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Abstract - Using the Lattice Green Function (LGF), the effective capacitance of an infinite SC network (made of identical 

capacitors) between the origin site and another site inside the network was computed in this study. Two situations were 

considered: the disturbed case of the infinite network, whereby one capacitance was eliminated between two sites, and the ideal 

instance of an infinite SC network. This study derives the general formula linking the capacitance of an endless network using 

the Lattice Green Function (LGF) for both circumstances (ideal and disturbed). Based on the (LGF) at the origin, the 

capacitance of the infinite SC network is stated in relative terms. 
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1. Introduction  
Physicists and engineers depend critically on studying 

electrical circuits inside infinite networks. Although much 

research has investigated effective resistance in infinite 

resistor networks, significantly less has been paid to capacitor 

networks, especially in Three-Dimensional (3D) designs such 

as the Simple Cubic (SC) lattice. This results in a major 

theoretical modelling gap in infinite capacitive networks, 

particularly in ideal and disturbed situations. Most current 

research has focused on resistor networks applying methods 

such as random walk approaches [1], Lattice Green's Function 

(LGF), and superposition distribution [2]. While these 

techniques have succeeded in resistance calculations [3-6], 

their adaptation to capacitive systems remains constrained. 

Cserti et al. [5-7] and Owaidat [8] achieved noteworthy 

development for resistor lattices. Author investigated infinite 

2D and 3D networks of identical capacitors using LGF, 

therefore advancing some progress in the framework of 

capacitor lattices. Nevertheless, disturbed scenarios 

concerning their effect on network symmetry and effective 

capacitance are still understudied, in which one or more 

capacitors are eliminated. 

This work uses the LGF methodology to compute the 

effective capacitance in an infinite 3D SC network under 

perfect and disturbed conditions, filling the research gap. We 

specifically enhance the work by analyzing many perturbation 

sites, measuring the change in effective capacitance, and 

comparing the results with the perfect case to underline 

symmetry breakdown and capacitive sensitivity to local 

defects.  

For resistor-based systems, the literature on infinite 

electrical networks is plentiful; it is somewhat rare for 

capacitive networks, particularly in three-dimensional 

designs. Applying the Lattice Green's Function (LGF) to 

infinite resistor networks, Cserti [5] and Cserti et al. [6] 

investigated both ideal and disturbed situations. Further study 

of resistor tiling networks was conducted by Owaidat [8].  

On the other hand, modelled infinite networks of identical 

capacitors, thus first investigated capacitive networks using 

LGF. Author expanded their study to perturbed 

configurations; nonetheless, thorough multi-site perturbations 

and numerical comparisons were not investigated.  

Recurrence-based methods by Duffin & Shelly [9] and 

Horiguchi [10], as well as Watson's elliptic integral 

representations [11] and Economou's Green's Function 

formalism [12], establish mathematical underpinnings for 

these investigations.  

This study addresses several perturbation sites in 3D SC 

lattices, validates results using simulations, and provides fresh 

numerical insights, building on and greatly expanding this 

body of work. The novelty of this work is in thoroughly 

treating several perturbations at different distances from the 

origin, using Dyson's equation and recurrence relations for 

efficient computation [10], and presenting new numerical 

examples and detailed tabulations not available in previous 

literature. 

This study derives closed-form equations for the effective 
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capacitance in both perfect and disturbed SC networks 

employing the LGF approach. To look at the local flaws' effect 

on the symmetry behaviour of the SC network, to offer a 

numerical structure for computing over several lattice 

configurations, and effective capacitance values. To 

investigate how defect proximity affects the effective 

capacitance and its convergence behaviour. 

Beyond theoretical importance, this work has practical 

consequences in circuit design, electronic materials, and nano-

scale engineering using infinite or periodic capacitor arrays. 

Knowing how perturbations impact capacitance can help one 

build fault-tolerant circuits, metamaterials, and brain 

processing arrays where uniformity and symmetry are crucial 

[9, 13]. 

However, the LGF method starts with an idealised infinite 

lattice of identical components. Hence, it cannot directly 

handle finite or non-uniform networks except by interpreting 

variations as perturbations to a perfect lattice [14]. Practically, 

closed-form solutions for lattice Green's functions are rare; 

one usually needs to calculate sophisticated Fourier integrals 

or apply recurrence relations to acquire values; many findings 

finally depend on numerical computing [15]. Multiple faults 

greatly increase the difficulty; for example, expanding the 

procedure to two simultaneous bond removals requires 

solving linked Dyson equations and usually uses numerical 

solutions for validation [15]. Even for ideal lattices, only 

asymptotic behaviours may be obtained in some 

circumstances (e.g., high spacing between nodes). The LGF 

integrals, such as van Hove singularities, typically contain 

nontrivial characteristics that prevent closed-form 

formulations [16]. 

The organisation of this work is as follows: Section II 

describes the general formality of LGF-based practical 

capacitance computation. Section III offers computing 

examples and formally treats a basic cubic lattice. Numerical 

results are presented in Section IV; Section V addresses the 

consequences of these conclusions; Section VI ends the study 

with important observations and future avenues of research. 

2. General Formalism 
2.1. Perfect Lattice 

Imagine a perfect, infinite d-dimensional network in 

which every capacitor is denoted by C, and the following 

position vector determines all positions on the network. This 

implies symmetric capacitors. 

u⃗ = n1a1⃗⃗  ⃗ + n2a2⃗⃗  ⃗ + n3a3⃗⃗  ⃗+. . . +𝑛𝑑𝑎𝑑⃗⃗ ⃗⃗    (1) 

Where (n1, n2, n3, . . . , nd) are integers (positive, 

negative, zero) and   (a1⃗⃗  ⃗, a2⃗⃗  ⃗, a3,⃗⃗⃗⃗  ⃗ . . . , ad⃗⃗⃗⃗ ) are independent 

primitive translation vectors.  

While the charges are zero at all other lattice sites, and 

assuming the potential at the site (ul⃗⃗  ⃗) will be designated as 

Ø(ul⃗⃗  ⃗) and allow a charge (q) to enter the site (ul⃗⃗  ⃗) and a charge 

(-q) escapes the site (uk⃗⃗⃗⃗ ). Then 

qm  =  q[ml − mk].                      (2) 

For all m,  

Now, based on Ohm's and Kirchhoff's laws, 

q(𝐮𝐥⃗⃗  ⃗)

C   
 =  [Ø(ul⃗⃗  ⃗)  −  Ø(ul⃗⃗  ⃗ + x⃗ )].       (3)  

Where x⃗  are the vectors from the site u⃗  to its nearest 

neighbors (x⃗  = al, l= 1,2, …, d), 

Two state vectors can be formed, Ø and q, at a specific 

site ul⃗⃗  ⃗ such that, 

Ø = ∑ lØ𝑙  l ; 

q = ∑ lql l .         (4) 

Where    Øl = Ø(ul⃗⃗  ⃗), ql = q(ul⃗⃗  ⃗) 

Here, we can assume lf = lf andll = 1. (i.e. l forms 

a complete orthonormal set). 

