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Abstract - This paper demonstrates the combined approach of Blind Source Separation (BSS) and Canonical Correlation 

Analysis (CCA) to detect the frequency component of a Steady-State Visual Evoked Potential (SSVEP). Accurate detection of the 

SSVEP frequency component is the most challenging task for developing the SSVEP-based brain-computer interface (BCI) 

system. Canonical Correlation Analysis (CCA) is the most widely and rigorously employed method to detect the SSVEP frequency 

component from multichannel recorded Electroencephalogram (EEG) signals. However, spontaneous EEG signals and artifacts 

often occurring while recording scalp-based EEG signals may deteriorate the detection accuracy of the SSVEP frequency 

component from the recorded EEG signal. This work investigates the BSS as a pre-processing technique to decorrelate the source 

signal (SSVEP) from the recorded mixed-signal (EEG) to improve the detection accuracy of the SSVEP-based BCI Inference 

system. This paper proposes second-order statistics-based BSS AMUSE algorithms as pre-processing methods for multichannel 

EEG signals. The CCA technique employs the pre-processed signal to detect the SSVEP frequency components from the recorded 

EEG signal. The obtained finding indicates that the proposed BSS-CCA method significantly improved the SSVEP detection 

accuracy compared to the standard CCA method. The authors have also observed that the selection of stimulus frequency also 

plays a vital role in improving the detection accuracy of the SSVEP BCI system. The analysis indicates that average detection 

accuracy is much higher when stimulus frequency is in the range of the alpha band (8Hz – 16Hz) compared to stimulus frequency 

beyond the alpha band (above 16Hz) using both CCA and BSS-CCA approaches.  

Keywords - Brain-Computer Inference (BCI), Blind Source Separation (BSS), Canonical Correlation Analysis (CCA), 

Electroencephalography (EEG), Steady-State Visual Evoked Potential (SSVEP). 

1. Introduction  
Brain-Computer Interface (BCI) is a communication 

system that enables users to communicate with an external 

device via a thought process [1, 2]. Different thoughts 

generate electrical potentials over the scalp's surface and are 

recorded with sensors placed over the scalp. A physiological 

signal related to electrical potential in response to thought is 

called an Electroencephalogram (EEG) signal [3]. The BCI 

based on the EEG signal has been the most challenging and 

exciting research topic for a decade. The human brain's neural 

activity, recorded non-invasively, is sufficient to control an 

external machine if advanced signal analysis and feature 

extraction methods are combined with machine learning 

techniques. Many EEG-based paradigms, such as motor 

imagery, P300, and SSVEP, have recently been used to design 

BCI inference systems [4, 5]. Nowadays, SSVEP-based BCI 

Inference systems have become a more popular choice as 

compared to other BCI paradigms due to high Information 

Transmission Rate (ITR), high Signal-to-Noise Ratio (SNR), 

and minimal training time [4]. SSVEP is an evoked signal 

induced into the occipital region of the brain when the subject 

focuses their attention on a visual stimulus flickering at a 

specific frequency [5-8].  

An SSVEP-based BCI system is depicted in Figure 1. 

This type of BCI system allows the subject to control the 

different applications, i.e., the movement of the electric 

wheelchair and the direction of the cursor on the computer 

screen [6]. Each generated command is associated with a 

repetitive visual stimulus flashing at a distinctive frequency. 

Several stimuli are presented before the users, who select the 

command by focusing on the corresponding stimulus. When 

the users focus on the visual stimulus [7], the signal appears 

in a recorded EEG signal with the same frequency as the 

stimulus's fundamental flicker frequency and its harmonics, 

along with the spontaneous EEG signal and artifacts.  

http://www.internationaljournalssrg.org/
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Fig. 1 SSVEP BCI system 

Researchers have recently suggested that artifacts and 

spontaneous EEG signals may degrade the performance of the 

SSVEP BCI Inference system [8]. Consequently, many 

methods were employed to pre-process the recorded EEG 

signals to develop the SSVEP BCI inference system [9]. 

