolution Multispectral (MS) image is generated by 

merging the modified brightness component with the U and V 

components through an inverse YUV transformation [32]. A 

feature extraction approach based on Discrete Modal 

Decomposition (DMD) was implemented, incorporating both 

full-scale and filtered DMD techniques. The process involves 

training the algorithm on labeled data and then predicting 

labels for new data. The classification performance is 

measured by the accuracy of predictions [33]. 

PRISMA products are categorized based on utility. Level 

0 includes satellite data, and Level 1 consists of radiance 

images and hypercubes calibrated geometrically and 

radiometrically. Level 2 has sub-levels, with L2A providing 

cloud masking and land cover mapping and L2B offering 

atmospheric elements like aerosols and water vapor. The data 

is available in HDF5 format, with geo-referencing options 

based on Ground Control Points (GCP). PRISMA's fusion 

with other remote sensing data like LiDAR and SAR extends 

its applications, though its short lifespan and complex 

processing requirements limit its use. Future potential lies in 

classification applications using PRISMA hyperspectral 

images fused with LiDAR data and advanced machine 

learning models like deep CNNs [34]. FDD features include 

Q-based, high-frequency, and low-frequency types. The 

difference between standard Benford's law and extracted FDD 

features determines distribution differences. Pansharpening 

techniques such as SFIM, PCA, GSA, and GLP have been 

selected to improve image resolution. These techniques 

enhance LR image resolution using spatial filtering and are 

applicable to hyperspectral image fusion after band 

assignment [35]. The process for classifying urban tree species 

involves data preprocessing, tree crown extraction, shadow 

removal, and species classification using SVM, RF, and 

DenseNet. Four classification setups were tested: (1) WV2 

VNIR bands alone, (2) WV2 VNIR with WV3 SWIR bands, 

(3) WV2 VNIR, WV3 SWIR, and LiDAR intensity, and (4) 

combining all with WV2 PAN bands. LiDAR-derived tree 

masks were applied to eliminate background and shadows, 

followed by a stratified thresholding technique. Tree crowns 

were isolated using a bimodal histogram threshold, and the 

non-vegetation background was removed based on spectral 

curve matching of the two examined bands [36]. 

3. Results and Discussion  
The demonstrated approach for tree species classification 

and mapping uses spectral-spatial deep learning to map tree 

species proportions, accounting for the spatial resolution of 

modern satellite images and mixed forest complexities. It 

models predominant classes, species occurrences, and 

composition-basal area ratios and maximizes the use of forest 

inventory data for model creation. This approach is highly 

replicable and useful at large scales when inventory data and 

geo-referenced tree species proportions are available. The 

training dataset was based on the Forest Administration’s 

forest parcel map and validated using independent data from 

regional forest inventory plots [2]. Poplar plantations are 

among the land cover types that S2 can map effectively in this 

study. The MLP algorithm produces annual statistics that 

traditional inventory methods cannot [12]. 

Table 5 summarizes various remote sensing studies, 

detailing their data sources, target areas, image resolution, 

classification methods, and achieved accuracies.  It showcases 

diverse approaches, from traditional machine learning like 

Random Forest and logistic regression to advanced deep 

learning techniques such as U-Net++, CNNs, and 3D-CNNs.  

The studies cover different landscapes, including Wallonia 

(Belgium), the Padan plain (Italy), and boreal forests, utilizing 

various data sources like Sentinel-1 and 2, PlanetScope 

imagery, and LiDAR, with resolutions ranging from 0.5m to 

20m. Overall, the table highlights the effectiveness of different 

classification methods in achieving varying levels of accuracy 

for diverse remote sensing applications. 

Forest cover classification accuracy is comparable to 

results achieved using multi-seasonal Landsat Thematic 

Mapper-5 imagery and combined Sentinel-1 and Sentinel-2 

datasets [15]. In a study utilizing airborne hyperspectral and 

LiDAR data, five widely used machine learning algorithms, 

RF, SVM GBM, ANN, and CNN, were evaluated for 

identifying four dominant tree species in a boreal forest. CNN 

models demonstrated the highest overall accuracy, with 3D-

CNNs showing exceptional performance distinguishing 
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coniferous species such as pine and spruce, highlighting their 

potential for forest industry applications [16]. Table 6 presents 

a comparative analysis of different classification algorithms 

applied to diverse remote sensing datasets. It lists the data 

sources (primarily Sentinel-1 and Sentinel-2), the specific 

classification methods used (including Support Vector 

Machine, Random Forests, k-Nearest Neighbour, and various 

Convolutional Neural Network architectures), and the 

resulting Overall Accuracies (OA).  The table demonstrates 

how different algorithms perform on various datasets, 

highlighting the impact of data characteristics and 

methodological choices on classification accuracy, ranging 

from 30.6% to 98.1%, depending on the combination.  

