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Abstract - This paper presents a computational simulation of a stainless steel straight-tube Coriolis sensor, focusing on the 

design and validation of a mathematical model for mass flow measurement. The Finite Element Method (FEM), implemented 

in GNU Octave, is used to solve the differential equations governing the tube’s vibrational behavior. The simulation determines 

the angular resonance frequency (723.6 rad/s) and evaluates mass flow for fluid velocities ranging from 0.5 m/s to 25 m/s. The 

results are validated against reference data from existing literature, demonstrating strong agreement and confirming the 

accuracy of the proposed model. These findings reinforce the potential of Coriolis sensors for precise and efficient mass flow 

measurement in industrial applications such as chemical processing and fluid transport monitoring. 

Keywords - Angular resonance, Computational simulation, Coriolis sensor, Finite element method, Mass flow measurement.

1. Introduction 
1.1. Problem Statement and Research Justification  

Numerous industrial applications, including fluid 

conveyance, product distribution, and process control, rely on 

accurate mass flow measurement. Coriolis effect-based 

flowmeters are distinguished by their exceptional reliability 

and precision among many available approaches. The 

substantial development expenses, particularly during 

experimental prototyping, physical testing, and the 

procurement of commercial sensors, restrict implementation 

across numerous domains. The Finite Element Method (FEM) 

is not the sole technique accessible. Current research typically 

focuses on empirical results or simulations utilizing 

proprietary software without providing a comprehensive 

exposition of the equations governing the system's dynamic 

behavior or employing an open and reproducible 

methodology. This study addresses this requirement by 

offering a computational model utilizing the FEM technique, 

only employing free software such as Python and GNU 

Octave to simulate the behavior of a straight-tube Coriolis 

flowmeter. Two primary contributions arise from two 

fundamental advancements: (1) Python software designed to 

explicitly visualize the formulation of the equations pertinent 

to the model and (2) an Octave script that calculates the 

resonance frequency of the tube, a crucial parameter for 

optimal sensor design. This approach, in contrast to previous 

studies, offers open-source code and a flowchart-supported 

transparent mathematical foundation, enabling other 

academics and engineers to reproduce and enhance it. 

1.2. Importance of the Coriolis Effect in Industrial Processes 

The importance of the Coriolis effect pertains to industrial 

processes. Impact of the Coriolis effect on industrial methods. 

The implementation of sensors based on the Coriolis effect has 

transformed safety in industrial facilities, process 

optimization, and quality control. These tools provide precise 

measurement of mass flow rate and provide real-time data on 

additional fluid parameters, including Its determination 

mostly relies on the characteristics of density and temperature. 

Concentration in multiphase combinations of various phases. 

Derive the volumetric flow rate from the volumetric flow rate. 

Established volumetric flow rate Established volumetric flow 

rate Established volumetric flow rate Derived volumetric flow 

rate. The specific density values (such as API degrees, Brix, 

Plato, Baumé, and Balling) are essential in industries like oil 

refining, food production, pharmaceuticals, and chemical 

processes, where precision and real-time responsiveness are 

crucial. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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1.3. A Benefit of Regulating the Coriolis Effect in Flow 

Measurement 

Enumerate the benefits of mitigating the Coriolis effect in 

flow measurement.  

• Advantages of regulating the Coriolis effect in flow 

measurement.  

• Coriolis flow meters uniquely provide direct mass flow 

measurement, irrespective of fluid characteristics or flow 

profile.  

• The primary advantages are mass flow, density, viscosity, 

and temperature, all integral to multivariable 

measurement.  

• Standard errors of ±0.1% attain a maximum of ±0.15% in 

high-precision models [12].  

• Independence of flow profile: Straight input or output 

parts are unnecessary. 

• A compact installation is ideal for scenarios with spatial 

constraints.  

• Robust immunity to disruptions in processes and external 

vibrations.  

These advantages elucidate the position of Coriolis 

sensors as some of the most sophisticated technology in 

process metrology. 

1.4. Fundamental Concept of Coriolis Flowmeters 

The controlled oscillation of one or more conduits, 

through which the fluid flows constitutes the foundation of the 

operational idea. A quantifiable torsional deviation arises 

from the interplay between the tube's trajectory and the fluid's 

inertia. The protocol is as follows: External actuator tube 

excitation methodology The fluid Coriolis force during transit 

causes a phase shift. The procedure entails ascertaining the 

phase shift with meticulously chosen sensors. Calculate the 

mass flow rate using the time delay as a basis. The density is 

measured in relation to the natural frequency of oscillation. 

Integrated thermal sensors facilitate thermal correction. 

1.5. Originality and the Contribution of Academic Research 

This study is distinctive since it does not depend on 

private simulation tools or experimental data but rather 

provides a wholly numerical and accessible framework for 

modelling Coriolis sensors. This study proposes a free 

software simulation environment mostly utilising Python and 

Octave, in contrast to previous research that focused on 

empirical validation or specialized physical models.  

The complete procedure for mathematically obtaining the 

governing equations is executed. Code that is reproducible and 

meticulously documented for both scholarly and commercial 

use. A design methodology based on the tube's resonance 

frequency facilitates its adaption to various materials. This 

simulation framework now studies Coriolis sensors via the 

Finite Element Method (FEM) utilizing free tools, marking the 

inaugural accessible and open computational investigation. 

1.6. Inherent Limitations of the Proposed Model 

Although it substantially aids in streamlining the 

preliminary design of Coriolis sensors, the model has several 

intrinsic limits. The model primarily focuses on the 

mechanical design of the tube, enabling it to evaluate various 

materials, such as PVC, steel, copper, or stainless steel, solely 

based on Young's modulus, thickness, and elongation, without 

accounting for thermal expansion or variations in fluid 

properties. The model excludes both the thermal expansion of 

the tube and the variation in fluid characteristics. The model 

presumes a consistent flow, excluding the dynamics of 

turbulent regimes. There is a lack of adequate physical 

validation due to the absence of laboratory electrical tests or 

prototypes. The paradigm remains pertinent in computational 

and mathematical fields. These constraints delineate the 

contemporary parameters of the model without undermining 

its significance. The results gained here are anticipated to 

serve as a foundation for future developments that integrate 

thermal elements, advanced fluid dynamics, physical 

validation, and electronic sensor design. 

1.7. Mathematical Formulation of the Coriolis Effect 

 
Fig. 1 Fixed and rotated axis system 

Considering two observers 𝑂 and 𝑂′, where one reference 

frame rotates relative to the other without relative translation. 

Both have a common origin, so their position vectors are 

written as: 

For the observer in the fixed reference frame [4]:  

𝑟(𝑡) = 𝑥𝑒𝑖⃗⃗ ⃗ + 𝑦𝑒𝑗⃗⃗ ⃗ + 𝑧𝑒𝑘⃗⃗ ⃗⃗                                     (1) 

For the observer in the rotating system: 

𝑟(𝑡) = 𝑥′𝑒𝑖
′⃗⃗⃗⃗ + 𝑦′𝑒𝑗

′⃗⃗⃗⃗ + 𝑧′𝑒𝑘
′⃗⃗ ⃗⃗        (2) 

The instantaneous velocity in the stationary system is: 
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dr⃗(t)

dt
=

dx

dt
ei⃗⃗ ⃗ +

dy

dt
ej⃗⃗ ⃗ +

dz

dt
ek⃗⃗ ⃗⃗  (3) 

In the rotating system, considering the variation of the 

unit vectors: 

dr⃗(t)

dt
=

dx′

dt
ei
′⃗⃗⃗ ⃗ + x′

dei
′⃗⃗⃗ ⃗

dt
+

dy′

dt
ej
′⃗⃗⃗ ⃗ + y′

dej
′⃗⃗⃗ ⃗

dt
+

dz′

dt
ek
′⃗⃗ ⃗⃗

+ z′
dek

′⃗⃗ ⃗⃗

dt
 

(4) 

Re-grouping terms: 

dr⃗(t)

dt
= (

dx′

dt
ei
′⃗⃗⃗ ⃗ +

dy′

dt
ej
′⃗⃗⃗ ⃗ +

dz′

dt
ek
′⃗⃗ ⃗⃗ )

+ (x′
dei

′⃗⃗⃗ ⃗

dt
+ y′

dej
′⃗⃗⃗ ⃗

dt
+ z′

dek
′⃗⃗ ⃗⃗

dt
) 

(5) 

It is established that: 

𝑑𝑟

𝑑𝑡
|
fij

≠
𝑑𝑟

𝑑𝑡
|
gir

 (6) 

The ratio of velocities between systems is: 

dr⃗

dt
|
fij

=
dr⃗

dt
|
gir

+ Ω⃗⃗⃗ × r⃗ (7) 

Where: 

- 
𝑑𝑟

𝑑𝑡
|
fij

: Absolute velocity in the fixed system. 

- 
𝑑𝑟

𝑑𝑡
|
gir

: Relative velocity in the rotating system. 

- Ω⃗⃗⃗: Angular velocity vector of the rotating system. 

- Ω⃗⃗⃗ × 𝑟: Drag speed due to rotation. 

 

Differential operator: 

d

dt
|
fij

=
d

dt
|
gir

+ Ω⃗⃗⃗ (8) 

Applying to acceleration: 

dv⃗⃗

dt
|
fij

=
dv⃗⃗

dt
|
gir

+ Ω⃗⃗⃗ × v⃗⃗ (9) 

Substituting and developing: 

𝑑�⃗�

𝑑𝑡
|
fij

=
𝑑

𝑑𝑡
(𝑣′⃗⃗⃗⃗ + Ω⃗⃗⃗ × 𝑟)|gir + Ω⃗⃗⃗ × (𝑣′⃗⃗⃗⃗ + Ω⃗⃗⃗ × 𝑟) (10) 

= a′⃗⃗⃗ ⃗ +
dΩ⃗⃗⃗

dt
× r′⃗⃗ ⃗ + 2Ω⃗⃗⃗ × v′⃗⃗⃗⃗ + Ω⃗⃗⃗ × (Ω⃗⃗⃗ × r⃗) (11) 

Final acceleration ratio: 

a⃗⃗ = a′⃗⃗⃗ ⃗ +
dΩ⃗⃗⃗

dt
× r′⃗⃗ ⃗ + 2Ω⃗⃗⃗ × v′⃗⃗⃗⃗ + Ω⃗⃗⃗ × (Ω⃗⃗⃗ × r⃗) (12) 

Coriolis acceleration: 

ac⃗⃗ ⃗⃗ = −2Ω⃗⃗⃗ × v⃗⃗ (13) 

Matrix expression: 

𝑎𝑐⃗⃗⃗⃗⃗ = −2 [

𝑒𝑖⃗⃗ ⃗ 𝑒𝑗⃗⃗ ⃗ 𝑒𝑘⃗⃗ ⃗⃗

0 0 Ω
𝑣𝑥 𝑣𝑦 𝑣𝑧

]  (14) 

Coriolis force: 

Fc
⃗⃗ ⃗⃗ = mac⃗⃗ ⃗⃗ = −2mΩ⃗⃗⃗ × v⃗⃗ = 2p⃗⃗ × Ω⃗⃗⃗ (15) 

2. State of the Art 
2.1. A Simple Parametric Design Model for Straight-Tube 

Coriolis Flowmeters. [1] 

2.1.1. Objective 

Develop a simple parametric model to predict the 

sensitivity and natural frequency of straight-tube Coriolis 

flowmeters while minimizing reliance on costly numerical 

simulations. 

2.1.2. Methodology 

A one-dimensional (1D) numerical simulation, based on 

the finite difference method, is used to derive a parametric 

model characterized by three non-dimensional parameters: 

bending stiffness (𝛴), proximity to the buckling limit (𝑅), and 

sensor separation distance (𝜒). The model is experimentally 

validated using 11 data sets. 

2.1.3. Result and Contributions 

The model predicts sensitivity with an error margin of 2–

5% and enables the estimation of the natural frequency, 

providing designers with a quick and intuitive tool for 

optimizing sensor performance. 

2.1.4. Limitations 

The 1D approach may not fully capture complex three-

dimensional dynamics, and validation was performed under a 

limited range of conditions and materials. 

2.2. Coriolis Flowmeters-A Review of Developments Over 

the Past 20 Years. [2] 

2.2.1. Objective 

Conduct a comprehensive review of advancements in 

Coriolis-based flow measurement technology over the past 
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two decades, covering theoretical models, analytical methods, 

signal processing techniques, and industrial applications. 

2.2.2. Methodology 

A systematic literature review integrating studies, patents, 

and industrial developments to classify and analyze trends and 

challenges in Coriolis flowmeter technology. 

2.2.3. Result and Contributions 

Key developments include the expanded application of 

Coriolis meters, advancements in numerical modeling 

techniques (e.g., finite element method, FEM, and 

computational fluid dynamics, CFD), and the emergence of 

new signal processing methods to enhance accuracy and 

stability. 

2.3. Fluid-Solid Interaction Simulation Methodology for 

Coriolis Flowmeter Operation Analysis. [3] 

2.3.1. Objective 

Develop and validate a fluid-solid interaction simulation 

methodology for Coriolis flowmeters, identifying the most 

suitable turbulence models and evaluating configuration 

simplifications. 

2.3.2. Methodology 

A coupled approach using finite volume simulation for 

the fluid and finite element modeling for the solid structure. 

