
SSRG International Journal of Electrical and Electronics Engineering Volume 12 Issue 5, 287-331, May 2025

ISSN: 2348-8379/ https://doi.org/10.14445/23488379/IJEEE-V12I5P124 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Computational Simulation of the Stainless-Steel

Straight-Tube Coriolis Sensor for Mass Flow

Measurement

Javier Pablo Montesinos Quispe1, Carlos Enrique Villanueva Portal1, German Alberto Echaiz Espinoza2, Luis

Fernando Gutierrez Belizario1, Carmelo Mayta Ojeda3, Fernando Enrique Echaiz Espinoza4

1School of Electronic Engineering, National University of San Agustín de Arequipa, Arequipa, Peru.
2Department of Electronic Engineering, National University of San Agustín de Arequipa, Arequipa, Peru.

3Department of Physics, National University of San Agustín de Arequipa, Arequipa, Peru.
4Institute of Mathematics, Federal University of Alagoas, Maceio, Brazil.

2Corresponding Author : gechaiz@unsa.edu.pe

Received: 20 March 2025 Revised: 25 April 2025 Accepted: 06 May 2025 Published: 31 May 2025

Abstract - This paper presents a computational simulation of a stainless steel straight-tube Coriolis sensor, focusing on the

design and validation of a mathematical model for mass flow measurement. The Finite Element Method (FEM), implemented

in GNU Octave, is used to solve the differential equations governing the tube’s vibrational behavior. The simulation determines

the angular resonance frequency (723.6 rad/s) and evaluates mass flow for fluid velocities ranging from 0.5 m/s to 25 m/s. The

results are validated against reference data from existing literature, demonstrating strong agreement and confirming the

accuracy of the proposed model. These findings reinforce the potential of Coriolis sensors for precise and efficient mass flow

measurement in industrial applications such as chemical processing and fluid transport monitoring.

Keywords - Angular resonance, Computational simulation, Coriolis sensor, Finite element method, Mass flow measurement.

1. Introduction
1.1. Problem Statement and Research Justification

Numerous industrial applications, including fluid

conveyance, product distribution, and process control, rely on

accurate mass flow measurement. Coriolis effect-based

flowmeters are distinguished by their exceptional reliability

and precision among many available approaches. The

substantial development expenses, particularly during

experimental prototyping, physical testing, and the

procurement of commercial sensors, restrict implementation

across numerous domains. The Finite Element Method (FEM)

is not the sole technique accessible. Current research typically

focuses on empirical results or simulations utilizing

proprietary software without providing a comprehensive

exposition of the equations governing the system's dynamic

behavior or employing an open and reproducible

methodology. This study addresses this requirement by

offering a computational model utilizing the FEM technique,

only employing free software such as Python and GNU

Octave to simulate the behavior of a straight-tube Coriolis

flowmeter. Two primary contributions arise from two

fundamental advancements: (1) Python software designed to

explicitly visualize the formulation of the equations pertinent

to the model and (2) an Octave script that calculates the

resonance frequency of the tube, a crucial parameter for

optimal sensor design. This approach, in contrast to previous

studies, offers open-source code and a flowchart-supported

transparent mathematical foundation, enabling other

academics and engineers to reproduce and enhance it.

1.2. Importance of the Coriolis Effect in Industrial Processes

The importance of the Coriolis effect pertains to industrial

processes. Impact of the Coriolis effect on industrial methods.

The implementation of sensors based on the Coriolis effect has

transformed safety in industrial facilities, process

optimization, and quality control. These tools provide precise

measurement of mass flow rate and provide real-time data on

additional fluid parameters, including Its determination

mostly relies on the characteristics of density and temperature.

Concentration in multiphase combinations of various phases.

Derive the volumetric flow rate from the volumetric flow rate.

Established volumetric flow rate Established volumetric flow

rate Established volumetric flow rate Derived volumetric flow

rate. The specific density values (such as API degrees, Brix,

Plato, Baumé, and Balling) are essential in industries like oil

refining, food production, pharmaceuticals, and chemical

processes, where precision and real-time responsiveness are

crucial.

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

288

1.3. A Benefit of Regulating the Coriolis Effect in Flow

Measurement

Enumerate the benefits of mitigating the Coriolis effect in

flow measurement.

• Advantages of regulating the Coriolis effect in flow

measurement.

• Coriolis flow meters uniquely provide direct mass flow

measurement, irrespective of fluid characteristics or flow

profile.

• The primary advantages are mass flow, density, viscosity,

and temperature, all integral to multivariable

measurement.

• Standard errors of ±0.1% attain a maximum of ±0.15% in

high-precision models [12].

• Independence of flow profile: Straight input or output

parts are unnecessary.

• A compact installation is ideal for scenarios with spatial

constraints.

• Robust immunity to disruptions in processes and external

vibrations.

These advantages elucidate the position of Coriolis

sensors as some of the most sophisticated technology in

process metrology.

1.4. Fundamental Concept of Coriolis Flowmeters

The controlled oscillation of one or more conduits,

through which the fluid flows constitutes the foundation of the

operational idea. A quantifiable torsional deviation arises

from the interplay between the tube's trajectory and the fluid's

inertia. The protocol is as follows: External actuator tube

excitation methodology The fluid Coriolis force during transit

causes a phase shift. The procedure entails ascertaining the

phase shift with meticulously chosen sensors. Calculate the

mass flow rate using the time delay as a basis. The density is

measured in relation to the natural frequency of oscillation.

Integrated thermal sensors facilitate thermal correction.

1.5. Originality and the Contribution of Academic Research

This study is distinctive since it does not depend on

private simulation tools or experimental data but rather

provides a wholly numerical and accessible framework for

modelling Coriolis sensors. This study proposes a free

software simulation environment mostly utilising Python and

Octave, in contrast to previous research that focused on

empirical validation or specialized physical models.

The complete procedure for mathematically obtaining the

governing equations is executed. Code that is reproducible and

meticulously documented for both scholarly and commercial

use. A design methodology based on the tube's resonance

frequency facilitates its adaption to various materials. This

simulation framework now studies Coriolis sensors via the

Finite Element Method (FEM) utilizing free tools, marking the

inaugural accessible and open computational investigation.

1.6. Inherent Limitations of the Proposed Model

Although it substantially aids in streamlining the

preliminary design of Coriolis sensors, the model has several

intrinsic limits. The model primarily focuses on the

mechanical design of the tube, enabling it to evaluate various

materials, such as PVC, steel, copper, or stainless steel, solely

based on Young's modulus, thickness, and elongation, without

accounting for thermal expansion or variations in fluid

properties. The model excludes both the thermal expansion of

the tube and the variation in fluid characteristics. The model

presumes a consistent flow, excluding the dynamics of

turbulent regimes. There is a lack of adequate physical

validation due to the absence of laboratory electrical tests or

prototypes. The paradigm remains pertinent in computational

and mathematical fields. These constraints delineate the

contemporary parameters of the model without undermining

its significance. The results gained here are anticipated to

serve as a foundation for future developments that integrate

thermal elements, advanced fluid dynamics, physical

validation, and electronic sensor design.

1.7. Mathematical Formulation of the Coriolis Effect

Fig. 1 Fixed and rotated axis system

Considering two observers 𝑂 and 𝑂′, where one reference

frame rotates relative to the other without relative translation.

Both have a common origin, so their position vectors are

written as:

For the observer in the fixed reference frame [4]:

𝑟(𝑡) = 𝑥𝑒𝑖⃗⃗ ⃗ + 𝑦𝑒𝑗⃗⃗ ⃗ + 𝑧𝑒𝑘⃗⃗ ⃗⃗ (1)

For the observer in the rotating system:

𝑟(𝑡) = 𝑥′𝑒𝑖
′⃗⃗⃗⃗ + 𝑦′𝑒𝑗

′⃗⃗⃗⃗ + 𝑧′𝑒𝑘
′⃗⃗ ⃗⃗ (2)

The instantaneous velocity in the stationary system is:

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

289

dr⃗(t)

dt
=

dx

dt
ei⃗⃗ ⃗ +

dy

dt
ej⃗⃗ ⃗ +

dz

dt
ek⃗⃗ ⃗⃗ (3)

In the rotating system, considering the variation of the

unit vectors:

dr⃗(t)

dt
=

dx′

dt
ei
′⃗⃗⃗ ⃗ + x′

dei
′⃗⃗⃗ ⃗

dt
+

dy′

dt
ej
′⃗⃗⃗ ⃗ + y′

dej
′⃗⃗⃗ ⃗

dt
+

dz′

dt
ek
′⃗⃗ ⃗⃗

+ z′
dek

′⃗⃗ ⃗⃗

dt

(4)

Re-grouping terms:

dr⃗(t)

dt
= (

dx′

dt
ei
′⃗⃗⃗ ⃗ +

dy′

dt
ej
′⃗⃗⃗ ⃗ +

dz′

dt
ek
′⃗⃗ ⃗⃗)

+ (x′
dei

′⃗⃗⃗ ⃗

dt
+ y′

dej
′⃗⃗⃗ ⃗

dt
+ z′

dek
′⃗⃗ ⃗⃗

dt
)

(5)

It is established that:

𝑑𝑟

𝑑𝑡
|
fij

≠
𝑑𝑟

𝑑𝑡
|
gir

 (6)

The ratio of velocities between systems is:

dr⃗

dt
|
fij

=
dr⃗

dt
|
gir

+ Ω⃗⃗⃗ × r⃗ (7)

Where:

-
𝑑𝑟

𝑑𝑡
|
fij

: Absolute velocity in the fixed system.

-
𝑑𝑟

𝑑𝑡
|
gir

: Relative velocity in the rotating system.

- Ω⃗⃗⃗: Angular velocity vector of the rotating system.

- Ω⃗⃗⃗ × 𝑟: Drag speed due to rotation.

Differential operator:

d

dt
|
fij

=
d

dt
|
gir

+ Ω⃗⃗⃗ (8)

Applying to acceleration:

dv⃗⃗

dt
|
fij

=
dv⃗⃗

dt
|
gir

+ Ω⃗⃗⃗ × v⃗⃗ (9)

Substituting and developing:

𝑑�⃗�

𝑑𝑡
|
fij

=
𝑑

𝑑𝑡
(𝑣′⃗⃗⃗⃗ + Ω⃗⃗⃗ × 𝑟)|gir + Ω⃗⃗⃗ × (𝑣′⃗⃗⃗⃗ + Ω⃗⃗⃗ × 𝑟) (10)

= a′⃗⃗⃗ ⃗ +
dΩ⃗⃗⃗

dt
× r′⃗⃗ ⃗ + 2Ω⃗⃗⃗ × v′⃗⃗⃗⃗ + Ω⃗⃗⃗ × (Ω⃗⃗⃗ × r⃗) (11)

Final acceleration ratio:

a⃗⃗ = a′⃗⃗⃗ ⃗ +
dΩ⃗⃗⃗

dt
× r′⃗⃗ ⃗ + 2Ω⃗⃗⃗ × v′⃗⃗⃗⃗ + Ω⃗⃗⃗ × (Ω⃗⃗⃗ × r⃗) (12)

Coriolis acceleration:

ac⃗⃗ ⃗⃗ = −2Ω⃗⃗⃗ × v⃗⃗ (13)

Matrix expression:

𝑎𝑐⃗⃗⃗⃗⃗ = −2 [

𝑒𝑖⃗⃗ ⃗ 𝑒𝑗⃗⃗ ⃗ 𝑒𝑘⃗⃗ ⃗⃗

0 0 Ω
𝑣𝑥 𝑣𝑦 𝑣𝑧

] (14)

Coriolis force:

Fc
⃗⃗ ⃗⃗ = mac⃗⃗ ⃗⃗ = −2mΩ⃗⃗⃗ × v⃗⃗ = 2p⃗⃗ × Ω⃗⃗⃗ (15)

2. State of the Art
2.1. A Simple Parametric Design Model for Straight-Tube

Coriolis Flowmeters. [1]

2.1.1. Objective

Develop a simple parametric model to predict the

sensitivity and natural frequency of straight-tube Coriolis

flowmeters while minimizing reliance on costly numerical

simulations.

2.1.2. Methodology

A one-dimensional (1D) numerical simulation, based on

the finite difference method, is used to derive a parametric

model characterized by three non-dimensional parameters:

bending stiffness (𝛴), proximity to the buckling limit (𝑅), and

sensor separation distance (𝜒). The model is experimentally

validated using 11 data sets.

2.1.3. Result and Contributions

The model predicts sensitivity with an error margin of 2–

5% and enables the estimation of the natural frequency,

providing designers with a quick and intuitive tool for

optimizing sensor performance.

2.1.4. Limitations

The 1D approach may not fully capture complex three-

dimensional dynamics, and validation was performed under a

limited range of conditions and materials.

2.2. Coriolis Flowmeters-A Review of Developments Over

the Past 20 Years. [2]

2.2.1. Objective

Conduct a comprehensive review of advancements in

Coriolis-based flow measurement technology over the past

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

290

two decades, covering theoretical models, analytical methods,

signal processing techniques, and industrial applications.

2.2.2. Methodology

A systematic literature review integrating studies, patents,

and industrial developments to classify and analyze trends and

challenges in Coriolis flowmeter technology.

2.2.3. Result and Contributions

Key developments include the expanded application of

Coriolis meters, advancements in numerical modeling

techniques (e.g., finite element method, FEM, and

computational fluid dynamics, CFD), and the emergence of

new signal processing methods to enhance accuracy and

stability.

