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Abstract - Agriculture is one of the major sources of greenhouse gas (GHG) emissions, and robust prediction models are required 

to overcome environmental hazards. Conventional techniques remain challenged in the integration of various environmental 

parameters, thus affecting prediction accuracy. Optimizing Greenhouse Gas Emission Predictions in Agriculture via Multi-

Modal Data Integration Using Hyper-Node Hamiltonian Relational Quantum Graph Generative Adversarial Attention Networks 

(2HNR-Q2G-N2AN) is a suggested approach by this research to maximize predictive efficiency. The data set GHG emission data 

contains 5,000 records with 11 environmental factors impacting emissions. Pre-processing is conducted with entropy and τ-

Kendall methods, and feature extraction uses the Multi-Axis Vision Transformer (MaxViT) to identify complex dependencies. 

This is achieved using a new 2HNR-Q2G-N2AN method, which blends Hamiltonian quantum generative adversarial networks 

(HQuGANs) with a Hyper-node relational graph attention network (HRGATN) and uses the Nutcracker optimizer algorithm 

(NOA) to optimize its parameters. Experimental results show superb outcomes, achieving a root mean square error (RMSE) that 

is much lower than current approaches and an accuracy of 99.9%. The proposed approach offers enhanced multi-modal data 

integration, leading to robust predictions and improved agricultural sustainability. 

Keywords - Greenhouse gas emissions, Agriculture, Multi-Modal Data Integration, Hamiltonian Quantum Generative 

Adversarial Networks, Relational Graph Attention Network, Nutcracker Optimizer Algorithm, Entropy preprocessing, τ-Kendall 

preprocessing, Multi-Axis Vision Transformer. 

1. Introduction 
Food and water security, as well as the global climate, 

depend on the sustainable management of environmental 

ecosystems. Climate change, extreme weather, and population 

growth, however, make the effort more difficult. 

Environmental ecosystem modeling helps with water resource 

allocation and quality management decision-making by 

providing information on spatial-temporal dynamics. The 

spatial-temporal prediction performance of environmental 

models is enhanced by physical and data-driven models, 

especially machine learning models. Nevertheless, there are 

still two major obstacles to overcome: increasing the accuracy 

of predictions and dealing with the problems brought on by 

climate change. Because soil respiration raises atmospheric 

CO2 levels and causes extreme weather, global warming is a 

problem [1-5]. The biggest developing nation, China, has set 

lofty goals to reach “carbon neutrality” by 2060 and “peak 

carbon” by 2030. By 2050, carbon emissions will have 

increased by 17% if climate change is not addressed. Since 

soil contributes significantly to atmospheric CO2, precise 

measurements of soil CO2 fluxes are essential. One major 

source of atmospheric CO2 and a key output pathway of the 

soil carbon pool is the soil-derived CO2 flux (SCF). Static 

chamber, gas chromatography, and micrometeorological flux 

gradient are examples of conventional ecosystem gas flux 

measurements. In order to overcome the difficulties of 

managing missing features and distribution shifts in 

environmental data, the research suggests the Large Language 

Model (LLM)-based framework LITE [6-10]. By substituting 

unique tokens for missing variables, the framework converts 

spatial-temporal data into semantic time series and temporal 

trend graphics. It then jointly captures spatial-temporal 

dynamics and correlations using a vision encoder and a 

semantic time-series encoder. Information with several 

granularities is included in the framework and processed in 

accordance with domain instructions. This novel methodology 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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provides continuous robustness to environmental ecosystem 

distribution variations and varying degrees of missing 

observations. Straw reflux can assist in lowering Green House 

Gas (GHG) emissions is challenging to obtain low-cost, high-

efficiency, and consistent soil CO2 flux monitoring by 

employing this method because it is subject to wide field 

surveys and monitoring throughout the North China Plain 

wheat growth period, which may be induced by soil warming 

and straw management. Machine learning is a major tool in 

addressing research across a number of disciplines due to its 

ability to form abstract high-level representations through the 

integration of low-level features in order to search for 

scattered feature representations of data domains [11-15]. 

 

Precisely forecasting Green House Gas (GHG) emissions 

in agriculture is a daunting task because of the many 

interdependent factors associated with environmental 

variables, soil characteristics, climatic parameters, and 

farming practices. Existing forecasting models are inadequate 

to grasp the complex interdependencies among these 

parameters, resulting in inferior forecasting performances. 

Effective integration of multi-modal data sources, such as 

satellite images, soil types, and weather data, necessitates 

sophisticated computational methods to mine significant 

patterns and relationships. Deep learning models are unable to 

deal with scalability, interpretability, and computational costs 

in handling high-dimensional agricultural data. To overcome 

these issues, this work is motivated. 
 

1.1. Novelty and Contribution 

The Novelty and contribution of this paper is given 

below: 

1.1.1. Proposed 2HNR-Q2G-N2AN Model 

A novel Hyper-Node Hamiltonian Relational Quantum 

Graph Generative Adversarial Attention Network that 

integrates quantum computing principles with graph-based 

attention mechanisms for enhanced GHG emission prediction.  

 

1.1.2. Multi-Modal Data Integration  

Efficiently processes diverse environmental, 

meteorological, and agricultural datasets using multi-source 

data fusion to improve predictive accuracy.  
 

1.1.3. Advanced Feature Extraction 

Utilizes Multi-Axis Vision Transformer (MaxViT) for 

high-dimensional feature representation, capturing spatial and 

temporal dependencies.  
 

1.1.4. Quantum Generative Adversarial Approach 

Leverages Hamiltonian Quantum Generative Adversarial 

Networks (HQuGANs) for better representation learning and 

uncertainty reduction in predictions.  

 

1.1.5. Graph-Based Attention Mechanism 

Incorporates Hyper-Node Relational Graph Attention 

Network (HRGATN) to model complex dependencies among 

environmental factors.  

1.1.6. Optimization via Nutcracker Algorithm (NOA) 

Enhances parameter tuning and network efficiency, 

reducing RMSE while maintaining high generalization 

capability.  
 

1.1.7. Real-World Applicability 

Supports environmental monitoring, policy-making, and 

sustainable agricultural practices by providing precise and 

reliable emission forecasts.  
 

The remaining of this manuscript is organized as Section 

2, Literature Review; Section 3, Proposed Methodologies, 

Section 4, Results and Discussion; Conclusion of Section 5 

and Upcoming Projects.  
 

2. Literature Survey 
The papers related to the integration of multi-modal data 

to optimize greenhouse gas emission predictions in agriculture 

using deep learning methods are given below: 
 

In 2024, Li H. et al. [16] introduced a Graph Neural 

Network (GNN) for the integration of multi-modal data to 

optimize greenhouse gas emission predictions in agriculture 

using deep learning methods. In order to handle missing 

features and distribution shifts in environmental data, the 

study suggests LITE, a multimodal large language model for 

environmental ecosystem modeling, which reduces prediction 

error by 41.25%. 

 

In 2024, Yang F. et al. [17] introduced an Auto Former 

Improvement Network (AFIM) for the integration of multi-

modal data to optimize greenhouse gas emission predictions 

in agriculture using deep learning methods. In order to ensure 

accuracy in short, medium, and long-term projections, a Dish-

ECA-Adain-Autoformer combination model was created 

using data from a self-developed soil respiration monitoring 

system. 

 

In 2024, Zhao W. et al. [18] introduced an Auto Former 

Improvement Network (AFIM)for the integration of multi-

modal data to optimize greenhouse gas emission predictions 

in agriculture using deep learning methods. With the CatBoost 

model obtaining the highest accuracy, the study offers a 

technique for predicting soil nitrogen concentration using 

satellite imagery and machine learning, improving agricultural 

management and environmental monitoring. 