Three turbulence models (RSM, SST, and SST-CC) are 

compared. The study also examines the impact of modeling 

simplifications, such as equivalent tube length, sensor mass 

inclusion, and structural reinforcements. Validation is 

performed by comparing simulation results with experimental 

data, ensuring an error margin of less than 5%. 

2.3.3. Result and Contributions 

• The Reynolds Stress Model (RSM) is the most accurate, 

particularly in high-speed flows. 

• Omitting reinforcements and using an equivalent length 

approximation introduces significant errors. 

• Experimental validation confirms an error of less than %, 

proving the reliability of the proposed methodology for 

future Coriolis flowmeter studies. 

 

2.3.4. Limitations 

Sensitivity to material property variations is observed. 

Temperature effects are not considered. The computational 

cost is high due to the complexity of fluid-solid interaction 

modeling. 

2.4. Analysis 

The evolution of mass flow measurement using Coriolis 

sensors has followed three fundamental research directions: 

Development of simplified models for rapid design and 

performance prediction. 

Comprehensive reviews synthesizing advancements in 

modeling and signal processing techniques. 
 

Experimental validation to assess the accuracy and 

practical feasibility of theoretical models. 
 

Serving as a useful tool for the first design of sensors 

without depending on computationally intensive simulations, 

C.L. Ford's study [1] presented a parametric model that offers 

a quick and simple approach to estimating sensitivity and 

natural frequency. Its one-dimensional form, however, limits 

the model's. Conversely, the current work uses a finite element 

method (FEM) applied in GNU Octave to enable a complete 

resolution of the governing differential equations, including 

the Coriolis, inertial, and elastic components.  

This comprehensive formulation enables the depiction of 

the mass flow response and vibrational dynamics of the sensor 

with greater accuracy and depth. Furthermore, by utilizing 

open-source tools and ensuring all computational processes 

are repeatable, the proposed framework guarantees higher 

accuracy, flexibility, and transparency, unlike simplified 

models or commercial black-box software. These elements 

together help to increase the accuracy of the simulation and 

show the benefits of this approach above the ones already 

mentioned in the literature.  

In contrast, the review by Tao Wang & Roger Baker [2] 

provides a broader perspective on the development of Coriolis 

flowmeters, highlighting the increasing reliance on advanced 

modeling techniques such as finite element methods (FEM) 

and computational fluid dynamics (CFD). While these 

techniques enhance accuracy, the review also identifies 

challenges such as zero stability and multiphase flow 

measurement, which remain key areas for innovation. 

Evgeniia Shavrina [3] takes a step further by 

incorporating fluid-solid interaction modeling to evaluate the 

impact of turbulence models and design simplifications. This 

study demonstrates that neglecting structural reinforcements 

or assuming equivalent tube lengths introduces significant 

errors, reinforcing the importance of high-fidelity simulations. 

However, it also highlights the high computational cost 

associated with such detailed modeling. 
 

2.4.1. Identified Gaps in the Literature 

Notwithstanding these advancements, there exists a deficiency 

of: 

Lack of computer simulations: No previous work has 

fully simulated Coriolis sensors for mass flow measurement, 

especially for a mathematically complex model. Now, 

published works rely on either simplified parametric models 

or empirical validation.  

Lack of open-source alternatives: For FEM-based studies, 

past studies rely on proprietary or commercial software. By 

means of free and open-source software (GNU Octave), our 
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approach enhances the accessibility of the methodology for 

next projects and commercial uses. 

Lack of mathematical derivations: None of the earlier 

studies have completely developed the controlling equations, 

even if numerical and empirical techniques are used. Our work 

ensures a strong theoretical basis by a complete mathematical 

treatment of the Coriolis effect in straight-tube sensors. 
 

Restricted transparency in methodology: Unlike most 

previous studies with just final results, our work presents 

complete flowchart diagrams showing the sequential 

simulation process. To ensure total repeatability and 

encourage more specialised development, we also freely 

provide all source code in GNU Octave. 
 

2.4.2. Positioning of the Present Study 

Building on these previous contributions, the present 

research integrates a finite element method (FEM) approach 

to simulate Coriolis sensor vibrations and compute critical 

parameters such as angular resonance frequency and mass 

flow rate. By employing fully developed mathematical 

equations and free computational tools, this study provides an 

alternative to traditional commercial software while 

maintaining a high level of accuracy. 

Furthermore, by providing all source code in GNU 

Octave along with detailed flowchart diagrams, we ensure full 

transparency and reproducibility, setting a new standard for 

open-source computational research in Coriolis mass flow 

measurement. This marks the first computational simulation 

in the field where mathematical derivations, open-source 

software, and fully accessible code are combined into a single 

comprehensive framework. Future research should focus on 

integrating temperature effects, material variability, and real-

world validation, ensuring further improvements in accuracy 

and reliability. 

3. Resources and Methods 
3.1. Computational Resources 

In this study, a computational simulation of the straight 

stainless steel tube Coriolis sensor was performed. The 

resources used were as follows: 

 

3.1.1. Software 

• GNU Octave: Programming environment used to 

implement the Finite Element Method (FEM) and solve 

the differential equations describing the tube's vibration. 

• Custom Algorithms: Scripts were developed in Octave 

for calculating resonance frequencies, phase shift, and 

mass flow rate. 

 

3.1.2. Hardware 

• Computer: A system with an Intel Core i5 8th processor 

and 16 GB of RAM was used to run the simulations. 

 

3.1.3. Input Data 

• Tube Properties: Theoretical data for a stainless-steel tube 

were used, including its Young's modulus 𝐸 = 1.93 ×
1011 𝑃𝑎, density (ρ𝑡 = 7900 kg/m³), outer diameter 

(𝐷𝑒𝑥𝑡 = 0.0127 m), inner diameter (𝐷𝑖𝑛𝑡 =  9.53 × 10−3 

m), and length (𝐿 =  0.75 m). 

• Fluid Properties: Water was considered as the working 

fluid, with a density (𝑟ℎ𝑜𝑓 =  1000 kg/m³) and a velocity 

range from 0.5 m/s to 25 m/s. 
 

3.1.4. Simulation Parameters 

• Number of Finite Elements: The tube was discretized into 

52 finite elements to ensure the accuracy of the results. 

• Boundary Conditions: Fixed boundary conditions were 

applied at the tube's ends to simulate its attachment in a 

real system. 
 

3.2. Methods 

The study was based on the computational simulation of 

the Coriolis sensor using the Finite Element Method (FEM). 

The complete details of the simulation methodology are 

described in the Simulation Methodology section. 
 

3.2.1. Formulation of Forces Acting on a Vibrating Straight 

Tube 

It is proposed to simulate the design of a straight tube 

sensor to measure mass flow by deriving the differential 

equations based on the Coriolis Effect that describe its motion. 

These equations, related to the vibration of a fixed tube at both 

ends, are solved by means of standardized mathematical 

expressions in [5-7]. 

 

𝐸𝐼
∂4𝑦

∂𝑥4
+ 𝑀𝑓𝑉

2
∂2𝑦

∂𝑥2
+ 2𝑀𝑓𝑉

∂2𝑦

∂𝑡 ∂𝑥

+ (𝑀𝑡 + 𝑀𝑓)
∂2𝑦

∂𝑡2
= 0 

(16) 

With boundary conditions imposed at both ends fixed: 

𝑦(0, 𝑡) =
∂𝑦

∂𝑥
|𝑥=0 = 𝑦(𝐿, 𝑡) =

∂𝑦(𝐿, 𝑡)

∂𝑥
= 0 (17) 

The Euler-Bernoulli model is applied to the analysis of 

vibrations in circular beams fixed at both ends, considering 

deformations and slopes generated by the motion.  

 

This defines a four-degree-of-freedom system for the 

vibrating tube-fluid, with key factors being the transverse 

elongation of the tube and the bending stiffness coefficient 

derived from Young's modulus and moment of area. 
 

Where: 

𝐸: Young's modulus of straight pipe, [𝑁/𝑚2 ]. 
𝐼: Second moment of the cross-sectional area of the circular 

tube [𝑚4]. 

𝑥: Position along the length of the tube, related to the load per 

unit length. 
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𝑡: Time variable. 

𝑉: Velocity of the fluid inside the tube. 

𝑦 =  𝑦(𝑥, 𝑡): Instantaneous elongation of oscillation in the 

direction transverse to the fluid flow relative to the horizontal 

axis of symmetry. 

𝐸𝐼: Coefficient of bending stiffness of the tube. It comes from 

the product of Young's modulus and the second moment of 

area. 

𝑉: Velocity of the fluid inside the tube. 

𝑀𝑓: Mass per unit length of the fluid. 

𝑀𝑡: Mass per unit length of the tube. 

Equation (16) is in the steady state; each of the terms is 

expressed at the level of differential equations and is denoted: 

• 𝐸𝐼
∂4𝑦

∂𝑥4 : Elastic force stored by the flexural rigidity of the 

straight tube; this is the internal force that resists the 

deformation of the tube due to its rigidity; when the tube 

is bent, its rigidity generates a force that tries to return it 

to its original shape. It is like a spring that opposes to be 

stretched or compressed; the direction of this force is 

opposite to the direction that the tube is bent. 

• 𝑀𝑓𝑉
2 ∂2𝑦

∂𝑥2: Centripetal force that originates due to the 

motion of the fluid is the force that appears when 

something moves inside the tube (such as a fluid) at a 

velocity (V).  It is an outward force due to motion. 

• 2𝑀𝑓𝑉
∂2𝑦

∂𝑡 ∂𝑥
: Coriolis force or Coriolis effect that is evident 

on the fluid.   

• (𝑀𝑡 + 𝑀𝑓)
∂2𝑦

∂𝑡2: Inertial force of fluid mass and the mass 

of the oscillating tube section is the resistance of the mass 

of the tube and the mass of the fluid to change its state of 

motion (acceleration or deceleration) if the tube is 

vibrating or moving, its mass generates a force that 

opposes these changes. 

 

From equation (18), it is obtained that an externally 

applied force establishes the dynamic equation where each of 

the terms of the first member is a differential equation as 

expressed below, which is a standard differential equation that 

applies to the vibration theory of beams, proposed by Euler-

Bernoulli. [8-9], which are very traditional in practical 

applications: 

𝐸𝐼
∂4𝑦

∂𝑥4
+ 𝑀𝑓𝑉

2
∂2𝑦

∂𝑥2
+ 2𝑀𝑓𝑉

∂2𝑦

∂𝑡 ∂𝑥

+ (𝑀𝑡 + 𝑀𝑓)
∂2𝑦

∂𝑡2

= 𝐹0 sin(ω𝑡) 

(18) 

 

It is considered a tube of length (L), homogeneous linear 

density, and a uniform circular cross-section along its length. 

The Figure (2) presents a schematic of the tube-fluid system, 

highlighting the following aspects: 

 

Fig. 2 General schematic of the Coriolis sensor straight tube: (a)Tube 

Length, (b) Thickness, (c) Tube inner diameter, (d) Fluid inlet velocities, 

(e) Fluid outlet velocities, and (f) Fixed initial and final ends. 

In the absence of external loads, the axis of symmetry of 

the tube is a straight line joining the centroids of all cross-

sections. When a vertical load is applied to the tube, it 

undergoes distortion, and the resulting deflection curve 

follows the shape of the tube. It is assumed that the x-axis 

coincides with the axis of symmetry and that the deflection 

𝑦(𝑥, 𝑡) is measured positively downward. According to the 

theory of elasticity, the bending moment 𝑀(𝑥) at a point 𝑥 

along the tube is related to the load per unit length by a specific 

equation: 

𝑑2𝑀(𝑥)

𝑑𝑥2
= ω(𝑥) (19) 

Where ω(𝑥) is the mass resistance of the tube and of the 

fluid mass to the change of its state of motion; in addition, the 

moment 𝑀(𝑥) is proportional to the curvature Κ of the elastic 

curve, where 𝐸 and 𝐼 are constants, 𝐸 is the modulus of 

elasticity of the material used, and 𝐼 is the second moment of 

the cross-sectional area of the circular tube. The product is 

called the bending stiffness. Now, according to the 

calculations, the curvature is given by: 

𝜅 =
𝑦′′

[1 + 𝑦′2]3/2
 (20) 

For small deflections,  𝑦′ ≈ 0, therefore [1 + 𝑦′2]3/2 ≈
1, and the equation is simplified to: 

𝜅 ≈ 𝑦′′ (21) 

The second derivative of this expression is: 

𝑑2𝑀

𝑑𝑥2
= 𝐸𝐼

𝑑4𝑦

𝑑𝑥4
= ω(𝑥) (22) 

It is seen that the deflection 𝑦(𝑥) satisfies the fourth-order 

differential equation: 

𝐸𝐼
𝑑4𝑦

𝑑𝑥4
= ω(𝑥) (23) 
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The conditions associated with the equation depend on 

how the pipe ends are located. If both ends are embedded or 

fixed, then the boundary conditions that are established are: 

• 𝑦(0) = 𝑈𝑖1: It expresses the deflection at the initial 

end. 

• 𝑦′(0) = 𝑈𝑖2: The deflection curve is tangent to the x-

axis, i.e., the slope of the curve formed by the beam. 

• 𝑦(𝐿) = 𝑈𝑗1: Deflection at the end. 

• 𝑦′(𝐿) = 𝑈𝑗2:  The deflection curve is tangent to the 

x-axis, the slope at the end. 

