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Abstract - The increasing use of Vehicular Ad-hoc Networks (VANETs) in smart transportation points to the need for solutions 

that are quantum-computing resistant. The usual reactive security systems in the cloud cannot handle real-time vehicle 

applications and fail even more when attacked by quantum technology. In this paper, the suggested framework, Quantum-

Secure Predictive Maintenance (QSPM), combines quantum-safe communication with QKD, early fault detection using LSTM 

networks at the edge and verifiable maintenance results validated with blockchain technology. A secure connection is 

guaranteed with BB84, and AI at the edge helps predict when maintenance is required by analyzing instant sensor information 

in the QSPM framework. Maintenance schedule reminders are done automatically by smart contracts, and the system uses 

post-quantum cryptography for lasting security. Tests done in NS-3 and MATLAB demonstrated that QSPM finds 94.6% of 

faults, cuts packet loss by 42%, extends network lifetime by 38% and raises resistance to cyberattacks by 55%. Results indicate 

that QSPM provides better security, reduces how long a vehicle stands idle and makes it possible to use quantum-resistant 

maintenance for future connected vehicles. 

Keywords - Quantum-Secure Communication, Predictive Maintenance, Vehicular Ad-hoc Networks (VANETs), Edge AI and 

IoT, Blockchain for Secure Data Management. 

1. Introduction 
Vehicular Ad-hoc Networks (VANETs) are necessary 

for smart transportation systems to support communications 

among vehicles with each other and with infrastructure 

(V2I). It helps decrease road congestion, reduces accidents, 

and supports the function of autonomous vehicles. Yet, even 

with so many advantages, VANETs must address major 

challenges associated with their distributed and dynamic 

form. Challenges to transportation systems can include 

cyber-attacks, network failure, and vehicle issues, leading to 

major safety and performance problems. Since the number of 

connected vehicles is rising, making sure VANETs are safe 

and reliable is now essential [1]. 

A major problem in VANETs is how to protect 

communications. Widely used encryption methods, such as 

RSA and ECC, which are employed in VANETs, are now at 

risk from quantum computing. Because quantum computers 

are about to break the current cryptography methods, it is 

now critical to use quantum-safe ways to protect information 

sent between cars. Quantum Key Distribution (QKD) is a 

new way to send information, providing an encryption 

method that cannot be broken, according to quantum 

mechanics. Even so, it is tough to integrate QKD into 

vehicles because doing so involves high computational 

power and needs suitable infrastructure [2]. Together with 

security, ensuring the dependability of vehicles in VANETs 

is extremely important. Using old ways of maintaining 

vehicles, such as fixed or reactive care, usually causes 

unexpected faults, more costly repairs and service 

interruptions, all of which harm the car and put lives in 

danger. It has been demonstrated that predictive maintenance 

models, thanks to artificial intelligence and machine 

learning, improve the process of detecting faults by 

anticipating failures prior to them occurring. Those using DL 

have demonstrated that they can predict future faults from 

huge amounts of vehicle-derived data [3]. Even so, such 

models usually lack strong security, making it easier for 

cyber-attackers to interfere and produce inaccurate results. 

Predictive maintenance won't work safely without strong 

security measures. Although quantum cryptography, AI 

maintenance, and Blockchain are all being improved, the 

current solutions do not address all the security and 

reliability issues in VANETs. Although there are works on 

using quantum cryptography for secure VANETs, these 

studies frequently miss discussing AI and how it can help 
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predict maintenance needs, along with the flaws in older 

protocols given quantum risks [4]. In the same way, 

Blockchain has been studied for secure data storage, though 

very few ideas include its use alongside quantum-proof 

communication and preventive maintenance. 

This research introduces a Quantum-Secure Predictive 

Maintenance (QSPM) framework to address these issues. 

Using QSPM, this research included QKD for protected 

messaging, predictive analytics that watches for faults in 

real-time and Blockchain to manage important data that 

cannot be changed. By integrating these technologies, QSPM 

aims to enhance the safety, error identification, and 

dependability of VANETs. Using the framework, 

communication is safe from quantum cyber-attacks, faults 

can be foreseen, and all maintenance records cannot be 

altered or tampered with [5]. The new framework is tested 

with advanced simulations and is seen to improve on 

previous approaches. As a result, QSPM reduces packet loss 

by 42%, identifies faults more accurately (94.6%) and 

lengthens the network's lifetime by 38%. Moreover, QSPM’s 

security against cyberattacks improved by 55%, supporting 

its ability to ensure that the future of VANET-based 

intelligent transportation systems is secure, efficient and 

reliable. 

2. Related Works  
Lately, there has been much emphasis on ensuring 

Vehicular Ad-hoc Networks (VANETs) are secure during 

communication and as predictive maintenance. Researchers 

here use Quantum Cryptography, Deep Learning and 

Blockchain to ensure safer vehicles and improve methods for 

finding faults and scheduling predictive maintenance. Each 

section reviews what exists in that area and then clearly 

states where research gaps exist and how the solution adds 

value [6]. 

2.1. Communication with Security in VANETs 

ECC and RSA, which are standard in Vehicular Ad-hoc 

Networks (VANETs), are now exposed to threats from 

quantum computers. Since Shor’s Algorithm, a product of 

quantum computing can handle large numbers, protecting 

data using classical algorithms is now much more difficult. 

Quantum Key Distribution (QKD) has come to the fore as a 

promising way to protect communication security. Studies by 

Prateek and his team [7] showed that QKD is safe and 

reliable compared to the main alternatives. Unfortunately, 

most of what they studied could not be put into practical use, 

as they failed to explore QKD implementation methods 

suitable for vehicular networks. Similarly, Sharma et al. 

(2023) [8] suggested a mixed post-quantum cryptographic 

approach to improve security in VANETs. They use 

quantum-resistant cryptography and usual classical 

techniques to enhance the reliability of vehicle 

communication. The model proved helpful in some tests, but 

its high processing and memory needs made it ineffective 

during real-time driving. The QKD method in QSPM tackles 

the troubles that typically affect quantum cryptography. 

Because it uses BB84, QSPM supports secure connections 

between vehicles and infrastructure, which keeps the system 

fast and scalable. The result is that continuous, protected 

transmissions are possible in VANETs, although there are 

few resources for each connected vehicle. 

2.2. The Use of AI for Predicting Problems in Equipment 

Maintenance 

Early problems with autonomous vehicles are often 

detected using the systems developed for predictive 

maintenance and environmental sensing. The model 

developed by Kumar et al. (2023) [9] exceeded 99% 

accuracy when faults in Electric Vehicles (EVs) were 

detected with an R-CNN architecture. While detecting faults 

was greatly improved by this model, communicating with the 

cloud in real-time slowed down performance for VANET 

applications. When maintenance needed to be done quickly, 

these delays made it clear that cloud-based communication is 

not always effective for predictive maintenance in nations 

where autonomous vehicles are normal. 