Additionally, it includes experiments with different Sentinel 

bands and integrated datasets, along with comparisons to Very 

High Resolution (VHR) image analysis and temporal analysis. 

Table 5. Parameter description of reference papers [2, 12-16] 

Sources Areas Resolution Methods Accuracy 

Sentinal-2 imagery 

Wallonia region (Southern 

Belgium), the area covered 

16,091sq km. 

2.5m spatial 

resolution 

Nested U-shaped neural 

network (UNet++) architecture 

OA = 0.73 

PA = 0.90 

UA = 0.90 

Sentinal-2 imagery 

Padan plain in Northern 

Italy, the area covered 

46,000sq km. 

2.5m spatial 

resolution 

Fully connected neural network 

(multilayer perceptron), 

Traditional logistic regression 

MLP omission 

error rate = 2.77% 

± 2.76% 

LR omission error 

rate = 8.9% ± 2.8% 

Sentinal-2 (S2) and 

Planet Scope (PS) 

Corine land cover of the 

two Belgian S2 tiles BeS 

and BeN together 

10,20,2.5m 

spatial 

resolution 

Convolution Neural Networks 

(CNNs) Residual-Learning 

Convolutional Neural Networks 

(RCNN) 

OA = 98% 

Sentinal-1 (S-1) and 

Optical Sentinal-2 

(S-2) 

National Forest Inventory 

(NFI) data, area covered 

637,290 ha 

- 

Random Forest (RF) Algorithm 

LiDAR (light detection and 

ranging) 

OA = 98% 

PA = 90% 

UA = 93% 

Airborne data 

collection 
Boreal forest ecosystem 

0.5m spatial 

resolution 

Deep learning (3D-CNN 

comparison with SVM, RF, 

GBM, ANN) 

OA = 87% 

Table 6. Parameter description of reference papers [3, 17, 19, 20] 

Data Set Classification Algorithm Overall Accuracy 

Sentinel-1 (S1) & Sentinel-2 (S2) in the 

Magdalena region within the Cundinamarca 

district in central Colombia 

Integrated Sentinel radar VNIR layer 

1. Support Vector Machine 

2. Random Forests 

3. k-Nearest Neighbour 

1. OA=0.887 

2. OA=0.555 

3. OA=0.393 

 

Sentinel-1 (S1) & Sentinel-2 (S2) in Serra de 

Monchique mountain in the southern region of 

Portugal, Algarve. 

Random Forests 

1.S1+S2 

2. SI 

3. S2 

1. OA=0.981 

2. OA=0.889 

3. OA=0.974 

 

Aerial photography in Selangor, Malaysia 

1. Convolution Neural Network (CCN) 

2. CNN + batch normalization 

3. CNN + dropout 

4. CNN + dropout + batch normalization 

1. OA=0.932 

2. OA=0.964 

3. OA=0.958 

4. OA=0.973 

Sentinel-1 (S1) & Sentinel-2 (S2) in the 

Magdalena region within the Cundinamarca 

district in central Colombia 

Sentinel-1A radar layer 

1. Support Vector Machine 

2. Random Forests 

3. k-Nearest Neighbour 

1. OA=0.306 

2. OA=0.201 

3. OA=0.169 

 

Sentinel-1 (S1) & Sentinel-2 (S2) in the 

Magdalena region within the Cundinamarca 

district in central Colombia 

Sentinel-2A VNIR layer 

1. Support Vector Machine 

2. Random Forests 

3. k-Nearest Neighbour 

1. OA=0.725 

2. OA=0.481 

3. OA=0.375 

 

Sentinel-2 in Nice, Fran located on the eastern 

border with Italy. 