 

In 2023, Lee, D. and Choi, Y., et al. [19] introduced a 

Break for Additive Seasonal Trends (BFAST) method for the 

integration of multi-modal data to optimize greenhouse gas 

emission predictions in agriculture using deep learning 

methods. In order to overcome visibility constraints in the 

Amazon jungle, the paper proposes a learning technique for 

multi-modal deforestation estimations utilizing satellite 

footage from Sentinel-1, Sentinel-2, and Landsat 8. Deep 

neural networks are used in the process, and Attention U-Net 

performs the best. 
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In 2023, Fan H. et al. [20] introduced a Landscape 

Ecological Risk Index (LERI) method for the integration of 

multi-modal data to optimize greenhouse gas emission 

predictions in agriculture using deep learning methods. Under 

three scenarios from the sustainable development planning, 

the study looks at the ecological risk of land use and landscape 

in Urumqi, Pakistan. The findings indicate that by 2060, the 

ecological risk of the landscape will have decreased due to the 

expansion of construction land, woodland and grassland, and 

unoccupied land. 

 

In 2023 Neethirajan, S., et a1. [21] has introduced an 

Traditional Phenotyping Methods (TPM) for integration of 

multi-modal data to optimize greenhouse gas emission 

predictions in agriculture using deep learning methods. The 

potential of digital phenotyping in broiler genomes is 

examined in this paper, with particular attention to how it 

affects sustainability, production resilience, and health 

monitoring. It also discusses ethical, technical, and integration 

concerns with digital phenotyping. 

 

In 2023, Neethirajan S. et al. [22] introduced a Generative 

Adversarial Network (GAN) for the integration of multi-

modal data to optimize greenhouse gas emission predictions 

in agriculture using deep learning methods. The ethical issues 

of digital cow husbandry involve the potential for inequalities 

in health and animal welfare outcomes due to the digital 

divide, calling for prioritization of animal welfare in standards 

and codes. Table 1 presents an overview of the technique 

under study. 

 
Table 1. A summary of the approach being assessed 

References Methods Advantages Disadvantages 

Li, H., et a1. [16] GNN 

Handles missing features and distribution 

shifts in environmental data. Reduces 

prediction error by 41.25%, improving 

greenhouse gas emission modeling. 

Computationally costly because of 

modeling based on graphs. 

For best results, extensive environmental 

datasets are needed. 

Yang, F., et a1. 

[17] 
AFIM 

Uses soil respiration monitoring devices for 

accurate SCF measurement. Extracts time-

series and correlation information 

effectively. 

Physical sensor deployment is necessary, 

which restricts scalability. It is also 

susceptible to missing values and data 

noise. 

Zhao, W., et al. 

[18] 
CBM 

Combines satellite imagery and machine 

learning for soil nitrogen prediction. 

CatBoost model achieves the highest 

accuracy. 

Deep learning predictions have limited 

interpretability and necessitate excellent 

satellite image preprocessing. 

Lee, D. and Choi, 

Y. et al. [19] 
BFAST 

Makes use of multimodal satellite data from 

Landsat 8, Sentinel 1, and Sentinel 2. In 

dense trees, Attention U-Net works best, 

increasing visibility. 

Restricted to cloud-affected optical 

satellite data. Computationally costly in 

locations with a big scale. 

Fan, H., et a1. 

[20] 
LERI 

Examines changes in land usage throughout 

the long future (2020–2060). Assesses 

scenarios related to sustainability. 

Need a great deal of experience with 

climate modeling. Projections based on 

scenarios might not always reflect 

developments in the real world. 

Neethirajan, S., et 

al. [21] 
TPM 

Uses AI-driven phenotyping to track the 

health of broilers. Strikes a balance between 

resilience, productivity, and sustainability. 

Implementation presents both 

technological and ethical difficulties; 

integration with current farm 

management systems is necessary. 

Neethirajan, S., et 

al. [22] 
GAN 

Encourages the use of sustainable 

livestock-raising methods. Better 

monitoring of animal welfare is made 

possible. The topic of AI-powered cattle 

management is covered. 

Raises moral questions about AI taking 

the place of human monitoring. Issues 

with the digital divide could lead to 

disparities in the health of animals. 

2.1. Problem Statement 

It is a difficult task to precisely forecast Green House Gas 

(GHG) emissions from agriculture because the environmental 

factors, soil characteristics, climatic conditions, and 

agricultural methods have interdependent and 

multidimensional relationships. The conventional models 

used for forecasting usually cannot address the complex 

dependencies between these factors, resulting in less-than-

ideal forecasting precision. Combining multi-modal data 

sources such as satellite images, soil content, and weather 
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conditions necessitates sophisticated computational methods 

to derive meaningful patterns and relationships. Current deep 

learning models are challenged with scalability, 

interpretability, and computational efficiency while handling 

large agricultural high-dimensional datasets. For this purpose, 

this work is suggested. 

 

3. Proposed Methodology 
In this section, an Optimizing Greenhouse Gas Emission 

Predictions in Agriculture via Multi-Modal Data Integration 

Using Hyper-Node Hamiltonian Relational Quantum Graph 

Generative Adversarial Attention Networks (2HNR-Q2G-

N2AN) to improve predictive performance is proposed. 

Figure 1 is the workflow diagram that describes 2HNR-Q2G-

N2AN. The dataset GHG emission data consists of 5,000 

records with 11 features concerning environmental factors 

affecting emissions. Pre-processing is conducted by applying 

entropy and τ-Kendall methods, and feature extraction is 

based on the Multi-Axis Vision Transformer (MaxViT) to 

identify intricate dependencies. Prediction is achieved through 

a novel 2HNR-Q2G-N2AN methodology that integrates 

Hamiltonian Quantum Generative Adversarial Networks 

(HQuGANs) with a Hyper-node Relational Graph Attention 

Network (HRGATN), which optimizes parameters through 

the Nutcracker Optimizer Algorithm (NOA). The suggested 

method provides improved multi-modal integration of data, 

resulting in solid predictions and increased agricultural 

sustainability. 

 
Fig. 1 Workflow diagram of 2HNR-Q2G-N2AN 

3.1. Data Acquisition  

The input dataset is taken from the titled GHG emission 

data and contains 5,000 entries with 11 features related to 

greenhouse gas emissions and environmental factors. It 

includes Region (North, South, East, West, Central), 

Temperature (°C) ranging from 5 to 40, Humidity (%) 

between 10 and 90, Soil pH from 4.5 to 8.5, and Soil Moisture 

(%) between 5 and 50. The Crop Type feature includes Rice, 

Wheat, Maize, Soybean, and Cotton. Additional features 

include Fertilizer Usage (kg/ha) between 50 and 300, 

Livestock Count (0 to 500), Satellite NDVI (0.2 to 0.9), 

Satellite Land Surface Temperature (LST) (°C) from 10 to 50, 

and GHG Emission (CO₂ equivalent) ranging from 50 to 500. 

Then, these data are given to the entropy and τ-Kendall 

preprocessing techniques for cleaning the input data, and their 

explanations are given below: 

3.2. Pre-processing Using Entropy and τ-Kendall 

Preprocessing Techniques  

Reliable Green House Gas (GHG) emission forecasts in 

agriculture necessitate efficient data preprocessing methods to 

improve data credibility and model stability. The input data 

has 5,000 instances with 11 features pertaining to GHG 

emissions and environmental conditions. Pre-processing is 

conducted with entropy-based feature weighting and τ-

Kendall [23] rank correlation, providing the best feature 

selection and eliminating redundancy in the data.  
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3.2.1. Entropy Pre-Processing Technique 

Entropy, as introduced by Shannon (1948), quantifies the 

uncertainty and information content of a system. A higher 

probability of an event leads to lower information gain, 

whereas a lower probability results in higher information 

acquisition. Entropy-based feature selection identifies the 

most relevant attributes influencing GHG emissions by 

quantifying their information content. 