 

4. Solution by the Finite Element Method 
The solution to the equation is proposed using the finite 

element method, which involves discretizing the problem into 

nodes and elements, and then assembling or globalizing the 

results. A solution of the form is assumed: 

𝑦(𝑥, 𝑡) = (𝐶1 + 𝐶2𝑥 + 𝐶3𝑥
2 + 𝐶4𝑥

3)𝑒−𝑖ω𝑡  (24) 

From the development of the corresponding shape 

function (see Appendix A), a globalized function is obtained 

so that the equation can be rewritten as follows: 

𝑦(𝑥) = (1 −
3𝑥2

𝐿2
+

2𝑥3

𝐿3
)𝑈𝑖1

+ (𝑥 −
2𝑥2

𝐿
+

𝑥3

𝐿2
)𝑈𝑖2

+ (
3𝑥2

𝐿2
−

2𝑥3

𝐿3
)𝑈𝑗1

+ (−
𝑥2

𝐿
+

𝑥3

𝐿2
)𝑈𝑗2 

(25) 

Expressed in matrix form: 

𝑋 =

[
 
 
 
 
 
 
 
 1 −

3𝑥2

𝐿2
+

2𝑥3

𝐿3

𝑥 −
2𝑥2

𝐿
+

𝑥3

𝐿2

3𝑥2

𝐿2
−

2𝑥3

𝐿3

−
𝑥2

𝐿
+

𝑥3

𝐿2 ]
 
 
 
 
 
 
 
 

 (26) 

Moreover, the initial conditions matrix is: 

𝑈 =

[
 
 
 
𝑈𝑖1

𝑈𝑖2

𝑈𝑗1

𝑈𝑗2]
 
 
 
 (27) 

Obtaining the matrix is essential for calculating its 

elements, which are defined for a segment with two nodes and 

one element, as per the Finite Element Method. These 

elements are derived by applying the differential operator on 

the corresponding function and minimizing errors by means of 

the Galerkin method, considering a permanent regime where 

the second member is zero. 

𝑦(𝑥, 𝑡) = [𝑋]𝑇[𝑈]𝑒𝑖ω𝑡 (28) 

The elementary matrices ([𝐴]), ([𝐵]), ([𝐶]), ([𝐷]) are of 

the same order (4 × 4) in each case. Considering that the 

matrices are derived with respect to ( 𝑥 ) and then can be 

summed matrixially ([𝐾] = [𝐴] + [𝐵]). Writing most 

compactly, the equation (16) for the permanent regime takes 

the form: 

[𝐾𝑔] + 𝑖 ω[𝐶𝑛] − ω2[𝐷𝑛] = 0 (29) 

Where the angular frequency (ω) of oscillation appears, 

which is the resonance frequency of the oscillation system of 

the straight pipe sensor that transports the water fluid. 

5. Simulation Methodology 
The simulation was conducted using the Finite Element 

Method (FEM) to model the vibration of a straight stainless 

steel tube subjected to the Coriolis effect. The process is 

divided into three main stages: 

• Definition of parameters and calculation of geometric 

properties. 

• Assembly of global matrices. 

• Calculation of resonance frequencies. 

For practical purposes and to optimize simulation time, a 

discretization of 52 finite elements was employed. However, 

the number of elements can be adjusted by modifying a single 

variable in the script provided in the annexes.  

The model implementation was carried out in the Octave 

environment, which provides a balance between accuracy and 

computational efficiency in calculating the system's dynamic 

responses. 

5.1. Simulation Parameters 

Table (1) summarizes the parameters used in the 

simulation of the straight-tube Coriolis sensor. These values 

were selected based on the properties of stainless steel and 

water as the working fluid. 

These parameters enable the calculation of the system's 

geometric and mechanical properties, such as tube thickness, 

cross-sectional area, and second moment of area, which are 

essential for the simulation. Additionally, the number of finite 

elements (𝒏) can be modified by adjusting a single variable in 

the code provided in the annexes, allowing for greater 

flexibility in the simulation setup. 
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Table 1. Parameters used in the simulation 

Parameter Value Unit 

Young's Modulus (𝐸) 1.9 × 1011 Pa 

Outer tube diameter 

(𝐷𝑒𝑥𝑡) 
0.0127 m 

Inner tube diameter 

(𝐷𝑖𝑛𝑡) 

9.53 × 10−3 

 
m 

Tube density (𝜌𝑡) 7900 kg/m3 

Fluid density (𝜌𝑓) 1000 kg/m3 

Tube length (𝐿) 0.75 m 

Number of finite 

elements (𝑛) 
52 - 

Fluid velocity (𝑉) 5 m/s 

 

5.2. Calculation of Geometric Properties 

The geometric and mechanical properties are calculated 

as follows: 

𝐸𝑡 =
𝐷ext − 𝐷int

2
 (30) 

𝑅𝑚 =
𝐷ext + 𝐷int

4
 (31) 

𝐴𝑡 =
𝜋

4
(𝐷ext

2 − 𝐷int
2 ) (32) 

𝑀𝑡 = 𝜌𝑡  𝐴𝑡 (33) 

𝐼𝑡 =
𝜋

64
(𝐷ext

4 − 𝐷int
4 ) (34) 

𝐴𝑓 =
𝜋

4
𝐷int

2  (35) 

𝑀𝑓 = 𝜌𝑓  𝐴𝑓 (36) 

Where: 

• (𝐸𝑡): Total thickness.   

• (𝑅𝑚): Mean radius.   

• (𝐴𝑡): Cross-sectional area.   

• (𝑀𝑡): Cross-sectional mass.   

• (𝐼𝑡): Cross-sectional moment of inertia.   

• (𝐴𝑓): Fluid area.   

• (𝑀𝑓): Fluid mass. 

 

5.3. Assembly of Global Matrices 

To model the system dynamics, the global matrices are 

assembled from the local matrices of each finite element. 

When using n finite elements, the matrices 
[𝐴],[𝐵],[𝐶],𝑎𝑛𝑑[𝐷] have dimensions of 2𝑛 + 2. This is 

because each element introduces two degrees of freedom 

(deflection and slope) at each node, and the global system has 

𝑛 +  1 nodes. 

5.3.1. Local Matrices 

The local matrices for each element are of size 4 × 4 and 

are defined as follows [11]: 

Local stiffness matrix: 

[𝐴]𝑛 = [

12 6𝐿 −12 6𝐿
6𝐿 4𝐿2 −6𝐿 2𝐿2

−12 −6𝐿 12 −6𝐿
6𝐿 2𝐿2 −6𝐿 4𝐿2

] (37) 

Local centrifugal force matrix: 

[𝐵]𝑛 =

[
 
 
 
 
 
 
 

6

5𝐿

1

10
−

6

5𝐿

1

10
1

10

2𝐿

15
−

1

10
−

𝐿

30

−
6

5𝐿
−

1

10

6

5𝐿
−

1

10
1

10
−

𝐿

30
−

1

10

2𝐿

15 ]
 
 
 
 
 
 
 

 (38) 

Local Coriolis matrix: 

[𝐶]𝑛 =

[
 
 
 
 
 
 
 
 −

1

2

𝐿

10

1

2
−

𝐿

10

−
𝐿

10
0

𝐿

10
−

𝐿2

60

−
1

2
−

𝐿

10

1

2

𝐿

10
𝐿

10

𝐿2

60
−

𝐿

10
0 ]

 
 
 
 
 
 
 
 

 (39) 

Local mass matrix: 

[𝐷]𝑛 =

[
 
 
 
 
 
 
 
 

13𝐿

35

11𝐿2

210

9𝐿

70
−

13𝐿2

420
11𝐿2

210

𝐿3

105

13𝐿2

420
−

𝐿3

140
9𝐿

70

13𝐿2

420

13𝐿

35
−

11𝐿2

210

−
13𝐿2

420
−

𝐿3

140
−

11𝐿2

210

𝐿3

105 ]
 
 
 
 
 
 
 
 

 (40) 

5.3.2. Assembly of the Global Matrix 

The global matrix is obtained by assembling the 

contributions of individual elements, considering the overlap 

at shared nodes. For 𝑛 =  2, the global matrix is structured as 

follows: 

[𝐴]𝑛 = [
[𝐴]element 1 Overlap

Overlap [𝐴]element 2

] (41) 

For the specific case of n = 2 elements, the global stiffness 

matrix [𝐴]𝑔𝑙𝑜𝑏𝑎𝑙  takes the form: 
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[𝐴]𝑛 =

[
 
 
 
 
 

12 6𝐿 −12 6𝐿 0 0
6𝐿 4𝐿2 −6𝐿 2𝐿2 0 0

−12 −6𝐿 24 0 −12 6𝐿
6𝐿 2𝐿2 0 8𝐿2 −6𝐿 2𝐿2

0 0 −12 −6𝐿 12 −6𝐿
0 0 6𝐿 2𝐿2 −6𝐿 4𝐿2 ]

 
 
 
 
 

 (42) 

Similarly, the matrices [𝐵]𝑛, [𝐶]𝑛, and [𝐷]𝑛 are 

assembled considering the overlap at shared nodes. 

5.4. Calculation of Resonance Frequencies 

The resonance frequencies are obtained by solving the 

eigenvalue problem of the following equation: 

[𝐾𝑔] = ℎ1[𝐴]𝑛 + ℎ2[𝐵]𝑛 (43) 

[𝐸𝑔] = ℎ3[𝐶]𝑛 (44) 

[𝑀𝑔] = ℎ4[𝐷]𝑛 (45) 

With: 

ℎ1 =
𝐸𝐼𝑡
𝐿3

 (46) 

ℎ2 = 𝑀𝑓𝑉
2 (47) 

ℎ3 = 2𝑀𝑓𝑉 (48) 

ℎ4 = 𝑀𝑓 + 𝑀𝑡 (49) 

The eigenvalue equation is solved using the following 

command in GNU Octave: 

1 [X, e] = polyeig(Kg, i*Eg, -Mg) 

5.5. Phase Shift and Mass Flow as a Function of Fluid 

Velocity 

The phase shift (Δϕ) and the mass flow rate (�̇�) were 

calculated as a function of the fluid velocity (𝑉) using 

established mathematical models. The results show that the 

phase shift decreases as the fluid velocity increases while the 

mass flow rate follows a linear increasing trend. 

5.5.1. Mathematical Models Used 

The phase shift is calculated using the following equation 

[10]: 

Δϕ = 𝑐 (
2𝑓21𝑔1𝑀𝑓𝑉

𝐿θ2(𝑀𝑓 + 𝑀𝑡)(𝑔1
2 − 𝑔2

2)
)𝐴1 

(50) 

Where: 

( Δϕ): Phase shift.   

(�̇�): Mass flow rate.   

( 𝑐 ): Modified amplitude.   

(𝑓21): Factor related to vibration modes.   

(𝑔1, 𝑔2): Frequencies related to the sensors.   

(𝑀𝑓): Fluid mass per unit length.   

( 𝑉 ): Fluid velocity.   

( 𝐿 ): Tube length.   

(θ2): Factor related to the second vibration mode.   

(𝐴1): Amplitude ratio.   

The mass flow rate is calculated as [10]: 

�̇� =
Δϕ 𝐿 θ2 (𝑀𝑓 + 𝑀𝑡) (𝑔1

2 − 𝑔2
2)

2𝐴1𝑔1𝑐𝑓21

. (51) 

5.5.2.  Derivation of the Second Expression 

To derive the second expression, we start from the first 

equation and isolate the mass flow rate (�̇�). The procedure is 

detailed below: 

Start with the phase shift equation [10]:  

Δ𝜙 = 𝑐 (
2𝑓21𝑔1𝑀𝑓𝑉

𝐿𝜃2(𝑀𝑓+𝑀𝑡)(𝑔1
2−𝑔2

2)
)𝐴1     (52) 

 

Isolate the term (𝑀𝑓𝑉):   

  𝑀𝑓𝑉 =
Δ𝜙 𝐿 𝜃2 (𝑀𝑓+𝑀𝑡) (𝑔1

2−𝑔2
2)

2𝐴1𝑔1𝑐𝑓21
 (53) 

 

Relate (𝑀𝑓𝑉) to the mass flow rate (�̇�), since:   

   �̇� = 𝑀𝑓𝑉  (54) 

 

Finally, obtain the mass flow rate equation:   

  �̇� =
Δ𝜙 𝐿 𝜃2 (𝑀𝑓+𝑀𝑡) (𝑔1

2−𝑔2
2)

2𝐴1𝑔1𝑐𝑓21
 (55) 

6. Description of the Programs Used 
This section describes the programs developed for the 

simulation and analysis of the vibration of a straight stainless 

steel tube subjected to the Coriolis effect.  

The programs were implemented in Octave and were used 

to calculate the resonance frequencies, phase shift, and mass 

flow rate as a function of fluid velocity. 

Simulation parameters employed in this work are shown 

in Table 1, which displays all the physical and geometrical 

quantities of interest for the calculations.  

The values listed in Table 1 are the input parameters to 

the Octave programs, with which an accurate reproduction of 

the vibrational behavior of the tube is achieved, influenced by 

the Coriolis force. These attributes are the physical properties 

and dimensions necessary for the computational analysis. 