By contrast, Hadrian et al. (2023) [10] proposed 

DeepCAN, a brand-new technique to classify road types 

using only vehicle dynamics data obtained from the CAN 

bus. In contrast to old image- and radar-based systems, 

DeepCAN studies multivariate time-series data, covering 

vehicle velocity, revolutions per minute and acceleration and 

gets useful information about vehicle performance and its 

area. The approach is designed to lower dependence on 

image and radar data and offer an alternative when those 

sensors are not usable. Also, working with vehicle dynamics 

avoids the privacy problems in image-based data because it 

does not depend on place or picture data. DeepCAN brings 

together two important techniques for dealing with time-

series data. The first process features the use of an LSTM AE 

to learn temporal patterns directly from the given time series 

data. The embeddings are sent to a Fully Convolutional 

Network Autoencoder (FCN AE) to make the system better 

able to determine the road type. The approach uses features 

to train the data, as an XGBoost classifier is applied to 

classify by putting the collected features together. 

Hadrian et al. (2023) investigated each separate model 

piece along with the resulting mix of the approaches. The 

experiment proved that DeepCAN can efficiently and 

correctly identify the type of road, suggesting it will be 

useful in practice with autonomous vehicles. An important 

point is that the model works with sensor data about cars 

rather than images or radar, which may cause fewer problems 

and be more secure than visual sensors. Still, DeepCAN did 

well in its tests, but because security features were missing, it 

could be attacked by cybercriminals. Because of this limit, 

the model’s dependability could suffer, especially in crucial 

autonomous systems. 
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2.3. Making Predictive Maintenance Secure with 

Blockchain 

Ensuring that maintenance records are secure and not 

easily changed by using blockchain technology has been a 

major objective in recent research for VANETs. The authors 

of Lai et al. (2025) [11] proposed a blockchain system to 

safely preserve maintenance logs for all connected vehicles. 

Yet, their technique was hampered from being applied in 

VANETs because processing all those real-time blockchain 

transactions on many vehicles took too much computer 

power. 

Much in the same way, Mritunjay Shall Peelam et al. 

[12] (2024) suggested a system that helps track the state of 

vehicles safely and transparently using Blockchain 

technology on ITS. This system uses federated learning to 

predict when vehicles need servicing and protects each user’s 

personal data. With Blockchain, the system guarantees a 

reliable and safe log of maintenance work, while fed-learning 

predicts the timing for vehicle servicing using current sensor 

data. With this system, it is less likely that changes will be 

made to the records falsely, so the vehicle’s important data is 

protected. However, as before, the technique had trouble 

processing data in real-time in low-power VANET nodes. 

Alternatively, the Quantum-Secure Predictive 

Maintenance (QSPM) method uses AI and Quantum Key 

Distribution (QKD) to secure communication in predictive 

maintenance. Making smart contracts work with Blockchain 

allows QSPM to keep maintenance records untampered and 

easy to scale and work efficiently. Unlike other efforts, 

QSPM uses QKD through the BB84 protocol to avoid big 

computational problems in Blockchain and make key 

exchanges safer. Consequently, the system is efficient, 

scalable and secure, preventing cheating repairs, optimizing 

maintenance tasks and achieving top functionality even if 

resources are insufficient. 

2.4. Integrating AI with Security in VANETs 

The swift progress of Vehicular Ad-hoc Networks 

(VANETs) has required new security systems that are more 

modern than conventional, rule-based ones. Mixing artificial 

intelligence methods with traditional security approaches has 

become important to managing vehicular network security 

threats. Combining various AI approaches ensures that any 

individual algorithm’s flaws are removed, providing fast 

threat detection in mobile locations. Ahmed et al. (2024) [13] 

designed an intelligent system for detecting DoS attacks in 

Internet of Vehicles networks supported by machine 

learning. They first use random projection and randomized 

matrix factorization together for feature engineering and then 

put all three methods, extra tree classification, logistic 

regression, and random forest, back together to train their 

model. The approach managed to detect DoS and DDoS 

attacks with 98% accuracy on average at the application 

level, doing better than typical methods thanks to using 

strong dimensionality reduction and various model classes 

that keep the method efficient but accurate. 

Barve and Patheja (2024) [14] introduced a combined 

Convolutional Neural Network and Bidirectional Long 

Short-Term Memory network model for detecting VANET 

intrusions. They bring all their data from vehicle nodes and 

roadside units together, and they then use K-means clustering 

to group them into different attacks. Training CNN-BiLSTM 

produced outstanding results, with an accuracy of 99.56%. 

Tests showed 99.49% accuracy, and validations showed 

99.65% accuracy, which improved over existing solutions by 

up to 4.65% thanks to its ability to detect both space and time 

dependencies in the behavior of networks. 

Instead, our proposed Quantum-Secure Predictive 

Maintenance (QSPM) framework moves from reacting to 

security threats to anticipating them ahead of time. Whereas 

most hybrid systems are only high at detecting threats after 

an attack, QSPM combines Quantum Key Distribution for 

safe V2X communication, AI predictions to find problems 

before they occur and blockchain technology to maintain 

secure maintenance records. 

2.5. Enabling Post-Quantum Cryptography within 

Predictive Maintenance 

By incorporating Post-Quantum Cryptography (PQC) 

into predictive maintenance systems, vehicular networks are 

now protected against future quantum computer threats. 

Because quantum computing is progressing, current 

encryption methods are more at risk from quantum attacks, 

mainly those based on PKI like RSA or ECC. Therefore, it is 

necessary to invent quantum-secure frameworks that offer 

present and future protection for maintenance in VANETs. In 

2022,  

Fowler et al. [15] were the first to test quantum key 

distribution in vehicular ad-hoc networks. They showed that 

it offers benefits over traditional key distribution due to its 

features, making it hard for anyone to copy the quantum bits 

during transmission and allowing each participant to detect 

an eavesdropper. Their quantum computing-based protocol 

for VANET authentication confirms that it not only has the 

same advantages as a quantum key distribution protocol but 

also resists quantum attacks and ensures Vehicular Networks 

remain protected against impersonation, altered messages 

and disputes. Stavdas et al. (2024) [16] broadened the field 

by discussing options for creating quantum security in 

vehicular networks. The team developed approaches for 

using Quantum Key Distribution (QKD) in 6G Vehicle-to-

Infrastructure (V2I) networks, helping to keep data 

transmissions secure. QKD is applied throughout the V2I 

system to form a secure foundation for vehicles 

communicating with network infrastructure. Study results 

revealed that future systems could introduce QKD to 

vehicles, preventing the risk of top lift EOC before the 
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quantum world fully replaces parts of Public Key 

Infrastructure. Unlike earlier systems, Quantum-Secure 

Predictive Maintenance (QSPM) serves as a single 

framework that brings together NIST post-quantum 

solutions, AI-enhanced predictions and the security of 

quantum key distribution for vehicles and devices in 

connected networks. Unlike before, QSPM secures both 

authentication and communication at once, deals with 

today’s and future quantum threats, and makes it possible to 

detect and repair system faults quickly.   

2.6. Research Gaps and Motivation 

Research on VANET security and predictive 

maintenance has shown important shortcomings in how they 

are used in practice. Current quantum cryptographic systems 

meet theoretical goals yet cannot be used effectively in 

vehicles or VANET applications. Predictive maintenance 

using AI is accurate at finding faults, yet capturing real-time 

data becomes difficult because of cloud-related delays that 

are unsuitable for applications requiring immediate response.  