2.3. Fluid-Solid Interaction Simulation Methodology for

Coriolis Flowmeter Operation Analysis. [3]

2.3.1. Objective

Develop and validate a fluid-solid interaction simulation

methodology for Coriolis flowmeters, identifying the most

suitable turbulence models and evaluating configuration

simplifications.

2.3.2. Methodology

A coupled approach using finite volume simulation for

the fluid and finite element modeling for the solid structure.

Three turbulence models (RSM, SST, and SST-CC) are

compared. The study also examines the impact of modeling

simplifications, such as equivalent tube length, sensor mass

inclusion, and structural reinforcements. Validation is

performed by comparing simulation results with experimental

data, ensuring an error margin of less than 5%.

2.3.3. Result and Contributions

• The Reynolds Stress Model (RSM) is the most accurate,

particularly in high-speed flows.

• Omitting reinforcements and using an equivalent length

approximation introduces significant errors.

• Experimental validation confirms an error of less than %,

proving the reliability of the proposed methodology for

future Coriolis flowmeter studies.

2.3.4. Limitations

Sensitivity to material property variations is observed.

Temperature effects are not considered. The computational

cost is high due to the complexity of fluid-solid interaction

modeling.

2.4. Analysis

The evolution of mass flow measurement using Coriolis

sensors has followed three fundamental research directions:

Development of simplified models for rapid design and

performance prediction.

Comprehensive reviews synthesizing advancements in

modeling and signal processing techniques.

Experimental validation to assess the accuracy and

practical feasibility of theoretical models.

Serving as a useful tool for the first design of sensors

without depending on computationally intensive simulations,

C.L. Ford's study [1] presented a parametric model that offers

a quick and simple approach to estimating sensitivity and

natural frequency. Its one-dimensional form, however, limits

the model's. Conversely, the current work uses a finite element

method (FEM) applied in GNU Octave to enable a complete

resolution of the governing differential equations, including

the Coriolis, inertial, and elastic components.

This comprehensive formulation enables the depiction of

the mass flow response and vibrational dynamics of the sensor

with greater accuracy and depth. Furthermore, by utilizing

open-source tools and ensuring all computational processes

are repeatable, the proposed framework guarantees higher

accuracy, flexibility, and transparency, unlike simplified

models or commercial black-box software. These elements

together help to increase the accuracy of the simulation and

show the benefits of this approach above the ones already

mentioned in the literature.

In contrast, the review by Tao Wang & Roger Baker [2]

provides a broader perspective on the development of Coriolis

flowmeters, highlighting the increasing reliance on advanced

modeling techniques such as finite element methods (FEM)

and computational fluid dynamics (CFD). While these

techniques enhance accuracy, the review also identifies

challenges such as zero stability and multiphase flow

measurement, which remain key areas for innovation.

Evgeniia Shavrina [3] takes a step further by

incorporating fluid-solid interaction modeling to evaluate the

impact of turbulence models and design simplifications. This

study demonstrates that neglecting structural reinforcements

or assuming equivalent tube lengths introduces significant

errors, reinforcing the importance of high-fidelity simulations.

However, it also highlights the high computational cost

associated with such detailed modeling.

2.4.1. Identified Gaps in the Literature

Notwithstanding these advancements, there exists a deficiency

of:

Lack of computer simulations: No previous work has

fully simulated Coriolis sensors for mass flow measurement,

especially for a mathematically complex model. Now,

published works rely on either simplified parametric models

or empirical validation.

Lack of open-source alternatives: For FEM-based studies,

past studies rely on proprietary or commercial software. By

means of free and open-source software (GNU Octave), our

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

291

approach enhances the accessibility of the methodology for

next projects and commercial uses.

Lack of mathematical derivations: None of the earlier

studies have completely developed the controlling equations,

even if numerical and empirical techniques are used. Our work

ensures a strong theoretical basis by a complete mathematical

treatment of the Coriolis effect in straight-tube sensors.

Restricted transparency in methodology: Unlike most

previous studies with just final results, our work presents

complete flowchart diagrams showing the sequential

simulation process. To ensure total repeatability and

encourage more specialised development, we also freely

provide all source code in GNU Octave.

2.4.2. Positioning of the Present Study

Building on these previous contributions, the present

research integrates a finite element method (FEM) approach

to simulate Coriolis sensor vibrations and compute critical

parameters such as angular resonance frequency and mass

flow rate. By employing fully developed mathematical

equations and free computational tools, this study provides an

alternative to traditional commercial software while

maintaining a high level of accuracy.

Furthermore, by providing all source code in GNU

Octave along with detailed flowchart diagrams, we ensure full

transparency and reproducibility, setting a new standard for

open-source computational research in Coriolis mass flow

measurement. This marks the first computational simulation

in the field where mathematical derivations, open-source

software, and fully accessible code are combined into a single

comprehensive framework. Future research should focus on

integrating temperature effects, material variability, and real-

world validation, ensuring further improvements in accuracy

and reliability.

3. Resources and Methods
3.1. Computational Resources

In this study, a computational simulation of the straight

stainless steel tube Coriolis sensor was performed. The

resources used were as follows:

3.1.1. Software

• GNU Octave: Programming environment used to

implement the Finite Element Method (FEM) and solve

the differential equations describing the tube's vibration.

• Custom Algorithms: Scripts were developed in Octave

for calculating resonance frequencies, phase shift, and

mass flow rate.

3.1.2. Hardware

• Computer: A system with an Intel Core i5 8th processor

and 16 GB of RAM was used to run the simulations.

3.1.3. Input Data

• Tube Properties: Theoretical data for a stainless-steel tube

were used, including its Young's modulus 𝐸 = 1.93 ×
1011 𝑃𝑎, density (ρ𝑡 = 7900 kg/m³), outer diameter

(𝐷𝑒𝑥𝑡 = 0.0127 m), inner diameter (𝐷𝑖𝑛𝑡 = 9.53 × 10−3

m), and length (𝐿 = 0.75 m).

• Fluid Properties: Water was considered as the working

fluid, with a density (𝑟ℎ𝑜𝑓 = 1000 kg/m³) and a velocity

range from 0.5 m/s to 25 m/s.

3.1.4. Simulation Parameters

• Number of Finite Elements: The tube was discretized into

52 finite elements to ensure the accuracy of the results.

• Boundary Conditions: Fixed boundary conditions were

applied at the tube's ends to simulate its attachment in a

real system.

3.2. Methods

The study was based on the computational simulation of

the Coriolis sensor using the Finite Element Method (FEM).

The complete details of the simulation methodology are

described in the Simulation Methodology section.

3.2.1. Formulation of Forces Acting on a Vibrating Straight

Tube

It is proposed to simulate the design of a straight tube

sensor to measure mass flow by deriving the differential

equations based on the Coriolis Effect that describe its motion.

These equations, related to the vibration of a fixed tube at both

ends, are solved by means of standardized mathematical

expressions in [5-7].

𝐸𝐼
∂4𝑦

∂𝑥4
+ 𝑀𝑓𝑉

2
∂2𝑦

∂𝑥2
+ 2𝑀𝑓𝑉

∂2𝑦

∂𝑡 ∂𝑥

+ (𝑀𝑡 + 𝑀𝑓)
∂2𝑦

∂𝑡2
= 0

(16)

With boundary conditions imposed at both ends fixed:

𝑦(0, 𝑡) =
∂𝑦

∂𝑥
|𝑥=0 = 𝑦(𝐿, 𝑡) =

∂𝑦(𝐿, 𝑡)

∂𝑥
= 0 (17)

The Euler-Bernoulli model is applied to the analysis of

vibrations in circular beams fixed at both ends, considering

deformations and slopes generated by the motion.

This defines a four-degree-of-freedom system for the

vibrating tube-fluid, with key factors being the transverse

elongation of the tube and the bending stiffness coefficient

derived from Young's modulus and moment of area.

Where:

𝐸: Young's modulus of straight pipe, [𝑁/𝑚2].
𝐼: Second moment of the cross-sectional area of the circular

tube [𝑚4].

𝑥: Position along the length of the tube, related to the load per

unit length.

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

292

𝑡: Time variable.

𝑉: Velocity of the fluid inside the tube.

𝑦 = 𝑦(𝑥, 𝑡): Instantaneous elongation of oscillation in the

direction transverse to the fluid flow relative to the horizontal

axis of symmetry.

𝐸𝐼: Coefficient of bending stiffness of the tube. It comes from

the product of Young's modulus and the second moment of

area.

𝑉: Velocity of the fluid inside the tube.

𝑀𝑓: Mass per unit length of the fluid.

𝑀𝑡: Mass per unit length of the tube.

Equation (16) is in the steady state; each of the terms is

expressed at the level of differential equations and is denoted:

• 𝐸𝐼
∂4𝑦

∂𝑥4 : Elastic force stored by the flexural rigidity of the

straight tube; this is the internal force that resists the

deformation of the tube due to its rigidity; when the tube

is bent, its rigidity generates a force that tries to return it

to its original shape. It is like a spring that opposes to be

stretched or compressed; the direction of this force is

opposite to the direction that the tube is bent.

• 𝑀𝑓𝑉
2 ∂2𝑦

∂𝑥2: Centripetal force that originates due to the

motion of the fluid is the force that appears when

something moves inside the tube (such as a fluid) at a

velocity (V). It is an outward force due to motion.

• 2𝑀𝑓𝑉
∂2𝑦

∂𝑡 ∂𝑥
: Coriolis force or Coriolis effect that is evident

on the fluid.

• (𝑀𝑡 + 𝑀𝑓)
∂2𝑦

∂𝑡2: Inertial force of fluid mass and the mass

of the oscillating tube section is the resistance of the mass

of the tube and the mass of the fluid to change its state of

motion (acceleration or deceleration) if the tube is

vibrating or moving, its mass generates a force that

opposes these changes.

From equation (18), it is obtained that an externally

applied force establishes the dynamic equation where each of

the terms of the first member is a differential equation as

expressed below, which is a standard differential equation that

applies to the vibration theory of beams, proposed by Euler-

Bernoulli. [8-9], which are very traditional in practical

applications:

𝐸𝐼
∂4𝑦

∂𝑥4
+ 𝑀𝑓𝑉

2
∂2𝑦

∂𝑥2
+ 2𝑀𝑓𝑉

∂2𝑦

∂𝑡 ∂𝑥

+ (𝑀𝑡 + 𝑀𝑓)
∂2𝑦

∂𝑡2

= 𝐹0 sin(ω𝑡)

(18)

It is considered a tube of length (L), homogeneous linear

density, and a uniform circular cross-section along its length.

The Figure (2) presents a schematic of the tube-fluid system,

highlighting the following aspects:

Fig. 2 General schematic of the Coriolis sensor straight tube: (a)Tube

Length, (b) Thickness, (c) Tube inner diameter, (d) Fluid inlet velocities,

(e) Fluid outlet velocities, and (f) Fixed initial and final ends.

In the absence of external loads, the axis of symmetry of

the tube is a straight line joining the centroids of all cross-

sections. When a vertical load is applied to the tube, it

undergoes distortion, and the resulting deflection curve

follows the shape of the tube. It is assumed that the x-axis

coincides with the axis of symmetry and that the deflection

𝑦(𝑥, 𝑡) is measured positively downward. According to the

theory of elasticity, the bending moment 𝑀(𝑥) at a point 𝑥

along the tube is related to the load per unit length by a specific

equation:

𝑑2𝑀(𝑥)

𝑑𝑥2
= ω(𝑥) (19)

Where ω(𝑥) is the mass resistance of the tube and of the

fluid mass to the change of its state of motion; in addition, the

moment 𝑀(𝑥) is proportional to the curvature Κ of the elastic

curve, where 𝐸 and 𝐼 are constants, 𝐸 is the modulus of

elasticity of the material used, and 𝐼 is the second moment of

the cross-sectional area of the circular tube. The product is

called the bending stiffness. Now, according to the

calculations, the curvature is given by:

𝜅 =
𝑦′′

[1 + 𝑦′2]3/2
 (20)

For small deflections, 𝑦′ ≈ 0, therefore [1 + 𝑦′2]3/2 ≈
1, and the equation is simplified to:

𝜅 ≈ 𝑦′′ (21)

The second derivative of this expression is:

𝑑2𝑀

𝑑𝑥2
= 𝐸𝐼

𝑑4𝑦

𝑑𝑥4
= ω(𝑥) (22)

It is seen that the deflection 𝑦(𝑥) satisfies the fourth-order

differential equation:

𝐸𝐼
𝑑4𝑦

𝑑𝑥4
= ω(𝑥) (23)

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

293

The conditions associated with the equation depend on

how the pipe ends are located. If both ends are embedded or

fixed, then the boundary conditions that are established are:

• 𝑦(0) = 𝑈𝑖1: It expresses the deflection at the initial

end.

• 𝑦′(0) = 𝑈𝑖2: The deflection curve is tangent to the x-

axis, i.e., the slope of the curve formed by the beam.

• 𝑦(𝐿) = 𝑈𝑗1: Deflection at the end.

• 𝑦′(𝐿) = 𝑈𝑗2: The deflection curve is tangent to the

x-axis, the slope at the end.