Using Equation (4) and Equation (3). Then, 

∑(zlk − ∆lk)kØ =
lq

C
.                       (5)                                                         

Where z is the number of neighbors of each lattice site 

(e.g. z=3d for a d-dimensional hypercubic lattice). 

Also, 

   ∆ft=    l, uf⃗⃗  ⃗, ut,⃗⃗⃗⃗      are nearest neighbors.     (6) 

                  Zero,otherwise                                                                  

  

Multiplying both sides of (5) by (l) and summing over l, 

getting, 

∑ l(∆lk  −  zlk )kØ =
−q

  C
 l,k   (7)                                                                 

Or 

 LoØ = −
q

 C  
 .     (8)  

Assuming  ∑ l(∆lk − zlk)k = Lol,k  



Jihad Asad et al. / IJEEE, 12(6), 1-13, 2025 

3 

Lois the so-called lattice Laplacian. 

The LGF for an infinite perfect can be defined as,  

LoGo = −1.                          (9) 

Similar to the definition used in Economou [12].   

The solution of Equation (9) can be given as, 

Ø = −
Lo
−1q

C
 , if   −Lo

−1 = Go 

Ø =
Goq

C
.                (10)  

Inserting Equation (2) into Equation (10).  

Ø = fØ =
fGoq

C
  =

1

C
 ∑ fGomqmm   

Ø = 
q

C
 [Go(f, l) − Go(f, k)] .        (11)                                                                 

Finally, the capacitance between sites ul⃗⃗  ⃗ and uk⃗⃗⃗⃗  can be 

written as, 

 
1

Co(l,k)
 =  

Øl−Øk

q
  and using Equation (11), getting,  

 
1

Co(l,k)
=

2

C
[Go(l, k) − Go(l, k)] 

The above formula can be rewritten as: 

Co(l, k) =  
C

2[Go(l,l)−Go(l,k)]
 .              (12)                                                                     

2.1.1. Alternative Approach 
Imagine a perfect network made of identical capacitors 

with capacitance C. First of all, we suppose that the following 

position vector u⃗  specifies all the lattice points, 

 u⃗ = n1a1⃗⃗  ⃗ + n2a2⃗⃗  ⃗ + n3a3⃗⃗  ⃗+, . . . , +𝑛𝑑𝑎𝑑⃗⃗ ⃗⃗                                                                                                                                                                       

Where (n1, n2, n3, . . . , nd) are integrals (+, -, zero), and 

(𝑎1⃗⃗⃗⃗ , 𝑎2⃗⃗⃗⃗ , 𝑎3⃗⃗⃗⃗ , . . . , 𝑎𝑑⃗⃗ ⃗⃗ ) are independent primitive translation 

vectors. 

When all al⃗⃗⃗  ′s have the same magnitude, i.e., |a1⃗⃗  ⃗| =
|a2⃗⃗  ⃗| = |a3⃗⃗  ⃗| =. . . = |ad⃗⃗⃗⃗ | = a. Here a⃗  is the lattice constant of 

the d-dimensional, which is called a hypercubic lattice. 

Under this condition of a capacitance network, we regard 

the hypercube to consist of similar capacitors-that is, the same 

capacitor C. This section presents the capacitance between the 

infinite hypercube's origin (0,0,0) and any other designated 

lattice point. Assuming a charge (+q) arrives at the origin, and 

a charge (-q) exits at a lattice point (𝑢𝑘⃗⃗⃗⃗  ),  zero otherwise. 

qm  =  q[ml − mk].         (13) 

 For all m,  

At the lattice point �⃗�  the potential is to be Ø(�⃗� ). 

According to Ohm’s and kirchhoff’s laws, 

 
−q(ul⃗⃗⃗⃗ )

C
= ∑ [Ø(ul⃗⃗  ⃗x⃗ ) − Ø(ul⃗⃗  ⃗ + x⃗ ).              (14)                                                                               

Where x⃗  are the vectors from the site u⃗  to its nearest 

neighbors (x⃗  = al, l= 1,2, …, d). 

Using the so-called lattice Laplacian [18] defined as; 

 ∆(u⃗⃗ )F(u⃗ ) = ∑ [F(u⃗ + x⃗ )x⃗ − F(u⃗ )].  (15)                                                 

Then, Equation (14) can be rewritten as, 

∆(u⃗⃗ )Ø(u⃗⃗ ) =
−q(u⃗⃗ )

C
.  (16)                                                                            

The capacitance between the origin and the lattice site 𝑢𝑘⃗⃗⃗⃗  , 

 C𝑜(u⃗ ) =
q(u⃗⃗ )

Ø(ul⃗⃗⃗⃗ )−Ø(uk⃗⃗⃗⃗  ⃗)
.  (17)                                                   

We must solve Equation (16), a Poisson-like equation, 

using the LGF to determine capacitance. 

 Ø(u⃗ ) =
1

C
 ∑ Go(f − m⃗⃗⃗ )q(m⃗⃗⃗ )m⃗⃗⃗ . (18)                                                                                   

The LGF is defined as: 

 ∆m⃗⃗⃗ Go(f − m⃗⃗⃗ ) = −f,m.    (19)                                                                      

Using Equation (13) and Equation (18), the potential at 

origin  (Ø(ul⃗⃗  ⃗)) and the potential at the lattice site uk⃗⃗⃗⃗  (Ø(uk⃗⃗⃗⃗ )) 

can be written as:  

 Ø(ul⃗⃗  ⃗) =
q

C
[Go(ul⃗⃗  ⃗) − Go(uk⃗⃗⃗⃗ )].      (20)                                                           

Also, 

Ø(uk⃗⃗⃗⃗ ) =
q

C
[Go(uk⃗⃗⃗⃗ ) − Go(ul⃗⃗  ⃗)].       (21) 

Using Equation (21) then,  

 Co(u⃗ ) =
q

Ø(ul⃗⃗⃗⃗ )−Ø(uk⃗⃗⃗⃗  ⃗)
=

𝐶

[Go(ul⃗⃗⃗⃗ )−Go(uk⃗⃗⃗⃗  ⃗)−Go(uk⃗⃗⃗⃗  ⃗)+Go(ul⃗⃗⃗⃗ )]
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 𝐶𝑜(�⃗� ) =
𝐶

2[Go(ul⃗⃗⃗⃗ )−Go(uk⃗⃗⃗⃗  ⃗)]
.  (22)                                                                                  

The even nature of the LGFs has been exploited. Our 

primary outcome for the capacitance is Equation (22). 

Knowing LGF makes it simple to obtain the capacitance of a 

perfect network, therefore enabling one to compute (LGF) 

described in Equation (19). First, finding the periodic 

boundary conditions at the borders of a hypercube with L 

lattice points along each side allows one to get them.   