6.1. Program 1: Calculation of Natural Frequencies 

The first program aims to calculate the natural resonance 

frequency of the tube using the Finite Element Method (FEM). 
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The algorithm is described below: 

Algorithm 1: Calculation of Natural Frequencies 

Require: Input parameters: 𝐸, 𝐷𝑒𝑥𝑡 , 𝐷𝑖𝑛𝑡 , 𝜌𝑡  , 𝜌𝑓 , 𝐿, 𝑁, 𝑉. 

Ensure: Natural resonance frequency.  

1: Calculate geometric properties: 𝐸𝑡 , 𝑅𝑚,  𝑀𝑡 , 𝐼𝑡 , 𝐴𝑓 , 𝑀𝑓 .   

2: Calculate coefficients: ℎ1, ℎ2, ℎ3, ℎ4.  
3: Define local matrices: [𝐴]𝑛 , [𝐵]𝑛: [𝐶]𝑛 , [𝐷]𝑛.  
4: Assemble global matrices: [𝐴]𝑔𝑙𝑜𝑏𝑎𝑙 , [𝐵]𝑔𝑙𝑜𝑏𝑎𝑙 ,  

[𝐶]𝑔𝑙𝑜𝑏𝑎𝑙 , [𝐷]𝑔𝑙𝑜𝑏𝑎𝑙 . 

5: Compute global matrices: [𝐾𝑔], [𝐸𝑔], [𝑀𝑔].  

6: Solve eigenvalue problem: polyeig([𝐾𝑔], 𝑖[𝐸𝑔],  

    −[𝑀𝑔]). 

7: Obtain natural frequency: frequency=real(𝑒(𝑆𝑧 , 1)). 

6.2. Program 2: Convergence of the Natural Frequency 

The second program evaluates the convergence of the 

natural frequency as the number of finite elements increases. 

The algorithm is described below: 

Algorithm 2 Convergence of the Natural Frequency 

Require: Input parameters: 𝐸, 𝐷𝑒𝑥𝑡 , 𝐷𝑖𝑛𝑡 , 𝜌𝑡  , 𝜌𝑓 , 𝐿,  

𝑁𝑣𝑎𝑙𝑢𝑒𝑠 , 𝑉. 
Ensure: Natural resonance frequency for different values 

of 𝑁. 

1: for each 𝑁 in 𝑁𝑣𝑎𝑙𝑢𝑒𝑠 𝒅𝒐 

2: Calculate element length: L=
𝐿𝑡𝑜𝑡𝑎𝑙

𝑛
 

3: Calculate coefficients: ℎ1, ℎ2, ℎ3, ℎ4.  
4: Define local matrices: [𝐴]𝑛 , [𝐵]𝑛: [𝐶]𝑛 , [𝐷]𝑛.  
5: Assemble global matrices: [𝐴]𝑔𝑙𝑜𝑏𝑎𝑙 , [𝐵]𝑔𝑙𝑜𝑏𝑎𝑙 ,  

[𝐶]𝑔𝑙𝑜𝑏𝑎𝑙 , [𝐷]𝑔𝑙𝑜𝑏𝑎𝑙 . 

6: Compute global matrices: [𝐾𝑔], [𝐸𝑔], [𝑀𝑔].  

7: Solve eigenvalue problem: polyeig([𝐾𝑔], 𝑖[𝐸𝑔],  

    −[𝑀𝑔]). 

8: Obtain natural frequency: frequency=real(𝑒(𝑆𝑧 , 1)). 

9: end for  

10: Plot natural frequencies vs number of finite elements. 

6.3. Program 3: Variation of Frequency with Tube Length 

The third program analyzes the variation of the natural 

frequency as a function of the tube length. The algorithm is 

described below: 

Algorithm 3 Variation of Frequency with Tube Length 

Require: Input parameters: 𝐸, 𝐷𝑒𝑥𝑡 , 𝐷𝑖𝑛𝑡 , 𝜌𝑡  , 𝜌𝑓 , 𝑁,  

𝐿𝑣𝑎𝑙𝑢𝑒𝑠 , 𝑉. 
Ensure: Natural frequencies for different tube lengths. 

1: for each 𝐿 in 𝐿𝑣𝑎𝑙𝑢𝑒𝑠  𝒅𝒐 

2: Calculate element length: 𝐿𝑒𝑙𝑒𝑚𝑒𝑛𝑡 =
𝐿

𝑛
 

3: Calculate coefficients: ℎ1, ℎ2, ℎ3, ℎ4.  
4: Define local matrices: [𝐴]𝑛 , [𝐵]𝑛: [𝐶]𝑛 , [𝐷]𝑛.  
5: Assemble global matrices: [𝐴]𝑔𝑙𝑜𝑏𝑎𝑙 , [𝐵]𝑔𝑙𝑜𝑏𝑎𝑙 ,  

[𝐶]𝑔𝑙𝑜𝑏𝑎𝑙 , [𝐷]𝑔𝑙𝑜𝑏𝑎𝑙 . 

6: Compute global matrices: [𝐾𝑔], [𝐸𝑔], [𝑀𝑔].  

7: Solve eigenvalue problem: polyeig([𝐾𝑔], 𝑖[𝐸𝑔],  

    −[𝑀𝑔]). 

8: Obtain natural frequency: frequency=real(𝑒(𝑆𝑧 , 1)). 

9: end for  

10: Plot natural frequencies vs tuve length. 

6.4. Program 4: Calculation of Phase Shift and Mass Flow 

The fourth program calculates the phase shift and mass 

flow rate as a function of fluid velocity. The algorithm is 

described below: 

Algorithm 4 Calculation of Phase Shift and Mass Flow  

Require: Input parameters: 𝐸, 𝐷𝑒𝑥𝑡 , 𝐷𝑖𝑛𝑡 , 𝜌𝑡  , 𝜌𝑓 , 𝐿,  

𝑉𝑣𝑎𝑙𝑢𝑒𝑠. 
Ensure: Phase shift and mass flow rate for different 

velocities. 

1: for each 𝑉 in 𝑉𝑣𝑎𝑙𝑢𝑒𝑠  𝒅𝒐 

2: Calculate geometric properties: 𝐸𝑡 , 𝑅𝑚,  𝑀𝑡 , 𝐼𝑡 , 
𝐴𝑓 , 𝐴𝑡 ,𝑀𝑓 . 

3: Calculate coefficients: ℎ1, ℎ2, ℎ3, ℎ4.  
4: Define local matrices: [𝐴]𝑛 , [𝐵]𝑛: [𝐶]𝑛 , [𝐷]𝑛.  
5: Assemble global matrices: [𝐴]𝑔𝑙𝑜𝑏𝑎𝑙 , [𝐵]𝑔𝑙𝑜𝑏𝑎𝑙 ,  

[𝐶]𝑔𝑙𝑜𝑏𝑎𝑙 , [𝐷]𝑔𝑙𝑜𝑏𝑎𝑙 . 

6: Compute global matrices: [𝐾𝑔], [𝐸𝑔], [𝑀𝑔].  

7: Solve eigenvalue problem: polyeig([𝐾𝑔], 𝑖[𝐸𝑔],  

    −[𝑀𝑔]). 

8: Calculate phase shift: 𝛥𝜙 = 𝑐 (
2𝑓21𝑔1𝑀𝑓𝑉

𝐿𝜃2(𝑀𝑓+𝑀𝑡)(𝑔1
2−𝑔2

2)
)𝐴1 

9: Calculate mass flow rate: �̇� =
𝛥𝜙 𝐿 𝜃2 (𝑀𝑓+𝑀𝑡) (𝑔1

2−𝑔2
2)

2𝐴1𝑔1𝑐𝑓21
 

10: end for  

11: Plot phase shift vs fluid velocity.  

12: Plot mass flow rate vs fluid velocity. 
 

Table 2. Resonance angular frequency calculated using FEM 

Number of Elements Angular Frequency (rad/s) 

1 878.05 

2 724.4 

3 724.89 

4 723.91 

8 723.48 

16 723.61 

20 723.62 

24 723.67 

28 723.63 

32 723.63 

42 723.64 

52 723.64 
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7. Results and Discussion 
7.1. Resonance Angular Frequency 

The resonance angular frequency was calculated using the 

Finite Element Method (FEM), discretizing the tube into 

different numbers of elements. Table (2) shows the obtained 

values, where it can be observed that the angular frequency 

converges to 723.6 rad/s as the number of elements increases. 

Figure (3) illustrates the convergence of the angular 

frequency as the number of elements increases. It can be noted 

that from approximately 16 elements onwards, the values 

barely vary, confirming the stability of the obtained result. 

Fig. 3 Convergence of the Resonance Angular Frequency 

7.2. Variation of Angular Frequency with Respect to the 

Length of the Straight Tube 

To evaluate the effect of the tube length on the resonance 

angular frequency, a series of simulations were performed in 

which the tube lengths were varied while keeping the other 

parameters constant. The Finite Element Method (FEM) with 

52 elements was used, and the natural frequencies were 

calculated for different tube lengths. The lowest natural 

frequency was extracted from each simulation and plotted as 

a function of the tube length. 

The results show an inverse relationship between the tube 

length and the natural frequency, indicating that as the length 

increases, the natural frequency decreases. This behavior is 

consistent with the theory of vibrations in flexible structures, 

where an increase in length results in lower effective stiffness 

and, consequently, a lower resonance frequency. 

Figure (4) illustrates this relationship, clearly showing the 

decreasing trend of the natural frequency as the tube length 

increases. 

Table 3. Frequency obtained for different lengths of the straight tube 

Frequency (Hz) Length (m) 

6512.229 0.25 

3322.548 0.35 

2009.915 0.45 

1345.465 0.55 

963.307 0.65 

723.539 0.75 

563.299 0.85 

Fig. 4 Variation of Angular Frequency with Respect to the Length of the 

Straight Tube 

 

7.3. Calculated Mass Flow 

The mass flow rate was calculated for fluid velocities 

ranging from 0.5 m/s to 25 m/s. The results are shown in Table 

(4) and Figure (5). As observed, the mass flow rate increases 

linearly with the fluid velocity, which is consistent with 

theoretical expectations. 

Table 4. Results obtained from Algorithm 4 (Mass Flow Measured at 

Different Velocities) 

Velocity (m/s) Mass Flow (kg/s) 

0.5 0.036 

5 0.285 

10 0.713 

15 0.999 

20 1.355 

25 1.783 

Fig. 5 Relationship between fluid velocity and mass flow 

8. Conclusion 
This study presented a computational simulation of a 

Coriolis mass flow sensor with a straight stainless-steel tube, 

utilizing the Finite Element Method (FEM) implemented in 

GNU Octave. By discretizing the tube into 52 elements, the 

system's resonance angular frequency was determined, 

converging to 723.6 rad/s as the number of elements 

increased. Additionally, the mass flow rate was computed for 

fluid velocities ranging from 0.5 m/s to 25 m/s, revealing a 

linear relationship between fluid velocity and mass flow rate, 

thereby validating the proposed model. 

A key advantage of this model is its flexibility and 

adaptability. The computational implementation, provided in 
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the appendices, allows for the simulation of any other straight 

tube by simply adjusting the input parameters, such as tube 

dimensions (length, inner and outer diameters), material 

properties (Young’s modulus, density), and fluid 

characteristics (density, velocity). Moreover, the developed 

algorithm is not restricted to 52 finite elements; rather, it 

supports a higher number of elements to enhance simulation 

accuracy, which is particularly beneficial for complex 

configurations or more detailed analyses. 

The results confirm the feasibility of straight-tube 

Coriolis sensors for industrial applications, demonstrating 

their potential for high-precision mass flow measurement. 

However, it is important to note that this study is based on a 

theoretical and numerical model, and experimental validation 

is recommended for future research. Additionally, the 

influence of other factors, such as fluid viscosity, temperature 

variations, and non-ideal operating conditions, should be 

explored to further improve the sensor’s robustness and 

accuracy. 

Future Work 
The results of the research suggest various conceivable 

directions for the next research.   

Development and evaluation of a physical prototype 

should be the main focus of future studies since they will help 

validate the simulation results under practical operational 

settings, so supporting prototype development. Experimental 

calibration and error analysis greatly affect the dependability 

and accuracy of the sensor in industrial environments.   

Comparative Productiveness Against Modern 

Technologies:  Especially for sensitivity, fabrication costs, 

and integration simplicity, a comparison of the straight-tube 

Coriolis sensor to conventional U-shaped and Omega-shaped 

devices may provide critical fresh perspectives on their 

different advantages and limitations.   

Tube design can be improved for increased sensitivity and 

less energy dissipation by the use of advanced optimization 

methodologies like topological optimisation and evolutionary 

algorithms.  Lowering nonlinear effects and outside 

disruptions helps the integration of machine learning models 

to improve data processing and flow rate forecasts.   

The effectiveness of the sensor with non-Newtonian 

fluids (e.g., slurries, polymers) and multiphase flows (e.g., 

gas-liquid, liquid-solid), frequently employed in industrial 

applications including chemical processing, food 

manufacture, and oil transportation, needs more research.  The 

real-time flow measuring, maintenance forecasting help, and 

process management boosting potential via IoT-based 

monitoring systems of the Coriolis sensor will help Industry 

4.0 applications.   