The entropy calculation follows these steps: 

Step 1: Normalizing the Decision Matrix 

The dataset is first normalized to remove scale disparities 

between features given in Equation (1): 

 

𝑔𝑚𝑛 =
𝑦𝑚𝑛

∑ 𝑦𝑚𝑛
𝑚
𝑖=1

, (𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑛)               (1) 

Where: 𝑦𝑚𝑛represents the original value of the parameter 

𝑚with respect to the attribute𝑛, 𝑔𝑚𝑛is the normalized feature 

value, 𝑚, 𝑛is the total number of attributes. 

Step 2: Calculating Entropy 

The entropy 𝐹𝑚of each feature is computed using 

Shannon’s entropy formula is given in Equation (2): 

𝐹𝑚 = −𝑙 ∑ 𝑔𝑚𝑛 𝑙𝑛 𝑔𝑚𝑛
𝑖
𝑛=1                                         (2) 

where 𝑙𝑛 𝑔𝑚𝑛is the Entropy constant, 𝑛 is the Number of 

parameters and 𝑙is given in Equation (3): 

𝑙 =
1

𝐾𝑚𝑚
                                                                      (3) 

Step 3: Determining Uncertainty 

The uncertainty for each feature is calculated as Equation (4):  

𝑐𝑗 = 1 − 𝐹𝑗                                                                 (4) 

Where𝑐𝑗 represents the deviation or importance of the 

feature𝐹𝑗. 

Step 4: Computing Feature Weights 

To determine the relative importance of each feature, 

weights 𝑅̑𝑗are assigned as follows in Equation (5): 

𝑅̑𝑗 =
𝑏𝑗

∑ 𝑏𝑗
𝑛
𝑗=1

                                                                 (5) 

Where 𝑅̑𝑗represents the weight vector for the attribute 𝑗. 

Features with higher entropy-derived weights contribute more 

significantly to the predictive modeling of GHG emissions. 

τ-Kendall Pre-Processing Technique 

To analyze interdependencies among meteorological and 

agricultural factors affecting GHG emissions, the τ-Kendall 

rank correlation is employed. In contrast to Pearson’s 

correlation, which is predicated on data that is regularly 

distributed, τ-Kendall is a non-parametric approach, making it 

robust against outliers and non-Gaussian distributions. This is 

particularly useful for climatological and environmental 

datasets. 

The τ-Kendall coefficient is computed as follows: 

Steps to Compute τ-Kendall Correlation: 

Rank-Based Pairwise Comparison: 

For a dataset consisting of𝑚 pairs of 

observations(𝑝1, 𝑞1), (𝑝2, 𝑞2), . . . . , (𝑝𝑚, 𝑞𝑚), the 𝜏 -Kendall 

correlation coefficient is calculated as in Equation (6): 

𝜌̑ = (
𝑚
2
)
−1

∑ 𝑠𝑔𝑛 [((𝑝𝑗 , 𝑝𝑖), (𝑞𝑗 , 𝑞𝑖))]1<𝑗<𝑖<𝑚               (6) 

Sign Function: 

The sign function,𝑠𝑔𝑛(𝛹), is defined as in Equation (7): 

𝑠𝑔𝑛(𝛹) = {

1𝑖𝑓𝛹 > 0
0𝑖𝑓𝛹 = 0

−1𝑖𝑓𝛹 < 0
                                                (7) 

Where 𝑗, 𝑖 = 1,2, . . . . , 𝑛and𝛹represents the product of 

differences in the paired observations, τ falls between -1 and 

+1, with values near -1 denoting a strong negative correlation 

and values closer to 1 denoting a strong positive correlation. 

This preprocessing methodology ensures that redundant 

features are minimized while preserving the most significant 

attributes for GHG emission prediction in agricultural 

environments. The combination of entropy-based weighting 

and τ-Kendall correlation strengthens the model’s robustness, 

improving prediction accuracy and reducing computational 

complexity. In order to extract significant characteristics, 

these data are fed into the feature extraction stage, which is 

explained below: 

3.3. Feature Extraction Using Multi-Axis Vision 

Transformer (MaxViT) in Greenhouse Gas Emission 

Predictions in Agriculture via Multi-Modal Data Integration 

Green House Gas (GHG) emission in agriculture is a 

major contributor to climate change, necessitating the creation 

of accurate and effective predictive models. Multi-modal data 

fusion is an important method for improving prediction 

accuracy through the utilization of heterogeneous datasets 

such as satellite imagery, weather data, soil attributes, and 

crop traits. In order to maximize GHG emission predictions, 

we utilize a new feature extraction mechanism with a Multi-

Axis Vision Transformer (MaxViT) [24]. This approach 

combines the global and local feature representations for 

improved model performance and generalization. 

3.3.1. Multi-Axis Vision Transformer (MaxViT) 

Spurred by sparse attention mechanisms, we propose a 

new feature extraction module; window attention and grid 

attention are the two sparse forms of fully dense attention 

processes that are decomposed by Multi-Axis Self-Attention 
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(Max-SA). The computational complexity is decreased from 

quadratic to linear by this modification while preserving 

critical spatial dependencies. 

3.4. Attention Mechanism 

The self-attention mechanism allows the model to capture 

spatial correlations between features across different data 

modalities. Traditional self-attention, as defined in 

Transformer architectures, operates with quadratic complexity 

due to full spatial interaction. 

3.4.1. Multi-Axis Attention 

Multi-axis attention decomposes full attention into local 

and global interactions by partitioning spatial dimensions: 

Block Attention (Local Interactions) 

The input feature map 𝑋 ∈ 𝑅𝐺×𝑅×𝐷of shape (
𝐻

𝑃
×
𝑊

𝑃
, 𝑃 ×

𝑃, 𝐶)is partitioned into non-overlapping windows of size𝑃 ×

𝑃. Self-attention is applied within each local window, 

enhancing fine-grained feature extraction while maintaining 

linear computational complexity. 

3.5. Grid Attention (Global Interactions) 

To address long-range dependencies, we introduce a sparse 

global attention mechanism using a uniform grid 

partition(𝐺 × 𝐺,
𝐻

𝐺
×
𝑊

𝐺
, 𝐶). This method allows for efficient 

feature integration across spatially distant regions while 

maintaining computational feasibility. 

3.6. MaxViT Block Architecture 

It constructs a hierarchical vision backbone by stacking 

alternating layers of Max-SA with Mobile Bottleneck 

Convolution (MBConv). This structure provides a balance 

between global contextual awareness and locality, essential 

for agriculture multi-modal data integration. 

The Multi-Axis Vision Transformer (MaxViT) is 

employed for feature extraction in agricultural GHG emission 

forecasting, improving spatial-temporal analysis, cross-

modality learning, and scalability. The novel method exploits 

local and global interactions to improve model generalization 

and efficiency. 

Then, these data are provided to the Hyper-node 

Hamiltonian relational quantum graph generative Nutcracker 

adversarial attention networks (2HNR-Q2G-N2AN) 

framework improves the Greenhouse Gas Emission 

Predictions in Agriculture through Multi-Modal Data 

Integration precisely, and its interpretations are provided 

below: 

3.7. 2HNR-Q2G-N2AN to Enhance Greenhouse Gas 

Emission Predictions 

The Cross Hamiltonian Quantum Contextual Generative 

Adversarial Hippopotamus Attention Networks (Cross-HQC-

GAHAN) framework to improve Greenhouse Gas Emission 

Predictions. The 2HNR-Q2G-N2AN is a new method for 

optimizing Greenhouse Gas Emission Predictions in 

Agriculture through Multi-Modal Data Integration. It utilizes 

the Cross Hamiltonian Quantum Contextual Generative 

Adversarial Hippopotamus Attention Networks (Cross-HQC-

GAHAN) framework, which combines Hamiltonian Quantum 

Generative Adversarial Networks (HQuGANs) [25] with a 

Hyper-Node Relational Graph Attention Network (HRGATN) 

[26] to improve predictive performance.  