Among them, the most common practice is filtering methods: 

FIR bandpass and IIR bandpass filter [5-9]. Besides the 

classical approach, spatial filtering [9] and decomposition 

techniques such as the wavelet filter bank approach and 

empirical mode decomposition [10, 11] method have also 

been used to a large extent.  

Furthermore, Blind Source Separation (BSS) [12-16] is 

another efficient and extensively used technique to minimize 

artifacts and to separate the source signal from the recorded 

EEG signal. The central part of the SSVEP-based BCI system 

is feature extraction, by which the SSVEP frequency 

component is extracted from recorded EEG signals. The 

Power Spectral Analysis (PSA) [17] is the most widely and 

commonly used method to extract the SSVEP frequency 

components from recorded raw EEG signals [19-22]. In 

addition to this, Canonical Correlation Analysis (CCA) is 

another efficient and powerful technique to recognize the 

SSVEP frequency component from the multichannel EEG 

signals [17]. Recently, a different version of CCA has been 

developed to optimize the detection accuracy of the SSVEP 

signal [19, 20].  

After the literature survey, it was found that various 

spatial filtering [13, 22-24] techniques have been employed 

before the feature extraction from the multichannel SSVEP 

BCI system. The feature extraction from the multichannel 

recordings directly influences the detection accuracy because 

the multichannel EEG signals are correlated [23-24]. Blind 

Source Separation (BSS) [23] is an advanced signal 

processing method to mix the independent sources at the 

sensor point or decorrelate the recorded EEG signal [13]. The 

performance of BSS, along with CCA, is a new method for 

detecting SSVEP from the multichannel EEG signals. 

Regarding the research gap, there are two approaches to 

handle the SSVEP-based BCI inference system: single-

channel and multiple-channel [25-27]. The objective of the 

BCI researcher is to develop a BCI inference system to decode 

the user's intention [28]. It consists of an EEG data acquisition 

system, a Preprocessing method, Feature extraction, and 

classification, followed by a control interface [6-9] shown in 

Figure 1. As a researcher, the paper's objective is to propose a 

preprocessing method to enhance detection accuracy 

considering the approach of multiple channels.  

Canonical Correlation Analysis (CCA) [11, 12] is the 

most widely and rigorously employed method to detect the 

SSVEP frequency component from multichannel recorded 

Electroencephalogram (EEG) signals. However, spontaneous 

EEG signals and artifacts often occurring while recording 

scalp-based EEG signals may deteriorate the detection 

accuracy of the SSVEP frequency component from the 

recorded EEG signal.  

Blind Source Separation (BSS) [15, 16] is the most 

important technique for analyzing the multichannel EEG 

recording to get the independent brain signals mixed at the 

sensor point. It finds the signal components, assuming the 

independent components equal the number of sensors 

employed to record the brain signals.  This work investigates 

the BSS as a pre-processing technique to decorrelate the 

source signal (SSVEP) from the recorded mixed-signal (EEG) 

to improve the detection accuracy of the SSVEP-based BCI 

Inference system. This paper proposes second-order statistics-

based BSS AMUSE algorithms [23, 24] to pre-process 

multichannel EEG signals. Based on the above literature 

survey, the authors consider the multiple recordings of EEG 

data for SSVEP detection. This paper sets the following 

objectives: How detection accuracy depends on the selection 

of these three parameters: Number of harmonics (L), Number 

of channels (CH), and Length of data (Tw) if one has multiple 
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channels of EEG signal available to detect SSVEP-based 

command. Therefore, the primary challenge is to detect the 

presence of the SSVEP frequency component from the 

recorded EEG signal with higher accuracy to improve the 

performance of the SSVEP BCI inference system.  

There is a need to investigate the effectiveness of the 

hybrid approach in detecting the SSVEP frequency 

component from the EEG signals. Also, an efficient signal 

processing technique is required for pre-processing and 

feature extraction of recorded EEG signals. This paper studies 

and finds the effectiveness of the BSS and CCA hybrid 

method for extracting the SSVEP signal with higher accuracy 

from the recorded EEG signal.  