Energy efficiency and power consumption: The sensor's 

relevance in distant or battery-powered applications increases 

by low-power operation, hence improving its feasibility for 

dispersed control systems.  By laying a foundation for the 

manufacturing of more cheaply priced and efficient mass flow 

sensors, this work considerably advances industrial 

instrumentation.  Future research could look at the optimum 

tube geometry and include complex geometrical shapes. 
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Appendix 1: Math Models 
Proposed Form Function 

Whereas: 

𝑦(𝑥, 𝑡) = (𝐶1 + 𝐶2𝑥 + 𝐶3𝑥
2 + 𝐶4𝑥

3)𝑒𝑖ω𝑡 

When ( 𝑥 =  0 ) at the tail end, then: 

𝐶1 = 𝑈𝑖1 

Likewise, the derivative of the function in ( 𝑥 =  0 ): 

𝑑𝑦(𝑥)

𝑑𝑥
|𝑥=0 = 𝐶2 = 𝑈𝑖2 

Similarly, at the other end in ( 𝑥 =  𝐿 ): 

𝑈𝑖1 + 𝑈𝑖2𝐿 + 𝐶3𝐿
2 + 𝐶4𝐿

3 = 𝑈𝑗1 

𝑑𝑦

𝑑𝑥
|𝑥=𝐿 = 𝑈𝑖2 + 2𝐶3𝐿 + 3𝐶4𝐿

2 = 𝑈𝑗2 

A system of equations is obtained to determine the unknown constants 𝐶3 and 𝐶4: 

𝑈𝑖1 + 𝐿𝑈𝑖2 + 𝐿2𝐶3 + 𝐿3𝐶4 = 𝑈𝑗1 

𝑈𝑖2 + 2𝐿𝐶3 + 3𝐿2𝐶4 = 𝑈𝑗2 

Resolving: 

𝐶3 =
3

𝐿2
𝑈𝑗1 −

1

𝐿
𝑈𝑗2 −

3

𝐿2
𝑈𝑖1 −

2

𝐿
𝑈𝑖2 

𝐶4 =
2

𝐿3
𝑈𝑖1 +

1

𝐿2
𝑈𝑖2 −

2

𝐿3
𝑈𝑗1 +

1

𝐿2
𝑈𝑗2 

Now substituting for  𝑦(𝑥): 

𝑦(𝑥) = 𝑈𝑖1 + 𝑥𝑈𝑖2 +
3𝑥2

𝐿2
𝑈𝑖1 −

𝑥2

𝐿
𝑈𝑖2 −

3𝑥2

𝐿2
𝑈𝑖1 −

2𝑥2

𝐿
𝑈𝑖2 +

2𝑥3

𝐿3
𝑈𝑖1 +

𝑥3

𝐿2
𝑈𝑖2 −

2𝑥3

𝐿3
𝑈𝑗1 +

𝑥3

𝐿2
𝑈𝑗2 
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Derivatives of the elements of the matrix X 

The first derivatives are:  

𝑑𝑋𝑖1

𝑑𝑥
= −

6𝑥

𝐿2
+

6𝑥2

𝐿3
 

𝑑𝑋𝑖2

𝑑𝑥
= 1 −

4𝑥

𝐿
+

3𝑥2

𝐿2
 

𝑑𝑋𝑗1

𝑑𝑥
=

6𝑥

𝐿2
−

6𝑥2

𝐿3
 

𝑑𝑋𝑗2

𝑑𝑥
= −

2𝑥

𝐿
+

3𝑥2

𝐿2
 

The second derivatives are: 

𝑑2𝑋𝑖1

𝑑𝑥2
= −

6

𝐿2
+

12𝑥

𝐿3
 

𝑑2𝑋𝑖2

𝑑𝑥2
= −

4

𝐿
+

6𝑥

𝐿2
 

𝑑2𝑋𝑗1

𝑑𝑥2
=

6

𝐿2
−

12𝑥

𝐿3
 

𝑑2𝑋𝑗2

𝑑𝑥2
= −

2

𝐿
+

6𝑥

𝐿2
 

Calculation of the elements of matrix A 

The matrix [A] is defined as:  

𝐴 = (
∂2𝑋

∂𝑥2
)(

∂2𝑋

∂𝑥2
)

𝑇

 

Where: 

(
∂2𝑋

∂𝑥2
) =

[
 
 
 
 
 −

6

𝐿2
+

12𝑥

𝐿3

−
4

𝐿
+

6𝑥

𝐿2

6

𝐿2
−

12𝑥

𝐿3
−

2

𝐿
+

6𝑥

𝐿2 ]
 
 
 
 
 

 

(
∂2𝑋

∂𝑥2
)

𝑇

= [(−
6

𝐿2
+

12𝑥

𝐿3
) (−

4

𝐿
+

6𝑥

𝐿2
) (

6

𝐿2
−

12𝑥

𝐿3
) (−

2

𝐿
+

6𝑥

𝐿2
)] 

The elements of the matrix [𝐴] are calculated as: 
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𝑎11 = ∫ (−
6

𝐿2
+

12𝑥

𝐿3
) (−

6

𝐿2
+

12𝑥

𝐿3
) 𝑑𝑥

𝐿

0

=
12

𝐿3
 

𝑎12 = ∫ (−
6

𝐿2
+

12𝑥

𝐿3
) (−

4

𝐿
+

6𝑥

𝐿2
) 𝑑𝑥

𝐿

0

=
6

𝐿2
 

𝑎13 = ∫ (−
6

𝐿2
+

12𝑥

𝐿3
) (

6

𝐿2
−

12𝑥

𝐿3
) 𝑑𝑥

𝐿

0

= −
12

𝐿3
 

𝑎14 = ∫ (−
6

𝐿2
+

12𝑥

𝐿3
) (−

2

𝐿
+

6𝑥

𝐿2
) 𝑑𝑥

𝐿

0

=
6

𝐿2
 

𝑎21 = ∫ (−
4

𝐿
+

6𝑥

𝐿2
) (−

6

𝐿2
+

12𝑥

𝐿3
) 𝑑𝑥

𝐿

0

=
6

𝐿2
 

𝑎22 = ∫ (−
4

𝐿
+

6𝑥

𝐿2
) (−

4

𝐿
+

6𝑥

𝐿2
) 𝑑𝑥

𝐿

0

=
4

𝐿
 

𝑎23 = ∫ (−
4

𝐿
+

6𝑥

𝐿2
) (

6

𝐿2
−

12𝑥

𝐿3
) 𝑑𝑥

𝐿

0

= −
6

𝐿2
 

𝑎24 = ∫ (−
4

𝐿
+

6𝑥

𝐿2
) (−

2

𝐿
+

6𝑥

𝐿2
) 𝑑𝑥

𝐿

0

=
2

𝐿
 

𝑎31 = ∫ (
6

𝐿2
−

12𝑥

𝐿3
) (−

6

𝐿2
+

12𝑥

𝐿3
) 𝑑𝑥

𝐿

0

= −
12

𝐿3
 

𝑎32 = ∫ (
6

𝐿2
−

12𝑥

𝐿3
) (−

4

𝐿
+

6𝑥

𝐿2
) 𝑑𝑥

𝐿

0

= −
6

𝐿2
 

𝑎33 = ∫ (
6

𝐿2
−

12𝑥

𝐿3
) (

6

𝐿2
−

12𝑥

𝐿3
) 𝑑𝑥

𝐿

0

=
12

𝐿3
 

𝑎34 = ∫ (
6

𝐿2
−

12𝑥

𝐿3
) (−

2

𝐿
+

6𝑥

𝐿2
) 𝑑𝑥

𝐿

0

= −
6

𝐿2
 

𝑎41 = ∫ (−
2

𝐿
+

6𝑥

𝐿2
) (−

6

𝐿2
+

12𝑥

𝐿3
) 𝑑𝑥

𝐿

0

=
6

𝐿2
 

𝑎42 = ∫ (−
2

𝐿
+

6𝑥

𝐿2
) (−

4

𝐿
+

6𝑥

𝐿2
) 𝑑𝑥

𝐿

0

=
2

𝐿
 

𝑎43 = ∫ (−
2

𝐿
+

6𝑥

𝐿2
) (

6

𝐿2
−

12𝑥

𝐿3
) 𝑑𝑥

𝐿

0

= −
6

𝐿2
 

𝑎44 = ∫ (−
2

𝐿
+

6𝑥

𝐿2
) (−

2

𝐿
+

6𝑥

𝐿2
) 𝑑𝑥

𝐿

0

=
4

𝐿
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𝐴 =

[
 
 
 
 
 
 
 

12

𝐿3

6

𝐿2
−

12

𝐿3

6

𝐿2

6

𝐿2

4

𝐿
−

6

𝐿2

2

𝐿

−
12

𝐿3
−

6

𝐿2

12

𝐿3
−

6

𝐿2

6

𝐿2

2

𝐿
−

6

𝐿2

4

𝐿 ]
 
 
 
 
 
 
 

 

Calculation of the elements of matrix B 

The matrix [𝐵] is defined as: 

𝐵 =
∂𝑋

∂𝑥
(
∂𝑋

∂𝑥
)

𝑇

 

Where: 

∂𝑋

∂𝑥
=

−
6𝑥

𝐿2
+

6𝑥2

𝐿3

1 −
4𝑥

𝐿
+

3𝑥2

𝐿2

6𝑥

𝐿2
−

6𝑥2

𝐿3
−

2𝑥

𝐿
+

3𝑥2

𝐿2

 

(
∂𝑋

∂𝑥
)

𝑇

= [(−
6𝑥

𝐿2
+

6𝑥2

𝐿3
) (1 −

4𝑥

𝐿
+

3𝑥2

𝐿2
) (

6𝑥

𝐿2
−

6𝑥2

𝐿3
) (−

2𝑥

𝐿
+

3𝑥2

𝐿2
)] 

The elements of the matrix 𝐵 are calculated as: 

𝑏11 = ∫ (−
6𝑥

𝐿2
+

6𝑥2

𝐿3
) (−

6𝑥

𝐿2
+

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

=
6

5𝐿
 

𝑏12 = ∫ (−
6𝑥

𝐿2
+

6𝑥2

𝐿3
)(1 −

4𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

=
1

10
 

𝑏13 = ∫ (−
6𝑥

𝐿2
+

6𝑥2

𝐿3
) (

6𝑥

𝐿2
−

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

= −
6

5𝐿
 

 

𝑏14 = ∫ (−
6𝑥

𝐿2
+

6𝑥2

𝐿3
) (−

2𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

=
1

10
 

𝑏21 = ∫ (1 −
4𝑥

𝐿
+

3𝑥2

𝐿2
) (−

6𝑥

𝐿2
+

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

=
1

10
 

𝑏22 = ∫ (1 −
4𝑥

𝐿
+

3𝑥2

𝐿2
) (1 −

4𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

=
2𝐿

15
 

𝑏23 = ∫ (1 −
4𝑥

𝐿
+

3𝑥2

𝐿2
) (

6𝑥

𝐿2
−

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

= −
1

10
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𝑏24 = ∫ (1 −
4𝑥

𝐿
+

3𝑥2

𝐿2
) (−

2𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

= −
𝐿

30
 

𝑏31 = ∫ (
6𝑥

𝐿2
−

6𝑥2

𝐿3
) (−

6𝑥

𝐿2
+

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

= −
6

5𝐿
 

𝑏32 = ∫ (
6𝑥

𝐿2
−

6𝑥2

𝐿3
) (1 −

4𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

= −
1

10
 

𝑏33 = ∫ (
6𝑥

𝐿2
−

6𝑥2

𝐿3
) (

6𝑥

𝐿2
−

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

=
6

5𝐿
 

𝑏34 = ∫ (
6𝑥

𝐿2
−

6𝑥2

𝐿3
) (−

2𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

= −
1

10
 

𝑏41 = ∫ (−
2𝑥

𝐿
+

3𝑥2

𝐿2
) (−

6𝑥

𝐿2
+

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

=
1

10
 

𝑏42 = ∫ (−
2𝑥

𝐿
+

3𝑥2

𝐿2
)(1 −

4𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

= −
𝐿

30
 

𝑏43 = ∫ (−
2𝑥

𝐿
+

3𝑥2

𝐿2
) (

6𝑥

𝐿2
−

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

= −
1

10
 

𝑏44 = ∫ (−
2𝑥

𝐿
+

3𝑥2

𝐿2
) (−

2𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

=
2𝐿

15
 

𝐵 =

[
 
 
 
 
 
 
 

6

5𝐿

1

10
−

6

5𝐿

1

10
1

10

2𝐿

15
−

1

10
−

𝐿

30

−
6

5𝐿
−

1

10

6

5𝐿
−

1

10
1

10
−

𝐿

30
−

1

10

2𝐿

15 ]
 
 
 
 
 
 
 

 

Calculation of the Elements of Matrix C 

The matrix [𝐶] is defined as: 

𝐶 = 𝑋 (
∂𝑋

∂𝑥
)

𝑇

 

Where: 

𝑋 =

1 −
3𝑥2

𝐿2
+

2𝑥3

𝐿3

𝑥 −
2𝑥2

𝐿
+

𝑥3

𝐿2

3𝑥2

𝐿2
−

2𝑥3

𝐿3

𝑥2

𝐿
+

𝑥3

𝐿2

 

(
∂𝑋

∂𝑥
)

𝑇

= [(−
6𝑥

𝐿2
+

6𝑥2

𝐿3
) (1 −

4𝑥

𝐿
+

3𝑥2

𝐿2
) (

6𝑥

𝐿2
−

6𝑥2

𝐿3
) (−

2𝑥

𝐿
+

3𝑥2

𝐿2
)] 
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The elements of the matrix [𝐶] are calculated as: 