The HQuGANs apply quantum-inspired Hamiltonian 

dynamics to simulate intricate dependencies among 

agricultural emissions data, supporting effective feature 

representation for various modalities. The HRGATN, in 

contrast, represents the relationships among data points as 

hyper-node relational models, enhancing contextual 

perception.  

The whole model is optimized via the Nutcracker 

Optimizer Algorithm (NOA) [27], improving parameter 

tuning and convergence rate and decreasing computational 

complexity without compromising accuracy. By integrating 

quantum-inspired generative modeling, state-of-the-art 

attention mechanisms, and strong optimization, 2HNR-Q2G-

N2AN greatly enhances the reliability and scalability of 

greenhouse gas emission forecasts in agricultural ecosystems 

and its reasons are as follows: 

3.7.1. Hamiltonian Quantum Generative Adversarial 

Networks (HQuGANs) for Optimizing Greenhouse Gas 

Emission Predictions in Agriculture via Multi-Modal Data 

Integration 

To improve Green House Gas (GHG) emission forecasts 

in agriculture using multi-modal data fusion, we present the 

Hamiltonian Quantum Generative Adversarial Network 

(HQuGAN). This model effectively learns unseen quantum 

states corresponding to intricate agricultural emission 

behaviors using a quantum-inspired adversarial training 

procedure. The learning process is founded on a minimax 

optimization game involving two adversarial quantum 

players: a generator and a discriminator. Every player uses a 

Hamiltonian function to optimize corresponding control 

parameters for precise feature extraction and emissions 

prediction. 
 

The quantum adversarial game is formulated as follows. 

At each training iteration, the generator refines its quantum 

state 𝛿({𝑒})to minimize a cost function𝐵, while the 

discriminator concurrently updates its parameters to maximize 

by distinguishing between the true quantum state 𝜉 

(representing real agricultural emissions data) and the 

generated state𝛿({𝑒}). 

At every iteration, the generator aims to find an optimal 

set of control parameters ({𝑑})such that the generated 
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quantum state 𝛿({𝑒})minimizes the cost function given in 

Equation (8): 

𝐴 = 𝑉 ({𝑑})𝐷0𝑉({𝑐})                          (8) 

The discriminator optimally selects parameters 𝑐to 

maximize𝐴, aiming to maximize the distinguishability 

between 𝛿({𝑒})and𝜉. This adversarial process continues until 

a Nash equilibrium is reached, where neither player can 

improve their strategy independently. 

3.7.2. Cost Function Selection and Optimization 

The choice of the cost function plays a crucial role in the 

training dynamics of HQuGAN. Two key cost functions 

considered are: 

Trace Distance Cost Function is given in Equation (9): 

𝐵 = 𝐻𝑔[𝐶({𝑐})(𝛿{𝑒}) − 𝜉)]                                       (9) 

This function minimizes the distance between the 

generated and true states, ensuring accurate emissions 

forecasting and Quantum Wasserstein Distance is given in 

Equation (10): 

3.7.3. Quantum Wasserstein Distance 

 

𝐶 = |𝐻𝑔[𝐶({𝑐})(𝜉 − 𝛿({𝑒}))]|
2
                       (10) 

 

This formulation ensures smooth convergence to the 

desired state by leveraging optimal transport theory in 

quantum space. 

By iteratively updating 𝑒𝑐, the optimization process 

converges at the Nash equilibrium({𝑒}∗, {𝑐}∗), where: 

This balance ensures that the resulting state closely 

approximates the actual emissions data, resulting in strong 

predictions. 

In multi-modal agricultural data fusion, the HQuGAN 

model is used to distill key emission-related features from 

diverse datasets (e.g., satellite images, soil composition data, 

and weather statistics). Encoding these variables into quantum 

states, HQuGAN effectively captures subtle dependencies, 

resulting in higher forecasting accuracy. The discriminator 

ensures the generated emission patterns follow real-world 

agricultural emissions patterns, maximizing predictive 

robustness. 

Through the application of the quantum-inspired 

adversarial training process, HQuGAN improves the 

accuracy, scalability, and interpretability of GHG emission 

forecasts, making it a useful tool for sustainable agricultural 

planning and climate footprint estimation. 

Then, for enhancing the performance of the Hamiltonian 

Quantum Generative Adversarial Network (HQuGAN) with 

Hyper-node relational graph attention network (HRGATN) 

for Optimizing Greenhouse Gas Emission Predictions in 

Agriculture via Multi-Modal Data Integration, the following 

are given below:  

Hyper-node Relational Graph Attention Network for 

Optimizing Greenhouse Gas Emission Predictions in 

Agriculture via Multi-Modal Data Integration 

Green House Gas (GHG) emissions play a critical role in 

climate change; thus, prediction is very important for 

sustainable agricultural production. Multi-modal data sources 

improve the accuracy of emission estimation.  

This work introduces a novel Hamiltonian Quantum 

Generative Adversarial Network (HQuGAN) along with a 

Hyper-node Relational Graph Attention Network (HRGATN) 

to improve GHG emission predictions through an efficient 

combination of multi-modal data representations. 

Multi-Modal Data Fusion Using Low-Rank Tensor 

Representation 

Multi-modal fusion enables entities to leverage 

complementary information present in different sources of 

agricultural data, such as satellite imagery, soil composition, 

weather patterns, and farming practices.  

Traditional multi-modal knowledge graph embedding 

methods utilize concatenation or attention mechanisms; 

however, they often overlook intra-modality and inter-

modality dynamics. Tensor fusion is an effective approach, 

transforming input representations into high-dimensional 

tensors before mapping them to lower-dimensional feature 

vectors. 
 

The display of hyper-nodes 𝑔 created using tensor fusion 

is calculated as Equation (11): 

𝑔 = 𝑒(𝑅; 𝐹,𝑚) = 𝐹 ⋅ 𝑅 + 𝑚, (𝑔,𝑚 ∈ ℜ
𝑐ℎ)                             (11) 

Where 𝐹 is the weight and 𝑚 is the bias, 𝑅 =⊗𝑝=1
𝑃 𝑢𝑝Z 

is the tensor outer product that creates the high-dimensional 

tensor⊗ Across a collection of vectors representing unimodal 

representations with 1 appended as𝑔𝑝 =

{(𝑔𝑡 , 1), (𝑔𝑢 , 1), (𝑔𝑏 , 1)}, and m means the 𝑝th modal.  