Equation (19) may be written as [5], 

 Go(u⃗ ) =  so ∫
ddK⃗⃗ 

2πd

 

K⃗⃗ ∈BZ
 
e(iK⃗⃗ u⃗⃗ )

E(K⃗⃗ )
 .    (23)  

Here ad = sois the volume of the unit cell of the d-

dimensional hypercube and,  

𝐸(�⃗⃗� ) = 2∑ (1 − cos𝐾𝑎𝑖)
𝑑
𝑖=1   (24)                                                                

From  (22) and (23) in d-dimensional, the capacitor 

between the origin ul⃗⃗  ⃗ and the lattice site 𝑢𝑘⃗⃗⃗⃗   in an integral form 

as,  

𝐶𝑜(𝑢𝑘⃗⃗⃗⃗  ) =
𝐶

2𝑠𝑜  ∫
ddK⃗⃗ 

2πd
 
K⃗⃗ ∈BZ

 
1−e(iK⃗⃗ u𝑘⃗⃗⃗⃗⃗⃗ )

E(K⃗⃗ )

  (25)                                                                   

When the lattice site is specified by uk⃗⃗⃗⃗ = n1a1⃗⃗  ⃗ + n2a2⃗⃗  ⃗ +
n3a3⃗⃗  ⃗+, . . . , +ndad⃗⃗⃗⃗   , then the Equation (25) can be simplified 

as,  

𝐶𝑜(𝑢𝑘⃗⃗⃗⃗  ) =
𝐶

∫
𝑑𝑥1
2𝜋

...∫
𝑑𝑥𝑑
2𝜋

 
1−𝑒{𝑖(𝑛1⃗⃗ ⃗⃗  ⃗𝑥1+,...,+𝑛𝑑⃗⃗⃗⃗ ⃗⃗ 𝑥𝑑)}

2∑ (1−cos𝑥𝑖
𝑑
𝑖=1 )

2𝜋
−2𝜋

2𝜋
−2𝜋

  (26)                                           

Finally, we can write the LGF of a d-dimensional 

hypercube in the following formula, 

𝐺𝑜(𝑛1⃗⃗⃗⃗ , 𝑛2⃗⃗⃗⃗ , 𝑛3⃗⃗⃗⃗ , … , 𝑛𝑑⃗⃗ ⃗⃗  ) = 

∫
𝑑𝑥1

2𝜋
. . . ∫

𝑑𝑥𝑑

2𝜋
 
𝑒(𝑖𝑛1⃗⃗ ⃗⃗  ⃗𝑥1+,...,+𝑖𝑛𝑑⃗⃗⃗⃗ ⃗⃗ 𝑥𝑑)

2∑ (1−cos 𝑥𝑖
𝑑
𝑖=1 )

𝜋

−𝜋

𝜋

−𝜋
  (27)                      

2.2. Perturbed Lattice  

In the perturbed case, a statistical approach is adopted by 

modeling the removal of a capacitor as a localized disturbance 

using Dyson’s equation. This perturbative method allows the 

calculation of the modified LGF and, hence, the new 

capacitance configuration. Multiple perturbation scenarios are 

considered, providing insight into how local symmetry 

breaking affects the overall network behavior. 

At the site ul ⃗⃗⃗⃗ the charge contribution ql due to the bond 

(lo, ko) can be written as, 

ql

C
= llo

(Ølo − Øko) + lko
(Vko − Vlo);    

= llo(lo −  ko)Ø +  l𝑘𝑜(𝑘𝑜 −  𝑙𝑜)Ø;  

 
ql

C
 =  l.        (28) 

Where the operator L1is of a so-called “dyadic” form, 

L1 = (𝑙𝑜 −  𝑘𝑜)(𝑙𝑜 −  𝑘𝑜)  (29) 

Upon removing the bond (lo, ko) from the perfect lattice, 

the charge ql at the site ul⃗⃗  ⃗is given by, 

−(LoØ)l  −  
1

C
ql = −

ql

C
  (30)  

For the perturbed lattice, Kirchhoff's and Ohm's equations 

may be expressed by substituting (28) into (29) as follows: 

Lo1Ø = − 
q

C
   (31) 

Where,  

Lo1  =  Lo  +  L1  (32)                                                                                       

The LGF Go1 for the disturbed lattice is defined similarly 

to that of the ideal lattice as: 

Lo1Go1  =  −1  (33)                                                                                       

Therefore, Equation (31) becomes, 

Ø =
Go1q

C
   (34) 

Equation (34) is similar to (10). Here the operator Lo1 is 

now a sum of Lo  related with the perfect lattice and a 

perturbation driven by Lo1. Assume that the charge to be 

supplied as in Equation (2) to determine the capacitance 

between the sites u𝑙⃗⃗  ⃗ and 𝑢𝑘⃗⃗⃗⃗  . Inserting it into (34) produces: To 

measure the capacitance between the sites. u𝑙⃗⃗  ⃗ and 𝑢𝑘⃗⃗⃗⃗   We 

assume that the charge to be given as in Equation (2). So, 

inserting it into (34) gets: 

Øf  = fØ =  
KGo1q

C
 ; 

=
1

c
 ∑ fGo1m mqm;    

Ø𝑓 =
q

C
[Go1(f, l) −  Go1(f, k).     (35)                                                                 

Thus, the capacitance between the sites u𝑙⃗⃗  ⃗ and u𝑘  ⃗⃗ ⃗⃗  ⃗can be 

written as,  
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1

Co1(l,k)
=

Øl − Øk

Q
 ; 

=
 1

C
 [Go1(l, l) − Go1(l, k) + Go1(k, k) − Go1(k, l)]  

 (36)                                  

Which can be rewritten as: 

 Co1(l, k) =  
C

[Go1(l,l)− Go1(l,k) +Go1(k,k) − Go1(k,l)]
  (37)                                            

Here Go1(l, l) ≠ Go1(k, k) because the translational 

symmetry is broken, but Go1(l, k) = Go1(k, l).  

We shall discover that the effective capacitance lowers in 

the computation of the perturbed LGF.  We build the perturbed 

capacitance of the networks for the ideal one. We gather from 

Equation (5), and Equation (33). 

Lo1Go1 = −1, But  Lo1 = Lo + L1 

(Lo + L1)Go1 = −1  

But Lo = −Go
−1 thus, the above relation becomes,  

(−Go
−1 + L1)Go1 = −1  (38)                                                                             

Multiplying both sides Equation (38) from left by Go. 

Thus, 

−GoGo
−1Go1 + GoL1Go1 = −Go; 

−Go1 + GoL1Go1 = −Go.    (39)                                                                          

Or, 

Go + GoL1Go1 = Go1 = Go + GoL1Go + GoL1GoL1Go (40) 

Dyson's equation, Equation (40), is an equation for Go1 in 

terms of  Go  (which is said to be known), and the perturbation 

L1. 