As far as the authors know, nobody has analyzed the 

RIKEN dataset. Many labs have machines to acquire the EEG 

signal for SSVEP detection. They have performed CCA and 

AMUSE separately to find the detection accuracy for stimulus 

frequency in the alpha band. As per the reported results, the 

proposed methods achieve better detection accuracy for 

stimulus frequency in the alpha band.  The entire paper is 

organized into five sections. Section 2 describes the proposed 

methodology used to detect the SSVEP frequency 

components. A brief description of the dataset is explained in 

Section 3, while Section 4 describes the various methods, 

followed by the results, discussions, and conclusions in 

Section 5. 

2. Proposed Method 
The proposed method for detecting the SSVEP frequency 

component from a multichannel EEG signal is depicted in 

Figure 2. The acquired scalp-based EEG signal is filtered 

using an FIR Bandpass filter with a cut-off frequency of 1Hz-

30Hz. The filtered signal is pre-processed using the Blind 

Source Separation (BSS) based AMUSE algorithm. This pre-

processed signal is further applied as an input signal to the 

feature extraction unit.  

CCA is a feature-extraction method to find the correlation 

coefficients as a feature vector between the reference sine-

cosine signal and the pre-processed EEG signal. The 

maximum correlation coefficients over the stimulus frequency 

and uncorrelated EEG signal indicate the corresponding 

SSVEP signal frequency. Finally, the detected SSVEP 

frequency component is used as a command to communicate 

and control the external device in the SSVEP-based BCI 

system. 

 
Fig. 2 Proposed methodology 

3. Experimental Paradigm and Data Set 
The proposed method is evaluated on a publicly available 

online dataset, RIKEN-LABSP, provided by Hovgim 

Bakardjian. The dataset consists of four healthy subjects. The 

recorded EEG signal is captured using checkerboard pattern 

visual stimulation at 8 Hz, 14 Hz, and 28 Hz. These stimulus 

frequencies are used for experimental purposes. Each trial 

lasted 15 seconds and was repeated five times at each stimulus 

frequency. The EEG signals are documented by placing 128 

electrodes on the scalp's surface using a 10-20 electrode 

positioning system depicted in Figure 3 [26]. Dataset-related 

information is given in Table 1. The EEG signals are recorded 

at a 256 Hz sampling frequency. The SSVEP signal is found 

to be prominent in the occipital region. Therefore, the EEG 

signal recorded at P3, O1, O2, O3, Oz, P2, P4, P7, and P8are 

selected for further analysis. 
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Table 1. SSVEP dataset used in this study for experimental purpose 

Dataset No. of subjects No. of trials No. of channels Data length 
No. of stimulus 

frequencies 

Stimulus  

Frequencies 

RIKEN LABS 4 60 128 15s 3 8, 14 and 28Hz 

 
Fig. 3 Sensor layout of the recorded EEG signal 

4. Methods 
4.1. BSS as a Filtering Technique 

Blind Source Separation (BSS) is a technique to extract 

the meaningful information buried within the recorded EEG 

signal [18, 19]. This technique mainly applies to a system 

containing multiple sources and sensors, as depicted in Figure 

2. The objective of the BSS technique is to reject the artifacts 

and separate the acquired signal into temporally uncorrelated 

or independent components [23]. The SSVEP signals are 

generally embedded into EEG-recorded signals containing 

noise and artifacts. Therefore, applying the BSS to reject the 

artifacts appears natural, enhancing the detection accuracy of 

SSVEP signals. Generally, BSS can be performed based on 

characteristics such as non-Gaussianity, non-stationarity, and 

time correlation [23]. In this paper, we have assumed that the 

recorded EEG signal is time-correlated. Therefore, time de-

correlation via the BSS method was required according to the 

time structure of the acquired EEG Signal. The Block diagram 

of the BSS approach to decorrelate the informative signal 

(SSVEP) from the multichannel EEG recorded signal is 

depicted in Figure 4. The source signal is composed of a finite 

number of components given by 𝑺(𝒕) = [𝑺𝟏(𝒕) …… 𝑺𝒏(𝒕)] ; 

where ‘t’ is the discrete time index, n is the number of 

components. The acquired EEG Signal by the EEG sensor is 

given by; 