Information Aggregation Using Hyper-node Relational 

Graph Attention Network 
 

Graph Neural Networks (GNNs) leverage graph 

structures to propagate information across interconnected 

entities, refining entity representations. HRGATN employs a 

relational graph attention mechanism to aggregate hyper-node 

information from neighboring nodes, capturing structural 

dependencies. 
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Relation-Specific Attention Mechanism 

To measure the importance of neighboring nodes, 

relation-specific attention is introduced in Equation (12): 

𝑅 = [
𝑔𝑠

1
] ⊗ [

𝑔𝑢

1
] ⊗ [𝑔

𝑏

1
] 

= (𝑔𝑡 , 𝑔𝑢 , 𝑔𝑏) + (𝑔𝑡⊗𝑔𝑢, 𝑔𝑡⊗𝑔𝑏𝑔𝑢⊗𝑔𝑏) + 𝑔𝑡⊗
𝑔𝑢⊗𝑔𝑏 .                                                  (12) 

In multi-modal tensor fusion, the first three subregions 

gain from the tensor outer product. 𝑔𝑡 , 𝑔𝑢and 𝑔𝑏 are uni-

modal embeddings, which are able to capture the intra-

modality of every single modal piece of information. Next, the 

subsequent three subregions𝑔𝑡⊗,𝑔𝑡⊗𝑔𝑏𝑔𝑢⊗𝑔𝑏in 

represent bi-modal interactions, and the last 𝑔𝑡⊗𝑔𝑢⊗
𝑔𝑏represent Tri-modal interactions that are capable of 

capturing the intermodality in multi-modal information tensor 

fusion.  

3.7.4. Relational Aggregation Function 

Inspired by spatial convolutions in GCNs, the hyper-node 

representation is iteratively refined by aggregating 

information from neighboring nodes: 

First, we employ weight decomposition with low rank𝐹̑ 

as a substitute for the weight tensor𝐹is given in Equation (13): 

𝐹̑ = ∑ ⊗

𝑝=1
𝑃

𝑙
𝑎=1 𝑤𝑝

(𝑎)
                          (13) 

The minimal 𝑙 rank of the tensor is what gives the 

decomposition its validity. The vector sets 𝑤𝑝
(𝑎)

 are referred to 

as the original weight tensor’s decomposition factors, where 

m is𝑝 -th modal, and i means the 𝑎𝑡ℎ decomposition factor. 

Hence, Equation (13) can be converted to (bias 𝑘 is omitted 

here): 

Prediction  

HQuGAN enhances emission predictions by leveraging 

quantum computing principles for generative modeling. It 

employs a quantum Hamiltonian evolution operator to encode 

data distributions and adversarially train a generator and 

discriminator. 

Three modalities’ low-rank multimodal fusion 

representation, e, can be written as Equation (14): 

𝑔 = (∑ 𝑤𝑠
(𝑎) ⋅ 𝑔𝑠

𝑙
𝑎=1 ) ∘ (∑ 𝑤𝑢

(𝑎) ⋅ 𝑔𝑢
𝑙
𝑎=1 ) ∘ (∑ 𝑤𝑏

(𝑎) ⋅ 𝑔𝑏
𝑙
𝑎=1 )                                         

(14) 

Using Equation (14), compute 𝑔 without the burden of 

calculating the enormous input tensor straight from the input 

pre-trained embeddings and their modal-specific 

decomposition components𝐹and𝑅. In the meanwhile, 

Equation (14) makes it simple to express a variety of 

modalities (for example, two modalities can be represented by 

two product terms in Equation (14)). Finally, the completely 

differentiable processes that make up low-rank multi-modal 

fusion allow the parameters to {𝑤𝑝
(𝑎)}

𝑎=1

𝑙

 must be acquired 

through back-propagation from beginning to conclusion. 

This study integrates HRGATN with HQuGAN to 

optimize greenhouse gas emission predictions in agriculture 

through multi-modal data fusion. The HRGATN efficiently 

aggregates relational dependencies in multi-modal knowledge 

graphs, while HQuGAN enhances the generative modeling of 

agricultural emissions. Future work will extend the approach 

to real-time emission monitoring with quantum-enhanced 

Bayesian inference. 

Then HQuGANs-HRGATN weight parameters are tuned 

to lower the error rate, cost, and processing complexity 

through Nutcracker Optimizer Algorithm (NOA) to Optimize 

Green House Gas Emission Predictions in Agriculture via 

Multi-Modal Data Integration and its explanations are as 

follows: 

Nutcracker Optimizer Algorithm (NOA) for optimizing 

weight parameters of HQuGANs-HRGATN to Optimize 

Greenhouse Gas Emission Predictions in Agriculture via 

Multi-Modal Data Integration 

The Nutcracker Optimizer Algorithm (NOA) is employed 

to optimize the weight and bias parameters of the Hamiltonian 

Quantum Generative Adversarial Network (HQuGAN) 

integrated with the Hyper-node Relational Graph Attention 

Network (HRGATN). The objective is to improve the 

predictive performance, computational speed, and general 

robustness of greenhouse gas emission forecasts in agriculture 

based on multi-modal data integration. NOA mimics 

nutcrackers’ foraging and caching behavior, allowing for an 

optimal balance between exploration and exploitation. Figure 

2 shows the Flowchart of 2HNR-Q2G-N2AN. 

Step 1: Initialization of Candidate Solutions 

A population of candidate solutions is randomly initialized, 

with each one representing distinct hyperparameter values for 

the HQuGANs-HRGATN model. The candidates are scattered 

in a specified search space to provide diversity and prevent 

premature convergence. The initial solutions are evaluated 

based on the following factors: 
 

Prediction Accuracy (PA) 

The model’s ability to accurately predict greenhouse gas 

emissions. 
 

Computational Efficiency (CE) 

The capacity to process large-scale multi-modal data 

efficiently. 
 

Model Complexity (MC) 

The balance between computational resources and 

performance. 
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Step 2: Exploration Phase via Random Perturbation 

To enhance global search capabilities, small random 

perturbations are applied to candidate solutions. This 

mechanism prevents the optimizer from getting stuck in local 

optima and ensures better exploration of the search space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 2 Flowchart of 2HNR-Q2G-N2AN 

Step 3: Fitness Function Evaluation 

The fitness function evaluates the candidate solutions 

based on prediction accuracy, computational efficiency, and 

model complexity. The fitness function is mathematically 

defined as in Equation in (15): 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒(𝛽)                (15)   

The objective is to minimize while increasing 

classification accuracy in order to maximize computational 

efficiency and model complexity. 

Step 4: NOA update to maximize the weight and bias 

parameters of HQuGANs-HRGATN  

The weight and bias parameters of HQuGANs-HRGATN 

are iteratively updated using NOA. In this phase, the algorithm 

exploits promising solutions 𝑋⃗𝑚,𝑛
𝑠  by refining their positions 

based on the best candidate given in Equation (16): 

𝑋⃗𝑚,𝑛
𝑠 = (𝑢𝑛

→ − 𝐿𝑛
→ 
) .𝑊𝑌
→  

+ 𝐾𝑛
→ 
,𝑚 = 1,2, . . . , 𝑀, 𝑛 =

1,2, . . . , 𝐷               (16)  

Where𝑢𝑛
→ 

 and 𝐿𝑛 are the randomly selected solutions from 

the population. 𝐾𝑛
→ 
,𝑚,𝑊𝑌
→  

, 𝑚 = 1,2, . . . , 𝑀, 𝑛 = 1,2, . . . , 𝐷 

are the Parameters controlling the balance between 

exploitation and diversification.  

This ensures that the model converges toward an optimal 

configuration with minimized computational cost and 

improved prediction accuracy. 

Step 5: Iterative Optimization and Termination Criteria  

The optimization process iterates through exploration and 

exploitation cycles until one of the following termination 

conditions is met: 

Maximum Iterations 

The algorithm halts after a predefined number of 

iterations. 

Convergence 

If the fitness function shows negligible improvement over 

consecutive iterations. 

Nutcracker Optimizer can efficiently optimize the weight 

parameters of HQuGANs-HRGATN and lower computational 

complexity, cost, and error rate by optimizing greenhouse gas 

emission predictions in agriculture using multi-modal data 

integration.  

It can improve prediction accuracy and robustness using 

graph-based deep learning models combined with quantum 

adversarial optimization methods.  