RF and Geographic Object-Based Image 

Analysis (GEOBIA) 

1. VHR (Very high resolution) image 

2. Temporal analysis 

1. OA=0.626   to 

0.67 

2. OA=0.743 
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Accurate LULC mapping faces challenges like class 

confusion, unclear boundaries, and low-resolution satellite 

images. Furthermore, multiple data sources, including 

temporal data, add complexity to the input layers. Identifying 

the most relevant features for classification is essential to 

effectively interpret satellite imagery layers [3]. GEOBIA, 

more than just a combination of segmentation and analysis 

techniques, is an evolving paradigm offering tools and 

guidelines for location-based research [18]. A key goal in 

monitoring ecosystem disturbance events is mapping 

vegetation cover, especially distinguishing between forest and 

non-forest vegetation before disturbances [19]. To prevent 

biased classification due to data imbalances, equal training 

and evaluation samples were used for all eight LCLU classes, 

though this may overlook class distribution ratios [21]. For 

example, forest and unclassified classes dominated, resulting 

in potential classification bias [1]. The GF2&S2-B10-9I 

model achieved 0.928 overall accuracy, demonstrating the 

effectiveness of the DeepLabV3 Plus model for complex land-

cover classification [12].  

In swamp vegetation, reduced spectral separability occurs 

due to fluctuating water levels [7], while deep learning models 

like a DCNN show better performance than traditional 

methods for water segmentation from satellite data [8]. 

Training strategies such as random and uniform sampling 

improved training efficiency and classification accuracy [10]. 

Segmentation models like FCN, U-Net, and DeepLabv3 

achieved high performance with IoU and mIoU values of 

83%-86% and 80%-84%, respectively [11]. NIR reflectance 

performed well for tree segmentation, with DLinkNet 

achieving 0.921 mJI [4]. Hybrid CNN effectively classified 

plant features using class activation mapping [23].  

Sentinel-2 outperformed other sensors like RapidEye and 

Landsat 8 in vegetation prediction [24]. Hyperspectral data 

performed better than multispectral for Antarctic vegetation 

classification, especially in the SWIR range [25]. The RF 

algorithm showed the best accuracy for vegetation 

classification in coal mine reclamation areas [26]. Spectral 

models like SNIR and SRGB achieved high classification 

accuracy for tree species [22]. UNet, combined with transfer 

learning and residual networks, improved model performance 

for land cover classification [5]. Data augmentation and 

increased dataset size enhanced land cover mapping accuracy 

[28]. Fully convolutional networks with multi-resolution 

layers improved segmentation and learning efficiency [31]. 

SVM’s performance depends on selecting optimal parameters 

like Gamma and C [6]. The fast iteration super-resolution 

algorithm outperformed SRCNN in terms of fusion 

performance and temporal complexity [32]. Hyperspectral 

data processing requires AI and machine learning expertise, 

with PRISMA data applicable across land and ocean 

applications [34]. DenseNet improved classification accuracy 

as more datasets were included, increasing from 75.9% to 

82.6% overall [36]. 

4. Conclusion  
The efficiency of spectral information is compared 

between UNet and DeepLabV3+ using evaluation metrics 

such as precision-recall curve, average precision, precision, 

recall, and F1 score. The mean Average Precisions (APs) for 

U-Net, SiU Net, and DeepLabV3+ were 0.921, 0.970 and 

0.976, respectively, defining the performance of the reported 

methods. The models considered the correlation between 

RGB and NIR bands and used U-Net with distinct inputs. A 

reliable evaluation method was described for tree species 

proportion maps, assessing most species, composition, and 

proportions. Recent studies suggest incorporating time series 

data for tree species classification, leveraging phenology. The 

technique improves object detection in GEOBIA using VHR 

optical aerial images and multi-temporal Sentinel-2 data.  

The Segment Anything Model (SAM) provided 

meaningful objects that can be classified more accurately with 

machine learning or CNNs, complementing SNIC clustering. 

Fusing deep-learning CNNs and GEOBIA algorithms can 

potentially improve LULC classification accuracy. DLinkNet 

outperformed other semantic segmentation models, 

particularly grasslands and tree occlusion scenarios.  

Four models showed superior performance compared to 

state-of-the-art land use and cover classification methods, 

with future work targeting misclassification and accuracy 

improvement. High-resolution hyperspectral and 

multispectral imagery, especially from the WorldView-2 

satellite, proved effective for monitoring mountain and coastal 

areas. Future research will explore applying deep learning to 

create benthic and vegetation maps and analyze changes using 

multi-temporal data. Also, land cover identification can be 

improved by determining the optimal number of encoders 

based on the spectral band's correlation coefficients. 
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