𝑐11 = ∫ (1 −
3𝑥2

𝐿2
+

2𝑥3

𝐿3
)(−

6𝑥

𝐿2
+

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

= −
1

2
 

𝑐12 = ∫ (1 −
3𝑥2

𝐿2
+

2𝑥3

𝐿3
) (1 −

4𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

=
𝐿

10
 

𝑐13 = ∫ (1 −
3𝑥2

𝐿2
+

2𝑥3

𝐿3
)(

6𝑥

𝐿2
−

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

=
1

2
 

𝑐14 = ∫ (1 −
3𝑥2

𝐿2
+

2𝑥3

𝐿3
)(−

2𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

= −
𝐿

10
 

𝑐21 = ∫ (𝑥 −
2𝑥2

𝐿
+

𝑥3

𝐿2
)(−

6𝑥

𝐿2
+

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

= −
𝐿

10
 

𝑐22 = ∫ (𝑥 −
2𝑥2

𝐿
+

𝑥3

𝐿2
) (1 −

4𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

= 0 

𝑐23 = ∫ (𝑥 −
2𝑥2

𝐿
+

𝑥3

𝐿2
) (

6𝑥

𝐿2
−

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

=
𝐿

10
 

𝑐24 = ∫ (𝑥 −
2𝑥2

𝐿
+

𝑥3

𝐿2
)(−

2𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

= −
𝐿2

60
 

𝑐31 = ∫ (
3𝑥2

𝐿2
−

2𝑥3

𝐿3
) (−

6𝑥

𝐿2
+

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

= −
1

2
 

𝑐32 = ∫ (
3𝑥2

𝐿2
−

2𝑥3

𝐿3
) (1 −

4𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

= −
𝐿

10
 

𝑐33 = ∫ (
3𝑥2

𝐿2
−

2𝑥3

𝐿3
) (

6𝑥

𝐿2
−

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

=
1

2
 

𝑐34 = ∫ (
3𝑥2

𝐿2
−

2𝑥3

𝐿3
) (−

2𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

=
𝐿

10
 

𝑐41 = ∫ (−
𝑥2

𝐿
+

𝑥3

𝐿2
)(−

6𝑥

𝐿2
+

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

=
𝐿

10
 

𝑐42 = ∫ (−
𝑥2

𝐿
+

𝑥3

𝐿2
) (1 −

4𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

=
𝐿2

60
 

𝑐43 = ∫ (−
𝑥2

𝐿
+

𝑥3

𝐿2
)(

6𝑥

𝐿2
−

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

= −
𝐿

10
 

𝑐44 = ∫ (−
𝑥2

𝐿
+

𝑥3

𝐿2
) (−

2𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

= 0 
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𝐶 =

[
 
 
 
 
 
 
 
 −

1

2

𝐿

10

1

2
−

𝐿

10

−
𝐿

10
0

𝐿

10
−

𝐿2

60

−
1

2
−

𝐿

10

1

2

𝐿

10
𝐿

10

𝐿2

60
−

𝐿

10
0 ]

 
 
 
 
 
 
 
 

 

Calculation of the Elements of Matrix D 

The matrix [𝐷] is defined as: 

𝐷 = (𝑋)(𝑋)𝑇 

Where: 

𝑋 =

1 −
3𝑥2

𝐿2
+

2𝑥3

𝐿3

𝑥 −
2𝑥2

𝐿
+

𝑥3

𝐿2

3𝑥2

𝐿2
−

2𝑥3

𝐿3

𝑥2

𝐿
+

𝑥3

𝐿2

 

𝑋𝑇 = [(1 −
3𝑥2

𝐿2
+

2𝑥3

𝐿3
) (𝑥 −

2𝑥2

𝐿
+

𝑥3

𝐿2
)(

3𝑥2

𝐿2
−

2𝑥3

𝐿3
) (−

𝑥2

𝐿
+

𝑥3

𝐿2
)] 

The elements of the matrix [𝐷] are calculated as: 

𝑑11 = ∫ (1 −
3𝑥2

𝐿2
+

2𝑥3

𝐿3
)

2

𝑑𝑥
𝐿

0

=
13𝐿

35
 

𝑑12 = ∫ (1 −
3𝑥2

𝐿2
+

2𝑥3

𝐿3
)(𝑥 −

2𝑥2

𝐿
+

𝑥3

𝐿2
)𝑑𝑥

𝐿

0

=
11𝐿2

210
 

𝑑13 = ∫ (1 −
3𝑥2

𝐿2
+

2𝑥3

𝐿3
) (

3𝑥2

𝐿2
−

2𝑥3

𝐿3
)𝑑𝑥

𝐿

0

=
9𝐿

70
 

𝑑14 = ∫ (1 −
3𝑥2

𝐿2
+

2𝑥3

𝐿3
)(−

𝑥2

𝐿
+

𝑥3

𝐿2
)𝑑𝑥

𝐿

0

= −
13𝐿2

420
 

𝑑21 = ∫ (𝑥 −
2𝑥2

𝐿
+

𝑥3

𝐿2
) (1 −

3𝑥2

𝐿2
+

2𝑥3

𝐿3
)𝑑𝑥

𝐿

0

=
11𝐿2

210
 

𝑑22 = ∫ (𝑥 −
2𝑥2

𝐿
+

𝑥3

𝐿2
) (𝑥 −

2𝑥2

𝐿
+

𝑥3

𝐿2
)𝑑𝑥

𝐿

0

=
𝐿3

105
 

𝑑23 = ∫ (𝑥 −
2𝑥2

𝐿
+

𝑥3

𝐿2
) (

3𝑥2

𝐿2
−

2𝑥3

𝐿3
)𝑑𝑥

𝐿

0

=
13𝐿2

420
 

𝑑24 = ∫ (𝑥 −
2𝑥2

𝐿
+

𝑥3

𝐿2
) (−

𝑥2

𝐿
+

𝑥3

𝐿2
)𝑑𝑥

𝐿

0

= −
𝐿3

140
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𝑑31 = ∫ (
3𝑥2

𝐿2
−

2𝑥3

𝐿3
)(1 −

3𝑥2

𝐿2
+

2𝑥3

𝐿3
)𝑑𝑥

𝐿

0

=
9𝐿

70
 

𝑑32 = ∫ (
3𝑥2

𝐿2
−

2𝑥3

𝐿3
) (𝑥 −

2𝑥2

𝐿
+

𝑥3

𝐿2
)𝑑𝑥

𝐿

0

=
13𝐿2

420
 

𝑑33 = ∫ (
3𝑥2

𝐿2
−

2𝑥3

𝐿3
) (

3𝑥2

𝐿2
−

2𝑥3

𝐿3
)𝑑𝑥

𝐿

0

=
13𝐿

35
 

𝑑34 = ∫ (
3𝑥2

𝐿2
−

2𝑥3

𝐿3
) (−

𝑥2

𝐿
+

𝑥3

𝐿2
)𝑑𝑥

𝐿

0

= −
11𝐿2

210
 

𝑑41 = ∫ (−
𝑥2

𝐿
+

𝑥3

𝐿2
) (1 −

3𝑥2

𝐿2
+

2𝑥3

𝐿3
)𝑑𝑥

𝐿

0

= −
13𝐿2

420
 

𝑑42 = ∫ (−
𝑥2

𝐿
+

𝑥3

𝐿2
) (𝑥 −

2𝑥2

𝐿
+

𝑥3

𝐿2
)𝑑𝑥

𝐿

0

= −
𝐿3

140
 

𝑑43 = ∫ (−
𝑥2

𝐿
+

𝑥3

𝐿2
)(

3𝑥2

𝐿2
−

2𝑥3

𝐿3
)𝑑𝑥

𝐿

0

= −
11𝐿2

210
 

𝑑44 = ∫ (−
𝑥2

𝐿
+

𝑥3

𝐿2
) (−

𝑥2

𝐿
+

𝑥3

𝐿2
)𝑑𝑥

𝐿

0

=
𝐿3

105
 

𝐷 =

[
 
 
 
 
 
 
 
 

13𝐿

35

11𝐿2

210

9𝐿

70
−

13𝐿2

420
11𝐿2

210

𝐿3

105

13𝐿2

420
−

𝐿3

140
9𝐿

70

13𝐿2

420

13𝐿

35
−

11𝐿2

210

−
13𝐿2

420
−

𝐿3

140
−

11𝐿2

210

𝐿3

105 ]
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Appendix 2: Simulation with FreeCAD 

Straight Tube Sensor Dimensions 

 

Straight Tube Sensor Materials 
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FreeCAD Simulation Results 

Appendix 3: Flowcharts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flowchart of Program 1: Calculation of Natural Frequencies 

Define initial parameters: E, 

Dext, Dint, rhot, rhof, long, N, V 

Calculate geometric 
properties: et, Rm, At, Mt, It, Af, 

Mf 

Calculate coefficients: 
h1, h2, h3, h4 

Assemble global matrices: 
[A_global], [B_global], [C_global], 

[D_global] 

Calculate global matrices: 

[Kg], [Eg], [Mg] 

Solve eigenvalue problem:  

[X, e] = polyeig(Kg, i*Eg, -
Mg) 

Extract the lowest natural 

frequency 

Defind local matrices: 
[A], [B], [C], [D] 
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Flowchart of Program 2: Convergence of the Natural Frequency 

Define initial parameters: E, Dext, Dint, rhot, 

rhof, long, V 

Define finite element range: N_values = [1, 2, 

3, ..., 52] 

Initialize frequency vector: frequencies = 

zeros(size(N_values)) 

Is N_values not empty? 

Get current N 

Calculate element length:  

L = long/N 

Calculate coefficients:  

h1, h2, h3, h4 

Define local matrices: 

 [A], [B], [C], [D] 

Assemble global matrices: [A_global], 

[B_global], [C_global], [D_global] 

Calculate global matrices:  

[Kg], [Eg]. [Mg] 

Solve eigenvalue problem: [X, e] polyeig(Kg, 

i*Eg, -Mg) 

Plot results:  

frequencies vs N_values 

Store the lowest natural frequency 
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Flowchart of Program 3: Frequency Variation with Tube Length 

Define initial parameters: E, Dext, 

Dint, rhot, rhof, V 

Define tube length range: lengths 

[0.25, 0.35, ..., 0.85] 

Initialize frequency vector: 

frequencies = zeros(size(lengths)) 

Is lengths not empty? 

Get current length 

Calculate element length:  

L = long/N 

Calculate coefficients: h1, h2, h3, h4 

Define local matrices:  

[A], [B], [C], [D] 

Assemble global matrices: 

[A_global], [B_global], [C_global], 

[D_global] 

Calculate global matrices:  

[Kg], [Eg]. [Mg] 

Solve eigenvalue problem: [X, e] 

polyeig(Kg, i*Eg, -Mg) 

Store the lowest natural frequency 

Plot results: frequencies vs lengths 
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Flowchart of Program 4: Calculation of Phase Shift and Mass Flow 

Define initial parameters 

E, Dext, Dint, rhot, rhof, long, N, V 

Calculate geometric properties 

et, Rm, At, Mt, It, Af, Mf 

Define vibration modes 

lan1, lan2, 121, the1, the2, xi11, xi22 

Calculate arguments and frequencies 

bt1, bt2, sg1, sg2, om1, om2, g1, g2 

Define critical positions and times 

a, b, c, t, t1 

Calculate vibration function 

wo, w1, w2, w3 

Calculate modified amplitude 

Calculate amplitude ratio 

Calculate phase shift 

Calculate mass flow 

Plot results 

c = C/w3; 

A1(w1-w2)/(L/4); 

PhaseShiftc = C* ((2f21g1 Mf V)/ 

(L*the2*(Mf+Mt)* (g1^2-g2^2))) *A1; 

mass_flow = (PhaseShift* L* the2* 

 (Mf + Mt)* (g1^2-g2^2))/(2*A1*g1*c*f21); 

mass _flow vs velocities; PhaseShift 

vs velocities; 
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Appendix 4: Simulation codes 

CODE 1: Calculation of Natural Frequencies 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

clc, clear all 

 

% II. EIGENVALUE RANGE AND MODE VALUE DEFINITION 

i = 1:1:5; % ITERATION VARIABLE FOR EIGENVALUES 

lan1 = 4.73; % FIRST FUNDAMENTAL MODE [21]-[23] 

lan2 = 7.853; % SECOND MODE 

f21 = 3.399; % FACTOR 

theta1 = 1.0359; % THETA1 

theta2 = 0.9984; % THETA2 

xi11 = -12.74; % FACTOR11 

xi22 = -45.98; % FACTOR22 

 

% III. STAINLESS STEEL PIPE INPUT PARAMETERS 

% DATA ENTRY IN FILE: STEEL P0_1 

E = 1.93e11;        % YOUNG'S MODULUS [N/m^2] 

Dext = 0.0127; % OUTER DIAMETER [m] 

Dint = 9.53000000000000e-003; % INNER DIAMETER [m] 

rhot = 7900; % TUBE DENSITY [kg/m^3] 

rhof = 1000; % FLUID DENSITY [kg/m^3] 

L_total = 0.75; % TUBE LENGTH [m] 

N = 1; % NUMBER OF ITERATION ELEMENTS 

L = L_total / N; % LENGTH OF EACH ELEMENT [m] 

x = 0:0.025:L; % TUBE VARIABLE [m] 