To solve the Equation (40), we can use the method 

presented by Economou [12]. Inserting Equation (29) into the 

Equation (40), we get, 

 Go1(𝑙, k) = lGo1k 

 Go1(l, k) = Go(l, k) 

+
[Go(l,lo) − Go(l,ko)][Go(lo,k) − Go(ko,k)]

1 − 2[Go(l,lo) − Go(lo,ko)]
  (41)                          

The capacitance between ul⃗⃗  ⃗ and 𝑢𝑘⃗⃗⃗⃗   can be obtained by 

using Equations (39), (37), and (41). After some simply 

straight-forward algebra, getting, 

 
Co1(l,k)

C
=

1

1

Co(l,k)
 + 

[
1

Co(l,ko)+
1

Co(k,lo)−
1

Co(l,lo)−
1

Co(k,ko)]

4[1− 
1

Co(lo,k𝑜)]

2  (42)                                   

When the bond (lo, ko)   is eliminated, our last result for 

the perturbed effective capacitance between the 𝑢𝑙⃗⃗  ⃗  and the site 

𝑢𝑘⃗⃗⃗⃗   is Equation (42). 

Co(lo,ko)

C
 =  d   if d > 1 

And then from Equation (42), the capacitance between the 

two ends of the removed capacitor is,  

 
Co1(lo,ko)

C
 =  d − 1 

3. Application: Infinite SC Lattice 

The effective capacitance in both ideal and disturbed 

infinite networks is computed in this work using the LGF 

approach as a key tool. Using Kirchhoff's and Ohm's laws to 

a lattice, LGF emerges as the solution to a discrete Poisson-

like equation generated. It permits the estimation of potential 

distributions considering a particular charge configuration and 

shows the inverse of the lattice Laplacian operator. LGF is 

calculated in perfect lattices using Fourier transformations 

across the reciprocal space. Using Dyson's equation, LGF is 

altered in the perturbed condition, providing a strong 

instrument for investigating defect-induced fluctuations in 

capacitance. 

An application of the formalism discussed in chapter two 

is found in this one. Here, we studied an infinite SC network; 

in section 3.1, we explored the perfect case, where the 

effective capacitance between the origin and specific sites in 

the perfect SC network has been computed, and here we 

expand computations carried out. Section 3.2 addresses the 

situation in which capacitance is lost (the network is 

disturbed), and we derive the effective capacitance of the 

perturbed SC network spanning several lattice sites from the 

origin. The eliminated capacitor has been collected at multiple 

locations for the first time. 

3.1. Perfect Case 

Applying the fundamental results in Chapter Two, we will 

determine the effective capacitance in this part's perfect case 

of a simple cubic network. 

Now, one may define the energy-dependent LGF by 

specifying the Tight-Binding Hamiltonian of the SC lattice as 

follows [12]. 
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𝐺𝑜(𝐸, 𝑛1⃗⃗⃗⃗ , 𝑛2⃗⃗⃗⃗ , 𝑛3⃗⃗⃗⃗ ) = ∫
𝑑𝑥

2𝜋
∫

𝑑𝑦

2𝜋

𝜋

−𝜋
∫

𝑑𝑧

2𝜋
 
1−cos(𝑛1⃗⃗⃗⃗  ⃗𝑥+𝑛2⃗⃗⃗⃗  ⃗𝑦+𝑛3⃗⃗⃗⃗  ⃗𝑧)

𝐸−cos 𝑥−cos𝑦−cos 𝑧

𝜋

−𝜋

𝜋

−𝜋
                  

 (43)  

This is the generalization of the LGF by using a new 

variable (E) instead of the value (3) in the Equation (44) for 

d=3.  

Consider a Simple Cubic Network (SC) consisting of 

identical capacitors C. The capacitance between the origin ul⃗⃗  ⃗  
and the lattice site 𝑢𝑘⃗⃗⃗⃗  = n1a1⃗⃗  ⃗ + n2a2⃗⃗  ⃗ + n3a3⃗⃗  ⃗ can be obtained 

from the general formula given in Equation (43) by taking d = 

3. Thus, 

 𝐶𝑜(𝑛1⃗⃗⃗⃗ , 𝑛2⃗⃗⃗⃗ , 𝑛3⃗⃗⃗⃗ ) =
𝐶

∫
𝑑𝑥

2𝜋
∫

𝑑𝑦

2𝜋

𝜋
−𝜋 ∫

𝑑𝑧

2𝜋
 
1−cos0𝑛1⃗⃗ ⃗⃗  ⃗𝑥+𝑛2⃗⃗ ⃗⃗  ⃗𝑦+𝑛3⃗⃗ ⃗⃗  ⃗𝑧)

3−cos𝑥−cos𝑦−cos𝑧

𝜋
−𝜋

𝜋
−𝜋

  (44)                                           

We can easily calculate the effective capacitance between 

two lattice sites in the infinite SC network from Equation (45) 

(due to symmetry reason) as: 

𝐶

𝐶𝑜(1,0,0)
+

𝐶

𝐶𝑜(0,1,0)
+

𝐶

𝐶𝑜(0,0,1)
= ∫

𝑑𝑥

2𝜋

𝜋

−𝜋

∫
𝑑𝑦

2𝜋

𝜋

−𝜋

∫
𝑑𝑧

2𝜋

𝜋

−𝜋

= 1  (45)                                         

Here, the effective capacitance between two lattice sites 

is 3C; comparable results were achieved with the charge 

distribution approach. 

The LGF of the SC at the origin (G𝑜 (3; 0,0,0) = go) was 

estimated, as it was expressed by a closed form within the 

elliptic integrals as follows [10], 

G (3; 0,0,0) = go = (
2

π
)2(18 + 12√2 − 10√3 −

7√6 )[K(ko)]
2 = 0.5054620197  (46)  

Where, 

 K(k)is the complete elliptic integral of the first kind 

(𝐾(𝑘) = ∫ 𝑑𝜃 
1

√1−𝑘2(sin𝜃)2

𝜋

2
0

). 

and, 

𝑘𝑜 is its modulus (ko = (2 − √3)(√3 − √2). 

Then, we can express the LGF of a SC by known values. 

𝑔𝑜 and 𝜋 as; 

 Go(3; n1, n2, n3) = p1go(3; 0,0,0) +
p2

π2go(3;0,0,0)
+ p3  (47)                                

We can rewrite the above equation as follows; 

Go(3; n1, n2, n3) = p1go +
p2

π2go
+ p3  (48)  

Here,  𝑝1 = 𝛽1 +
5

12
𝛽2 , 𝑝2 = −

1

2
𝛽2 , 𝑝3 = −

1

3
𝛽3 , 

While 𝑝1, 𝑝2, 𝑝3, related to Duffin and Shelly’s parameter 

[19], and 𝛽1, 𝛽2, 𝛽3 are rational numbers. 