�̅� = 𝐻𝑆̅ + 𝑄, (1)             

Where 

 𝑋𝑘 = [𝑥1
1 …… …… …… 𝑥𝑁

𝐾] (2)   

𝐗𝐤 denotes the acquired EEG signal from the Kth channel, 

where K=1……M, where M represents the number of 

channels and N represents the number of samples in each 

channel. The term H is a mixing matrix and is the independent 

source. Q is uncorrelated white noise. The main objective of 

the BSS algorithm is to obtain the unmixing matrix (W), 

which is the inverse of the mixing matrix (H). The rhythmic 

information is also correlated when multiple channels of the 

EEG signal are acquired for a particular application. A second-

order statistics-based BSS AMUSE algorithm is proposed as 

a pre-processing method to extract the source signal, which is 

assumed to be an SSVEP signal that is buried in the acquired 

multichannel recorded EEG signal 
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Fig. 4 Block diagram of AMUSE-based source separation 

4.2. AMUSE-Based Source Separation Algorithm 

The AMUSE algorithm uses a straightforward principle, 

where the estimated components are spatiotemporally 

uncorrelated and less complex, where the components are 

arranged according to the decreasing Eigenvalues of the 

covariance matrix [20, 21]. The AMUSE algorithm is 

performed in two steps using the principle component 

analysis. First, the eigenvalue decomposition is employed on 

the covariance matrix of the recorded EEG signals [19]. 

Second, the singular value decomposition is applied to the 

time-lagged covariance matrix of the whitened signal. The 

detailed descriptions of the AMUSE algorithm, which is 

performed in two steps, are given below: 

Step-1: The whitening data using the eigenvalue 

decomposition is given below [21, 22]: 

Z(n) = ø X′(n); (3) 

where  ∅ = 𝐑𝐗

−
𝟏

𝟐    is the whitening matrix of the 

Covariance matrix  

RXX = E{X′(n)X′T(n)} (4) 

Where 𝐑𝐗𝐗 is a covariance matrix, 𝐗′(𝐧) is raw EEG 

signal. 

Step-2: Estimation of separating matrix W with SVD [19, 

20] 

The SVD is used on the time-delayed covariance matrix 

of the whitened signal. 

RZ = E{Z(n)ZT(n − 1)} = USVT (5) 

 

S is the diagonal of decreasing singular values, and U and 

V are the Eigenvector matrices. The separating matrix is 

estimated as follows [20]: 

                

W = UTø  (6) 

The independent components are computed as follows: 

Y = WX (7) 

4.3. Canonical Correlation Analysis (CCA) 

The CCA is fundamentally a multivariate statistical 

approach used to determine the association between two 

datasets [15-17, 25]. Its key strength is to find the pair of linear 

transforms such that when transformations are applied, the 

new set of variables will have a maximum transformation. For 

example, assume P and Q are two datasets, 𝛉𝐏 𝐚𝐧𝐝 𝛉𝐐 are the 

canonical variants. After the linear transformation, the new 

sets of variables can be given as   𝐏 ̅ = 𝛉𝐏𝐏
𝐓  and 

𝐐 ̅ = 𝛉𝐐𝐐𝐓. The primary function of the CCA algorithm 

is to determine the weight-vector 𝛉𝐏  and 𝛉𝐐   and   their 

correlation can be given as,  

ρ = max(𝜃𝑃, 𝜃𝑄)
E[P̅Q̅T]

√E[P̅P̅T]E[Q̅Q̅T]

 (8) 

ρ = max(𝜃𝑃, 𝜃𝑄)
𝜃𝑃CPQ𝜃𝑄

√𝜃𝑃CPPWx
T𝜃𝑄CQQ𝜃𝑄

T
 (9) 

Where ρ denotes the correlation coefficient between the 

datasets P and Q, which can be maximized by maximizing Z. 

Lin et al., in 2007, were the first to propose the CCA technique 

towards detecting SSVEP signals in BCI applications [14]. As 

per this technique, among the extracted correlation 

coefficients for all stimulus frequencies, the SSVEP frequency 

is the maximum correlation coefficient [25].  