Blockchain-supported maintenance systems run into 

problems as vehicles increase and transactions need to be 

processed instantly. Most importantly, existing hybrid AI 

security frameworks are reactive, meaning they spot threats 

after attacks happen, even with very high detection accuracy. 

Furthermore, every framework fails to combine post-

quantum and real-time predictive maintenance in the same 

system, with current quantum-secured vehicles focusing only 

on secure communication. 

Because of these limitations, the Quantum-Secure 

Predictive Maintenance (QSPM) framework is designed to 

tackle the need for a security strategy that stops 

vulnerabilities before they are used against a system. The 

framework addresses the vital need for instantaneous 

processing of in-vehicle networks so that real-time control is 

ensured for key safety applications. Given that today’s 

cryptography could be defeated by quantum computing, 

QSPM offers resilience against future threats and also 

supports real-world applications. QSPM consolidates 

communication security, early maintenance and data security 

into one system that suits the latest vehicular networks, as 

these networks must be safe and efficient simultaneously. 

3. Proposed Works 
Quantum-Secure Predictive Maintenance (QSPM) is 

designed to handle important challenges in Vehicular Ad-hoc 

Networks (VANETs) by using a secure way to give real-time 

predictions for maintenance. This approach involves QKD 

for communication, AI to predict faults ahead of time and 

Blockchain to ensure data cannot be changed. Because the 

approach is integrated, the system guarantees secure vehicle-

to-roadside communication, early detection of problems and 

no tampering with maintenance records. This section 

provides key components of the QSPM framework, which 

are given below, followed by their explanations. 

3.1. Quantum-Secure Communication in VANETs 

Because of QKD, the framework can ensure that 

cryptographic keys are safely shared between the vehicle and 

the RSU. Currently, the traditional RSA and ECC systems 

can be broken through attacks from quantum computing. 

With QKD, quantum mechanics makes messages safe by 

producing unbreakable, undetectable cryptographic keys. 

3.1.1. Quantum Key Distribution Process 

Quantum bits (qubits) are central to Quantum Key 

Distribution. Because of superposition, a qubit can be in 

several states simultaneously and polarized, for example, in 

the horizontal, vertical or diagonal plane. This property is 

exploited to protect and send information safely. 

1. How QKD Works: The control centre (V_A) generates 

and sends photons (V_B) containing specific 

polarization information to the RSU. Often, the 

polarizations applied in science are named horizontal, 

vertical and diagonal. Because of this encoding, secret 

cryptographic keys can be transferred. 

2. The RSU is expected to measure the photon’s 

polarization when it detects them as a key to decode the 

data. Even so, the RSU has no way to determine the 

polarization state of the vehicle employed to encode the 

photon. It selects, random-wise, between a rectilinear or 

diagonal method to find the polarization of the light. The 

system provides the correct key when the measurement 

basis matches the vehicle's. 

3. Also, the work includes ensuring security in key 

exchange and eavesdropping suspicion. 

If an eavesdropper tries to intercept the photons, it will 

disrupt their properties, as technical ideas show that 

measuring a quantum state will disturb it. The disturbance 

causes serious errors that can be detected when comparing 

the vehicle and RSU results. When the mistakes are too big, 

the key is thrown away. Because of this, no third party can 

listen to your conversation over the channel. 

3.1.2. BB84 Protocol 

Most QKD protocols are based on BB84, the preferred 

QKD method for the QSPM framework. This method 

provides safe sharing of keys because four various 

polarization states for photons are used. They are recorded 

using two distinct systems of polarization axes. 

 Rectilinear Basis: Horizontal and Vertical polarization 

styles. 
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 The third type is a diagonal basis using +45° diagonal 

(D) and -45° diagonal (A) polarizations. 

Let us look at how BB84 is implemented. 

1. In the Photon Preparation step, the vehicle prepares 

photons randomly, such as H, V, D, or A, in one of the 

four polarization states. Photons are assigned randomly 

to one of these two polarizations. 

2. The prepared photons are sent from the vehicle to the 

RSU (receiver) by transmission. 

3. 3 After gathering the photons, the RSU examines their 

polarization but does not know what the vehicle sent. As 

a result, the student is randomly assigned to use a 

rectilinear or diagonal basis to measure with polygons. 

4. After the transmission and measurement are completed, 

the vehicle and RSU publicly compare the chosen basis 

of their measurements but do not release the actual 

values. If the choice of basis is identical, the photon 

becomes part of the secret key, and you accept the 

device’s reading. A measurement outcome is ignored if 

the base of units is changed during a measurement 

procedure. 

5. Eavesdropping detection occurs because the wrong basis 

picked by an eavesdropper leads to serious errors in the 

generated key. A comparison is drawn between the error 

rate in each communication method (QBER). When the 

QBER goes above a set amount, the key is deleted so 

that no one is listening in. 

Today, many experts use QKD with the BB84 protocol 

to securely and efficiently create key material that does not 

easily succumb to attacks from both conventional and 

quantum sources. 

A robust QSPM system is built using vehicle-to-

everything communication with QKD at its core. Because 

both RSA and ECC can be breached using quantum methods, 

they are not secure enough to last in VANETs in the long 

run. Keys developed with QKD have a special property that 

prevents eavesdropping and cryptographic attacks [16].  

In QKD, polarized photons allow the Roadside Unit 

(RSU) and the vehicle to share keys-any attempt to listen in 

causes quantum disturbances that trigger the system to spot 

risks to security. BB84 develops the secret key by sharing the 

vehicle and the RSU. You can compute the quantum key’s 

entropy as: 

𝐻(𝐾) = − ∑ 𝑝𝑖 log2 𝑝𝑖
𝑛
𝑖=1  (1) 

Probability 𝑝𝑖  Is there a chance to measure qubit I in that 

given state? If 𝐸 tries to get access to the connection, a 

predefined threshold on the key’s error rate 𝑇𝑞𝑏𝑒𝑟  Is reached, 

which leads to a mechanism for erasing and replacing the 

key. The Quantum Bit Error Rate (QBER) is computed as: 

𝑄𝐵𝐸𝑅 =
𝐸𝑡

𝐸𝑤
× 100 (2) 

𝐸𝑤  This means the number of bits sent that are wrong 

and 𝐸𝑡 It is the total number of bits sent by the system. When 

QBER passes the limit  𝑇𝑞𝑏𝑒𝑟 , the system gets rid of the key. 

If 𝑄𝐵𝐸𝑅 >  𝑇𝑞𝑏𝑒𝑟 , then the Key is Discarded. (3) 

As a result, VANET messages and networks will still be 

protected against future risks to cryptography. 

3.2. AI-Driven Predictive Maintenance Using Deep 

Learning 

AI-backed predictive maintenance employed in QSPM 

is due to Deep Learning (DL) using Long Short-Term 

Memory (LSTM) algorithms to anticipate vehicle failures 

before they happen. The immediate use of vehicle sensor 

information enables the system to discover early issues and 

schedule fixes before the equipment fails, making operations 

more reliable and accelerating repairs. 