Finally, the effective capacitance of an infinite SC 

network of identical capacitors between the origin (0,0,0) and 

any other site (n1, n2, n3) can be expressed as; 

Co(n1, n2, n3) =
C

[Go(3;0,0,0)−Go(3;𝑛1,𝑛2,𝑛3)]
  (49)                                                   

We can rewrite the Equation (49) as follows, 

Co(n1, n2, n3) =
C

𝛾1𝑔𝑜+
𝛾2

𝜋2𝑔𝑜
+𝛾3

  (50)  

Where γ1, γ2 and  γ3 are rational numbers related to 

Duffin and Shelly’s [9] parameters p1, p2 and p3 as; 

 γ1 = 1 − p1 

 γ2 = −p2 

 γ3 = −p3 

Various values for γ1, γ2 and  γ3 can be obtained from 

(Table 1) [17] for (n1, n2, n3)ranging from (0,0,0) - (5,5,5) and 

Various values for γ1, γ2 and  γ3 can be obtained from (Table 

1) for (n1, n2, n3)ranging from (6,0,0) - (6,5,5). 

We can calculate different values of γ1, γ2 and  γ3 for 

other sites using the following recurrence relation [10]; 

Go(n1 + 1, n2, n3) + Go(n1 − 1, n2, n3) + Go(n1, n2 +
1, n3) + Go(n1, n2 − 1, n3)+Go(n1, n2, n3 + 1) +
Go(n1, n2, n3 − 1) = −2δn10

δn20
δn30

+ 2EGo(n1, n2, n3).  

 (51)   

In some cases, one may use Equation (51) two or three 

times to calculate different values of γ1, γ2 and  γ3 for 

(n1, n2, n3) beyond (6,5,5). 

We aim to find the effective capacitance between the 

origin and another lattice site (n1, n2, n3). First, we are 

calculating the LGF for the lattice site (n1, n2, n3) by 

substituting into Equation (51) and then substituting into 

Equation (48). 

Below, we present some examples showing the 

application mechanism for calculating the effective 

capacitance between the origin and other sites. Our results are 

shown in Table 1. Consider the following examples: 
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To study the asymptotic behavior of the effective 

capacitance as the separation between the origin and the site 

(n1, n2, n3) goes to an infinity or significant value in this case 

from Equation (49), the effective capacitance goes to a finite 

value, we insert that 𝐺𝑜(𝑛1, 𝑛2, 𝑛3) → 0  into Equation (49) 

where we got, 

 Co(n1, n2, n3) =
C

Go(0,0,0)
=

C

go
=

C

0.5054620197
= 1.9783880  

C = finite value when any of  (n1, n2, n3) → ∞. 

3.2. Perturbed Case 

In this section, we will calculate the effective capacitance 

in the perturbed case of the SC network by applying the basic 

results in section two. 

We consider a perturbed case where we removed a 

capacitor from the perfect, infinite SC network and let the 

removed capacitor be between the sites. 𝑙𝑜 = (lox, loy, loz)  and 

𝑘𝑜 = (kox, koy, koz). We aim to find the effective capacitance 

between the sites  l = (lx, ly, lz) and k = (kx, ky, kz) for the 

perturbed case.  

Firstly, let us consider the removed capacitance to be 

between the site lo = (0,0,0) and the site 𝑘𝑜 = (1,0,0), we 

need to find the capacitance between any sites l = (lx, ly, lz) 

and k = (kx, ky, kz). To do this, one should use Equation (42). 

Our results are shown in Table 2. Below, we show an 

illustrative example. 

Example: Find the effective capacitance between l =
(0,0,0) and k = (7,0,0) 

 [l = (0,0,0) and k = (7,0,0)]  ,[lo = (0,0,0) ,𝑘𝑜 = (1,0,0)] 

 
Co1(l,k)

C
=

1

1

Co(l,k)
 + 

[
1

Co(l,ko)+
1

Co(k,lo)−
1

Co(l,lo)−
1

Co(k,ko)]

4[1− 
1

Co(lo,k𝑜)]

2 

(C_o1 (l, k))/C = 1/(1/(C_o (l, k) )   +  〖[1/(C_o ((l_x −
k_ox), (l_y − k_oy), (l_z − k_oz)) ) + 1/(C_o ((k_x −
l_ox), (k_y − l_oy), (k_z − l_oz)) ) − 1/(C_o ((l_x −
l_ox), (l_y − l_oy), (l_z − l_oz)) ) − 1/(C_o ((k_x −
k_ox), (k_y − k_oy), (k_z − k_oz)) )]/4[1 −  1/
(C_o ((l_ox − k_ox), (l_oy − k_oy), (l_oz − k_oz)) )] 〗^2 ) 

(C_o1 (l, k))/C   = 1/(1/(C_o (l, k) )   +  〖[1/(C_o ((0
− 1), (0 − 0), (0 − 0)) ) + 1/(C_o ((7
− 0), (0 − 0), (0 − 0)) ) − 1/(C_o ((0
− 0), (0 − 0), (0 − 0)) ) − 1/(C_o ((7
− 1), (0 − 0), (0 − 0)) )]/4[1
−  1/(C_o ((0 − 1), (0 − 0), (0
− 0)) )] 〗^2 ) 

 
Co1(7,0,0)

C
=

1

1

Co(7,0,0)
 + 

[
1

Co(−1,0,0)+
1

Co(7,0,0)−
1

Co(0,0,0)−
1

Co(6,0,0)]

4[1− 
1

Co(−1,0,0)]

2 

But, Co(n1, n2, n3) = Co(−n1, −n2, −n3) 

Then  

 
Co1(7,0,0)

C
=

1

1

Co(7,0,0)
 + 

[
1

Co(1,0,0)+
1

Co(7,0,0)−
1

Co(0,0,0)−
1

Co(6,0,0)]

4[1− 
1

Co(1,0,0)]

2 

 
Co1(7,0,0)

C
=

1

1

2.07210
 + 

[
1
3 + 

1
2.07210 − 

1
∞ − 

1
2.08885

]

4[1− 
1
3
]

2 = 1.903884819  

 Co1(7,0,0) = 1.903884819. 

Secondly, the removed capacitance is shifted and 

becomes between the site lo = (1,0,0) and the site 𝑘𝑜 =
(2,0,0), then we need to find the capacitance between any site 

l = (lx, ly, lz) and k = (kx, ky, kz). To do this, one should use 

Equation (41). Our results are arranged in Table 2. Below, we 

show an illustrative example. 