V = 10; % FLUID VELOCITY [m/s] 

 

et = (Dext - Dint) / 2; % TUBE THICKNESS [m] 
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Rm = (Dext + Dint) / 2; % MEAN TUBE RADIUS [m] 

At = pi * (Dext^2 - Dint^2) / 4; % CROSS-SECTIONAL AREA OF TUBE [m^2] 

Mt = rhot * At; % PIPE MASS PER UNIT LENGTH [kg/m] 

It = pi * (Dext^4 - Dint^4) / 64; % SECOND MOMENT OF AREA [m^4] 

Af = pi * Dint^2 / 4; % FLOW AREA [m^2] 

Mf = rhof * Af; % FLUID MASS PER UNIT LENGTH [kg/m] 

omega = 720; % RESONANCE ANGULAR FREQUENCY [rad/s] 

C = 1.5e-3; % OSCILLATION AMPLITUDE [m] 

 

% IV. DEFINITION OF OTHER VIBRATION PARAMETERS [21]-[23] 

beta1 = lan1 / L; % ARGUMENT FIRST MODE 

beta2 = lan2 / L; % ARGUMENT SECOND MODE 

sigma1 = (sinh(beta1 * L) - sin(beta1 * L)) / (cos(beta1 * L) - cosh(beta1 * L)); 

sigma2 = (sinh(beta2 * L) - sin(beta2 * L)) / (cos(beta2 * L) - cosh(beta2 * L)); 

omega1 = (xi11 * Mf * V^2) / (L^2 * theta1 * (Mf + Mt)); % ARGUMENT 1 

omega2 = (xi22 * Mf * V^2) / (L^2 * theta2 * (Mf + Mt)); % ARGUMENT 2 

gamma1 = sqrt(omega^2 - (xi11 * Mf * V^2) / (L^2 * theta1 * (Mf + Mt))); % SENSOR FREQUENCY 1 

gamma2 = sqrt(omega^2 - (xi22 * Mf * V^2) / (L^2 * theta2 * (Mf + Mt))); % SENSOR FREQUENCY 2 

 

% V. CRITICAL VALUES AND FUNCTION DEFINITION 

% CHANGES ARE INTRODUCED IN THIS SECTION [21]-[23] 

a = L / 4; % CRITICAL POSITION 1 

b = (3 * L) / 4; % CRITICAL POSITION 2 

c = L / 2; % CRITICAL POSITION 3 

t = pi / (2 * omega); % TIME 1 

t1 = (3 * pi) / (8 * omega); % TIME 2 

w0 = sinh(beta1 * x) - sin(beta1 * x) + sigma1 * (cosh(beta1 * x) - cos(beta1 * x)); % ORIGINAL FUNCTION 
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w1 = sinh(beta2 * a) - sin(beta2 * a) + sigma2 * (cosh(beta2 * a) - cos(beta2 * a)) * cos(t); 

w2 = sinh(beta2 * b) - sin(beta2 * b) + sigma2 * (cosh(beta2 * b) - cos(beta2 * b)) * cos(t1); 

w3 = (cosh(beta2 * c) - cos(beta2 * c) - sigma1 * (sinh(beta2 * c) - sin(beta2 * c))) * cos(pi / 4); 

c = C / w3; % MODIFIED AMPLITUDE 

A1 = (w1 - w2) / (L / 4); % AMPLITUDE RATIO DEFINITION 

 

% VI. PHASE SHIFT CALCULATION (IN RADIANS) 

PhaseShiftTheory = 0.88 * pi / 180; % PHASE SHIFTS GENERATED FOR VELOCITIES OR FLOWS 

PhaseShift = c * ((2 * f21 * gamma1 * Mf * V) / (L * theta2 * (Mf + Mt) * (gamma1^2 - gamma2^2))) * A1; 

PhaseError = ((PhaseShiftTheory - PhaseShift) / PhaseShiftTheory) * 100; 

 

% VII. MASS FLOW CALCULATION 

z0 = Mf * V; % THEORETICAL FLOW 

z = (PhaseShift * L * theta2 * (Mf + Mt) * (gamma1^2 - gamma2^2)) / (2 * A1 * gamma1 * c * f21); 

%CALCULATED MASS FLOW 

% IX. GRAPHICS 

% Define velocity range 

velocities = [0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]; 

 

% Initialize vectors to store results 

PhaseShift = zeros(size(velocities)); 

mass_flow = zeros(size(velocities)); 

 

% Calculate phase shift and mass flow for each velocity 

for i = 1:length(velocities) 

    V = velocities(i); % Current velocity 

    omega1 = (xi11 * Mf * V^2) / (L^2 * theta1 * (Mf + Mt)); % ARGUMENT 1 
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    omega2 = (xi22 * Mf * V^2) / (L^2 * theta2 * (Mf + Mt)); % ARGUMENT 2 

    gamma1 = sqrt(omega^2 - (xi11 * Mf * V^2) / (L^2 * theta1 * (Mf + Mt))); % SENSOR FREQUENCY 1 

    gamma2 = sqrt(omega^2 - (xi22 * Mf * V^2) / (L^2 * theta2 * (Mf + Mt))); % SENSOR FREQUENCY 2 

 

    % Calculate phase shift 

    PhaseShift(i) = c * ((2 * f21 * gamma1 * Mf * V) / (L * theta2 * (Mf + Mt) * (gamma1^2 - gamma2^2))) * 

A1; 

 

    % Calculate mass flow 

    mass_flow(i) = (PhaseShift(i) * L * theta2 * (Mf + Mt) * (gamma1^2 - gamma2^2)) / (2 * A1 * gamma1 * c 

* f21); 

end 

 

% a) CORIOLIS FLOW VS VELOCITY PLOT 

figure(1) 

plot(velocities, mass_flow, 'r o') 

title('CORIOLIS FLOW vs VELOCITY') 

xlabel('Fluid velocity [m/s]') 

ylabel('Mass flow [kg/s]') 

grid on 

 

% b) PHASE SHIFT VS VELOCITY PLOT 

figure(2) 

plot(velocities, PhaseShift, 'g o') 

title('PHASE SHIFT vs VELOCITY') 

xlabel('Fluid velocity [m/s]') 

ylabel('Phase angle shift [rad/s]') 

grid on 
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CODE 2: Convergence of the Natural Frequency 

 

1 

2 
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16 
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21 
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clc, clear all, close all; 

format longeng 

 

function global_matrix = assemble_global_matrix(n, L, local_matrix_fn) 

    dof = 2 * (n + 1); % Total degrees of freedom 

    global_matrix = zeros(dof, dof); % Initialize global matrix as numeric 

 

    for i = 1:n 

        indices = 2*(i-1) + (1:4); % Global indices 

        local_matrix = local_matrix_fn(L); 

        global_matrix(indices, indices) = global_matrix(indices, indices) + local_matrix; 

    end 

end 

 

% Initial parameters 

E = 1.93e11;                      % YOUNG'S MODULUS 

Dext = 0.0127;                    % EXTERNAL DIAMETER 

Dint = 9.53e-3;                   % INTERNAL DIAMETER 

rhot = 7900;                      % TUBE DENSITY 

rhof = 1000;                      % FLUID DENSITY 

length_total = 0.75;              % TOTAL TUBE LENGTH 

V = 5;                            % FLUID VELOCITY 

 

% Predefined results 



German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025 

317 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

et = 1.58500000000000e-003;       % TUBE THICKNESS 

Rm = 11.1150000000000e-003;       % MEAN RADIUS OF THE TUBE 

At = 55.3463017162711e-006;       % CROSS-SECTIONAL AREA OF THE TUBE 

Mt = 437.235783558542e-003;       % TUBE MASS PER UNIT LENGTH 

It = 872.087871085041e-012;       % SECOND MOMENT OF AREA OF THE TUBE 

Af = 71.3305680581033e-006;       % CROSS-SECTIONAL AREA FOR THE FLUID 

Mf = 71.3305680581033e-003;       % FLUID MASS PER UNIT LENGTH 

 

% Finite element range 

N_values = [1 2 3 4 8 16 20 24 28 32 42 52]; % Values of N (number of finite elements) 

frequencies = zeros(size(N_values)); % Vector to store natural frequencies 

 

% Iterate over different values of N 

for idx = 1:length(N_values) 

    N = N_values(idx); 

    L = length_total / N; 

 

    % Coefficients 

    h1 = (E * It) / (L^3); 

    h2 = Mf * V^2; 

    h3 = 2 * Mf * V; 

    h4 = Mf + Mt; 

 

    % Local matrix functions 

    matrixA_local = @(L) [ 

        12 6*L -12 6*L; 
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        6*L 4*L^2 -6*L 2*L^2; 

        -12 -6*L 12 -6*L; 

        6*L 2*L^2 -6*L 4*(L^2)]; 

 

    matrixB_local = @(L) [ 

        6/5*L 1/10 -6/5*L 1/10; 

        1/10 2*L/15 -1/10 -L/30; 

        -6/5*L -1/10 6/5*L -1/10; 

        1/10 -L/30 -1/10 2*L/15]; 

 

    matrixC_local = @(L) [ 

        -1/2 L/10 1/2 -L/10; 

        -L/10 0 L/10 -L^2/60; 

        -1/2 -L/10 1/2 L/10; 

        L/10 L^2/60 -L/10 0]; 

 

    matrixD_local = @(L) [ 

        13*L/35 11*L^2/210 9*L/70 -13*L^2/420; 

        11*L^2/210 L^3/105 13*L^2/420 -L^3/140; 

        9*L/70 13*L^2/420 13*L/35 -11*L^2/210; 

        -13*L^2/410 -L^3/140 -11*L^2/210 L^3/105]; 

 

    % Assemble global matrices 

    A_global = assemble_global_matrix(N, L, matrixA_local); 

    B_global = assemble_global_matrix(N, L, matrixB_local); 

    C_global = assemble_global_matrix(N, L, matrixC_local); 
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    D_global = assemble_global_matrix(N, L, matrixD_local); 

 

    % Calculate global matrices 

    Kg = h1 * A_global + h2 * B_global; % Global stiffness matrix 

    Eg = h3 * C_global;                % Global Coriolis matrix 

    Mg = h4 * D_global;                % Global mass matrix 

 

    % Calculate natural frequencies 

    [~, e] = polyeig(Kg, i*Eg, -Mg); 

    frequencies_nat = real(e); 

    frequencies_nat = frequencies_nat(frequencies_nat > 10); % Filter values greater than 10 

 

    % Select the lowest frequency 

    if ~isempty(frequencies_nat) 

        min_frequency = min(frequencies_nat); 

        frequencies(idx) = min_frequency; % Save the lowest frequency 

    end 

end 

 

% Display the global lowest frequency 

if ~isempty(frequencies) 

    global_min_frequency = min(frequencies(frequencies > 0)); 

    fprintf('The global lowest frequency is: %.5f Rad/s\n', global_min_frequency); 

end 

 

% Plot results 
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figure; 

plot(N_values, frequencies, '-o', 'LineWidth', 1.5); 

xlabel('Number of finite elements (N)'); 

ylabel('Natural frequency (Rad/s)'); 

title('Natural frequency vs Number of finite elements'); 

grid on; 

 

 

 

CODE 3: Variation of Frequency with Tube Length 
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clc, clear all, close all; 

format longeng 

 

% Initial parameters 

E = 1.93e11;                      % Young's modulus 

Dext = 0.0127;                    % Outer diameter 

Dint = 9.53e-3;                   % Inner diameter 

rhot = 7900;                      % Tube density 

rhof = 1000;                      % Fluid density 

V = 5;                            % Fluid velocity 

 

% Predefined results 

et = 1.58500000000000e-003;       % Tube thickness 

Rm = 11.1150000000000e-003;       % Mean tube radius 

At = 55.3463017162711e-006;       % Cross-sectional area of tube 

Mt = 437.235783558542e-003;       % Tube mass per unit length 

It = 872.087871085041e-012;       % Second moment of area of tube 

Af = 71.3305680581033e-006;       % Flow area section 
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Mf = 71.3305680581033e-003;       % Fluid mass per unit length 

 

% Fixed number of finite elements 

N = 52; % Number of finite elements 

lengths = [0.25 0.35 0.45 0.55 0.65 0.75 0.85]; % Tube lengths 

frequencies = zeros(size(lengths)); % Vector to store natural frequencies 

 

% Iterate over different lengths 

for idx = 1:length(lengths) 

    long = lengths(idx); % Current tube length 

    L = long / N; 

 

    % Coefficients 

    h1 = (E * It) / (L^3); 

    h2 = Mf * V^2; 

    h3 = 2 * Mf * V; 

    h4 = Mf + Mt; 

 

    % Local matrix functions 

    matrixA_local = @(L) [ 

        12 6*L -12 6*L; 

        6*L 4*L^2 -6*L 2*L^2; 

        -12 -6*L 12 -6*L; 

        6*L 2*L^2 -6*L 4*(L^2)]; 

 

    matrixB_local = @(L) [ 
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        6/5*L 1/10 -6/5*L 1/10; 

        1/10 2*L/15 -1/10 -L/30; 

        -6/5*L -1/10 6/5*L -1/10; 

        1/10 -L/30 -1/10 2*L/15]; 

 

    matrixC_local = @(L) [ 

        -1/2 L/10 1/2 -L/10; 

        -L/10 0 L/10 -L^2/60; 