3.2.1. Process of Predictive Maintenance 

Data Collection 

Vehicles in the VANET produce continuous data about 

temperature, vibration, fuel economy and battery condition. 

𝑆(𝑡), the data is constantly watched and fed to the LSTM 

network. 

How to Calculate Fault Probability 

Using the LSTM network, the serial data is studied, and 

the formula is applied to predict the fault probability.  𝑃𝑓(𝑡) 

at the time 𝑡. 

 𝑃𝑓(𝑡) = 𝜎( 𝑊𝑓 ⋅ 𝑆(𝑡) +  𝑏𝑓) (4) 

Where 𝑊𝑓  It is shorthand for the LSTM weight matrix, 

 𝑏𝑓 is the bias term in the network, 𝜎(𝑥) =
1

1+𝑒−𝑧 Represents 

the sigmoid function used, and 𝑆(𝑡) indicates the input from 

the sensors in real-time. Where the value of  𝑃𝑓(𝑡) go beyond 

a previous decision called 𝑇𝑓𝑎𝑢𝑙𝑡, the platform raises 

predictive maintenance signals and notifies the system about 

possible faults before failure. In Equation (3),  𝑃𝑓(𝑡) the 

predicted chance of a fault occurring at time t is calculated 

by analyzing current sensor readings and the old patterns of 

faults. This model computes the probability by taking sensor 

recordings over time using temporal information. The 

meaning of  𝑃𝑓(𝑡) It goes from 0 (stating no fault) to 1 
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(stating a high fault probability). Once  𝑃𝑓(𝑡) If it goes above 

0.85, the system sets off a maintenance alert to get 

maintenance started. 

Failure Risk Assessment 

To assess the risk of the system failing, a multi-factor 

risk function is applied using temperature changes, 

unexpected vibrations and disturbances in power flow. It is 

calculated as: 

𝑅(𝐶) = 𝛼𝑇 + 𝛽𝑉 + 𝛾𝑃 (3) 

For 𝑅(𝐶), that means the total risk of an accident; T 
means temperature changes; V stands for vibration problems. 

P refers to changes in power, while α, β and γ are weighting 

coefficients. If R(C) exceeds the failure threshold 𝑇𝑓𝑎𝑖𝑙  

equivalent maintenance is done right away to prevent 

malfunctioning of the vehicles. 

3.3. Blockchain for Secure Predictive Maintenance Data 

Management 

QSPM depends on Blockchain to ensure maintenance 

records are safe and data is kept legibly. To ensure the 

information is unchangeable and protected, all data about a 

vehicle’s maintenance is stored in blocks on a distributed 

ledger. Each transaction for maintenance 𝑇𝑥𝑖  is described by 

these three attributes: 

𝑇𝑥𝑖 = (𝑉𝑖 , 𝐹𝑖 , 𝑇𝑖 , 𝑀𝑖 , 𝐻(𝑇𝑥𝑖−1)) (5) 

𝑉𝑖   means vehicle ID, 𝐹𝑖   This means the identified fault 

code, 𝑇𝑖  Stands for the time when the maintenance event 

happened, 𝑀𝑖  points to the maintenance operation and 
𝐻(𝑇𝑥𝑖−1)  ensures consistency. 

SHA-256 is used to make sure every block is safely 

encrypted. 

𝐻(𝑇𝑥𝑖) = 𝑆𝐻𝐴 − 256(𝑉𝑖 ∣∣ 𝐹𝑖 ∣∣ 𝑇𝑖 ∣∣ 𝑀𝑖) (6) 

With Blockchain and smart contracts in use, QSPM 

avoids changes or manipulation of the maintenance records 

and prevents unlawful repairs or additions. Because of this, 

manipulating the data is impossible, keeping discouraged 

changes from taking place. 

 
Fig. 1 QSPM architecture 
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Algorithm 1 - QSPM Implementation Workflow 

1. BEGIN QSPM_Implementation 

2. // Step 1: Quantum Key Distribution (QKD) for 

Secure V2X Communication 

3. INITIATE QKD between Vehicle (𝑽𝑨) and RSU (𝑽𝑩) 

4. GENERATE Quantum Key K using BB84 protocol 

5. COMPUTE 𝑸𝑩𝑬𝑹 =  (
𝑬𝒘

𝑬𝒕
)  ×  𝟏𝟎𝟎 

6.     IF 𝑸𝑩𝑬𝑹 >  𝑻𝒒𝒃𝒆𝒓, THEN 

7.         DISCARD K 

8.         RESTART QKD 

9.     END IF 

10. // Step 2: AI-Based Predictive Maintenance Execution 

11. COLLECT Sensor Data 𝑺(𝒕)  =  {𝑻, 𝑽, 𝑷} 

12. PREDICT Fault Probability 𝑷𝒇(𝒕) Using LSTM: 

13.  𝑷𝒇(𝒕) = 𝝈( 𝑾𝒇 ⋅ 𝑺(𝒕) +  𝒃𝒇)  

14.     IF  𝑷𝒇(𝒕) >  𝑻𝒇THEN 

15.         TRIGGER Maintenance Alert 

16.     END IF 

17. // Step 3: Blockchain-Enabled Maintenance Logging 

18. CREATE Blockchain Transaction 𝑻𝒙𝒊 = (𝑽𝒊, 𝑭𝒊, 𝑻𝒊

, 𝑴𝒊, 𝑯(𝑻𝒙𝒊−𝟏)) 

19. COMPUTE Hash: H(𝑻𝒙𝒊) = SHA-256(𝑽𝒊, 𝑭𝒊, 𝑻𝒊, 𝑴𝒊) 

20. ADD 𝑻𝒙𝒊 to Blockchain Ledger 

21. // Step 4: Smart Contract-Based Maintenance 

Scheduling 

22.     IF  𝑷𝒇(𝒕) > 𝟎. 𝟖𝟓 THEN 

23.         EXECUTE Smart Contract: SCHEDULE    

REPAIR 

24.     ELSE IF 𝟎. 𝟓 <  𝑷𝒇(𝒕) ≤ 𝟎. 𝟖𝟓 THEN 

25.         MONITOR Vehicle Condition 

26.     ELSE 

27.         NO ACTION REQUIRED 

28.     END IF 

29. END QSPM_Implementation 

3.4. Smart Contract for Automated Maintenance 

Scheduling 
By applying QSPM, this research can make program 

maintenance happen as needed using smart contracts instead 

of technicians’ fault predictions for these activities.  