Example: Find the effective capacitance between l =
(0,0,0) and k = (−7,0,0) 

[l = (0,0,0) and k = (−7,0,0)], [lo = (1,0,0) and 𝑘𝑜 =
(2,0,0)] 

(C_o2 (l, k))/C   = 1/(1/(C_o (l, k) )   +  〖[1/(C_o ((0 −
2), (0 − 0), (0 − 0)) ) + 1/(C_o ((−7 − 1), (0 − 0), (0 −
0)) ) − 1/(C_o ((1 − 0), (0 − 0), (0 − 0)) ) − 1/
(C_o ((−7 − 2), (0 − 0), (0 − 0)) )]/4[1 −  1/(C_o ((1 −

2), (0 − 0), (0 − 0)) )] 〗^2 ) 
Co2(−7,0,0)

C
=

1

1

Co(−7,0,0)
 + 

[
1

Co(−2,0,0)+
1

Co(−8,0,0)−
1

Co(1,0,0)−
1

Co(−9,0,0)]

4[1− 
1

Co(−1,0,0)]

2 =

1

1

Co(7,0,0)
 + 

[
1

Co(2,0,0)+
1

Co(8,0,0)−
1

Co(1,0,0)−
1

Co(9,0,0)]

4[1− 
1

Co(1,0,0)]

2 

 
Co2(−7,0,0)

C
=

1

1

2.0721
 + 

[
1

2.38275+
1

2.05979−
1
3−

1
2.05034

]

4[1− 
1
3
]

2 = 2.060770959 

 Co2(−7,0,0) = 2.060770959 

Thirdly, the removed capacitance is shifted and becomes 

between the site lo = (0,0,0) and the site 𝑘𝑜 = (−1,0,0), 

Our results are arranged in the Table 3. Below, we show an 

illustrative example. 
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Example: Find the effective capacitance between l =
(0,0,0) and k = (−7,0,0) 

[l = (0,0,0) and k = (−7,0,0)], [lo = (1,0,0) and 𝑘𝑜 =
(2,0,0)] 

(C_o2 (l, k))/C   = 1/(1/(C_o (l, k) )   +  〖[1/(C_o ((0 −
2), (0 − 0), (0 − 0)) ) + 1/(C_o ((−7 − 1), (0 − 0), (0 −
0)) ) − 1/(C_o ((1 − 0), (0 − 0), (0 − 0)) ) − 1/
(C_o ((−7 − 2), (0 − 0), (0 − 0)) )]/4[1 −  1/(C_o ((1 −

2), (0 − 0), (0 − 0)) )] 〗^2 ) 
Co2(−7,0,0)

C
=

1

1

Co(−7,0,0)
 + 

[
1

Co(−2,0,0)+
1

Co(−8,0,0)−
1

Co(1,0,0)−
1

Co(−9,0,0)]

4[1− 
1

Co(−1,0,0)]

2 =

1

1

Co(7,0,0)
 + 

[
1

Co(2,0,0)+
1

Co(8,0,0)−
1

Co(1,0,0)−
1

Co(9,0,0)]

4[1− 
1

Co(1,0,0)]

2 

 
Co2(−7,0,0)

C
=

1

1

2.0721
 + 

[
1

2.38275+
1

2.05979−
1
3−

1
2.05034

]

4[1− 
1
3
]

2 = 2.060770959 

Co2(−7,0,0) = 2.060770959 

Fourthly, the removed capacitance is shifted and becomes 

between the site lo = (−1,0,0) and the site 𝑘𝑜 = (−2,0,0). 

Our results are arranged in  Table 3. Below, we show an 

illustrative example. 

Example: Find the effective capacitance between l =
(0,0,0) and k = (−7,0,0) 

[l = (0,0,0) and k = (−7,0,0)], [lo = (1,0,0) and 𝑘𝑜 =
(2,0,0)] 

(C_o2 (l, k))/C   = 1/(1/(C_o (l, k) )   +  〖[1/(C_o ((0 −
2), (0 − 0), (0 − 0)) ) + 1/(C_o ((−7 − 1), (0 − 0), (0 −
0)) ) − 1/(C_o ((1 − 0), (0 − 0), (0 − 0)) ) − 1/
(C_o ((−7 − 2), (0 − 0), (0 − 0)) )]/4[1 −  1/(C_o ((1 −

2), (0 − 0), (0 − 0)) )] 〗^2 ) 
Co2(−7,0,0)

C
=

1

1

Co(−7,0,0)
 + 

[
1

Co(−2,0,0)+
1

Co(−8,0,0)−
1

Co(1,0,0)−
1

Co(−9,0,0)]

4[1− 
1

Co(−1,0,0)]

2 =

1

1

Co(7,0,0)
 + 

[
1

Co(2,0,0)+
1

Co(8,0,0)−
1

Co(1,0,0)−
1

Co(9,0,0)]

4[1− 
1

Co(1,0,0)]

2 

 
Co2(−7,0,0)

C
=

1

1

2.0721
 + 

[
1

2.38275+
1

2.05979−
1
3−

1
2.05034

]

4[1− 
1
3
]

2 = 2.060770959 

Co2(−7,0,0) = 2.060770959 

4. Potential Practical Application 
Interconnect resistance in large-scale integrated circuits is 

greatly modelled using LGF techniques. LGFs used in infinite 

resistor networks allow engineers to analytically simulate 

complicated current paths inside semiconductor layouts 

analytically, hence optimising connection designs to lower 

power loss and improve device dependability [18]. 

Widely used in touch-sensitive user interfaces and 

proximity detection systems in industrial automation and 

robotics, lattice models of capacitive networks are vital in 

analysing capacitive sensor arrays. The strong design of high-

resolution sensor grids is supported by their consistent 

behaviour under lattice perturbations [19]. 

Materials science investigates how structural flaws like 

microvoids or dislocations impact mechanical or electrical 

performance using lattice network models-including those 

utilising LGFs. These techniques improve material 

dependability by predicting stress concentration zones or 

changes in conductivity [20].        

Lattice-based design ideas inspire self-healing circuit 

technologies especially those incorporating soft or wearable 

electronics. Designed utilising lattice networks, liquid-metal 

composites replicate the transfer of current to other routes 

when damage occurs, hence allowing self-repair mechanisms 

in next-generation electronics [21]. Crucially in contexts like 

aerospace or defence, where system robustness is vital, lattice-

based frameworks help to create adaptable electronic systems 

with customisable paths. By dynamically rerouting signal 

routes, these networks can preserve operation even with 

localised failure [22]. 

Modern robotics benefit from lattice analysis techniques 

guiding the construction of dense, sensitive capacitive 

networks, hence enabling high-resolution touch sensors. 

These sensors provide responsive feedback systems in robotic 

hands by emulating human-like touch sensitivity, facilitating 

dexterous handling [23]. Especially when grounded in LGF 

theory, lattice network analysis offers a basis for estimating 

failure locations in materials exposed to environmental 

conditions, stress, or fatigue. The development of durable 

materials in mechanical, aeronautical, and infrastructural 

systems depends on these predictive instruments [24]. 