        -1/2 -L/10 1/2 L/10; 

        L/10 L^2/60 -L/10 0]; 

 

    matrixD_local = @(L) [ 

        13*L/35 11*L^2/210 9*L/70 -13*L^2/420; 

        11*L^2/210 L^3/105 13*L^2/420 -L^3/140; 

        9*L/70 13*L^2/420 13*L/35 -11*L^2/210; 

        -13*L^2/410 -L^3/140 -11*L^2/210 L^3/105]; 

 

    % Function to assemble global matrix 

    function global_matrix = assemble_global_matrix(n, L, local_matrix_fn) 

        dof = 2 * (n + 1); % Total degrees of freedom 

        global_matrix = zeros(dof, dof); % Initialize global matrix 

 

        for i = 1:n 

            indices = 2*(i-1) + (1:4); % Global indices 

            local_matrix = local_matrix_fn(L); 

            global_matrix(indices, indices) = global_matrix(indices, indices) + local_matrix; 
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        end 

    end 

 

    % Global matrix assembly 

    A_global = assemble_global_matrix(N, L, matrixA_local); 

    B_global = assemble_global_matrix(N, L, matrixB_local); 

    C_global = assemble_global_matrix(N, L, matrixC_local); 

    D_global = assemble_global_matrix(N, L, matrixD_local); 

 

    % Global matrix calculation 

    Kg = h1 * A_global + h2 * B_global; % Global stiffness matrix 

    Eg = h3 * C_global;                % Global Coriolis matrix 

    Mg = h4 * D_global;                % Global mass matrix 

 

    % Natural frequency calculation 

    [~, e] = polyeig(Kg, i*Eg, -Mg); 

    Sz = length(e); 

    Sz = Sz - 5; 

    frequencies(idx) = real(e(Sz,1)); % Store the lowest natural frequency 

end 

 

% Plot results 

figure; 

plot(lengths, frequencies, '-o', 'LineWidth', 1.5); 

xlabel('Tube length (m)'); 

ylabel('Natural frequency (Hz)'); 
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title('Natural frequency vs Tube length'); 

grid on; 

 

 

CODE 4 : Calculation of Phase Shift and Mass Flow 

  1 

  2 
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 17 

 18 

 19 

 20 

 21 

 22 

clc, clear all 

 

% II. EIGENVALUE RANGE AND MODE VALUE DEFINITION 

i = 1:1:5; % ITERATION VARIABLE FOR EIGENVALUE 

lambda1 = 4.73; % FIRST FUNDAMENTAL MODE [21]-[23] 

lambda2 = 7.853; % SECOND MODE 

f21 = 3.399; % FACTOR 

theta1 = 1.0359; % THETA1 

theta2 = 0.9984; % THETA2 

xi11 = -12.74; % FACTOR11 

xi22 = -45.98; % FACTOR22 

 

% III. STAINLESS STEEL TUBE INPUT PARAMETERS 

% INCLUDE DATA ENTRY IN FILE: STEELP0_1 

E = 1.93e11;        % YOUNG'S MODULUS [N/m^2] 

Dext = 0.0127; % OUTER DIAMETER [m] 

Dint = 9.53000000000000e-003; % INNER DIAMETER [m] 

rhot = 7900; % TUBE DENSITY [kg/m^3] 

rhof = 1000; % FLUID DENSITY [kg/m^3] 

L_total = 0.75; % TOTAL TUBE LENGTH [m] 

N = 1; % NUMBER OF ITERATION ELEMENTS 

L = L_total / N; % LENGTH OF EACH ELEMENT [m] 
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x = 0:0.025:L; % TUBE VARIABLE [m] 

V = 10; % FLUID VELOCITY [m/s] 

 

et = (Dext - Dint) / 2; % TUBE THICKNESS [m] 

Rm = (Dext + Dint) / 2; % MEAN TUBE RADIUS [m] 

At = pi * (Dext^2 - Dint^2) / 4; % TUBE CROSS-SECTIONAL AREA [m^2] 

Mt = rhot * At; % TUBE MASS PER UNIT LENGTH [kg/m] 

It = pi * (Dext^4 - Dint^4) / 64; % TUBE SECOND MOMENT OF AREA [m^4] 

Af = pi * Dint^2 / 4; % FLOW AREA SECTION [m^2] 

Mf = rhof * Af; % FLUID MASS PER UNIT LENGTH [kg/m] 

omega = 720; % RESONANCE ANGULAR FREQUENCY [rad/s] 

C = 1.5e-3; % OSCILLATION AMPLITUDE [m] 

 

% IV. DEFINITION OF OTHER VIBRATION PARAMETERS [21]-[23] 

beta1 = lambda1 / L; % FIRST MODE ARGUMENTS 

beta2 = lambda2 / L; % SECOND MODE ARGUMENTS 

sigma1 = (sinh(beta1*L) - sin(beta1*L)) / (cos(beta1*L) - cosh(beta1*L)); 

sigma2 = (sinh(beta2*L) - sin(beta2*L)) / (cos(beta2*L) - cosh(beta2*L)); 

omega1 = (xi11 * Mf * V^2) / (L^2 * theta1 * (Mf + Mt)); % ARGUMENT 1 

omega2 = (xi22 * Mf * V^2) / (L^2 * theta2 * (Mf + Mt)); % ARGUMENT 2 

gamma1 = sqrt(omega^2 - (xi11 * Mf * V^2) / (L^2 * theta1 * (Mf + Mt))); % SENSOR FREQUENCY 1 

gamma2 = sqrt(omega^2 - (xi22 * Mf * V^2) / (L^2 * theta2 * (Mf + Mt))); % SENSOR FREQUENCY 2 

 

% V. CRITICAL VALUES AND FUNCTION DECLARATION 

% CHANGES ARE INTRODUCED IN THIS SECTION [21]-[23] 

a = L / 4; % CRITICAL POSITION 1 
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b = (3 * L) / 4; % CRITICAL POSITION 2 

c = L / 2; % CRITICAL POSITION 3 

t = pi / (2 * omega); % TIME 1 

t1 = (3 * pi) / (8 * omega); % TIME 2 

w0 = sinh(beta1*x) - sin(beta1*x) + sigma1*(cosh(beta1*x) - cos(beta1*x)); % ORIGINAL FUNCTION 

w1 = sinh(beta2*a) - sin(beta2*a) + sigma2*(cosh(beta2*a) - cos(beta2*a)) * cos(t); 

w2 = sinh(beta2*b) - sin(beta2*b) + sigma2*(cosh(beta2*b) - cos(beta2*b)) * cos(t1); 

w3 = (cosh(beta2*c) - cos(beta2*c) - sigma1*(sinh(beta2*c) - sin(beta2*c))) * cos(pi/4); 

c = C / w3; % MODIFIED AMPLITUDE 

A1 = (w1 - w2) / (L / 4); % AMPLITUDE RATIO DEFINITION 

 

% VI. PHASE SHIFT CALCULATION IN RADIANS 

PhaseShiftTheory = 0.88 * pi / 180; % PHASE SHIFTS ARE GENERATED FOR VELOCITIES OR FLOWS 

PhaseShift = c * ((2 * f21 * gamma1 * Mf * V) / (L * theta2 * (Mf + Mt) * (gamma1^2 - gamma2^2))) * A1; 

PhaseError = ((PhaseShiftTheory - PhaseShift) / PhaseShiftTheory) * 100; 

 

% VII. MASS FLOW CALCULATION 

z0 = Mf * V; % THEORETICAL FLOW 

z = (PhaseShift * L * theta2 * (Mf + Mt) * (gamma1^2 - gamma2^2)) / (2 * A1 * gamma1 * c * f21); % 

CALCULATED MASS FLOW 

 

% IX. GRAPHS 

% Define velocity range 

velocities = [0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]; 

 

% Initialize vectors to store results 

PhaseShift = zeros(size(velocities)); 
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mass_flow = zeros(size(velocities)); 

 

% Calculate phase shift and mass flow for each velocity 

for i = 1:length(velocities) 

    V = velocities(i); % Current velocity 

    omega1 = (xi11 * Mf * V^2) / (L^2 * theta1 * (Mf + Mt)); % ARGUMENT 1 

    omega2 = (xi22 * Mf * V^2) / (L^2 * theta2 * (Mf + Mt)); % ARGUMENT 2 

    gamma1 = sqrt(omega^2 - (xi11 * Mf * V^2) / (L^2 * theta1 * (Mf + Mt))); % SENSOR FREQUENCY 1 

    gamma2 = sqrt(omega^2 - (xi22 * Mf * V^2) / (L^2 * theta2 * (Mf + Mt))); % SENSOR FREQUENCY 2 

 

    % Calculate phase shift 

    PhaseShift(i) = c * ((2 * f21 * gamma1 * Mf * V) / (L * theta2 * (Mf + Mt) * (gamma1^2 - gamma2^2))) * A1; 

 

    % Calculate mass flow 

    mass_flow(i) = (PhaseShift(i) * L * theta2 * (Mf + Mt) * (gamma1^2 - gamma2^2)) / (2 * A1 * gamma1 * c * f21); 

end 

 

% a) CORIOLIS FLOW VS VELOCITY PLOT 

figure(1) 

plot(velocities, mass_flow, 'ro') 

title('CORIOLIS FLOW vs VELOCITY') 

xlabel('Fluid velocity [m/s]') 

ylabel('Mass flow [kg/s]') 

grid on 

 

% b) PHASE SHIFT VS VELOCITY PLOT 
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101 

102 

103 

104 

105 

106 

figure(2) 

plot(velocities, PhaseShift, 'go') 

title('PHASE SHIFT vs VELOCITY') 

xlabel('Fluid velocity [m/s]') 

ylabel('Phase angle shift [rad]') 

grid on 

 

 

CODE 5 : Calculation of global matrices A, B, C and D 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

import numpy as np 

 

def local_stiffness_matrix_A(L): 

    """ 

    Defines the local stiffness matrix [A] for a finite element. 

    """ 

    return np.array([ 

        [12, 6*L, -12, 6*L], 

        [6*L, 4*L**2, -6*L, 2*L**2], 

        [-12, -6*L, 12, -6*L], 

        [6*L, 2*L**2, -6*L, 4*L**2] 

    ]) 

 

def local_centrifugal_matrix_B(L): 

    """ 

    Defines the local centrifugal force matrix [B] for a finite element. 

    """ 

    return np.array([ 
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19 

20 
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22 

23 

24 

25 

26 
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28 
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30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

        [6/(5*L), 1/10, -6/(5*L), 1/10], 

        [1/10, 2*L/15, -1/10, -L/30], 

        [-6/(5*L), -1/10, 6/(5*L), -1/10], 

        [1/10, -L/30, -1/10, 2*L/15] 

    ]) 

 

def local_coriolis_matrix_C(L): 

    """ 

    Defines the local Coriolis matrix [C] for a finite element. 

    """ 

    return np.array([ 

        [-0.5, L/10, 0.5, -L/10], 

        [-L/10, 0, L/10, -L**2/60], 

        [-0.5, -L/10, 0.5, L/10], 

        [L/10, L**2/60, -L/10, 0] 

    ]) 

 

def local_mass_matrix_D(L): 

    """ 

    Defines the local mass matrix [D] for a finite element. 

    """ 

    return np.array([ 

        [13*L/35, 11*L**2/210, 9*L/70, -13*L**2/420], 

        [11*L**2/210, L**3/105, 13*L**2/420, -L**3/140], 

        [9*L/70, 13*L**2/420, 13*L/35, -11*L**2/210], 

        [-13*L**2/420, -L**3/140, -11*L**2/210, L**3/105] 
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57 
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67 

68 

69 

70 

    ]) 

 

def assemble_global_matrix(n, L, local_matrix_fn): 

    """ 

    Assembles a global matrix for n finite elements of length L using a local matrix function. 

     

    Parameters: 

    n (int): Number of finite elements. 

    L (float): Length of each finite element. 

    local_matrix_fn (function): Function that generates the local matrix. 

     

    Returns: 

    numpy.ndarray: Global matrix of size 2(n) + 2. 

    """ 

    # Size of global matrix 

    global_size = 2 * n + 2 

    global_matrix = np.zeros((global_size, global_size)) 

 

    # Local matrix 

    local_matrix = local_matrix_fn(L) 

 

    # Global matrix assembly 

    for i in range(n): 

        start = 2 * i 

        end = start + 4 

        global_matrix[start:end, start:end] += local_matrix 
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    return global_matrix 

 

n_elements = 12  # Number of finite elements 

element_length = 0.75   # Length of each finite element 

 

# Global matrix [A] 

global_matrix_A = assemble_global_matrix(n_elements, element_length, local_stiffness_matrix_A) 

print("Global matrix [A]:") 

print(global_matrix_A) 

 

# Global matrix [B] 

global_matrix_B = assemble_global_matrix(n_elements, element_length, local_centrifugal_matrix_B) 

print("Global matrix [B]:") 

print(global_matrix_B) 

 

# Global matrix [C] 

global_matrix_C = assemble_global_matrix(n_elements, element_length, local_coriolis_matrix_C) 

print("Global matrix [C]:") 

print(global_matrix_C) 

 

# Global matrix [D] 

global_matrix_D = assemble_global_matrix(n_elements, element_length, local_mass_matrix_D) 

print("Global matrix [D]:") 

print(global_matrix_D) 

 

 