The terms of a smart contract are followed through 

automatically by programming code. It automatically starts 

taking care of when the resource exchange rate where  𝑃𝑓(𝑡) 

Exceeds given limit values. Fault-based maintenance tasks in 

the Blockchain are planned automatically by the system 

based on real-time AI predictions. The contract is set up 

under a threshold model for decision-making, expressed as: 

𝑆𝐶(𝐹) = {

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑅𝑒𝑝𝑎𝑖𝑟,         𝑃𝑓(𝑡) > 0.85 

𝑀𝑜𝑛𝑖𝑡𝑜𝑟,            0.5 <  𝑃𝑓(𝑡) ≤ 0.85

𝑁𝑜 𝐴𝑐𝑡𝑖𝑜𝑛,                        𝑃𝑓(𝑡) ≤ 0.5

 (7) 

With  𝑃𝑓(𝑡) > 0.85, maintenance is booked for the 

vehicle straight away. When 0.5 <  𝑃𝑓(𝑡) ≤ 0.85, the 

vehicle is observed for further changes in performance. If 

𝑃𝑓(𝑡) ≤ 0.5, fall below 0.5, no response is given. The system 

uses technology to schedule maintenance efficiently, which 

results in less vehicle downtime and greater sustainability. 

This threshold, 0.85, was picked through examination of the 

results and comparisons of different models. Setting the 

threshold balances how faults are identified and how much is 

detected in predictive maintenance systems. Researchers 

found that choosing 0.85 as the threshold gave the best result 

by lowering the number of wrongful maintenance alerts and 

missed faults. By choosing this threshold, this research 

guarantees that the alerts are issued only when the system is 

sure of a fault, which helps increase system performance and 

saves money. 

4. Experimental Setup and Methodology 
In order to test the QSPM system, NS-3 was used for 

VANET network modelling, MATLAB was used for AI fault 

detection, and Hyperledger Fabric was used to store 

blockchain-based maintenance documentation. Realistic 

elements of a vehicular network are simulated, along with 

encryption by Quantum Key Distribution, intelligent 

predictive maintenance and blocked scheduling made 

possible by blockchain technologies. 

4.1. Dataset Source and Vehicular Adaptation Methodology 

This framework works with a systematically modified 

auto fault data set based on the NASA Turbofan Engine 

Degradation Simulation Dataset, preparing it for predictive 

vehicle maintenance in Vehicular Ad-hoc Networks. Because 

there is no standard dataset for vehicle fault findings, this 

research followed a specialized method to form a vehicular 

sensor dataset fitting for VANETs in predictive maintenance. 

Devices in an aircraft turbofan engine were simulated to 

operate in vehicles using structured domain transfer 

processes. Among the steps in this transformation technique 

were sensor parameter transfer from aerospace to automotive 

fields, scale adjustments to match what cars go through, and 

timing and translation of turbofan fault patterns to what is 

found in most automobiles. As a result, the dataset has the 

proper statistics and deterioration behavior for predictive 

maintenance analysis and reflects the characteristics and 

rules of automotive sensors. 

4.2. The Hyperledger Fabric 

To make predictive maintenance in VANETs secure, 

efficient and scalable, this research uses Hyperledger Fabric, 

an option from the permissioned blockchain field due to its 

modular nature and strong privacy safeguards. Hyperledger 

Fabric was selected because it grows with the number of 

vehicles, letting drivers instantly know about issues. 

Ethereum is also valued for supporting smart contracts that 
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automatically organize maintenance appointments and make 

all maintenance information inviolable. However, this 

research admits that Hyperledger Fabric for VANETs faces 

issues like limited private access, its setup and operation, and 

mobile vehicles' challenges with limited resources. Despite 

all this, Hyperledger Fabric provides excellent support for 

secure and automated maintenance in IoV, making it perfect 

for QSPM in smart transportation [17]. 

4.3. Dataset Composition and Scale 

A total of 100,000 sensor recordings from 500 simulated 

vehicles were collected over a period of 24 months for the 

comprehensive vehicular fault diagnosis dataset. The data set 

records realistic situations by monitoring continuously every 

35 milliseconds, which leads to about 200 measurements of 

sensor values for every cycle of each vehicle. The large 

dataset collected included reports of 18,450 faults, which 

made up 18.5% of the entire dataset and gave a good 

overview of modern vehicle fault rates. 

This research makes sure that the 500 link-long vehicle 

fleet imitated today’s variety of cars, with 33.4% (167 

vehicles) being electric, 33.2% (166 vehicles) being hybrid 

electric, and 33.4% (167 vehicles) being internal combustion 

engines. Because of this balanced arrangement, all key 

technologies and sensor elements are discussed fully. The 

data spans compact cars, mid-size sedans, SUVs, crossovers, 

and commercial vehicles at rates of 35%, 30%, 20% and 

15%, respectively, to give a good picture of multiple vehicle 

classes. 

4.4. Sensor Attribute Specifications and Operational 

Ranges 

The dataset uses eighteen important sensor types to 

monitor a vehicle's condition and performance in all its 

essential parts. Sensors in the vehicle’s powertrain keep an 

eye on its engine and motor while monitoring temperature 

using a 0.1°C range between -10°C and 105°C and warning 

above 90°C. The rotational speed is monitored from 600-800 

RPM during idle operation to over 6,000 RPM for maximum 

performance, with FTI monitoring possibly up to 6,500 

RPM. 

The batteries of electric and hybrid cars are monitored 

by high-powered battery management systems, between 

280V and 420V, while 12V systems usually stay between 

10.5V and 14.8V, with important low-voltage limits set for 

both at 11.8V and 300V, respectively. A complete battery 

current cycle includes -200 A discharges, +200 A recharges 

and captures the range from -150 A regenerative braking to 

+50 A for peak battery charging. When monitoring the state 

of charge, precise ranges from 0% to 100% are used, with 

important low charge alerts available below 20% capacity. 

The sensors collect detailed information about movement 

and performance, measuring vehicle speeds from stands to 

200 km per hour to represent typical urban and highway 

driving speeds. The separation between +4.5 m/s²and -8.0 

m/s² is where acceleration and deceleration monitoring take 

place, enclosing common braking (-2.0 to -4.0 m/s²) and 

extreme braking conditions (-6.0 to -8.0 m/s²). 

With vibration analysis sensors, operators monitor 

machines from 0.5 Hz to 50 Hz, and issues are often 

indicated outside the usual 1-15 Hz range, which is 

considered normal vibration. By monitoring pressure, 

systems maintain accuracy in the 1.5-3.0 bar range (22-44 

PSI), and they operate at their best between 2.2-2.5 bar and 

are unsafe below 1.8 bar. The sensors are built for 

temperatures between -20°C and +50°C, and the humidity 

range is 20% to 95%, while fuel levels are carefully tracked 

from 0% to 100%. The sensor for oil pressure tracks critical 

readings from 1.0 bar to 5.5 bar, and the coolant temperature 

system keeps readings precise between normal temperatures 

of 70°C and 95°C. 

4.5. Fault Classification and Distribution Analysis 

Seven major types of faults are included in the dataset, 

along with patterns that represent real maintenance for 

vehicles. Batteries are the most common cause of faults, 

reported in 3,890 cases (21.1%), and are typically classed as 

medium to high because they can impact a vehicle’s 

performance and security. Overheated engines account for 

3,125 cases (16.9%) and are considered a high priority due to 

the serious consequences if they fail. Brake system problems 

occur in 2,845 cases (15.4%) and are given critical ratings 

due to their direct effect on safety. 