4. Solution by the Finite Element Method
The solution to the equation is proposed using the finite

element method, which involves discretizing the problem into

nodes and elements, and then assembling or globalizing the

results. A solution of the form is assumed:

𝑦(𝑥, 𝑡) = (𝐶1 + 𝐶2𝑥 + 𝐶3𝑥
2 + 𝐶4𝑥

3)𝑒−𝑖ω𝑡 (24)

From the development of the corresponding shape

function (see Appendix A), a globalized function is obtained

so that the equation can be rewritten as follows:

𝑦(𝑥) = (1 −
3𝑥2

𝐿2
+

2𝑥3

𝐿3
)𝑈𝑖1

+ (𝑥 −
2𝑥2

𝐿
+

𝑥3

𝐿2
)𝑈𝑖2

+ (
3𝑥2

𝐿2
−

2𝑥3

𝐿3
)𝑈𝑗1

+ (−
𝑥2

𝐿
+

𝑥3

𝐿2
)𝑈𝑗2

(25)

Expressed in matrix form:

𝑋 =

[

 1 −

3𝑥2

𝐿2
+

2𝑥3

𝐿3

𝑥 −
2𝑥2

𝐿
+

𝑥3

𝐿2

3𝑥2

𝐿2
−

2𝑥3

𝐿3

−
𝑥2

𝐿
+

𝑥3

𝐿2]

 (26)

Moreover, the initial conditions matrix is:

𝑈 =

[

𝑈𝑖1

𝑈𝑖2

𝑈𝑗1

𝑈𝑗2]

 (27)

Obtaining the matrix is essential for calculating its

elements, which are defined for a segment with two nodes and

one element, as per the Finite Element Method. These

elements are derived by applying the differential operator on

the corresponding function and minimizing errors by means of

the Galerkin method, considering a permanent regime where

the second member is zero.

𝑦(𝑥, 𝑡) = [𝑋]𝑇[𝑈]𝑒𝑖ω𝑡 (28)

The elementary matrices ([𝐴]), ([𝐵]), ([𝐶]), ([𝐷]) are of

the same order (4 × 4) in each case. Considering that the

matrices are derived with respect to (𝑥) and then can be

summed matrixially ([𝐾] = [𝐴] + [𝐵]). Writing most

compactly, the equation (16) for the permanent regime takes

the form:

[𝐾𝑔] + 𝑖 ω[𝐶𝑛] − ω2[𝐷𝑛] = 0 (29)

Where the angular frequency (ω) of oscillation appears,

which is the resonance frequency of the oscillation system of

the straight pipe sensor that transports the water fluid.

5. Simulation Methodology
The simulation was conducted using the Finite Element

Method (FEM) to model the vibration of a straight stainless

steel tube subjected to the Coriolis effect. The process is

divided into three main stages:

• Definition of parameters and calculation of geometric

properties.

• Assembly of global matrices.

• Calculation of resonance frequencies.

For practical purposes and to optimize simulation time, a

discretization of 52 finite elements was employed. However,

the number of elements can be adjusted by modifying a single

variable in the script provided in the annexes.

The model implementation was carried out in the Octave

environment, which provides a balance between accuracy and

computational efficiency in calculating the system's dynamic

responses.

5.1. Simulation Parameters

Table (1) summarizes the parameters used in the

simulation of the straight-tube Coriolis sensor. These values

were selected based on the properties of stainless steel and

water as the working fluid.

These parameters enable the calculation of the system's

geometric and mechanical properties, such as tube thickness,

cross-sectional area, and second moment of area, which are

essential for the simulation. Additionally, the number of finite

elements (𝒏) can be modified by adjusting a single variable in

the code provided in the annexes, allowing for greater

flexibility in the simulation setup.

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

294

Table 1. Parameters used in the simulation

Parameter Value Unit

Young's Modulus (𝐸) 1.9 × 1011 Pa

Outer tube diameter

(𝐷𝑒𝑥𝑡)
0.0127 m

Inner tube diameter

(𝐷𝑖𝑛𝑡)

9.53 × 10−3

m

Tube density (𝜌𝑡) 7900 kg/m3

Fluid density (𝜌𝑓) 1000 kg/m3

Tube length (𝐿) 0.75 m

Number of finite

elements (𝑛)
52 -

Fluid velocity (𝑉) 5 m/s

5.2. Calculation of Geometric Properties

The geometric and mechanical properties are calculated

as follows:

𝐸𝑡 =
𝐷ext − 𝐷int

2
 (30)

𝑅𝑚 =
𝐷ext + 𝐷int

4
 (31)

𝐴𝑡 =
𝜋

4
(𝐷ext

2 − 𝐷int
2) (32)

𝑀𝑡 = 𝜌𝑡  𝐴𝑡 (33)

𝐼𝑡 =
𝜋

64
(𝐷ext

4 − 𝐷int
4) (34)

𝐴𝑓 =
𝜋

4
𝐷int

2 (35)

𝑀𝑓 = 𝜌𝑓  𝐴𝑓 (36)

Where:

• (𝐸𝑡): Total thickness.

• (𝑅𝑚): Mean radius.

• (𝐴𝑡): Cross-sectional area.

• (𝑀𝑡): Cross-sectional mass.

• (𝐼𝑡): Cross-sectional moment of inertia.

• (𝐴𝑓): Fluid area.

• (𝑀𝑓): Fluid mass.

5.3. Assembly of Global Matrices

To model the system dynamics, the global matrices are

assembled from the local matrices of each finite element.

When using n finite elements, the matrices
[𝐴],[𝐵],[𝐶],𝑎𝑛𝑑[𝐷] have dimensions of 2𝑛 + 2. This is

because each element introduces two degrees of freedom

(deflection and slope) at each node, and the global system has

𝑛 + 1 nodes.

5.3.1. Local Matrices

The local matrices for each element are of size 4 × 4 and

are defined as follows [11]:

Local stiffness matrix:

[𝐴]𝑛 = [

12 6𝐿 −12 6𝐿
6𝐿 4𝐿2 −6𝐿 2𝐿2

−12 −6𝐿 12 −6𝐿
6𝐿 2𝐿2 −6𝐿 4𝐿2

] (37)

Local centrifugal force matrix:

[𝐵]𝑛 =

[

6

5𝐿

1

10
−

6

5𝐿

1

10
1

10

2𝐿

15
−

1

10
−

𝐿

30

−
6

5𝐿
−

1

10

6

5𝐿
−

1

10
1

10
−

𝐿

30
−

1

10

2𝐿

15]

 (38)

Local Coriolis matrix:

[𝐶]𝑛 =

[

 −

1

2

𝐿

10

1

2
−

𝐿

10

−
𝐿

10
0

𝐿

10
−

𝐿2

60

−
1

2
−

𝐿

10

1

2

𝐿

10
𝐿

10

𝐿2

60
−

𝐿

10
0]

 (39)

Local mass matrix:

[𝐷]𝑛 =

[

13𝐿

35

11𝐿2

210

9𝐿

70
−

13𝐿2

420
11𝐿2

210

𝐿3

105

13𝐿2

420
−

𝐿3

140
9𝐿

70

13𝐿2

420

13𝐿

35
−

11𝐿2

210

−
13𝐿2

420
−

𝐿3

140
−

11𝐿2

210

𝐿3

105]

 (40)

5.3.2. Assembly of the Global Matrix

The global matrix is obtained by assembling the

contributions of individual elements, considering the overlap

at shared nodes. For 𝑛 = 2, the global matrix is structured as

follows:

[𝐴]𝑛 = [
[𝐴]element 1 Overlap

Overlap [𝐴]element 2

] (41)

For the specific case of n = 2 elements, the global stiffness

matrix [𝐴]𝑔𝑙𝑜𝑏𝑎𝑙 takes the form:

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

295

[𝐴]𝑛 =

[

12 6𝐿 −12 6𝐿 0 0
6𝐿 4𝐿2 −6𝐿 2𝐿2 0 0

−12 −6𝐿 24 0 −12 6𝐿
6𝐿 2𝐿2 0 8𝐿2 −6𝐿 2𝐿2

0 0 −12 −6𝐿 12 −6𝐿
0 0 6𝐿 2𝐿2 −6𝐿 4𝐿2]

 (42)

Similarly, the matrices [𝐵]𝑛, [𝐶]𝑛, and [𝐷]𝑛 are

assembled considering the overlap at shared nodes.

5.4. Calculation of Resonance Frequencies

The resonance frequencies are obtained by solving the

eigenvalue problem of the following equation:

[𝐾𝑔] = ℎ1[𝐴]𝑛 + ℎ2[𝐵]𝑛 (43)

[𝐸𝑔] = ℎ3[𝐶]𝑛 (44)

[𝑀𝑔] = ℎ4[𝐷]𝑛 (45)

With:

ℎ1 =
𝐸𝐼𝑡
𝐿3

 (46)

ℎ2 = 𝑀𝑓𝑉
2 (47)

ℎ3 = 2𝑀𝑓𝑉 (48)

ℎ4 = 𝑀𝑓 + 𝑀𝑡 (49)

The eigenvalue equation is solved using the following

command in GNU Octave:

1 [X, e] = polyeig(Kg, i*Eg, -Mg)

5.5. Phase Shift and Mass Flow as a Function of Fluid

Velocity

The phase shift (Δϕ) and the mass flow rate (�̇�) were

calculated as a function of the fluid velocity (𝑉) using

established mathematical models. The results show that the

phase shift decreases as the fluid velocity increases while the

mass flow rate follows a linear increasing trend.

5.5.1. Mathematical Models Used

The phase shift is calculated using the following equation

[10]:

Δϕ = 𝑐 (
2𝑓21𝑔1𝑀𝑓𝑉

𝐿θ2(𝑀𝑓 + 𝑀𝑡)(𝑔1
2 − 𝑔2

2)
)𝐴1

(50)

Where:

(Δϕ): Phase shift.

(�̇�): Mass flow rate.

(𝑐): Modified amplitude.

(𝑓21): Factor related to vibration modes.

(𝑔1, 𝑔2): Frequencies related to the sensors.

(𝑀𝑓): Fluid mass per unit length.

(𝑉): Fluid velocity.

(𝐿): Tube length.

(θ2): Factor related to the second vibration mode.

(𝐴1): Amplitude ratio.

The mass flow rate is calculated as [10]:

�̇� =
Δϕ 𝐿 θ2 (𝑀𝑓 + 𝑀𝑡) (𝑔1

2 − 𝑔2
2)

2𝐴1𝑔1𝑐𝑓21

. (51)

5.5.2. Derivation of the Second Expression

To derive the second expression, we start from the first

equation and isolate the mass flow rate (�̇�). The procedure is

detailed below:

Start with the phase shift equation [10]:

Δ𝜙 = 𝑐 (
2𝑓21𝑔1𝑀𝑓𝑉

𝐿𝜃2(𝑀𝑓+𝑀𝑡)(𝑔1
2−𝑔2

2)
)𝐴1 (52)

Isolate the term (𝑀𝑓𝑉):

 𝑀𝑓𝑉 =
Δ𝜙 𝐿 𝜃2 (𝑀𝑓+𝑀𝑡) (𝑔1

2−𝑔2
2)

2𝐴1𝑔1𝑐𝑓21
 (53)

Relate (𝑀𝑓𝑉) to the mass flow rate (�̇�), since:

 �̇� = 𝑀𝑓𝑉 (54)

Finally, obtain the mass flow rate equation:

 �̇� =
Δ𝜙 𝐿 𝜃2 (𝑀𝑓+𝑀𝑡) (𝑔1

2−𝑔2
2)

2𝐴1𝑔1𝑐𝑓21
 (55)

6. Description of the Programs Used
This section describes the programs developed for the

simulation and analysis of the vibration of a straight stainless

steel tube subjected to the Coriolis effect.

The programs were implemented in Octave and were used

to calculate the resonance frequencies, phase shift, and mass

flow rate as a function of fluid velocity.

Simulation parameters employed in this work are shown

in Table 1, which displays all the physical and geometrical

quantities of interest for the calculations.

The values listed in Table 1 are the input parameters to

the Octave programs, with which an accurate reproduction of

the vibrational behavior of the tube is achieved, influenced by

the Coriolis force. These attributes are the physical properties

and dimensions necessary for the computational analysis.

6.1. Program 1: Calculation of Natural Frequencies

The first program aims to calculate the natural resonance

frequency of the tube using the Finite Element Method (FEM).

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

296

The algorithm is described below:

Algorithm 1: Calculation of Natural Frequencies

Require: Input parameters: 𝐸, 𝐷𝑒𝑥𝑡 , 𝐷𝑖𝑛𝑡 , 𝜌𝑡 , 𝜌𝑓 , 𝐿, 𝑁, 𝑉.

Ensure: Natural resonance frequency.

1: Calculate geometric properties: 𝐸𝑡 , 𝑅𝑚, 𝑀𝑡 , 𝐼𝑡 , 𝐴𝑓 , 𝑀𝑓 .

2: Calculate coefficients: ℎ1, ℎ2, ℎ3, ℎ4.
3: Define local matrices: [𝐴]𝑛 , [𝐵]𝑛: [𝐶]𝑛 , [𝐷]𝑛.
4: Assemble global matrices: [𝐴]𝑔𝑙𝑜𝑏𝑎𝑙 , [𝐵]𝑔𝑙𝑜𝑏𝑎𝑙 ,

[𝐶]𝑔𝑙𝑜𝑏𝑎𝑙 , [𝐷]𝑔𝑙𝑜𝑏𝑎𝑙 .

5: Compute global matrices: [𝐾𝑔], [𝐸𝑔], [𝑀𝑔].

6: Solve eigenvalue problem: polyeig([𝐾𝑔], 𝑖[𝐸𝑔],

 −[𝑀𝑔]).

7: Obtain natural frequency: frequency=real(𝑒(𝑆𝑧 , 1)).

6.2. Program 2: Convergence of the Natural Frequency

The second program evaluates the convergence of the

natural frequency as the number of finite elements increases.

The algorithm is described below:

Algorithm 2 Convergence of the Natural Frequency

Require: Input parameters: 𝐸, 𝐷𝑒𝑥𝑡 , 𝐷𝑖𝑛𝑡 , 𝜌𝑡 , 𝜌𝑓 , 𝐿,

𝑁𝑣𝑎𝑙𝑢𝑒𝑠 , 𝑉.
Ensure: Natural resonance frequency for different values

of 𝑁.