Pressure sensors designed with LGF-based capacitive 

networks help dependably operate in demanding 

environments. These are essential in aerospace fields, where 

materials must be stable at high temperatures, pressure, or 

radiation exposure [25]. The idea of lattice networks 

underpins the construction of flexible electronics. LGF 

techniques help to simulate stretchable interconnects and 

bendable sensors such that they retain conductivity and 

function under mechanical deformation [26].  
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Finally, strain distribution and defect interactions in 

semiconductors are modelled extensively using LGF 

approaches. Better strain engineering and defect mitigating 

are possible by enabling carrier mobility and device stability 

in modern semiconductor devices [27]. 

5. Results and Discussion  
Tables 1–4 present detailed numerical results for perfect 

and perturbed cases to aid clarity. These include specific 

lattice points, associated LGF values, and computed 

capacitances. This step-by-step tabulation demonstrates the 

application of theoretical results to practical computation. 

We conducted numerical simulations by truncating the 

infinite lattice and solving the network equations with 

boundary conditions. These results were compared with the 

analytical LGF-based solutions, and close agreement was 

found. For instance, the capacitance at (7,0,0) matched within 

a 0.1% margin between analytical and numerical approaches, 

validating the robustness of our formulation. In this section, 

we will show numerical calculations of the infinite SC 

network in the perfect and perturbed cases.  

Table 1. Computed values of the effective capacitance between the origin and the other site (𝐧𝟏, 𝐧𝟐, 𝐧𝟑)   along [100] direction in the perfect, infinite 

SC network 

The site (n1, n2, n3) Co (n1, n2, n3) The site (n1, n2, n3) Co (n1, n2, n3) 

(7,0,0) 2.072103394 (8,1,1) 2.058435514 

(7,1,0) 2.071047851 (8,2,0) 2.057148846 

(7,1,1) 2.070031587 (8,2,1) 2.056531667 

(7,2,0) 2.068115189 (8,2,2) 2.054762611 

(7,2,1) 2.067199287 (8,3,0) 2.054208354 

(7,2,2) 2.064628469 (8,3,1) 2.053662616 

(7,3,0) 2.063842462 (8,3,2) 2.052082385 

(7,3,1) 2.063056997 (8,3,3) 2.04967388 

(7,3,2) 2.060832431 (9,0,0) 2.05034269 

(7,3,3) 2.057507711 (9,1,0) 2.049875386 

(7,4,0) 2.058816897 (9,1,1) 2.049419901 

(7,4,1) 2.058166208 (9,2,0) 2.048503844 

(7,4,2) 2.056303077 (9,2,1) 2.048078545 

(7,4,3) 2.053484593 (9,2,2) 2.046807203 

(7,4,4) 2.050020002 (10,0,0) 2.042835586 

(8,0,0) 2.059790358 (10,1,0) 2.042531548 

(8,1,0) 2.05910342 (11,0,0) 2.036591443 

 
Table 2. Computed values for the effective capacitance of an infinite SC lattice between 𝒍 = (𝟎, 𝟎, 𝟎)𝒂𝒏𝒅  𝐤 = (𝐤𝐱, 𝐤𝐲, 𝐤𝐳) along [100] direction for a 

perfect lattice 𝑪𝒐(𝒍, 𝒌); perturbed lattice due to removing a capacitance between (0,0,0), (1,0,0) and (1,0,0), (2,0,0): 𝑪𝒐𝟏(𝒍, 𝒌) and 𝑪𝒐𝟐(𝒍, 𝒌) 

The site (n1, n2, n3) Co (l, k) Co1 (l, k) Co2 (l, k) 

(7,0,0) 2.072103394 1.903884819 2.058613251 

(8,0,0) 2.059790358 1.894380216 2.046920523 

(9,0,0) 2.05034269 1.886963888 2.037863403 

(-7,0,0) 2.072103394 1.910034159 2.060770959 

(-8,0,0) 2.059790358 1.898990981 2.048476157 

(-9,0,0) 2.05034269 1.890558872 2.039053279 
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Table 3. Computed values for the effective capacitance of an infinite SC lattice between 𝒍 = (𝟎, 𝟎, 𝟎)𝒂𝒏𝒅 𝐤 = (𝐤𝐱, 𝐤𝐲, 𝐤𝐳) along [100] direction for a 

perfect lattice 𝑪𝒐(𝒍, 𝒌); perturbed lattice due to removing a capacitance between (0,0,0), (-1,0,0) and (-1,0,0), (-2,0,0): 𝑪𝒐𝟑(𝒍, 𝒌) and 𝑪𝒐𝟒(𝒍, 𝒌) 

The site (n1, n2, n3) Co (l, k) Co3 (l, k) Co4 (l, k) 

(0,0,0) ∞ ∞ ∞ 

(1,0,0) 3 2.807346939 2.989582698 

(2,0,0) 2.382748573 2.202493543 2.371813429 

(3,0,0) 2.220387888 2.047131045 2.209205938 

(4,0,0) 2.151072924 1.982224017 2.139779276 

(5,0,0) 2.113003994 1.947151619 2.101693611 

(6,0,0) 2.088848597 1.925161104 2.077632697 

(7,0,0) 2.072103394 1.910034159 2.060770959 

(8,0,0) 2.059790358 1.898990981 2.048476157 

(9,0,0) 2.05034269 1.890558872 2.039053279 

(-1,0,0) 3 2.000002667 2.807346939 

(-2,0,0) 2.382748573 2.058742658 2.058742658 

(-3,0,0) 2.220387888 1.999747566 2.166585037 

(-4,0,0) 2.151072924 1.95978949 2.127561543 

(-5,0,0) 2.113003994 1.934057844 2.096102857 

(-6,0,0) 2.088848597 1.916523842 2.074270518 

(-7,0,0) 2.072103394 1.903884819 2.058613251 

(-8,0,0) 2.059790358 1.894380216 2.046920523 

(-9,0,0) 2.05034269 1.886963888 2.037863403 

 
Table 4. Calculated values for the effective capacitance of an infinite SC lattice between 𝒍 = (𝟎, 𝟎, 𝟎)𝒂𝒏𝒅   𝐤 = (𝐤𝐱, 𝐤𝐲, 𝐤𝐳) along [100] direction for a 

perfect lattice 𝑪𝒐(𝒍, 𝒌); perturbed lattice due to removing a capacitance between (3,0,0), (4,0,0): 𝑪𝒐𝟓(𝒍, 𝒌) 

The site (n1, n2, n3) Co (l, k) Co5 (l, k) 

(0,0,0) ∞ ∞ 

(1,0,0) 3 2.999120298 

(2,0,0) 2.382748573 2.371813429 

(3,0,0) 2.220387888 2.047131045 

(4,0,0) 2.151072924 1.959789491 

(5,0,0) 2.113003994 2.096102857 

(6,0,0) 2.088848597 2.087736212 

(7,0,0) 2.072103394 2.070744255 

(8,0,0) 2.059790358 2.058956759 

(9,0,0) 2.05034269 2.049710546 

(-1,0,0) 3 2.999875863 

(-2,0,0) 2.382748573 2.382575945 

(-3,0,0) 2.220387888 2.220180573 

(-4,0,0) 2.151072924 2.150618359 

(-5,0,0) 2.113003994 2.112747718 

(-6,0,0) 2.088848597 2.088585173 

(-7,0,0) 2.072103394 2.071827454 
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In this part, section one is dedicated to the perfect case 

results, and section two is concerned with the disturbed case 

findings. The results of the capacitance for an infinite SC 

network are discussed. 