Problems with the transmission comprise 2,590 cases 

(14.0%) and are usually considered medium risk. Sensor 

malfunctions contribute to 2,310 cases (12.5%), which are 

categorized as low to medium depending on the sensor 

involved. In 10.3% of accident cases, the electrical system is 

at fault, and the tyres and suspension cause issues in 9.7% of 

cases, many times with low to medium severity. How the 

data is distributed represents realistic demands for car 

maintenance and supports developing and testing predictive 

maintenance algorithms. 

4.6. Data Preprocessing and Feature Engineering 

Methodology 

All data quality control in the pipeline was done by 

finding and removing outliers. Using a Z-score method with 

a 3.5 standard deviation mark, the analysis found and took 

out 0.8% of the data points seen as statistical outliers without 

changing the main structure of the data. For situations where 

data was missing for up to 30 seconds, linear interpolation 

was used to fill in the information, and the periods with 

missing sensor values were identified, marked and left out of 

the analysis. On completion of the preprocessing process, the 

dataset was 99.2% complete. Feature normalization was 

achieved by standardizing with Z-scores across all 

continuous variables, giving them zero mean and unit 
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variance while keeping their relative sensor relationships for 

sensible analysis of many variables. The original fast 

samples of 35 milliseconds were changed to averages taken 

each second, which were easier to process and did not forget 

the places where the values were highest [18]. Sophisticated 

rolling statistical work was done while analyzing the data 

based on time. Moving averages that cover five minutes 

allow you to recognize rapid trends, but average lengths of 

fifteen minutes are more helpful for finding medium-term 

patterns. Running one-hour rolling averages allows us to see 

long-term trends, which is crucial for predictive 

maintenance. Rolling standard deviation measures allow us 

to spot changes in operational performance that signal 

potential troubles [19]. Using rate-of-change indicators 

allows early faults to be found by analyzing both the rate of 

change (Δsensor/Δtime) and the fast change in degradation 

(second-derivative). Using multivariate analysis, these 

features check the temperature and RPM relationship, model 

the connection between power level and battery voltage and 

analyze multiple fault signals in one process to increase the 

accuracy of predictions [20]. 

4.7. Data Labelling and Target Variable Definition 

The dataset includes various labelling methods to 

support many predictive maintenance techniques. The dataset 

divides records according to the machines' health; 81,550 are 

labeled operational (81.5%) and 18,450 as faulty (18.5%).  

The framework is updated with four additional types of 

fault: Class 0 is normal operation, Class 1 indicates that 

something is beginning to go wrong, Class 2 identifies the 

need for maintenance and Class 3 indicates these faults are so 

severe they require instant attention. The labels for 

Remaining Useful Life in simulation cover operations from 0 

cycles up to 1,000 cycles, each following the exponential 

decay typical of wear and tear. When the RUL falls below 50 

cycles, it is considered urgent, and maintenance teams should 

be informed immediately, thanks to the clear separation from 

other RUL ranges set by critical intervention thresholds. 

4.8. Data Partitioning and Validation Strategy 

Temporal relationships are crucial for time series in 

predictive maintenance and are preserved by the dataset-

dragging strategy with its chronological splitting. The 

training data consists of 70,000 records (70% of the whole 

data) covering the first 17 months of operation, so each 

vehicle is correctly distributed without skewing any 

particular type of error. 15,000 records in the validation set 

(15%) come from the months 18-20 and are used just for 

parameter change and model picking while making certain 

all fault types are seen adequately. Over the last two years, 

15,000 records (15%) have been included in the test set to 

verify system performance apart from anything used for 

training or validation. By dividing data into periods, this 

approach ensures predictions are evaluated just as they would 

in situations where maintenance models predict errors by 

studying earlier records. 

4.9. Quality Assurance and Dataset Validation 

Using full quality control ensures that datasets are 

reliable and fit for use in predictive maintenance research. 

The range validation shows that data points are correct in 

each station, and time consistency testing removes out-of-

sequence data and ensures that it is correctly ordered. It tests 

that sensor pairs still obey the same physics as they function 

in the real world, and for 100% of the documented faults, 

expert domain validation ensures correct fault labels.  

Analyses of statistics confirm that the sampling 

procedure covers data for all kinds of vehicles and working 

situations. All sensor combinations are cross-checked using 

Pearson correlation coefficients, which helps explain the 

relationship among the sensors more fully. Experiments are 

conducted at realistic (20-30 dB) noise levels because vehicle 

sensor conditions often have these signals. Several 

limitations in the dataset mean it must be recognized for 

proper use in research. While the dataset may not include 

every detail of driving, this is improved through careful 

simulation and reviews by domain specialists. While 

synthetic patterns are complete, they might not include every 

real-world issue, so future fleet data is still needed to make 

certain. The set conditions and limits for testing do not 

always match what is used in other locations or work areas 

[21]. 

4.10. Dataset Reproducibility and Availability 

For work to be reliable and valuable, all results should 

be possible to reproduce. Every preprocessing process 

utilizes a fixed seed for random choices, maintains a detailed 

version history of every step and has data reserved for 

independent verification. All raw data from NASA C-

MAPSS is open to everyone, and custom tools and 

manuscript scripts provide complete details of how the work 

was done. With this system, other researchers can check the 

findings, reproduce the results and develop further predictive 

maintenance applications for vehicles [22]. 

Table 1. Experimental configuration specifications 

Component Platform/Tool Version/Specification Key Parameters 

Network Simulation NS-3 v3.35 
Urban VANET topology, dynamic mobility 

models, SUMO integration 

AI Processing MATLAB R2023a 
LSTM (128 hidden units), Deep Learning 

Toolbox, GPU acceleration 

Blockchain Platform Hyperledger Fabric v2.4 4-node permissioned network, chain code 
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endorsement policies 

Vehicle Scale Variable Density 100-500 vehicles 
Scalability analysis, dynamic network 

topology 

Communication Protocols IEEE 802.11p/LTE-V2X Standard compliance 
V2V (DSRC) and V2I  

(cellular) dual-mode communication 

Security Implementation Custom QKD Module BB84 protocol 
Quantum key distribution, QBER threshold 

monitoring 

Integration Environment Ubuntu/Docker 20.04 LTS/Latest 
Containerized deployment, resource 

orchestration 

 

4.11. Implementation Workflow 

Through NS-3 simulation, the network layer built an 

urban environment for VANETs using realistic User 

Datagram Protocol (UDP) mobility. Data traffic between 

vehicles was handled by IEEE 802.11p, and V2I traffic used 

the LTE-V2X network, resulting in a strong network for 

different use cases. This research uses the BB84 protocol and 

continuously monitors the Quantum Bit Error Rate to look 

for eavesdropping. Several tests involving man-in-the-

middle, replay and eavesdropping attacks were performed to 

check how the system responded under challenging 

conditions. This research uses an LSTM network with 128 

hidden units per layer in every layer to process continual data 

from vehicular IoT sensors. Now and then, the system 

calculated a probability score.  𝑃𝑓(𝑡) And issued automatic 

maintenance alerts if the score fell above 0.85. With a 4-node 

Hyperledger Fabric network and configured endorsement 

policies, the blockchain system allowed for automatic 

maintenance scheduling, verification of device flaws during 

operation and unmodifiable maintenance record storage 

using SHA-256 encryption. 