The mathematical modeling to determine the SSVEP 

signal using the CCA technique can be described as follows. 

Assume that ‘K’ denotes the number of target frequencies in 

the SSVEP-based BCI system, and let X denote the EEG 

X2 

Xn 

DEMIXING SYSTEM 

W 
MIXING SYSTEM 

H 

S1 

S2 

Sn 

X1 S*1 

S*1 

 

S*N 

 

Source Signal Recorded Signal Estimated Signal 
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signal recorded from the ith channel, which consists of ‘n’ 

samples in each channel. The recorded EEG signal is whitened 

using AMUSE algorithm to minimize the artifacts and 

spontaneous EEG signal. Assume that  RK denotes the 

reference signal at the kth stimulus frequency 𝐟𝐤 (k=1, 2…..k) 

and comprises sine-cosine function, then RK
 can be given by, 

𝑅𝑘 =

[
 
 
 
 
 
 

 sin(2𝜋𝑓𝑘𝑡)

cos(2𝜋𝑓𝑘𝑡)
.
.
.

𝑠𝑖𝑛(2𝜋𝑁𝐻𝑓𝑘𝑡)

cos (2𝜋𝑁𝐻𝑓𝑘𝑡)]
 
 
 
 
 
 

  , 𝑡 =
1

𝑓𝑠
 ,

2

𝑓𝑠
, … … . .

𝑘 

𝑓𝑠
 (10)                           

In this study, the number of harmonics is considered as 1. 

To recognize the SSVEP frequency, the canonical correlation 

between the reference signal at each stimulus frequency and 

the uncorrelated EEG signal by the AMUSE algorithm is 

calculated using CCA. Finally, the maximum correlation 

between the reference signal at each stimulus frequency and 

the uncorrelated EEG signal is selected as a frequency of the 

SSVEP signal. 

5. Result 
This paper compares the proposed BSS-CCA method 

with the standard CCA method to confirm its effectiveness in 

recognizing SSVEP frequency. The EEG signal was recorded 

at the stimulus frequencies of 8, 14, and 28Hz by placing 128 

electrodes at different locations on the scalp of the brain.  

Since the SSVEP signals are more prominent in the 

brain's occipital and parietal scalp area, only eight channels, 

namely P3, O1, O2, O3, Oz, P2, P4, P7, and P8, are used for 

further analysis of the EEG signal.  

As the number of harmonics H needs to be pre-defined 

for CCA, we first investigate the effect of varying harmonics 

on the accuracy of frequency recognition. 

Figure 5 depicts the raw EEG signal acquired from the 

scalp of the brain by placing the sensor at locations P3, O1, 

Oz, O2, P2, P4, P8, and P7. The uncorrelated signal is shown 

in Figure 6 after applying the AMUSE algorithm over the 

selected multiple channels of the EEG signal.  

As the number of harmonics L needs to be pre-defined for 

CCA, we first investigate the effect of varying harmonics on 

the accuracy of frequency recognition.  

Table 2 shows the effect of averaged recognition accuracy 

obtained using CCA and AMUSE-CCA methods with several 

harmonics varied from 1 to 4 at various window lengths.  

The obtained result revealed that the CCA and BSS-CCA 

methods yielded higher accuracies at L=2 to 4 than L=1. 

However, no significant accuracy changes were observed for 

both methods, increasing L from 2 to 4. Therefore, L=2 is 

chosen for further investigation for the standard-CCA and 

AMUSE-CCA methods.  

 
Fig. 5 Recorded EEG signal by placing the electrode at P3, O1, O2, O3, OZ, P2, P4, P7 and P8 position 
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Fig. 6 The whitened signal obtained using the AMUSE method, respectively 

Table 2. SSVEP detection accuracy of AMUSE-CCA and CCA methods with increasing number of harmonics and time window lengths (TWs) 

Method No. of Harmonics 
Time Window Lengths (TWs) 

1sec 2sec 3sec 4sec 

CCA 

L=1 48.33 58.33 60.00 63.33 

L=2 45.00 58.33 63.33 65.00 

L=3 43.33 60.00 60.00 63.33 

L=4 41.66 58.33 60.00 61.66 

AMUSE-CCA 

L=1 46.66 60.00 60.00 61.66 

L=2 43.33 61.66 63.33 63.33 

L=3 43.33 60.00 60.00 60.00 

L=4 41.66 56.66 58.33 58.33 

As we know, the detection accuracy of SSVEP frequency 

over multichannel EEG signals also depends on the number of 

channels selected.  