Initialization 

Initialize the parameters of the 

NOA for optimizing the weight 
and bias parameters of 
HQUGANS-HRGATN 

Random Generation 

Fitness Function 

Updation of NOA for 

optimizing the weight and bias 
parameters of HQuGANs-

HRGATN 

Exploration and exploitation 

Phase of NOA for Achieving 

Optimal Solution 

Error rate, processing time, 

computational complexity and 
cost minimized accuracy is 

maximized 

Halting criteria 
met 

Termination 

j=j+1 

Iter ative Refinement, 

Convergence phase for reducing 
error rate, processing time, 

computational complexity and 

cost 

No 

Yes 
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This research maximizes greenhouse gas emission 

forecasting in agriculture with 2HNR-Q2G-N2AN, coupling 

Hamiltonian Quantum Generative Adversarial Networks 

(HQuGANs) with a Hyper-node Relational Graph Attention 

Network (HRGATN). It handles 5,000 inputs through entropy 

and τ-Kendall methods, performs feature extraction with 

MaxViT, and parameter optimization with the Nutcracker 

Optimizer Algorithm (NOA) for advanced multi-modal data 

coupling and sustainability. The next section then provides a 

performance analysis. 

4. Results and Discussions 
In this section, the Results and Discussions of Hyper-

Node Hamiltonian Relational Quantum Graph Generative 

Adversarial Attention Networks (2HNR-Q2G-N2AN) for 

Greenhouse Gas Emission Predictions are discussed.  

4.1. Dataset Description 

The input dataset is taken from the titled GHG emission 

data and contains 5,000 entries with 11 features related to 

greenhouse gas emissions and environmental factors. It 

includes Region (North, South, East, West, Central), 

Temperature (°C) ranging from 5 to 40, Humidity (%) 

between 10 and 90, Soil pH from 4.5 to 8.5, and Soil Moisture 

(%) between 5 and 50. The Crop Type feature includes Rice, 

Wheat, Maize, Soybean, and Cotton. Additional features 

include Fertilizer Usage (kg/ha) between 50 and 300, 

Livestock Count (0 to 500), Satellite NDVI (0.2 to 0.9), 

Satellite Land Surface Temperature (LST) (°C) from 10 to 50, 

and GHG Emission (CO₂ equivalent) ranging from 50 to 500. 

Of them, 20% are used for testing, and 80% are used for 

teaching. Table 2 lists the precise parameters that were used 

for the implementation. 
Table 2. Implementation Parameters 

Parameters Description 

Proposed Neural 

Network 
2HNR-Q2G-N2AN 

OS Windows 10 

Optimization NOA 

Dataset GHG emission Dataset 

Software Python 3.7 

 

4.2. Performance Metrics 

The suggested 2HNR-Q2G-N2AN method’s 

performance is contrasted with that of the current approaches, 

including GNN [16], AFIM [17], CBM [18], BFAST [19], 

LERI [20], TPM [21], and GAN [22], respectively, employing 

performance criteria like mistake rate, recall, f1 score, 

accuracy, precision, Train time, computational complexity, 

processing time, Hamming loss, Mean Squared Error (MSE), 

mean absolute error (MAE), Mean Absolute Percentage Error 

(MAPE), and Root Mean Square Error (RMSE) analysis.  

Table 3 provides the equations for the performance.  

Metrics:  
Table 3. Performance metrics 

 

Where, a_l described as the input of a classification 

method,  s_l described as the result of the categorization 

procedure, Lis the dataset’s total number of instances, Xy is 

the method of training, Xy(a_l) and is shown as the output 

labels that the classification technique predicts. f_(a,x) is the 

user’s actual rating r for the items. f ̑_(a,x) is the one that was 

anticipated.  

4.3. Performance Analysis 

The performance analysis of 2HNR-Q2G-N2AN is 

discussed here: 

 
Fig. 3 Numerical feature

Performance 

metrics 

Equations (17-22) 

Precision 

1

𝐿
∑ (

|𝑋𝑦(𝑎𝑙)∩𝑠𝑙|

|𝑋𝑦(𝑠𝑙)|
)𝐹

𝑙=1

  (17)

 

Recall 

1

𝐿
∑ (

|𝑋𝑦(𝑎𝑙)∩𝑠𝑙|

|𝑠𝑙|
)𝐹

𝑙=1

 (18)

 

F1-Score 

1

𝐿
∑ (

2|𝑋𝑦(𝑎𝑙)∩𝑠𝑙|

|𝑋𝑦(𝑠𝑙)|+|𝑠𝑙|
)𝐹

𝑙=1

  (19)

 

Accuracy 

1

𝐿
∑ (

|𝑋𝑦(𝑎𝑙)∩𝑠𝑙|

|𝑋𝑦(𝑎𝑙)∪𝑠𝑙|
)𝐹

𝑙=1

  (20)

 

MAE 

1

𝐿
∑ |𝑓𝑎̑,𝑥(𝑟,𝑠) − 𝑓𝑎,𝑥|

  (21)

 

RMSE √
1

𝐿
∑ (𝑓𝑎̑,𝑥(𝑟,𝑠) − 𝑓𝑎,𝑥)

2

  (22)

 



K. Sathis Kumar & K. Arulanandam / IJEEE, 12(5), 190-208, 2025 

200 

Fig. 4 (a) GHG emission across crop types for cotton, soybean, maize, rice, and wheat (b) average GHG emissions by region for north, west, south, 

and east 

Figure 3 shows the numerical features. Temperature, 

Rainfall, Fertilizer_Use, and GHG_Emissions are the 

numerical features that are represented in the image as a pair 

plot. Distributions are indicated by the diagonal, which 

displays Kernel Density Estimates (KDE) for every variable. 

Potential correlations can be seen in the paired associations 

displayed by the scatter plots in the lower triangle. Since the 

points seem well-spaced, there may not be any significant 

relationships. “Pair plot of Numerical Features,” the title, 

encapsulates the goal. Finding trends and connections 

between variables is one way that this visualization aids in 

exploratory data analysis. 

Figure 4 shows the (a) GHG emission across crop types 

for cotton, soybean, maize, rice, and wheat and (b) average 

GHG emissions by region for north, west, south, and east. Due 

to variations in agricultural methods, soil composition, and 

resource use, greenhouse gas emissions can fluctuate between 

crop varieties and geographical areas. The emission levels of 

cotton, soybean, maize, rice, and wheat vary according to 

irrigation, fertilizer application, and rates of decomposition. 

Additionally, climate, soil fertility, and agricultural intensity 

all affect the regional averages (North, West, South, and East). 

In order to reduce the influence on the environment, it is 

helpful to focus on emission reduction initiatives, optimize 

farming practices, and implement sustainable agriculture 

regulations. 

Figure 5 shows the (a) temperature vs. GHG emissions 

and (b) correlation matrix for GHG emissions Fertilizer usage, 

rainfall, and temperature. Higher temperatures have an impact 

on GHG emissions because they can speed up soil microbial 

activity. This relationship can be seen in a scatter plot of 

temperature versus greenhouse gas emissions. Furthermore, a 

correlation matrix measures the correlations between 

temperature, rainfall, fertilizer use, and greenhouse gas 

emissions. Potential dependencies, such as higher emissions 

due to increased fertilizer use, are indicated by strong 

correlations. Planning for sustainable agriculture benefits 

from an understanding of these relationships since it reduces 

emissions and maximizes resource usage for better economic 

and environmental results. 