1: for each 𝑁 in 𝑁𝑣𝑎𝑙𝑢𝑒𝑠 𝒅𝒐

2: Calculate element length: L=
𝐿𝑡𝑜𝑡𝑎𝑙

𝑛

3: Calculate coefficients: ℎ1, ℎ2, ℎ3, ℎ4.
4: Define local matrices: [𝐴]𝑛 , [𝐵]𝑛: [𝐶]𝑛 , [𝐷]𝑛.
5: Assemble global matrices: [𝐴]𝑔𝑙𝑜𝑏𝑎𝑙 , [𝐵]𝑔𝑙𝑜𝑏𝑎𝑙 ,

[𝐶]𝑔𝑙𝑜𝑏𝑎𝑙 , [𝐷]𝑔𝑙𝑜𝑏𝑎𝑙 .

6: Compute global matrices: [𝐾𝑔], [𝐸𝑔], [𝑀𝑔].

7: Solve eigenvalue problem: polyeig([𝐾𝑔], 𝑖[𝐸𝑔],

 −[𝑀𝑔]).

8: Obtain natural frequency: frequency=real(𝑒(𝑆𝑧 , 1)).

9: end for

10: Plot natural frequencies vs number of finite elements.

6.3. Program 3: Variation of Frequency with Tube Length

The third program analyzes the variation of the natural

frequency as a function of the tube length. The algorithm is

described below:

Algorithm 3 Variation of Frequency with Tube Length

Require: Input parameters: 𝐸, 𝐷𝑒𝑥𝑡 , 𝐷𝑖𝑛𝑡 , 𝜌𝑡 , 𝜌𝑓 , 𝑁,

𝐿𝑣𝑎𝑙𝑢𝑒𝑠 , 𝑉.
Ensure: Natural frequencies for different tube lengths.

1: for each 𝐿 in 𝐿𝑣𝑎𝑙𝑢𝑒𝑠 𝒅𝒐

2: Calculate element length: 𝐿𝑒𝑙𝑒𝑚𝑒𝑛𝑡 =
𝐿

𝑛

3: Calculate coefficients: ℎ1, ℎ2, ℎ3, ℎ4.
4: Define local matrices: [𝐴]𝑛 , [𝐵]𝑛: [𝐶]𝑛 , [𝐷]𝑛.
5: Assemble global matrices: [𝐴]𝑔𝑙𝑜𝑏𝑎𝑙 , [𝐵]𝑔𝑙𝑜𝑏𝑎𝑙 ,

[𝐶]𝑔𝑙𝑜𝑏𝑎𝑙 , [𝐷]𝑔𝑙𝑜𝑏𝑎𝑙 .

6: Compute global matrices: [𝐾𝑔], [𝐸𝑔], [𝑀𝑔].

7: Solve eigenvalue problem: polyeig([𝐾𝑔], 𝑖[𝐸𝑔],

 −[𝑀𝑔]).

8: Obtain natural frequency: frequency=real(𝑒(𝑆𝑧 , 1)).

9: end for

10: Plot natural frequencies vs tuve length.

6.4. Program 4: Calculation of Phase Shift and Mass Flow

The fourth program calculates the phase shift and mass

flow rate as a function of fluid velocity. The algorithm is

described below:

Algorithm 4 Calculation of Phase Shift and Mass Flow

Require: Input parameters: 𝐸, 𝐷𝑒𝑥𝑡 , 𝐷𝑖𝑛𝑡 , 𝜌𝑡 , 𝜌𝑓 , 𝐿,

𝑉𝑣𝑎𝑙𝑢𝑒𝑠.
Ensure: Phase shift and mass flow rate for different

velocities.

1: for each 𝑉 in 𝑉𝑣𝑎𝑙𝑢𝑒𝑠 𝒅𝒐

2: Calculate geometric properties: 𝐸𝑡 , 𝑅𝑚, 𝑀𝑡 , 𝐼𝑡 ,
𝐴𝑓 , 𝐴𝑡 ,𝑀𝑓 .

3: Calculate coefficients: ℎ1, ℎ2, ℎ3, ℎ4.
4: Define local matrices: [𝐴]𝑛 , [𝐵]𝑛: [𝐶]𝑛 , [𝐷]𝑛.
5: Assemble global matrices: [𝐴]𝑔𝑙𝑜𝑏𝑎𝑙 , [𝐵]𝑔𝑙𝑜𝑏𝑎𝑙 ,

[𝐶]𝑔𝑙𝑜𝑏𝑎𝑙 , [𝐷]𝑔𝑙𝑜𝑏𝑎𝑙 .

6: Compute global matrices: [𝐾𝑔], [𝐸𝑔], [𝑀𝑔].

7: Solve eigenvalue problem: polyeig([𝐾𝑔], 𝑖[𝐸𝑔],

 −[𝑀𝑔]).

8: Calculate phase shift: 𝛥𝜙 = 𝑐 (
2𝑓21𝑔1𝑀𝑓𝑉

𝐿𝜃2(𝑀𝑓+𝑀𝑡)(𝑔1
2−𝑔2

2)
)𝐴1

9: Calculate mass flow rate: �̇� =
𝛥𝜙 𝐿 𝜃2 (𝑀𝑓+𝑀𝑡) (𝑔1

2−𝑔2
2)

2𝐴1𝑔1𝑐𝑓21

10: end for

11: Plot phase shift vs fluid velocity.

12: Plot mass flow rate vs fluid velocity.

Table 2. Resonance angular frequency calculated using FEM

Number of Elements Angular Frequency (rad/s)

1 878.05

2 724.4

3 724.89

4 723.91

8 723.48

16 723.61

20 723.62

24 723.67

28 723.63

32 723.63

42 723.64

52 723.64

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

297

7. Results and Discussion
7.1. Resonance Angular Frequency

The resonance angular frequency was calculated using the

Finite Element Method (FEM), discretizing the tube into

different numbers of elements. Table (2) shows the obtained

values, where it can be observed that the angular frequency

converges to 723.6 rad/s as the number of elements increases.

Figure (3) illustrates the convergence of the angular

frequency as the number of elements increases. It can be noted

that from approximately 16 elements onwards, the values

barely vary, confirming the stability of the obtained result.

Fig. 3 Convergence of the Resonance Angular Frequency

7.2. Variation of Angular Frequency with Respect to the

Length of the Straight Tube

To evaluate the effect of the tube length on the resonance

angular frequency, a series of simulations were performed in

which the tube lengths were varied while keeping the other

parameters constant. The Finite Element Method (FEM) with

52 elements was used, and the natural frequencies were

calculated for different tube lengths. The lowest natural

frequency was extracted from each simulation and plotted as

a function of the tube length.

The results show an inverse relationship between the tube

length and the natural frequency, indicating that as the length

increases, the natural frequency decreases. This behavior is

consistent with the theory of vibrations in flexible structures,

where an increase in length results in lower effective stiffness

and, consequently, a lower resonance frequency.

Figure (4) illustrates this relationship, clearly showing the

decreasing trend of the natural frequency as the tube length

increases.

Table 3. Frequency obtained for different lengths of the straight tube

Frequency (Hz) Length (m)

6512.229 0.25

3322.548 0.35

2009.915 0.45

1345.465 0.55

963.307 0.65

723.539 0.75

563.299 0.85

Fig. 4 Variation of Angular Frequency with Respect to the Length of the

Straight Tube

7.3. Calculated Mass Flow

The mass flow rate was calculated for fluid velocities

ranging from 0.5 m/s to 25 m/s. The results are shown in Table

(4) and Figure (5). As observed, the mass flow rate increases

linearly with the fluid velocity, which is consistent with

theoretical expectations.

Table 4. Results obtained from Algorithm 4 (Mass Flow Measured at

Different Velocities)

Velocity (m/s) Mass Flow (kg/s)

0.5 0.036

5 0.285

10 0.713

15 0.999

20 1.355

25 1.783

Fig. 5 Relationship between fluid velocity and mass flow

8. Conclusion
This study presented a computational simulation of a

Coriolis mass flow sensor with a straight stainless-steel tube,

utilizing the Finite Element Method (FEM) implemented in

GNU Octave. By discretizing the tube into 52 elements, the

system's resonance angular frequency was determined,

converging to 723.6 rad/s as the number of elements

increased. Additionally, the mass flow rate was computed for

fluid velocities ranging from 0.5 m/s to 25 m/s, revealing a

linear relationship between fluid velocity and mass flow rate,

thereby validating the proposed model.

A key advantage of this model is its flexibility and

adaptability. The computational implementation, provided in

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

298

the appendices, allows for the simulation of any other straight

tube by simply adjusting the input parameters, such as tube

dimensions (length, inner and outer diameters), material

properties (Young’s modulus, density), and fluid

characteristics (density, velocity). Moreover, the developed

algorithm is not restricted to 52 finite elements; rather, it

supports a higher number of elements to enhance simulation

accuracy, which is particularly beneficial for complex

configurations or more detailed analyses.

The results confirm the feasibility of straight-tube

Coriolis sensors for industrial applications, demonstrating

their potential for high-precision mass flow measurement.

However, it is important to note that this study is based on a

theoretical and numerical model, and experimental validation

is recommended for future research. Additionally, the

influence of other factors, such as fluid viscosity, temperature

variations, and non-ideal operating conditions, should be

explored to further improve the sensor’s robustness and

accuracy.

Future Work
The results of the research suggest various conceivable

directions for the next research.

Development and evaluation of a physical prototype

should be the main focus of future studies since they will help

validate the simulation results under practical operational

settings, so supporting prototype development. Experimental

calibration and error analysis greatly affect the dependability

and accuracy of the sensor in industrial environments.

Comparative Productiveness Against Modern

Technologies: Especially for sensitivity, fabrication costs,

and integration simplicity, a comparison of the straight-tube

Coriolis sensor to conventional U-shaped and Omega-shaped

devices may provide critical fresh perspectives on their

different advantages and limitations.

Tube design can be improved for increased sensitivity and

less energy dissipation by the use of advanced optimization

methodologies like topological optimisation and evolutionary

algorithms. Lowering nonlinear effects and outside

disruptions helps the integration of machine learning models

to improve data processing and flow rate forecasts.

The effectiveness of the sensor with non-Newtonian

fluids (e.g., slurries, polymers) and multiphase flows (e.g.,

gas-liquid, liquid-solid), frequently employed in industrial

applications including chemical processing, food

manufacture, and oil transportation, needs more research. The

real-time flow measuring, maintenance forecasting help, and

process management boosting potential via IoT-based

monitoring systems of the Coriolis sensor will help Industry

4.0 applications.

Energy efficiency and power consumption: The sensor's

relevance in distant or battery-powered applications increases

by low-power operation, hence improving its feasibility for

dispersed control systems. By laying a foundation for the

manufacturing of more cheaply priced and efficient mass flow

sensors, this work considerably advances industrial

instrumentation. Future research could look at the optimum

tube geometry and include complex geometrical shapes.

Funding Statement
This research has been funded by the authors' own

resources.

Acknowledgments
The authors would like to thank the National University

of San Agustin (UNSA) and Dr. Fernando from the Federal

University of Alagoas (UFAL) for their support during the

development of this research. Special thanks to colleagues

who provided valuable comments and suggestions during the

preparation of this manuscript.

References
[1] C.L. Ford, “A Simple Parametric Design Model for Straight-Tube Coriolis Flow Meters,” Flow Measurement and Instrumentation, vol. 79,

2021. [CrossRef] [Google Scholar] [Publisher Link]

[2] Tao Wang, and Roger Baker, “Coriolis Flowmeters: A Review of Developments Over the Past 20 Years, and an Assessment of the State

of the Art and Likely Future Directions,” Flow Measurement and Instrumentation, vol. 40, pp. 99-123, 2014. [CrossRef] [Google Scholar]

[Publisher Link]

[3] Evgeniia Shavrina et al., “Fluid-Solid Interaction Simulation Methodology for Coriolis Flowmeter Operation Analysis,” Sensors, vol. 21,

no. 23, pp. 1-20, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[4] Walter Hauser, Introduction to the Principles of Mechanics, Mexico: Regional Technical Assistance Center, 1969. [Google Scholar]

[5] Steven C. Chapra, and Raymond P. Canale, Numerical Methods for Engineers, 2nd ed., McGraw-Hill, 2000. [Google Scholar] [Publisher

Link]

[6] Dennis Zill, Warren S. Wright, Michael R. Cullen, Advanced Engineering Mathematics, 4th ed., Jones and Bartlett Publishers, pp. 1-970,

2011. [Google Scholar] [Publisher Link]

[7] Clarence Raymond Wylie, and Louis C. Barrett, Advanced Engineering Mathematics, 3rd ed., McGraw-Hill, pp. 1-1362, 1995. [Google