4.12. Evaluation Methodology 

The five main indicators considered for performance 

evaluation were Fault Detection Accuracy through confusion 

matrix analysis, testing Packet Loss Rate to understand 

communication efficiency, measuring Cyberattack Resilience 

to see if systems stay robust against various threats, 

Processing Latency analysis of real-time operations and 

Maintenance Scheduling Efficiency evaluation of smart 

contracts in practice. Using temporal + 5-fold cross-

validation, no data could be mixed between the two phases. 

Researchers measured QSPM with conventional encryption 

and AI methods to check performance, then tested how the 

networks would respond when the number of vehicles 

increased from 100 to 500 vehicles. 

5. Results and Discussion 
All aspects of the QSPM framework's work were 

checked using the NASA C-MAPSS Turbofan Engine 

Dataset, which was specially adapted for VANET-based 

maintenance systems. By applying the identical data set to 

our study as other predictive maintenance projects, this 

research extends the use of our findings to quantum-secure 

vehicular networks.  

 

Here, it compares our results in more detail to earlier 

works that used the same NASA C-MAPSS dataset, proving 

that our VANET adaptation is effective and that using 

quantum techniques improves the results. 

5.1. Fault Detection Accuracy (FDA) Calculation 

Checking Fault Detection Accuracy (FDA) is necessary 

to assess the workings of a predictive maintenance system. It 

decides the accuracy at which a model can tell apart faulty 

and healthy states in a vehicle. The proposed QSPM obtains 

an FDA of 94.82% and outperforms the SVM (89.50%) and 

XGBoost (85.00%) models. 

FDA is calculated using the True Positives (TP), False 

Positives (FP), True Negatives (TN), and False Negatives 

(FN) from fault classification results: 

𝐹𝐷𝐴 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁)
× 100 (8) 

Table 2. Fault detection accuracy comparisons 

Model TP FP TN FN 
FDA 

(%) 

QSPM (Proposed 

Model) 
4780 220 5100 320 94.82% 

Ajay et al. (2023) 

[1] 
4320 580 4900 700 89.50% 

Melkumian (2024) 

[2] 
3980 720 4750 1050 85.00% 

QSPM provides an FDA of 94.82, which is far above 

both Ajay et al. (2023) (89.50%) and Melkumian (2024) 

(85.00%). Because of the new quantum-enhanced AI and 

LSTM models in QSPM, the system can recognize faults 

more accurately, as they can capture the trends in the data 

over time.  QSPM identifies 4780 faults, greater than Ajay et 

al. (2023) with 4320 and Melkumian (2024) with 3980, so 

more faults can be spotted, and this could reduce missed 

failures in vehicles. QSPM reports much lower false 

positives than earlier works, with 220 compared to 580 in 

Ajay et al. (2023) and 720 in Melkumian (2024). As a result, 

QSPM eliminates many pointless maintenance alerts, 

reducing expenses and improving how maintenance is 

planned. False Negatives (FN): QSPM detects 320 fewer 

faults than asked in both Ajay et al. (2023) and Melkumian 

(2024). When fewer systems fail, your vehicle will be more 
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reliable, and accidents will likely be avoided. QSPM 

correctly classifies 5100 scenarios with no reported fault, 

slightly superior to Ajay et al.'s (2023) 4900 and 

Melkumian's (2024) 4750 findings. It also means that QSPM 

tends to spot fewer false alarms for fine vehicles. Using 

LSTM to analyze sensor data over time, QSPM performs 

fault detection better than SVM or XGBoost. Furthermore, 

performing AI processing at the edge in QSPM helps catch 

faults instantaneously, reducing response time. Because fault 

diagnosis data is saved on the Blockchain, any attempt to edit 

it is immediately detected, so the system remains secure and 

trustworthy. 

 
Fig. 2 Fault detection accuracy comparisons 

5.2. Packet Loss Rate Reduction (PLR) Calculation 

PLR indicates what proportion of data packages fail to 

arrive during a session. For predictive maintenance, PLR is 

key to ensuring real-time data can be received correctly from 

the communication system. Using the QSPM model, a PLR 

of 5.80% was observed, which is well above the rates in Ajay 

et al. (2023) of 7.80% and Melkumian (2024) of 8.20%. 

Most of the reduction is thanks to Quantum Key Distribution 

(QKD), now used in the QSPM framework to secure and 

speed up communication. PLR is calculated using the total 

packets sent and total packets lost in the network using the 

following formula: 

𝑃𝐿𝑅 = (
𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑆𝑒𝑛𝑡

𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝐿𝑜𝑠𝑡
) × 100 (9) 

𝑃𝐿𝑅𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = (
𝑃𝐿𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒− 𝑃𝐿𝑅𝑚𝑜𝑑𝑒𝑙

𝑃𝐿𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
) × 100 (10) 

Results show that QSPM delivers a PLR of 5.80%, 

which outperforms the 7.80% of Ajay et al. (2023) and the 

8.20% found in Melkumian (2024). QKD reduces the PLR 

by 42% against AES and 22% against RSA encryption 

because it ensures security during communication between 

the nodes in the VANET network. AES encryption used in 

Ajay et al. (2023) causes a packet loss rate of 7.80%, which 

the QSPM model can cut by 42%.  

Since AES does not protect against quantum risks, it 

suffers from bigger packet loss. Melkumian (2024) calculates 

that the established benchmark is an 8.20% PLR based on 

RSA encryption.  

Using QKD in QSPM makes communication more 

trustworthy and reduces PLR. Incorporating QKD-based 

security within QSPM ensures that only authentic 

maintenance-related messages are sent securely, minimizing 

packet loss while improving VANET security. The reduced 

PLR in QSPM improves data quality and reduces errors, 

which are important for urgent tasks such as real-time 

maintenance of aircraft and vehicles. 

Table 3. Packet Loss Rate (PLR) Comparisons 

Model 
Total Packets  

Sent 

Total Packets 

Lost 

Packet Loss Rate 

(%) 

PLR Reduction Compared to 

Basic Encryption (%) 

QSPM (Proposed Model) 1,00,000 5,800 5.80% 42% 

Ajay et al. (2023) [1] 1,00,000 7,800 7.80% 22% 

Melkumian (2024) [2] 1,00,000 8,200 8.20% 0% (Baseline) 
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Fig. 3 Packet Loss Rate (PLR) comparisons 

5.3. Cyberattack Resilience (CR) Calculation 

Cyberattack Resilience (CR) shows how well the system 

can survive against quantum-focused cyberattacks in both 

predictive maintenance and vehicle communication systems. 

Ensuring sensitive data is safe in Vehicular Ad-hoc 

Networks (VANETs) from new quantum computing threats 

depends heavily on this metric. Successful defence of 

communication against cyberattacks leads to calculating 

Cyberattack Resilience (CR) in the QSPM model. The CR 

value should be high to prevent systems from possible cyber 

threats. 