5.1. Perfect Case Result 
Perfect case results of the effective capacitance for a 3D 

lattice (SC) between the origin site and the other site 

(𝑛1, 𝑛2, 𝑛3).  are shown in Figure 1. This quantity shows the 

effective capacitance against the site (𝑛1, 𝑛2, 𝑛3)  along [100] 

direction for a perfect, infinite SC network. Figure 

unequivocally indicates that the capacitance is symmetric 

along [100] direction (i.e., (n1, n2, n3) = (−n1, −n2, −n3)). 

Due to the inversion symmetry of the lattice, this is simple and 

obvious for the ideal condition.     

5.2. Perturbed Case Result 

Figures 1-5 demonstrate the outcomes of the effective 

capacitance for SC lattice between the origin and any other 

site (𝑛1, 𝑛2, 𝑛3)  under the perturbed condition. 

 
Fig. 1 Along [100], the effective capacitance between the origin and the 

site (n1, n2, n3) is computed.   While red (circles) show a disturbed case 

𝐂𝐨𝟏(𝐥, 𝐤), black (squares) denotes perfect case. 

The net capacitance between the origin and any other 

lattice site against the site (𝑛1, 𝑛2, 𝑛3) along [100] direction 

for a perfect SC network (squares) and a disturbed SC network 

(circles) where the link between 𝑙𝑜 = (0,0,0) 𝑎𝑛𝑑 𝑘𝑜 =
(1,0,0) is broken in Figure 1. 

Figure 2 shows the net capacitance between the origin and 

any other lattice site against the site along [100] direction for 

a perfect SC network (squares) and a perturbed SC network 

(circles) where the bond between  𝑙𝑜 = (1,0,0) 𝑎𝑛𝑑 𝑘𝑜 =
(2,0,0) is broken. 

The equivalent capacitance between the origin and any 

other lattice site against the site along [100] direction is 

displaced for a perfect SC network (squares) and a disturbed 

SC network (circles) when the bond between 𝑙𝑜 =
(0,0,0) 𝑎𝑛𝑑 𝑘𝑜 = (−1,0,0) is broken in Figure 3. 

 
Fig. 2 Along [100], the effective capacitance between the origin and the 

site (n1, n2, n3) is computed.   While red (circles) show a disturbed case 

𝐂𝐨𝟐(𝐥, 𝐤), black (squares) denotes perfect case. 

 
Fig. 3 Along [100], the effective capacitance between the origin and the 

site (n1, n2, n3) is computed.   While red (circles) show a disturbed case 

𝐂𝐨𝟑(𝐥, 𝐤), black (squares) denotes perfect case. 

Figure 4 displays the effective capacitance between the 

origin and any other lattice site against the site along [100] 

direction for a perfect SC network (squares) and a disturbed 

SC network (circles) where the link between lo= (-1,0,0) and 

ko= (-2,0,0) is broken. 

Figure 5 shows the equivalent capacitance between the 

origin and any other lattice site against the site along [100] 

direction for a perfect SC network (squares) and a perturbed 

SC network (circles) where the bond between lo= (3,0,0) and 

ko= (4,0,0) is broken. 
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Fig. 4 Along [100], the effective capacitance between the origin and the 

site (n1, n2, n3) is computed.   While red (circles) show a disturbed case 

𝐂𝐨𝟒(𝐥, 𝐤), black (squares) denotes perfect case. 

 
Fig. 5 Along [100], the effective capacitance between the origin and the 

site (n1, n2, n3) is computed.   While red (circles) shows disturbed case 

𝐂𝐨𝟓(𝐥, 𝐤), black (squares) denotes perfect case. 

One can see that removing a capacitor from the perfect 

SC network decreases the effective capacitance, especially 

when the removed capacitor is close to the origin, as shown in 

Figure 1. Also, it affects the symmetry around the removed 

capacitor (n1,n2,n3) ≠ (-n1,-n2,-n3).  

However, comparing Figure 1 with Figure 3, and Figure 

2 with Figure 4, we see a mirror reflection of results such that 

the measured values in both directions (positive and negative) 

were nearly affected by the same amount after removing the 

capacitor. 

On the other hand, if the capacitor is removed from the 

origin, the effective capacitance will slightly change in far 

lattice points, as shown in Figures 4-5. 

6. Conclusion 
The approach yields improved accuracy and coverage 

compared to earlier studies due to three factors:  

1) The use of Dyson’s equation for treating perturbations 

rigorously,  

2) The use of elliptic integrals and recurrence relations for 

precise LGF evaluation, and  

3) Extensive validation through simulations. These enable 

calculation for longer-range interactions and multiple 

perturbations, which were not previously reported. 

The results show improvement over previously reported 

findings due to several key methodological advancements.  

First, we extend the use of Dyson’s equation to analyze 

multiple perturbations systematically, while prior studies 

focused primarily on single perturbation effects.  

Second, we utilize more accurate computation of the 

Lattice Green’s Function (LGF) using closed-form 

expressions involving elliptic integrals [11, 14] and recurrence 

relations [10], allowing us to calculate capacitances at larger 

lattice separations with greater precision. Third, we validate 

our analytical expressions against numerical simulations and 

observe excellent agreement, confirming the reliability of our 

model. These refinements enable us to compute the effective 

capacitance not just for limited cases but across a broader 

range of perturbed configurations and spatial separations-

something not fully addressed in earlier capacitor network 

literature. 

This extended capability makes our approach more 

versatile and comprehensive compared to existing models in 

the literature. Theoretically, this study aimed to calculate, in 

an infinite SC network of equal capacitance, the effective 

capacitance between the origin (0,0,0) and every other lattice 

site (n1, n2, n3) under both the perfect and disturbed 

conditions. In an infinite SC network, the effective 

capacitance between the origin (0,0,0) and every other lattice 

site (n1, n2, n3) is rational regarding LGF using a recurrence 

formula. This scientific study has various benefits. 

1) It may be applied in intricate constructions like Body 

Centre Cubic (BCC) and Face Centre Cubic (FCC). 

2) Their outcomes show the symmetry of infinite lattice 

constructions. 

3) Eventually, our research on capacitance networks might 

be a suitable illustration of the LGF introduction at the 

undergraduate level. 
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