Fig. 5 (a) temperature vs. GHG emissions and (b) correlation matrix for GHG emissions Fertilizer usage, rainfall and temperature 
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Fig. 6 (a) rainfall vs. GHG emissions and (b) distribution of GHG emission 

 

 
Fig. 7 (a) GHG emission distribution by region and (b) KDE plot of GHG emissions 

 
Fig. 8 (a) GHG emission distribution by crop type and (b) swarm plot GHG emission by crop type 

Figure 6 shows the (a) rainfall vs. GHG emissions and (b) 

distribution of GHG emissions. Rainfall influences fertilizer 

runoff, microbial activity, and soil moisture, all of which have 

an impact on GHG emissions. Trends, such as increased 

emissions in locations that are prone to flooding or drought, 

can be discovered using a scatter plot of rainfall vs greenhouse 

gas emissions. Furthermore, a histogram or density map that 

displays the distribution of GHG emissions shows emission 

patterns, peaks, and fluctuations. By optimizing water 

management and lowering emissions for more sustainable 

farming methods, an understanding of these linkages supports 

climate-smart agriculture. 

Figure 7 shows the (a) GHG emission distribution by 

region and (b) KDE plot of GHG emissions. Because of 

variations in temperature, soil, and farming methods, GHG 

emissions range by area. Finding high-emission regions and 

comparing emission levels are made easier with the use of a 
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distribution plot by region (North, West, South, and East). 

Furthermore, a smoothed representation of the total emission 

distribution that highlights peaks and variability is offered by 

a Kernel Density Estimate (KDE) plot of GHG emissions. 

These insights support the implementation of region-specific 

policies for sustainable farming and environmental 

conservation, the targeting of emission reduction initiatives, 

and the optimization of agricultural practices. 

Figure 8 shows the (a) GHG emission distribution by crop 

type and (b) swarm plot of GHG emission by crop type. 

Different crop kinds have different GHG emissions because of 

variations in irrigation, fertilizer use, and rates of 

decomposition. Emission trends and variances are displayed 

in a distribution plot of GHG emissions by crop type (such as 

cotton, soybean, maize, rice, and wheat). Furthermore, a 

swarm plot illustrates the density and distribution of emissions 

for every crop type by visualizing individual data points. In 

order to promote climate-friendly agriculture, these 

assessments aid in identifying high-emission crops, directing 

sustainable farming methods, maximizing resource utilization, 

and creating focused emission reduction plans. 

Figure 9 shows the (a) GHG emission by crop type and 

(b) GHG emissions distribution by region. Due to variations 

in agricultural methods, soil composition, and resource 

utilization, greenhouse gas emissions differ by crop variety 

and geographical location. The crops that contribute most to 

emissions are shown in a bar plot of GHG emissions by crop 

type (e.g., cotton, soybean, maize, rice, and wheat). 

Furthermore, regional variations driven by climate and 

agricultural intensity are displayed in a distribution plot by 

region (North, West, South, and East). By lowering emissions 

while preserving environmental balance and production, these 

insights promote sustainable farming practices. 

Figure 10 shows the (a) GHG emissions vs. fertilizer 

usage and (b) 3D Convergence plot. Because too much 

fertilizer raises nitrous oxide emissions, there is a strong 

correlation between GHG emissions and fertilizer use. Trends, 

such as increasing emissions with increased fertilizer use, can 

be found using a scatter plot of GHG Emissions vs. Fertilizer 

Usage. Furthermore, a 3D convergence graphic illustrates how 

several variables, including temperature, precipitation, and 

fertilizer use, interact with greenhouse gas emissions. For 

increased productivity and decreased emissions, these insights 

aid in the development of sustainable agriculture practices, 

fertilizer application optimization, and environmental impact 

reduction. 

 

 
Fig. 9 (a) GHG emission by crop type and (b) GHG emissions distribution by region 

 

 
Fig. 10 (a) GHG emissions vs. fertilizer usage and (b) 3D Convergence plot 
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Fig. 11 (a) kernel density estimation of GHG emissions and (b) residual plot: fertilizer usage vs GHG emission 

Figure 11 shows the (a) kernel density estimation of GHG 

emissions and (b) residual plot: fertilizer usage vs GHG 

emission. Peaks and variations in emission levels across data 

points are highlighted in a smoothed distribution of GHG 

emissions produced by a Kernel Density Estimation (KDE) 

plot. Additionally, by displaying the variations between 

expected and actual values, a residual plot for Fertilizer Usage 

vs. GHG Emissions evaluates the model fit. Patterns in the 

residuals show whether emissions are influenced by nonlinear 

processes or if a linear model is adequate. When combined, 

these evaluations aid in the development of sustainable 

methods to reduce greenhouse gas emissions, the optimization 

of fertilizer use, and the enhancement of prediction models. 

Figure 12 shows the Pair plot of Environmental Factors 

and GHG Emissions across Crop Types. For various crop 

kinds (Cotton, Soybean, Maize, Rice, and Wheat), the pairplot 

illustrates the correlations between temperature, humidity, soil 

pH, and greenhouse gas emissions. The distribution of each 

feature’s Kernel Density Estimates (KDE) is displayed on the 

diagonal. Using colors to identify crops, scatter plots compare 

variables. Weak associations between components are 

suggested by the dense scatter. Sustainable farming methods 

and emission reduction plans benefit from this visualization’s 

analysis of the relationship between environmental factors and 

GHG emissions. 

 
Fig. 12 Pair plot of Environmental Factors and GHG Emissions across Crop Types 
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Fig. 13 Kernel Density Estimation of GHG Emissions by Crop Type 

Figure 13 shows the Kernel Density Estimation of GHG 

Emissions by Crop Type. The graphic shows the distribution 

of greenhouse gas emissions (CO2 equivalent) for the 

following crops: wheat, rice, corn, soybeans, and cotton. The 

distribution of emissions is displayed by each Kernel Density 

Estimation (KDE) curve, emphasizing variability and peaks. 

Crops exhibit slightly different emission patterns, with some 

displaying bimodal distributions. In order to encourage 

sustainable agriculture practices that aim to lessen the 

environmental impact while preserving productivity, this 

research assists in identifying which crops contribute more to 

emissions. 

Figure 14 shows the count of crop types for rice, corn, 

soybean, and wheat. In agricultural datasets, the number of 

crop types, rice, corn, soybeans, and wheat, helps examine 

how they are distributed. An understanding of cropping 

patterns can be gained by visualizing the frequency of each 

crop using a bar plot or frequency table. Dominant crops are 

indicated by higher counts, which may be related to demand, 

farming methods, or climate suitability. Planning for 

sustainability, policymaking, and resource allocation are all 

aided by an understanding of these distributions. According to 

this research, effective land use maximizes yield while 

reducing negative environmental effects like greenhouse gas 

emissions. 

 
Fig. 14 Count of crop types for rice, corn, soybean, and wheat 

 

 
Fig. 15 (a) model accuracy and loss for epoch and (b) fertilizer usage vs GHG emission 
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Figure 15 shows the (a) model accuracy and loss for 

epoch and (b) fertilizer usage vs GHG emission. A machine 

learning model’s performance is gauged by its accuracy and 

loss over time. While loss measures errors, accuracy indicates 

how well forecasts match real values. Plotting accuracy and 

loss across epochs facilitates the evaluation of overfitting and 

convergence. Furthermore, a comparison between fertilizer 

usage and greenhouse gas emissions shows that excessive 

fertilizer use raises emissions. Sustainable farming methods 

might be guided by trends that are highlighted by a scatter plot. 

In order to lessen the influence on the environment, combining 

this knowledge helps to improve predictive models and create 

environmentally friendly farming practices. 

Table 4 shows the overall performance of the suggested 

approach in contrast to existing methods. The table contrasts 

several models based on performance indicators. The 2HNR-

Q2G-N2AN (Proposed) model outperforms other models, 

such as BFAST (95.23%) and GNN (78.90%), achieving the 

maximum accuracy (99.98%). Its balanced performance is 

demonstrated by its great recall (97.58%), precision (95.45%), 

and specificity (98.33%). Its RMSE (6.2) and MSE (8.5) 

indicate some prediction mistakes, though. Its AAE (2.1) is 

the lowest in spite of this, indicating excellent predictive 

stability. The outcomes validate the model’s efficacy in 

contrast to conventional methods. 