Scholar] [Publisher Link]

https://doi.org/10.1016/j.flowmeasinst.2021.101958
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+simple+parametric+design+model+for+straight-tube+coriolis+flow+meters&btnG=
http://sciencedirect.com/science/article/abs/pii/S0955598621000674
https://doi.org/10.1016/j.flowmeasinst.2014.08.015
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Coriolis+flowmeters%3A+A+review+of+developments+over+the+past+20+years%2C+and+an+assessment+of+the+state+of+the+art+and+likely+future+directions&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0955598614001149
https://doi.org/10.3390/s21238105
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fluid-solid+interaction+simulation+methodology+for+coriolis+flowmeter+operation+analysis&btnG=
https://www.mdpi.com/1424-8220/21/23/8105
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=W.+Hauser%2C+Introducci%C3%B3n+a+los+Principios+de+Mec%C3%A1nica&btnG=
https://scholar.google.com/scholar?q=M%C3%A9todos+Num%C3%A9ricos+para+Ingenieros&hl=en&as_sdt=0,5
https://www.google.co.in/books/edition/_/Npk8wQEACAAJ?hl=en&sa=X&ved=2ahUKEwjF2u3i8MeNAxUgSGwGHY8FMOUQre8FegQIBBBH
https://www.google.co.in/books/edition/_/Npk8wQEACAAJ?hl=en&sa=X&ved=2ahUKEwjF2u3i8MeNAxUgSGwGHY8FMOUQre8FegQIBBBH
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=D.G.+Zill%2C+and+W.S.+Wright%2C+Advanced+Engineering+Mathematics&btnG=
https://www.google.co.in/books/edition/Advanced_Engineering_Mathematics/qh1W-1nwUsEC?hl=en&gbpv=0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=C.R.+Wylie%2C+Advanced+Engineering+Mathematics&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=C.R.+Wylie%2C+Advanced+Engineering+Mathematics&btnG=
https://www.google.co.in/books/edition/_/JepqNAEACAAJ?hl=en&sa=X&ved=2ahUKEwi329rH9MeNAxVmS3ADHRJiN-MQre8FegQIBBAX

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

299

[8] G. Bobovnik, J. Kutin, and I. Bajsić, “The Effect of Flow Conditions on the Sensitivity of the Coriolis Flowmeter,” Flow Measurement and

Instrumentation, vol. 15, no. 2, pp. 69-76, 2004. [CrossRef] [Google Scholar] [Publisher Link]

[9] R. Chessewright, and Simon Shaw, “Uncertainties Associated with Finite Element Modelling of Coriolis Mass Flow Meters,” Flow Measurement

and Instrumentation, vol. 17, no. 6, pp. 335-347, 2006. [CrossRef] [Google Scholar] [Publisher Link]

[10] R. Cheesewright, and C. Clark, “The Effect of Flow Pulsations on Coriolis Mass Flow Meters,” Journal of Fluids and Structures, vol. 12,

no. 8, pp. 1025-1039, 1998. [CrossRef] [Google Scholar] [Publisher Link]

[11] Lisandro Massera, Mauro Podoreskaa, and Mónica Romeroa, “Coriolis Mass Flowmeter: Design and Implementation,” Computational

Mechanics, vol. 26, pp. 3019-3042, 2007. [Google Scholar] [Publisher Link]

[12] ABB Measurement & Analytics | Data Sheet, Coriolis Master FCD400 Coriolis Mass Flowmeter. [Publisher Link]

Appendix 1: Math Models
Proposed Form Function

Whereas:

𝑦(𝑥, 𝑡) = (𝐶1 + 𝐶2𝑥 + 𝐶3𝑥
2 + 𝐶4𝑥

3)𝑒𝑖ω𝑡

When (𝑥 = 0) at the tail end, then:

𝐶1 = 𝑈𝑖1

Likewise, the derivative of the function in (𝑥 = 0):

𝑑𝑦(𝑥)

𝑑𝑥
|𝑥=0 = 𝐶2 = 𝑈𝑖2

Similarly, at the other end in (𝑥 = 𝐿):

𝑈𝑖1 + 𝑈𝑖2𝐿 + 𝐶3𝐿
2 + 𝐶4𝐿

3 = 𝑈𝑗1

𝑑𝑦

𝑑𝑥
|𝑥=𝐿 = 𝑈𝑖2 + 2𝐶3𝐿 + 3𝐶4𝐿

2 = 𝑈𝑗2

A system of equations is obtained to determine the unknown constants 𝐶3 and 𝐶4:

𝑈𝑖1 + 𝐿𝑈𝑖2 + 𝐿2𝐶3 + 𝐿3𝐶4 = 𝑈𝑗1

𝑈𝑖2 + 2𝐿𝐶3 + 3𝐿2𝐶4 = 𝑈𝑗2

Resolving:

𝐶3 =
3

𝐿2
𝑈𝑗1 −

1

𝐿
𝑈𝑗2 −

3

𝐿2
𝑈𝑖1 −

2

𝐿
𝑈𝑖2

𝐶4 =
2

𝐿3
𝑈𝑖1 +

1

𝐿2
𝑈𝑖2 −

2

𝐿3
𝑈𝑗1 +

1

𝐿2
𝑈𝑗2

Now substituting for 𝑦(𝑥):

𝑦(𝑥) = 𝑈𝑖1 + 𝑥𝑈𝑖2 +
3𝑥2

𝐿2
𝑈𝑖1 −

𝑥2

𝐿
𝑈𝑖2 −

3𝑥2

𝐿2
𝑈𝑖1 −

2𝑥2

𝐿
𝑈𝑖2 +

2𝑥3

𝐿3
𝑈𝑖1 +

𝑥3

𝐿2
𝑈𝑖2 −

2𝑥3

𝐿3
𝑈𝑗1 +

𝑥3

𝐿2
𝑈𝑗2

https://doi.org/10.1016/j.flowmeasinst.2003.12.001
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+effect+of+flow+conditions+on+the+sensitivity+of+the+coriolis+flowmeter&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0955598603000761
https://doi.org/10.1016/j.flowmeasinst.2006.07.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Uncertainties+associated+with+finite+element+modelling+of+coriolis+mass+flow+meters&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0955598606000380
https://doi.org/10.1006/jfls.1998.0176
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+effect+of+flow+pulsations+on+coriolis+mass+flow+meters&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0889974698901761
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=audal%C3%ADmetro+m%C3%A1sico+de+efecto+Coriolis%3A+Dise%C3%B1o+e+implementaci%C3%B3n&btnG=
https://www.oilproduction.net/files/caudalimetro_masico_coriolis.pdf
https://search.abb.com/library/Download.aspx?DocumentID=OI%2FFCD400&LanguageCode=en&DocumentPartId=&Action=Launch&DocumentRevisionId=A

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

300

Derivatives of the elements of the matrix X

The first derivatives are:

𝑑𝑋𝑖1

𝑑𝑥
= −

6𝑥

𝐿2
+

6𝑥2

𝐿3

𝑑𝑋𝑖2

𝑑𝑥
= 1 −

4𝑥

𝐿
+

3𝑥2

𝐿2

𝑑𝑋𝑗1

𝑑𝑥
=

6𝑥

𝐿2
−

6𝑥2

𝐿3

𝑑𝑋𝑗2

𝑑𝑥
= −

2𝑥

𝐿
+

3𝑥2

𝐿2

The second derivatives are:

𝑑2𝑋𝑖1

𝑑𝑥2
= −

6

𝐿2
+

12𝑥

𝐿3

𝑑2𝑋𝑖2

𝑑𝑥2
= −

4

𝐿
+

6𝑥

𝐿2

𝑑2𝑋𝑗1

𝑑𝑥2
=

6

𝐿2
−

12𝑥

𝐿3

𝑑2𝑋𝑗2

𝑑𝑥2
= −

2

𝐿
+

6𝑥

𝐿2

Calculation of the elements of matrix A

The matrix [A] is defined as:

𝐴 = (
∂2𝑋

∂𝑥2
)(

∂2𝑋

∂𝑥2
)

𝑇

Where:

(
∂2𝑋

∂𝑥2
) =

[

 −

6

𝐿2
+

12𝑥

𝐿3

−
4

𝐿
+

6𝑥

𝐿2

6

𝐿2
−

12𝑥

𝐿3
−

2

𝐿
+

6𝑥

𝐿2]

(
∂2𝑋

∂𝑥2
)

𝑇

= [(−
6

𝐿2
+

12𝑥

𝐿3
) (−

4

𝐿
+

6𝑥

𝐿2
) (

6

𝐿2
−

12𝑥

𝐿3
) (−

2

𝐿
+

6𝑥

𝐿2
)]

The elements of the matrix [𝐴] are calculated as:

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

301

𝑎11 = ∫ (−
6

𝐿2
+

12𝑥

𝐿3
) (−

6

𝐿2
+

12𝑥

𝐿3
) 𝑑𝑥

𝐿

0

=
12

𝐿3

𝑎12 = ∫ (−
6

𝐿2
+

12𝑥

𝐿3
) (−

4

𝐿
+

6𝑥

𝐿2
) 𝑑𝑥

𝐿

0

=
6

𝐿2

𝑎13 = ∫ (−
6

𝐿2
+

12𝑥

𝐿3
) (

6

𝐿2
−

12𝑥

𝐿3
) 𝑑𝑥

𝐿

0

= −
12

𝐿3

𝑎14 = ∫ (−
6

𝐿2
+

12𝑥

𝐿3
) (−

2

𝐿
+

6𝑥

𝐿2
) 𝑑𝑥

𝐿

0

=
6

𝐿2

𝑎21 = ∫ (−
4

𝐿
+

6𝑥

𝐿2
) (−

6

𝐿2
+

12𝑥

𝐿3
) 𝑑𝑥

𝐿

0

=
6

𝐿2

𝑎22 = ∫ (−
4

𝐿
+

6𝑥

𝐿2
) (−

4

𝐿
+

6𝑥

𝐿2
) 𝑑𝑥

𝐿

0

=
4

𝐿

𝑎23 = ∫ (−
4

𝐿
+

6𝑥

𝐿2
) (

6

𝐿2
−

12𝑥

𝐿3
) 𝑑𝑥

𝐿

0

= −
6

𝐿2

𝑎24 = ∫ (−
4

𝐿
+

6𝑥

𝐿2
) (−

2

𝐿
+

6𝑥

𝐿2
) 𝑑𝑥

𝐿

0

=
2

𝐿

𝑎31 = ∫ (
6

𝐿2
−

12𝑥

𝐿3
) (−

6

𝐿2
+

12𝑥

𝐿3
) 𝑑𝑥

𝐿

0

= −
12

𝐿3

𝑎32 = ∫ (
6

𝐿2
−

12𝑥

𝐿3
) (−

4

𝐿
+

6𝑥

𝐿2
) 𝑑𝑥

𝐿

0

= −
6

𝐿2

𝑎33 = ∫ (
6

𝐿2
−

12𝑥

𝐿3
) (

6

𝐿2
−

12𝑥

𝐿3
) 𝑑𝑥

𝐿

0

=
12

𝐿3

𝑎34 = ∫ (
6

𝐿2
−

12𝑥

𝐿3
) (−

2

𝐿
+

6𝑥

𝐿2
) 𝑑𝑥

𝐿

0

= −
6

𝐿2

𝑎41 = ∫ (−
2

𝐿
+

6𝑥

𝐿2
) (−

6

𝐿2
+

12𝑥

𝐿3
) 𝑑𝑥

𝐿

0

=
6

𝐿2

𝑎42 = ∫ (−
2

𝐿
+

6𝑥

𝐿2
) (−

4

𝐿
+

6𝑥

𝐿2
) 𝑑𝑥

𝐿

0

=
2

𝐿

𝑎43 = ∫ (−
2

𝐿
+

6𝑥

𝐿2
) (

6

𝐿2
−

12𝑥

𝐿3
) 𝑑𝑥

𝐿

0

= −
6

𝐿2

𝑎44 = ∫ (−
2

𝐿
+

6𝑥

𝐿2
) (−

2

𝐿
+

6𝑥

𝐿2
) 𝑑𝑥

𝐿

0

=
4

𝐿

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

302

𝐴 =

[

12

𝐿3

6

𝐿2
−

12

𝐿3

6

𝐿2

6

𝐿2

4

𝐿
−

6

𝐿2

2

𝐿

−
12

𝐿3
−

6

𝐿2

12

𝐿3
−

6

𝐿2

6

𝐿2

2

𝐿
−

6

𝐿2

4

𝐿]

Calculation of the elements of matrix B

The matrix [𝐵] is defined as:

𝐵 =
∂𝑋

∂𝑥
(
∂𝑋

∂𝑥
)

𝑇

Where:

∂𝑋

∂𝑥
=

−
6𝑥

𝐿2
+

6𝑥2

𝐿3

1 −
4𝑥

𝐿
+

3𝑥2

𝐿2

6𝑥

𝐿2
−

6𝑥2

𝐿3
−

2𝑥

𝐿
+

3𝑥2

𝐿2

(
∂𝑋

∂𝑥
)

𝑇

= [(−
6𝑥

𝐿2
+

6𝑥2

𝐿3
) (1 −

4𝑥

𝐿
+

3𝑥2

𝐿2
) (

6𝑥

𝐿2
−

6𝑥2

𝐿3
) (−

2𝑥

𝐿
+

3𝑥2

𝐿2
)]

The elements of the matrix 𝐵 are calculated as:

𝑏11 = ∫ (−
6𝑥

𝐿2
+

6𝑥2

𝐿3
) (−

6𝑥

𝐿2
+

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

=
6

5𝐿

𝑏12 = ∫ (−
6𝑥

𝐿2
+

6𝑥2

𝐿3
)(1 −

4𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

=
1

10

𝑏13 = ∫ (−
6𝑥

𝐿2
+

6𝑥2

𝐿3
) (

6𝑥

𝐿2
−

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

= −
6

5𝐿

𝑏14 = ∫ (−
6𝑥

𝐿2
+

6𝑥2

𝐿3
) (−

2𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

=
1

10

𝑏21 = ∫ (1 −
4𝑥

𝐿
+

3𝑥2

𝐿2
) (−

6𝑥

𝐿2
+

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

=
1

10

𝑏22 = ∫ (1 −
4𝑥

𝐿
+

3𝑥2

𝐿2
) (1 −

4𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

=
2𝐿

15

𝑏23 = ∫ (1 −
4𝑥

𝐿
+

3𝑥2

𝐿2
) (

6𝑥

𝐿2
−

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

= −
1

10

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

303

𝑏24 = ∫ (1 −
4𝑥

𝐿
+

3𝑥2

𝐿2
) (−

2𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

= −
𝐿

30

𝑏31 = ∫ (
6𝑥

𝐿2
−

6𝑥2

𝐿3
) (−

6𝑥

𝐿2
+

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

= −
6

5𝐿

𝑏32 = ∫ (
6𝑥

𝐿2
−

6𝑥2

𝐿3
) (1 −

4𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

= −
1

10

𝑏33 = ∫ (
6𝑥

𝐿2
−

6𝑥2

𝐿3
) (

6𝑥

𝐿2
−

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

=
6

5𝐿

𝑏34 = ∫ (
6𝑥

𝐿2
−

6𝑥2

𝐿3
) (−

2𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

= −
1

10

𝑏41 = ∫ (−
2𝑥

𝐿
+

3𝑥2

𝐿2
) (−

6𝑥

𝐿2
+

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

=
1

10

𝑏42 = ∫ (−
2𝑥

𝐿
+

3𝑥2

𝐿2
)(1 −

4𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

= −
𝐿

30

𝑏43 = ∫ (−
2𝑥

𝐿
+

3𝑥2

𝐿2
) (

6𝑥

𝐿2
−

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

= −
1

10

𝑏44 = ∫ (−
2𝑥

𝐿
+

3𝑥2

𝐿2
) (−

2𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

=
2𝐿

15

𝐵 =

[

6

5𝐿

1

10
−

6

5𝐿

1

10
1

10

2𝐿

15
−

1

10
−

𝐿

30

−
6

5𝐿
−

1

10

6

5𝐿
−

1

10
1

10
−

𝐿

30
−

1

10

2𝐿

15]

Calculation of the Elements of Matrix C

The matrix [𝐶] is defined as:

𝐶 = 𝑋 (
∂𝑋

∂𝑥
)

𝑇

Where:

𝑋 =

1 −
3𝑥2

𝐿2
+

2𝑥3

𝐿3

𝑥 −
2𝑥2

𝐿
+

𝑥3

𝐿2

3𝑥2

𝐿2
−

2𝑥3

𝐿3

𝑥2

𝐿
+

𝑥3

𝐿2

(
∂𝑋

∂𝑥
)

𝑇

= [(−
6𝑥

𝐿2
+

6𝑥2

𝐿3
) (1 −

4𝑥

𝐿
+

3𝑥2

𝐿2
) (

6𝑥

𝐿2
−

6𝑥2

𝐿3
) (−

2𝑥

𝐿
+

3𝑥2

𝐿2
)]

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

304

The elements of the matrix [𝐶] are calculated as:

𝑐11 = ∫ (1 −
3𝑥2

𝐿2
+

2𝑥3

𝐿3
)(−

6𝑥

𝐿2
+

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

= −
1

2

𝑐12 = ∫ (1 −
3𝑥2

𝐿2
+

2𝑥3

𝐿3
) (1 −

4𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

=
𝐿

10

𝑐13 = ∫ (1 −
3𝑥2

𝐿2
+

2𝑥3

𝐿3
)(

6𝑥

𝐿2
−

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

=
1

2

𝑐14 = ∫ (1 −
3𝑥2

𝐿2
+

2𝑥3

𝐿3
)(−

2𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

= −
𝐿

10

𝑐21 = ∫ (𝑥 −
2𝑥2

𝐿
+

𝑥3

𝐿2
)(−

6𝑥

𝐿2
+

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

= −
𝐿

10

𝑐22 = ∫ (𝑥 −
2𝑥2

𝐿
+

𝑥3

𝐿2
) (1 −

4𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

= 0

𝑐23 = ∫ (𝑥 −
2𝑥2

𝐿
+

𝑥3

𝐿2
) (

6𝑥

𝐿2
−

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

=
𝐿

10

𝑐24 = ∫ (𝑥 −
2𝑥2

𝐿
+

𝑥3

𝐿2
)(−

2𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

= −
𝐿2

60

𝑐31 = ∫ (
3𝑥2

𝐿2
−

2𝑥3

𝐿3
) (−

6𝑥

𝐿2
+

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

= −
1

2

𝑐32 = ∫ (
3𝑥2

𝐿2
−

2𝑥3

𝐿3
) (1 −

4𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

= −
𝐿

10

𝑐33 = ∫ (
3𝑥2

𝐿2
−

2𝑥3

𝐿3
) (

6𝑥

𝐿2
−

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

=
1

2

𝑐34 = ∫ (
3𝑥2

𝐿2
−

2𝑥3

𝐿3
) (−

2𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

=
𝐿

10

𝑐41 = ∫ (−
𝑥2

𝐿
+

𝑥3

𝐿2
)(−

6𝑥

𝐿2
+

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

=
𝐿

10

𝑐42 = ∫ (−
𝑥2

𝐿
+

𝑥3

𝐿2
) (1 −

4𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

=
𝐿2

60

𝑐43 = ∫ (−
𝑥2

𝐿
+

𝑥3

𝐿2
)(

6𝑥

𝐿2
−

6𝑥2

𝐿3
)𝑑𝑥

𝐿

0

= −
𝐿

10

𝑐44 = ∫ (−
𝑥2

𝐿
+

𝑥3

𝐿2
) (−

2𝑥

𝐿
+

3𝑥2

𝐿2
)𝑑𝑥

𝐿

0

= 0

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

305

𝐶 =

[

 −

1

2

𝐿

10

1

2
−

𝐿

10

−
𝐿

10
0

𝐿

10
−

𝐿2

60

−
1

2
−

𝐿

10

1

2

𝐿

10
𝐿

10

𝐿2

60
−

𝐿

10
0]

Calculation of the Elements of Matrix D

The matrix [𝐷] is defined as:

𝐷 = (𝑋)(𝑋)𝑇

Where:

𝑋 =

1 −
3𝑥2

𝐿2
+

2𝑥3

𝐿3

𝑥 −
2𝑥2

𝐿
+

𝑥3

𝐿2

3𝑥2

𝐿2
−

2𝑥3

𝐿3

𝑥2

𝐿
+

𝑥3

𝐿2

𝑋𝑇 = [(1 −
3𝑥2

𝐿2
+

2𝑥3

𝐿3
) (𝑥 −

2𝑥2

𝐿
+

𝑥3

𝐿2
)(

3𝑥2

𝐿2
−

2𝑥3

𝐿3
) (−

𝑥2

𝐿
+

𝑥3

𝐿2
)]

The elements of the matrix [𝐷] are calculated as:

𝑑11 = ∫ (1 −
3𝑥2

𝐿2
+

2𝑥3

𝐿3
)

2

𝑑𝑥
𝐿

0

=
13𝐿

35

𝑑12 = ∫ (1 −
3𝑥2

𝐿2
+

2𝑥3

𝐿3
)(𝑥 −

2𝑥2

𝐿
+

𝑥3

𝐿2
)𝑑𝑥

𝐿

0

=
11𝐿2

210

𝑑13 = ∫ (1 −
3𝑥2

𝐿2
+

2𝑥3

𝐿3
) (

3𝑥2

𝐿2
−

2𝑥3

𝐿3
)𝑑𝑥

𝐿

0

=
9𝐿

70

𝑑14 = ∫ (1 −
3𝑥2

𝐿2
+

2𝑥3

𝐿3
)(−

𝑥2

𝐿
+

𝑥3

𝐿2
)𝑑𝑥

𝐿

0

= −
13𝐿2

420

𝑑21 = ∫ (𝑥 −
2𝑥2

𝐿
+

𝑥3

𝐿2
) (1 −

3𝑥2

𝐿2
+

2𝑥3

𝐿3
)𝑑𝑥

𝐿

0

=
11𝐿2

210

𝑑22 = ∫ (𝑥 −
2𝑥2

𝐿
+

𝑥3

𝐿2
) (𝑥 −

2𝑥2

𝐿
+

𝑥3

𝐿2
)𝑑𝑥

𝐿

0

=
𝐿3

105

𝑑23 = ∫ (𝑥 −
2𝑥2

𝐿
+

𝑥3

𝐿2
) (

3𝑥2

𝐿2
−

2𝑥3

𝐿3
)𝑑𝑥

𝐿

0

=
13𝐿2

420

𝑑24 = ∫ (𝑥 −
2𝑥2

𝐿
+

𝑥3

𝐿2
) (−

𝑥2

𝐿
+

𝑥3

𝐿2
)𝑑𝑥

𝐿

0

= −
𝐿3

140

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

306

𝑑31 = ∫ (
3𝑥2

𝐿2
−

2𝑥3

𝐿3
)(1 −

3𝑥2

𝐿2
+

2𝑥3

𝐿3
)𝑑𝑥

𝐿

0

=
9𝐿

70

𝑑32 = ∫ (
3𝑥2

𝐿2
−

2𝑥3

𝐿3
) (𝑥 −

2𝑥2

𝐿
+

𝑥3

𝐿2
)𝑑𝑥

𝐿

0

=
13𝐿2

420

𝑑33 = ∫ (
3𝑥2

𝐿2
−

2𝑥3

𝐿3
) (

3𝑥2

𝐿2
−

2𝑥3

𝐿3
)𝑑𝑥

𝐿

0

=
13𝐿

35

𝑑34 = ∫ (
3𝑥2

𝐿2
−

2𝑥3

𝐿3
) (−

𝑥2

𝐿
+

𝑥3

𝐿2
)𝑑𝑥

𝐿

0

= −
11𝐿2

210

𝑑41 = ∫ (−
𝑥2

𝐿
+

𝑥3

𝐿2
) (1 −

3𝑥2

𝐿2
+

2𝑥3

𝐿3
)𝑑𝑥

𝐿

0

= −
13𝐿2

420

𝑑42 = ∫ (−
𝑥2

𝐿
+

𝑥3

𝐿2
) (𝑥 −

2𝑥2

𝐿
+

𝑥3

𝐿2
)𝑑𝑥

𝐿

0

= −
𝐿3

140

𝑑43 = ∫ (−
𝑥2

𝐿
+

𝑥3

𝐿2
)(

3𝑥2

𝐿2
−

2𝑥3

𝐿3
)𝑑𝑥

𝐿

0

= −
11𝐿2

210

𝑑44 = ∫ (−
𝑥2

𝐿
+

𝑥3

𝐿2
) (−

𝑥2

𝐿
+

𝑥3

𝐿2
)𝑑𝑥

𝐿

0

=
𝐿3

105

𝐷 =

[

13𝐿

35

11𝐿2

210

9𝐿

70
−

13𝐿2

420
11𝐿2

210

𝐿3

105

13𝐿2

420
−

𝐿3

140
9𝐿

70

13𝐿2

420

13𝐿

35
−

11𝐿2

210

−
13𝐿2

420
−

𝐿3

140
−

11𝐿2

210

𝐿3

105]

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

307

Appendix 2: Simulation with FreeCAD

Straight Tube Sensor Dimensions

Straight Tube Sensor Materials

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

308

FreeCAD Simulation Results

Appendix 3: Flowcharts

Flowchart of Program 1: Calculation of Natural Frequencies

Define initial parameters: E,

Dext, Dint, rhot, rhof, long, N, V

Calculate geometric
properties: et, Rm, At, Mt, It, Af,

Mf

Calculate coefficients:
h1, h2, h3, h4

Assemble global matrices:
[A_global], [B_global], [C_global],

[D_global]

Calculate global matrices:

[Kg], [Eg], [Mg]

Solve eigenvalue problem:

[X, e] = polyeig(Kg, i*Eg, -
Mg)

Extract the lowest natural

frequency

Defind local matrices:
[A], [B], [C], [D]

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

309

Flowchart of Program 2: Convergence of the Natural Frequency

Define initial parameters: E, Dext, Dint, rhot,

rhof, long, V

Define finite element range: N_values = [1, 2,

3, ..., 52]

Initialize frequency vector: frequencies =

zeros(size(N_values))

Is N_values not empty?

Get current N

Calculate element length:

L = long/N

Calculate coefficients:

h1, h2, h3, h4

Define local matrices:

 [A], [B], [C], [D]

Assemble global matrices: [A_global],

[B_global], [C_global], [D_global]

Calculate global matrices:

[Kg], [Eg]. [Mg]

Solve eigenvalue problem: [X, e] polyeig(Kg,

i*Eg, -Mg)

Plot results:

frequencies vs N_values

Store the lowest natural frequency

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

310

Flowchart of Program 3: Frequency Variation with Tube Length

Define initial parameters: E, Dext,

Dint, rhot, rhof, V

Define tube length range: lengths

[0.25, 0.35, ..., 0.85]

Initialize frequency vector:

frequencies = zeros(size(lengths))

Is lengths not empty?