Therefore, we also investigate the effect of varying the 

number of channels on recognizing SSVEP frequency 

components for L=2. Table 3 summarizes the average 

detection accuracy obtained by the BSS-CCA and CCA 

methods at various window lengths for the harmonics L=2.  

Table 3.  The SSVEP detection accuracy using BSS-CCA and standard 

CCA methods. Here, the number of HARMONICS, L=2. 

Method 
No. of  

Channels (CH) 

  Time window lengths (TWs) 

1 sec 2 sec 3 sec 4 sec 

CCA 

4 41.66 48.33 56.66 61.66 

6 45.00 55.00 65.00 63.33 

8 48.33 58.33 61.67 66.67 

AMUSE-

CCA 

4 43.33 50.00 58.33 63.33 

6 46.67 56.67 66.67 65.00 

8 50.00 60.00 63.33 68.33 

The results indicated that the average detection accuracy 

increased with the increasing number of channels. Thus, the 

number of channels selected for further analysis of the SSVEP 

EEG signal was set to 8. Figure 7 shows the subject-wise 

accuracy using CCA and AMUSE-CCA methods for the 

number of channels C=8 and number of harmonics L=2 at 

different Time-Windows lengths (TWs) 1 to 4 s. The reported 

results indicate that the AMUSE-CCA method yields higher 

accuracy than the standard CCA method at various time 

windows for all the subjects.  

Table 4. Average SSVEP detection accuracy of all the subjects using 

CCA and BSS-CCA at various time window lengths of 1 to 4 seconds 

using the standard CCA and BSS-CCA methods. Here, the number of 

channels CH =8 and the number of harmonics L = 2. 

TW(S) 
Accuracy (%) 

CCA AMUSE-CCA 
1 48.33 55.00 
2 58.33 65.00 
3 61.66 68.33 
4 66.66 73.33 
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Furthermore, the average detection accuracy of all the 

subjects at different Time Window lengths (TWs) of 1 to 4 s 

is given in Table 4. The reported results show that the average 

detection accuracy for all the subjects at various Time 

Windows (TWs) lengths of 1 to 4s was found to be 48.33, 

58.33, 61.66, and 66.66 %, respectively, using the CCA 

technique. In contrast, using the BSS-CCA method, it is 55.00, 

65.00, 68.33, and 73.33 %, corresponding to the same window 

length.   In this paper, the authors also investigate the effect of 

the selection of stimulus frequency on the detection accuracy 

of SSVEP frequency.  

                            

 
Fig. 7 Detection accuracy of subjects 1, 2, 3 & 4 for the window length of 1 sec - 4 sec. m CH=8 and L=2 

Table 5. Average detection accuracy of all subject for C=8, L=2, 

stimulus frequency 8 Hz, 14 Hz 

TW(S) 
Average accuracy (%) 

CCA AMUSE-CCA 
1 70.00 80.00 
2 87.50 95.00 
3 90.00 95.00 
4 95 97.50 

 
To demonstrate the impact of the choice of stimulus 

frequency, the authors find that the stimulus. Frequency 

falling in the alpha band achieves more detection accuracy. 

Table 5 shows the average detection accuracy of all subjects 

for different window lengths (1 sec -4 sec) for stimulus 

frequencies of 8 Hz and 14 Hz. At the same time, all other 

parameters (Number of channels CH and number of 

harmonics L) remain the same, with CH=8 and L=2. 

The results show that using the CCA technique, the 

average detection accuracy for all subjects at various Time 

Windows (TWs) lengths of 1 to 4s are 70.00, 87.50, 90.00, and 

95.00%, respectively. In contrast, using the BSS-CCA 

method, it is 80.00, 95.00, 95.00, and 97.50 %. Considering 

that the authors compare the result with other researchers' 

work , the proposed hybrid approach has better results than 

CCA and AMUSE for stimulus frequency in the alpha band. 