Table 5 shows the evaluation of the proposed method in 

comparison to existing methods using statistics. The table 

contrasts the Variance Inflation Factor (VIF), mean, standard 

deviation, and statistical test p-values for several approaches, 

including the suggested 2HNR-Q2G-N2AN model. 

Significant differences from alternative models are indicated 

by lower p-values for the suggested model across several tests. 

Its high standard deviation (4,892.38) and mean (62,829.50) 

indicate variability, yet its low VIF (1.001) suggests little 

multicollinearity. The outcomes demonstrate how effective it 

is in comparison to other models, such as GNN, AFIM, and 

GAN, making it a viable strategy in the particular situation.

 

Table 4. Overall performance of the suggested approach in contrast to existing methods 

Metrics 
GNN 

[16] 

AFIM 

[17] 

CBM 

[18] 

BFAST 

[19] 

LERI 

[20] 

TPM 

[21] 

GAN 

[22] 

2HNR-Q2G-N2AN 

(Proposed) 

Accuracy 78.90 90.57 91.45 95.23 92.77 93.24 90.10 99.98 

Recall 98.22 91.35 89.28 97.59 97.80 92.34 89.12 97.58 

Precision 94.46 95.35 79.27 90.37 94.66 95.99 89.23 95.45 

Specificity 78.90 90.57 91.45 95.23 91.29 98.24 84.44 98.33 

F1-Score 79.90 91.56 89.45 95.28 93.34 96.46 93.89 94.20 

MSE 5.6 4.4 7.6 2.5 7.7 3.5 5.7 8.5 

MAE 6.1 7.3 3.5 4.7 1.9 2.0 5.2 5.4 

RMSE 7.2 3.4 6.6 7.8 2.7 2.2 5.4 6.2 

AAE 8.7 5.3 6.5 7.6 8.4 4.2 3.2 2.1 

 
Table 5. Comparison of the suggested approach with current approaches using statistics 

Methods 
SW Test 

p-Value 

WSR 

test / U-

test p-

Value 

H-test 

p-

Value 

KS test p-

Value 

FT p-

Value 
Mean 

Standard 

Deviation 

Variance 

Inflation 

Factor 

GNN [16] 0.456 0.26 0.243 0.034 0.082 47,784.8 1863.45 1.87 

AFIM [17] 0.371 0.67 0.186 0.019 0.065 63,085.55 1357.32 1.25 

CBM [18] 0.774 0.89 0.679 0.057 0.043 40,538.14 2631.60 1.44 

BFAST [19] 0.232 0.94 0.726 0.014 0.072 33,187.10 1654.54 1.62 

LERI [20] 0.763 0.32 0.896 0.088 0.092 64,563.45 1864.33 1.32 

TPM [21] 0.195 0.69 0.965 0.056 0.064 47,123.80 4876.27 1.87 

GAN [22] 0.854 0.22 0.643 0.067 0.082 59,28113 2823.82 2.78 

2HNR-Q2G-

N2AN 

(Proposed) 

<0.001 <0.001 <0.001 <0.001 <0.001 62,829.50 4,892.38 1.001 
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Table 6. Ablation study 

Model 

Configuration 
HQuGANs HRGATN 

Nutcracker 

optimizer 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Baseline 

(Without 

Nutcracker 

optimizer) 

✔ ✔ ✘ 96.78 92.31 79.34 81.78 

HQuGANs Only ✔ ✘ ✘ 97.90 92.44 86.65 95.46 

HRGATN Only ✘ ✔ ✘ 93.76 92.45 88.68 97.54 

HQuGANs + 

Nutcracker 

optimizer 
✔ ✘ ✔ 92.33 98.26 90.79 95.65 

HRGATN + 

Nutcracker 

optimizer 
✘ ✔ ✔ 95.45 97.48 93.67 78.93 

Full Model 

(2HNR-Q2G-

N2AN) 
✔ ✔ ✔ 99.98 94.79 92.64 96.85 

Table 6 shows the Ablation study. Using HQuGANs, 

HRGATN, and the Improved Pied Kingfisher Optimizer, the 

table contrasts several model configurations in terms of F1-

score, recall, accuracy, and precision. The Full Model (2HNR-

Q2G-N2AN) performs well across all measures and attains the 

highest accuracy (99.98%), demonstrating its superiority. The 

optimizer enhances HRGATN and HQuGANs separately, but 

combining all three yields the best outcomes. The entire model 

considerably improves recall and F1-score when compared to 

the baseline (81.78% accuracy), indicating the optimizer’s 

efficacy in improving predictions. 

4.4. Discussion 

Through the integration of several environmental 

parameters, the suggested 2HNR-Q2G-N2AN model greatly 

improves the accuracy of GHG emission estimates in 

agriculture. Traditional methods often yield poor predictions 

by neglecting to see underlying complex relationships among 

factors. The model effectively identifies complex 

relationships in the data by using a Hyper-node Relational 

Graph Attention Network (HRGATN) and Hamiltonian 

Quantum Generative Adversarial Networks (HQuGANs). 

Parameter tuning is further optimized through the Nutcracker 

Optimizer Algorithm (NOA), which ensures efficiency and 

accuracy. One of its prime strengths is multi-modal data 

integration through MaxViT in this method. This improves the 

ability of the model to address various environmental 

parameters. Entropy and τ-Kendall algorithms better the pre-

processing, ensuring reliable input data. The model’s 

predictive superiority is evidenced by 99.9% accuracy and 

significantly reduced RMSE when compared to existing 

methodologies. In its capacity to precisely estimate emissions 

and steer mitigation strategies, this breakthrough holds 

immense implications for sustainable agriculture. Trustworthy 

projections allow farmers and policymakers to implement 

data-driven projects that reduce environmental impact while 

optimizing harvest. This research sets a new benchmark for 

forecasting GHG emissions with AI. 

5. Conclusion 
This research suggests Optimizing Greenhouse Gas 

Emission Predictions in Agriculture through Multi-Modal 

Data Integration Using Hyper-Node Hamiltonian Relational 

Quantum Graph Generative Adversarial Attention Networks 

(2HNR-Q2G-N2AN) to optimize predictive performance. The 

GHG emission dataset contains 5,000 records and 11 features 

describing environmental factors affecting emissions. Pre-

processing is done by entropy and τ-Kendall methods, and 

feature extraction is achieved by using the Multi-Axis Vision 

Transformer (MaxViT) for detailing complex dependencies.  

 

The forecasting is achieved through a new 2HNR-Q2G-

N2AN approach, which integrates Hamiltonian Quantum 

Generative Adversarial Networks (HQuGANs) with a Hyper-

node Relational Graph Attention Network (HRGATN) and 

trains its parameters employing the Nutcracker optimizer 

algorithm (NOA). Experimental findings prove exceptional 

performance, achieving a Root Mean Square Error (RMSE) 

many times lower than other approaches and an accuracy level 

of 99.9%.  

The new methodology presents improved multi-modal 

data fusion, resulting in better predictions and agricultural 

sustainability. Future research will target the expansion of the 

dataset to have greater generalizability, the inclusion of other 

environmental and economic variables, and model 

interpretability. Extensions to NOA will be pursued to achieve 

faster convergence. Moreover, real-time deployment in 

precision agriculture systems will be explored for optimal 

greenhouse gas abatement measures and to support 

sustainable agricultural practices across the world. 
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