Get current length

Calculate element length:

L = long/N

Calculate coefficients: h1, h2, h3, h4

Define local matrices:

[A], [B], [C], [D]

Assemble global matrices:

[A_global], [B_global], [C_global],

[D_global]

Calculate global matrices:

[Kg], [Eg]. [Mg]

Solve eigenvalue problem: [X, e]

polyeig(Kg, i*Eg, -Mg)

Store the lowest natural frequency

Plot results: frequencies vs lengths

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

311

Flowchart of Program 4: Calculation of Phase Shift and Mass Flow

Define initial parameters

E, Dext, Dint, rhot, rhof, long, N, V

Calculate geometric properties

et, Rm, At, Mt, It, Af, Mf

Define vibration modes

lan1, lan2, 121, the1, the2, xi11, xi22

Calculate arguments and frequencies

bt1, bt2, sg1, sg2, om1, om2, g1, g2

Define critical positions and times

a, b, c, t, t1

Calculate vibration function

wo, w1, w2, w3

Calculate modified amplitude

Calculate amplitude ratio

Calculate phase shift

Calculate mass flow

Plot results

c = C/w3;

A1(w1-w2)/(L/4);

PhaseShiftc = C* ((2f21g1 Mf V)/

(L*the2*(Mf+Mt)* (g1^2-g2^2))) *A1;

mass_flow = (PhaseShift* L* the2*

 (Mf + Mt)* (g1^2-g2^2))/(2*A1*g1*c*f21);

mass _flow vs velocities; PhaseShift

vs velocities;

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

312

Appendix 4: Simulation codes

CODE 1: Calculation of Natural Frequencies

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

clc, clear all

% II. EIGENVALUE RANGE AND MODE VALUE DEFINITION

i = 1:1:5; % ITERATION VARIABLE FOR EIGENVALUES

lan1 = 4.73; % FIRST FUNDAMENTAL MODE [21]-[23]

lan2 = 7.853; % SECOND MODE

f21 = 3.399; % FACTOR

theta1 = 1.0359; % THETA1

theta2 = 0.9984; % THETA2

xi11 = -12.74; % FACTOR11

xi22 = -45.98; % FACTOR22

% III. STAINLESS STEEL PIPE INPUT PARAMETERS

% DATA ENTRY IN FILE: STEEL P0_1

E = 1.93e11; % YOUNG'S MODULUS [N/m^2]

Dext = 0.0127; % OUTER DIAMETER [m]

Dint = 9.53000000000000e-003; % INNER DIAMETER [m]

rhot = 7900; % TUBE DENSITY [kg/m^3]

rhof = 1000; % FLUID DENSITY [kg/m^3]

L_total = 0.75; % TUBE LENGTH [m]

N = 1; % NUMBER OF ITERATION ELEMENTS

L = L_total / N; % LENGTH OF EACH ELEMENT [m]

x = 0:0.025:L; % TUBE VARIABLE [m]

V = 10; % FLUID VELOCITY [m/s]

et = (Dext - Dint) / 2; % TUBE THICKNESS [m]

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

313

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Rm = (Dext + Dint) / 2; % MEAN TUBE RADIUS [m]

At = pi * (Dext^2 - Dint^2) / 4; % CROSS-SECTIONAL AREA OF TUBE [m^2]

Mt = rhot * At; % PIPE MASS PER UNIT LENGTH [kg/m]

It = pi * (Dext^4 - Dint^4) / 64; % SECOND MOMENT OF AREA [m^4]

Af = pi * Dint^2 / 4; % FLOW AREA [m^2]

Mf = rhof * Af; % FLUID MASS PER UNIT LENGTH [kg/m]

omega = 720; % RESONANCE ANGULAR FREQUENCY [rad/s]

C = 1.5e-3; % OSCILLATION AMPLITUDE [m]

% IV. DEFINITION OF OTHER VIBRATION PARAMETERS [21]-[23]

beta1 = lan1 / L; % ARGUMENT FIRST MODE

beta2 = lan2 / L; % ARGUMENT SECOND MODE

sigma1 = (sinh(beta1 * L) - sin(beta1 * L)) / (cos(beta1 * L) - cosh(beta1 * L));

sigma2 = (sinh(beta2 * L) - sin(beta2 * L)) / (cos(beta2 * L) - cosh(beta2 * L));

omega1 = (xi11 * Mf * V^2) / (L^2 * theta1 * (Mf + Mt)); % ARGUMENT 1

omega2 = (xi22 * Mf * V^2) / (L^2 * theta2 * (Mf + Mt)); % ARGUMENT 2

gamma1 = sqrt(omega^2 - (xi11 * Mf * V^2) / (L^2 * theta1 * (Mf + Mt))); % SENSOR FREQUENCY 1

gamma2 = sqrt(omega^2 - (xi22 * Mf * V^2) / (L^2 * theta2 * (Mf + Mt))); % SENSOR FREQUENCY 2

% V. CRITICAL VALUES AND FUNCTION DEFINITION

% CHANGES ARE INTRODUCED IN THIS SECTION [21]-[23]

a = L / 4; % CRITICAL POSITION 1

b = (3 * L) / 4; % CRITICAL POSITION 2

c = L / 2; % CRITICAL POSITION 3

t = pi / (2 * omega); % TIME 1

t1 = (3 * pi) / (8 * omega); % TIME 2

w0 = sinh(beta1 * x) - sin(beta1 * x) + sigma1 * (cosh(beta1 * x) - cos(beta1 * x)); % ORIGINAL FUNCTION

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

314

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

w1 = sinh(beta2 * a) - sin(beta2 * a) + sigma2 * (cosh(beta2 * a) - cos(beta2 * a)) * cos(t);

w2 = sinh(beta2 * b) - sin(beta2 * b) + sigma2 * (cosh(beta2 * b) - cos(beta2 * b)) * cos(t1);

w3 = (cosh(beta2 * c) - cos(beta2 * c) - sigma1 * (sinh(beta2 * c) - sin(beta2 * c))) * cos(pi / 4);

c = C / w3; % MODIFIED AMPLITUDE

A1 = (w1 - w2) / (L / 4); % AMPLITUDE RATIO DEFINITION

% VI. PHASE SHIFT CALCULATION (IN RADIANS)

PhaseShiftTheory = 0.88 * pi / 180; % PHASE SHIFTS GENERATED FOR VELOCITIES OR FLOWS

PhaseShift = c * ((2 * f21 * gamma1 * Mf * V) / (L * theta2 * (Mf + Mt) * (gamma1^2 - gamma2^2))) * A1;

PhaseError = ((PhaseShiftTheory - PhaseShift) / PhaseShiftTheory) * 100;

% VII. MASS FLOW CALCULATION

z0 = Mf * V; % THEORETICAL FLOW

z = (PhaseShift * L * theta2 * (Mf + Mt) * (gamma1^2 - gamma2^2)) / (2 * A1 * gamma1 * c * f21);

%CALCULATED MASS FLOW

% IX. GRAPHICS

% Define velocity range

velocities = [0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25];

% Initialize vectors to store results

PhaseShift = zeros(size(velocities));

mass_flow = zeros(size(velocities));

% Calculate phase shift and mass flow for each velocity

for i = 1:length(velocities)

 V = velocities(i); % Current velocity

 omega1 = (xi11 * Mf * V^2) / (L^2 * theta1 * (Mf + Mt)); % ARGUMENT 1

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

315

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

 omega2 = (xi22 * Mf * V^2) / (L^2 * theta2 * (Mf + Mt)); % ARGUMENT 2

 gamma1 = sqrt(omega^2 - (xi11 * Mf * V^2) / (L^2 * theta1 * (Mf + Mt))); % SENSOR FREQUENCY 1

 gamma2 = sqrt(omega^2 - (xi22 * Mf * V^2) / (L^2 * theta2 * (Mf + Mt))); % SENSOR FREQUENCY 2

 % Calculate phase shift

 PhaseShift(i) = c * ((2 * f21 * gamma1 * Mf * V) / (L * theta2 * (Mf + Mt) * (gamma1^2 - gamma2^2))) *

A1;

 % Calculate mass flow

 mass_flow(i) = (PhaseShift(i) * L * theta2 * (Mf + Mt) * (gamma1^2 - gamma2^2)) / (2 * A1 * gamma1 * c

* f21);

end

% a) CORIOLIS FLOW VS VELOCITY PLOT

figure(1)

plot(velocities, mass_flow, 'r o')

title('CORIOLIS FLOW vs VELOCITY')

xlabel('Fluid velocity [m/s]')

ylabel('Mass flow [kg/s]')

grid on

% b) PHASE SHIFT VS VELOCITY PLOT

figure(2)

plot(velocities, PhaseShift, 'g o')

title('PHASE SHIFT vs VELOCITY')

xlabel('Fluid velocity [m/s]')

ylabel('Phase angle shift [rad/s]')

grid on

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

316

CODE 2: Convergence of the Natural Frequency

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

clc, clear all, close all;

format longeng

function global_matrix = assemble_global_matrix(n, L, local_matrix_fn)

 dof = 2 * (n + 1); % Total degrees of freedom

 global_matrix = zeros(dof, dof); % Initialize global matrix as numeric

 for i = 1:n

 indices = 2*(i-1) + (1:4); % Global indices

 local_matrix = local_matrix_fn(L);

 global_matrix(indices, indices) = global_matrix(indices, indices) + local_matrix;

 end

end

% Initial parameters

E = 1.93e11; % YOUNG'S MODULUS

Dext = 0.0127; % EXTERNAL DIAMETER

Dint = 9.53e-3; % INTERNAL DIAMETER

rhot = 7900; % TUBE DENSITY

rhof = 1000; % FLUID DENSITY

length_total = 0.75; % TOTAL TUBE LENGTH

V = 5; % FLUID VELOCITY

% Predefined results

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

317

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

et = 1.58500000000000e-003; % TUBE THICKNESS

Rm = 11.1150000000000e-003; % MEAN RADIUS OF THE TUBE

At = 55.3463017162711e-006; % CROSS-SECTIONAL AREA OF THE TUBE

Mt = 437.235783558542e-003; % TUBE MASS PER UNIT LENGTH

It = 872.087871085041e-012; % SECOND MOMENT OF AREA OF THE TUBE

Af = 71.3305680581033e-006; % CROSS-SECTIONAL AREA FOR THE FLUID

Mf = 71.3305680581033e-003; % FLUID MASS PER UNIT LENGTH

% Finite element range

N_values = [1 2 3 4 8 16 20 24 28 32 42 52]; % Values of N (number of finite elements)

frequencies = zeros(size(N_values)); % Vector to store natural frequencies

% Iterate over different values of N

for idx = 1:length(N_values)

 N = N_values(idx);

 L = length_total / N;

 % Coefficients

 h1 = (E * It) / (L^3);

 h2 = Mf * V^2;

 h3 = 2 * Mf * V;

 h4 = Mf + Mt;

 % Local matrix functions

 matrixA_local = @(L) [

 12 6*L -12 6*L;

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

318

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

 6*L 4*L^2 -6*L 2*L^2;

 -12 -6*L 12 -6*L;

 6*L 2*L^2 -6*L 4*(L^2)];

 matrixB_local = @(L) [

 6/5*L 1/10 -6/5*L 1/10;

 1/10 2*L/15 -1/10 -L/30;

 -6/5*L -1/10 6/5*L -1/10;

 1/10 -L/30 -1/10 2*L/15];

 matrixC_local = @(L) [

 -1/2 L/10 1/2 -L/10;

 -L/10 0 L/10 -L^2/60;

 -1/2 -L/10 1/2 L/10;

 L/10 L^2/60 -L/10 0];

 matrixD_local = @(L) [

 13*L/35 11*L^2/210 9*L/70 -13*L^2/420;

 11*L^2/210 L^3/105 13*L^2/420 -L^3/140;

 9*L/70 13*L^2/420 13*L/35 -11*L^2/210;

 -13*L^2/410 -L^3/140 -11*L^2/210 L^3/105];

 % Assemble global matrices

 A_global = assemble_global_matrix(N, L, matrixA_local);

 B_global = assemble_global_matrix(N, L, matrixB_local);

 C_global = assemble_global_matrix(N, L, matrixC_local);

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

319

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

 D_global = assemble_global_matrix(N, L, matrixD_local);

 % Calculate global matrices

 Kg = h1 * A_global + h2 * B_global; % Global stiffness matrix

 Eg = h3 * C_global; % Global Coriolis matrix

 Mg = h4 * D_global; % Global mass matrix

 % Calculate natural frequencies

 [~, e] = polyeig(Kg, i*Eg, -Mg);

 frequencies_nat = real(e);

 frequencies_nat = frequencies_nat(frequencies_nat > 10); % Filter values greater than 10

 % Select the lowest frequency

 if ~isempty(frequencies_nat)

 min_frequency = min(frequencies_nat);

 frequencies(idx) = min_frequency; % Save the lowest frequency

 end

end

% Display the global lowest frequency

if ~isempty(frequencies)

 global_min_frequency = min(frequencies(frequencies > 0));

 fprintf('The global lowest frequency is: %.5f Rad/s\n', global_min_frequency);

end

% Plot results

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

320

103

104

105

106

107

108

figure;

plot(N_values, frequencies, '-o', 'LineWidth', 1.5);

xlabel('Number of finite elements (N)');

ylabel('Natural frequency (Rad/s)');

title('Natural frequency vs Number of finite elements');

grid on;

CODE 3: Variation of Frequency with Tube Length

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

clc, clear all, close all;

format longeng

% Initial parameters

E = 1.93e11; % Young's modulus

Dext = 0.0127; % Outer diameter

Dint = 9.53e-3; % Inner diameter

rhot = 7900; % Tube density

rhof = 1000; % Fluid density

V = 5; % Fluid velocity

% Predefined results

et = 1.58500000000000e-003; % Tube thickness

Rm = 11.1150000000000e-003; % Mean tube radius

At = 55.3463017162711e-006; % Cross-sectional area of tube

Mt = 437.235783558542e-003; % Tube mass per unit length

It = 872.087871085041e-012; % Second moment of area of tube

Af = 71.3305680581033e-006; % Flow area section

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

321

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Mf = 71.3305680581033e-003; % Fluid mass per unit length