However, the dataset is not the same. From the reported 

results, the authors understand that the hybrid approach has 

better results than separately applied CCA and AMUSE 

methods for stimulus frequency in the alpha band. When one 

considers the number of channels to acquire the EEG signal, 

placing many channels for accurate detection of the SSVEP 

signal is paramount. The sensors are so closely placed that the 

influence of correlativeness has separate importance. BSS is a 

key concept to address the multiple channels case and find 

decor-related/independent components from the mixed signal. 

The real-time application of the BCI inference system depends 

on fast decisions and the algorithm. The algorithm takes less 

time to provide the decision. Keep in mind that the second-

order statistics-based BSS algorithm is proposed to enhance 

the detection accuracy of the CCA-based algorithm. The 

performance of the hybrid approach is evaluated with three 

parameters: the number of channels C, the length of data, and 

the number of harmonics (L). At the same time, this paper 
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considers the stimulus frequency. If the frequency falls in the 

alpha and beta bands, AMUSE-based CCA performs better 

than the simple CCA-based method. If the stimulus frequency 

falls in the upper beta band, the average detection accuracy 

falls significantly, as shown in Table 4. The limitation of this 

study is that the limited dataset is available for the flickering 

frequency above 26 Hz. 

There is a need to explore the proposed method over a 

larger number of datasets, considering the stimulus frequency 

above 26 Hz. In the Future, the authors will try to address this 

limitation through their experiment. The proposed method, 

AMUSE CCA, has better results for stimulus frequency in the 

alpha band because the second-order statistics-based BSS 

algorithms consider that the mixed data at sensor points are 

correlated. By applying the AMUSE algorithm, one can make 

the mixed sensor signal uncorrelated and independent. Also, it 

is required to be decorated to find the independent signal. 

After that, the authors applied CCA as a feature extraction 

technique to find the detection accuracy.  

Furthermore, the authors have reported that the SSVEP 

frequency is mixed due to a slow frequency stimulus signal 

having better detection accuracy if one can apply AMUSE 

CCA. On the other hand, this paper reports that the SSVEP 

signal generated inside the brain due to a fast stimulus 

frequency does not have better results. There is a need to 

explore the dynamics of the brain with slow frequency 

stimulus signals and fast stimulus signals, as well as how 

adaptable the existing BSS algorithm is in a fast-changing 

environment of signal mixing. The reported result clearly 

shows that the selection of stimulus frequency also plays a 

vital role in optimizing the performance of the SSVEP-based 

BCI system. Due to the high stimulus frequency above 20 Hz 

(in the recorded dataset, it is 28 Hz), the SSVEP frequency 

response is not as good as the corresponding low stimulus 

frequency. The detection accuracy for higher stimulus 

frequencies differs from that for lower ones. This result 

indicates further exploration of more stimulus frequencies in 

the upper range. This analysis and reported results conclude 

that the selection of stimulus frequency also plays a vital role 

in optimizing the performance of SSVEP-based BCI systems. 

6. Conclusions and Future Work 
This paperwork finds that the SSVEP recognition 

accuracy could be significantly improved using the BSS-CCA 

method compared to the standard CCA method for low 

stimulus frequency. The results reveal that blind source 

separation as a signal pre-processing technique is uncorrelated 

with the recorded multiple-channel EEG signal.  

Therefore, it can enhance the recognition accuracy of 

SSVEP signals buried in the recorded EEG signals. The 

selection of the number of channels to improve the recognition 

accuracy of SSVEP is also presented. In addition, the authors 

have also investigated the choice of stimulus frequency, which 

also plays a vital role in improving the detection accuracy of 

SSVEP signals. Using both CCA and BSS-CCA methods, the 

authors reported that detection accuracy is enhanced at low 

stimulus frequency compared to high frequency (above 20 

Hz). There is a need to develop further automatic channel 

selection algorithms for analyzing multichannel EEG 

recordings. Also, we need to explore and validate the 

effectiveness of the proposed method for the new dataset. 
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