% Fixed number of finite elements

N = 52; % Number of finite elements

lengths = [0.25 0.35 0.45 0.55 0.65 0.75 0.85]; % Tube lengths

frequencies = zeros(size(lengths)); % Vector to store natural frequencies

% Iterate over different lengths

for idx = 1:length(lengths)

 long = lengths(idx); % Current tube length

 L = long / N;

 % Coefficients

 h1 = (E * It) / (L^3);

 h2 = Mf * V^2;

 h3 = 2 * Mf * V;

 h4 = Mf + Mt;

 % Local matrix functions

 matrixA_local = @(L) [

 12 6*L -12 6*L;

 6*L 4*L^2 -6*L 2*L^2;

 -12 -6*L 12 -6*L;

 6*L 2*L^2 -6*L 4*(L^2)];

 matrixB_local = @(L) [

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

322

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

 6/5*L 1/10 -6/5*L 1/10;

 1/10 2*L/15 -1/10 -L/30;

 -6/5*L -1/10 6/5*L -1/10;

 1/10 -L/30 -1/10 2*L/15];

 matrixC_local = @(L) [

 -1/2 L/10 1/2 -L/10;

 -L/10 0 L/10 -L^2/60;

 -1/2 -L/10 1/2 L/10;

 L/10 L^2/60 -L/10 0];

 matrixD_local = @(L) [

 13*L/35 11*L^2/210 9*L/70 -13*L^2/420;

 11*L^2/210 L^3/105 13*L^2/420 -L^3/140;

 9*L/70 13*L^2/420 13*L/35 -11*L^2/210;

 -13*L^2/410 -L^3/140 -11*L^2/210 L^3/105];

 % Function to assemble global matrix

 function global_matrix = assemble_global_matrix(n, L, local_matrix_fn)

 dof = 2 * (n + 1); % Total degrees of freedom

 global_matrix = zeros(dof, dof); % Initialize global matrix

 for i = 1:n

 indices = 2*(i-1) + (1:4); % Global indices

 local_matrix = local_matrix_fn(L);

 global_matrix(indices, indices) = global_matrix(indices, indices) + local_matrix;

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

323

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

 end

 end

 % Global matrix assembly

 A_global = assemble_global_matrix(N, L, matrixA_local);

 B_global = assemble_global_matrix(N, L, matrixB_local);

 C_global = assemble_global_matrix(N, L, matrixC_local);

 D_global = assemble_global_matrix(N, L, matrixD_local);

 % Global matrix calculation

 Kg = h1 * A_global + h2 * B_global; % Global stiffness matrix

 Eg = h3 * C_global; % Global Coriolis matrix

 Mg = h4 * D_global; % Global mass matrix

 % Natural frequency calculation

 [~, e] = polyeig(Kg, i*Eg, -Mg);

 Sz = length(e);

 Sz = Sz - 5;

 frequencies(idx) = real(e(Sz,1)); % Store the lowest natural frequency

end

% Plot results

figure;

plot(lengths, frequencies, '-o', 'LineWidth', 1.5);

xlabel('Tube length (m)');

ylabel('Natural frequency (Hz)');

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

324

97

98

title('Natural frequency vs Tube length');

grid on;

CODE 4 : Calculation of Phase Shift and Mass Flow

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

clc, clear all

% II. EIGENVALUE RANGE AND MODE VALUE DEFINITION

i = 1:1:5; % ITERATION VARIABLE FOR EIGENVALUE

lambda1 = 4.73; % FIRST FUNDAMENTAL MODE [21]-[23]

lambda2 = 7.853; % SECOND MODE

f21 = 3.399; % FACTOR

theta1 = 1.0359; % THETA1

theta2 = 0.9984; % THETA2

xi11 = -12.74; % FACTOR11

xi22 = -45.98; % FACTOR22

% III. STAINLESS STEEL TUBE INPUT PARAMETERS

% INCLUDE DATA ENTRY IN FILE: STEELP0_1

E = 1.93e11; % YOUNG'S MODULUS [N/m^2]

Dext = 0.0127; % OUTER DIAMETER [m]

Dint = 9.53000000000000e-003; % INNER DIAMETER [m]

rhot = 7900; % TUBE DENSITY [kg/m^3]

rhof = 1000; % FLUID DENSITY [kg/m^3]

L_total = 0.75; % TOTAL TUBE LENGTH [m]

N = 1; % NUMBER OF ITERATION ELEMENTS

L = L_total / N; % LENGTH OF EACH ELEMENT [m]

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

325

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

x = 0:0.025:L; % TUBE VARIABLE [m]

V = 10; % FLUID VELOCITY [m/s]

et = (Dext - Dint) / 2; % TUBE THICKNESS [m]

Rm = (Dext + Dint) / 2; % MEAN TUBE RADIUS [m]

At = pi * (Dext^2 - Dint^2) / 4; % TUBE CROSS-SECTIONAL AREA [m^2]

Mt = rhot * At; % TUBE MASS PER UNIT LENGTH [kg/m]

It = pi * (Dext^4 - Dint^4) / 64; % TUBE SECOND MOMENT OF AREA [m^4]

Af = pi * Dint^2 / 4; % FLOW AREA SECTION [m^2]

Mf = rhof * Af; % FLUID MASS PER UNIT LENGTH [kg/m]

omega = 720; % RESONANCE ANGULAR FREQUENCY [rad/s]

C = 1.5e-3; % OSCILLATION AMPLITUDE [m]

% IV. DEFINITION OF OTHER VIBRATION PARAMETERS [21]-[23]

beta1 = lambda1 / L; % FIRST MODE ARGUMENTS

beta2 = lambda2 / L; % SECOND MODE ARGUMENTS

sigma1 = (sinh(beta1*L) - sin(beta1*L)) / (cos(beta1*L) - cosh(beta1*L));

sigma2 = (sinh(beta2*L) - sin(beta2*L)) / (cos(beta2*L) - cosh(beta2*L));

omega1 = (xi11 * Mf * V^2) / (L^2 * theta1 * (Mf + Mt)); % ARGUMENT 1

omega2 = (xi22 * Mf * V^2) / (L^2 * theta2 * (Mf + Mt)); % ARGUMENT 2

gamma1 = sqrt(omega^2 - (xi11 * Mf * V^2) / (L^2 * theta1 * (Mf + Mt))); % SENSOR FREQUENCY 1

gamma2 = sqrt(omega^2 - (xi22 * Mf * V^2) / (L^2 * theta2 * (Mf + Mt))); % SENSOR FREQUENCY 2

% V. CRITICAL VALUES AND FUNCTION DECLARATION

% CHANGES ARE INTRODUCED IN THIS SECTION [21]-[23]

a = L / 4; % CRITICAL POSITION 1

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

326

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

b = (3 * L) / 4; % CRITICAL POSITION 2

c = L / 2; % CRITICAL POSITION 3

t = pi / (2 * omega); % TIME 1

t1 = (3 * pi) / (8 * omega); % TIME 2

w0 = sinh(beta1*x) - sin(beta1*x) + sigma1*(cosh(beta1*x) - cos(beta1*x)); % ORIGINAL FUNCTION

w1 = sinh(beta2*a) - sin(beta2*a) + sigma2*(cosh(beta2*a) - cos(beta2*a)) * cos(t);

w2 = sinh(beta2*b) - sin(beta2*b) + sigma2*(cosh(beta2*b) - cos(beta2*b)) * cos(t1);

w3 = (cosh(beta2*c) - cos(beta2*c) - sigma1*(sinh(beta2*c) - sin(beta2*c))) * cos(pi/4);

c = C / w3; % MODIFIED AMPLITUDE

A1 = (w1 - w2) / (L / 4); % AMPLITUDE RATIO DEFINITION

% VI. PHASE SHIFT CALCULATION IN RADIANS

PhaseShiftTheory = 0.88 * pi / 180; % PHASE SHIFTS ARE GENERATED FOR VELOCITIES OR FLOWS

PhaseShift = c * ((2 * f21 * gamma1 * Mf * V) / (L * theta2 * (Mf + Mt) * (gamma1^2 - gamma2^2))) * A1;

PhaseError = ((PhaseShiftTheory - PhaseShift) / PhaseShiftTheory) * 100;

% VII. MASS FLOW CALCULATION

z0 = Mf * V; % THEORETICAL FLOW

z = (PhaseShift * L * theta2 * (Mf + Mt) * (gamma1^2 - gamma2^2)) / (2 * A1 * gamma1 * c * f21); %

CALCULATED MASS FLOW

% IX. GRAPHS

% Define velocity range

velocities = [0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25];

% Initialize vectors to store results

PhaseShift = zeros(size(velocities));

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

327

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

100

mass_flow = zeros(size(velocities));

% Calculate phase shift and mass flow for each velocity

for i = 1:length(velocities)

 V = velocities(i); % Current velocity

 omega1 = (xi11 * Mf * V^2) / (L^2 * theta1 * (Mf + Mt)); % ARGUMENT 1

 omega2 = (xi22 * Mf * V^2) / (L^2 * theta2 * (Mf + Mt)); % ARGUMENT 2

 gamma1 = sqrt(omega^2 - (xi11 * Mf * V^2) / (L^2 * theta1 * (Mf + Mt))); % SENSOR FREQUENCY 1

 gamma2 = sqrt(omega^2 - (xi22 * Mf * V^2) / (L^2 * theta2 * (Mf + Mt))); % SENSOR FREQUENCY 2

 % Calculate phase shift

 PhaseShift(i) = c * ((2 * f21 * gamma1 * Mf * V) / (L * theta2 * (Mf + Mt) * (gamma1^2 - gamma2^2))) * A1;

 % Calculate mass flow

 mass_flow(i) = (PhaseShift(i) * L * theta2 * (Mf + Mt) * (gamma1^2 - gamma2^2)) / (2 * A1 * gamma1 * c * f21);

end

% a) CORIOLIS FLOW VS VELOCITY PLOT

figure(1)

plot(velocities, mass_flow, 'ro')

title('CORIOLIS FLOW vs VELOCITY')

xlabel('Fluid velocity [m/s]')

ylabel('Mass flow [kg/s]')

grid on

% b) PHASE SHIFT VS VELOCITY PLOT

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

328

101

102

103

104

105

106

figure(2)

plot(velocities, PhaseShift, 'go')

title('PHASE SHIFT vs VELOCITY')

xlabel('Fluid velocity [m/s]')

ylabel('Phase angle shift [rad]')

grid on

CODE 5 : Calculation of global matrices A, B, C and D

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

import numpy as np

def local_stiffness_matrix_A(L):

 """

 Defines the local stiffness matrix [A] for a finite element.

 """

 return np.array([

 [12, 6*L, -12, 6*L],

 [6*L, 4*L**2, -6*L, 2*L**2],

 [-12, -6*L, 12, -6*L],

 [6*L, 2*L**2, -6*L, 4*L**2]

])

def local_centrifugal_matrix_B(L):

 """

 Defines the local centrifugal force matrix [B] for a finite element.

 """

 return np.array([

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

329

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

 [6/(5*L), 1/10, -6/(5*L), 1/10],

 [1/10, 2*L/15, -1/10, -L/30],

 [-6/(5*L), -1/10, 6/(5*L), -1/10],

 [1/10, -L/30, -1/10, 2*L/15]

])

def local_coriolis_matrix_C(L):

 """

 Defines the local Coriolis matrix [C] for a finite element.

 """

 return np.array([

 [-0.5, L/10, 0.5, -L/10],

 [-L/10, 0, L/10, -L**2/60],

 [-0.5, -L/10, 0.5, L/10],

 [L/10, L**2/60, -L/10, 0]

])

def local_mass_matrix_D(L):

 """

 Defines the local mass matrix [D] for a finite element.

 """

 return np.array([

 [13*L/35, 11*L**2/210, 9*L/70, -13*L**2/420],

 [11*L**2/210, L**3/105, 13*L**2/420, -L**3/140],

 [9*L/70, 13*L**2/420, 13*L/35, -11*L**2/210],

 [-13*L**2/420, -L**3/140, -11*L**2/210, L**3/105]

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

330

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

])

def assemble_global_matrix(n, L, local_matrix_fn):

 """

 Assembles a global matrix for n finite elements of length L using a local matrix function.

 Parameters:

 n (int): Number of finite elements.

 L (float): Length of each finite element.

 local_matrix_fn (function): Function that generates the local matrix.

 Returns:

 numpy.ndarray: Global matrix of size 2(n) + 2.

 """

 # Size of global matrix

 global_size = 2 * n + 2

 global_matrix = np.zeros((global_size, global_size))

 # Local matrix

 local_matrix = local_matrix_fn(L)

 # Global matrix assembly

 for i in range(n):

 start = 2 * i

 end = start + 4

 global_matrix[start:end, start:end] += local_matrix

German Alberto Echaiz Espinoza et al. / IJEEE, 12(5), 287-331, 2025

331

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

 return global_matrix

n_elements = 12 # Number of finite elements

element_length = 0.75 # Length of each finite element

Global matrix [A]

global_matrix_A = assemble_global_matrix(n_elements, element_length, local_stiffness_matrix_A)

print("Global matrix [A]:")

print(global_matrix_A)

Global matrix [B]

global_matrix_B = assemble_global_matrix(n_elements, element_length, local_centrifugal_matrix_B)

print("Global matrix [B]:")

print(global_matrix_B)

Global matrix [C]

global_matrix_C = assemble_global_matrix(n_elements, element_length, local_coriolis_matrix_C)

print("Global matrix [C]:")

print(global_matrix_C)

Global matrix [D]

global_matrix_D = assemble_global_matrix(n_elements, element_length, local_mass_matrix_D)

print("Global matrix [D]:")

print(global_matrix_D)