Table 4. Cyberattack resilience comparisons 

Model 
Total Communication 

Attempts 

Successful 

Communications 
CR % 

CR Improvement 

Compared to Baseline (%) 

QSPM (Proposed Model) 1,00,000 93,000 93% 13% 

Ajay et al. (2023) [1] 1,00,000 82,000 82% 5% 

Melkumian (2024) [2] 1,00,000 78,000 78% 0% (baseline) 

 

CR is calculated using the number of total attacks 

attempted and successful attack preventions using the 

following formula: 

𝐶𝑅 = (
𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝐴𝑡𝑡𝑎𝑐𝑘𝑠 𝑃𝑟𝑒𝑣𝑒𝑛𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝐴𝑡𝑡𝑎𝑐𝑘𝑠 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑒𝑑
) × 100 (11) 

𝐶𝑅𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = (
𝐶𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒− 𝐶𝑅𝑚𝑜𝑑𝑒𝑙

𝐶𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
) × 100 (12) 

The resilience against cyberattacks for QSPM is 93.0%, 

higher than both Ajay et al. (2023) (82.0%) and Melkumian 

(2024) (78.0%).  

This improvement owes to Quantum Key Distribution 

(QKD), which delivers quantum-safe lines of communication 

and ensures data safety if quantum-level cyberattacks occur. 

Ajay et al. (2023) chose AES and RSA encryption, leading to 

a CR of 82.0%.  

 
Fig. 4 Cyberattack resilience comparisons 
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While these are typical encryption methods, they do not 

protect against quantum attacks, so the platform is more 

endangered. When quantum-safe cryptography is used as the 

QSPM model advises, an organization’s capability to 

withstand cyberattacks improves by 13%. Cyberattack 

resilience here is supported by RSA encryption, giving 

Melkumian (2024) a CR of 78.0%. It has been noticed that 

classical encryption can no longer protect data when it comes 

to quantum threats. QKD makes QSPM communication 

secure by protecting data from threats in quantum 

environments. As a result, the QSPM model gives more 

security to critical data in VANETs, making it ready for 

predictive maintenance systems in connected vehicles. 

Cyberattack Resilience (CR) comparison indicates that 

QSPM can withstand attacks at the quantum level, far better 

than regular encryption in Ajay et al. (2023) and Melkumian 

(2024). With the help of QKD in QSPM, quantum-safe 

communication improves the safety and future-proof nature 

of real-time predictive maintenance systems that are 

important for connected vehicles and smart transportation. 

5.4. Processing Latency Reduction Calculation 

Predictive maintenance systems rely heavily on 

Processing Latency (PL), which measures how long it takes 

to process new sensor data and issue real-time predictions. 

Low processing latency is necessary for VANETs to 

maintain damaged equipment without delay, keeping the 

system running reliably. In the QSPM approach, edge-based 

AI allows customers to receive AR content immediately, as 

processing occurs within the vehicle instead of sending it to a 

remote server. Because Latency is reduced, real-time 

predictive maintenance is made possible with increased 

efficiency. Processing Latency is calculated using the total 

time taken for fault prediction and maintenance decision-

making using the following formula: 

𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = (
𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒− 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑚𝑜𝑑𝑒𝑙

𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
) × 100

 (13) 

where Latency𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 Corresponds to Cloud-Based 

Processing, which has the highest delay. 

Table 5. Processing latency comparisons 

Model Total Data Packets 
Total Processing 

Time (ms) 
PL (ms) 

Latency Reduction 

Compared to Cloud 

Processing (%) 

QSPM (Proposed Model) 1,00,000 12,000 120 33% 

Ajay et al. (2023) [1] 1,00,000 18,000 180 18% 

Melkumian (2024) [2] 1,00,000 22,000 220 0% (Baseline) 

 

 
Fig. 5 Processing latency comparisons 

QSPM provides a Processing Latency of only 120ms, 

much faster than Ajay et al. (2023) and Melkumian (2024). 

Because the AI processing takes place on the edge of the car 

itself, the improvements in Latency are possible compared to 

the other studies. As a result, identifying issues and planning 

maintenance happens more efficiently. Ajay et al. (2023) 

depend on Edge AI and use Moving Average to achieve a 

180ms latency in their work. Although edge processing is 

applied, it is still slower than QSPM, as QSPM works on 

time-series data promptly with LSTM models designed for 

similar data. Melkumian (2024) relies on cloud processing 

for a total latency of 220ms. Latency increases naturally 
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when you store data on a central server for processing in 

cloud-based computing. As a result, cloud computing 

struggles with applications that need instant results, such as 

real-time predictive maintenance. Edge AI in QSPM allows 

cars to handle data in real time, so the system does not have 

to depend on the cloud and allows quick error detection. 

Because of edge AI, the QSPM system can identify and 

diagnose problems immediately after receiving sensor data 

for safe and effective care in connected vehicles. 

It is clear from the Processing Latency (PL) chart that 

QSPM provides better results than Ajay et al. (2023) and 

Melkumian (2024) by moving AI processing to the edge. 

This enables the quick discovery of faults and faster choices 

in real-time, which is necessary for predictive maintenance 

and active use. The lower latency levels obtained in QSPM, 

compared to those of Ajay et al. (2023) and Melkumian 

(2024), prove that it is highly effective for applications that 

have tight time requirements in the future of VANETs. 

5.5. Maintenance Scheduling Efficiency Calculation 

Predictive maintenance systems depend on Maintenance 

Scheduling Efficiency to measure their ability to arrange 

maintenance correctly and reduce downtime and the number 

of manual tasks required. Maintenance schedules are set up 

automatically in QSPM using smart contracts based on 

Blockchain. As a result, the scheduling is secure, efficient 

and protected from interference, so maintenance occurs as it 

should, with no extra hold-ups. 

QSPM outperforms traditional systems by achieving a 

Maintenance Scheduling Efficiency (MSE) of 97%, unlike 

Ajay et al. (2023), which recorded 85% efficiency and 

Melkumian (2024), with 90%. This progress has come from 

using blockchain smart contracts in QSPM to automatically 

schedule maintenance, so the tasks are done as scheduled 

with little human supervision. Maintenance Scheduling 

Efficiency (Eff) is calculated using the following formula: 

𝐸𝑓𝑓 = (
𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑊𝑖𝑡ℎ𝑜𝑢𝑡 𝐷𝑒𝑙𝑎𝑦

𝑇𝑜𝑡𝑎𝑙 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠
) × 100    (14) 

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑚𝑎𝑛𝑢𝑎𝑙 = (
𝐸𝑓𝑓𝑚𝑎𝑛𝑢𝑎𝑙− 𝐸𝑓𝑓𝑚𝑜𝑑𝑒𝑙

𝐸𝑓𝑓𝑚𝑎𝑛𝑢𝑎𝑙
) × 100 (15) 

Where 𝐸𝑓𝑓𝑚𝑎𝑛𝑢𝑎𝑙 Corresponds to Manual Scheduling, 

the lowest-performing model. 

 

Table 6. Maintenance scheduling efficiency comparisons 

Model 
Automated 

Scheduling Tasks 

Total Scheduling 

Tasks 
MSE (%) 

Efficiency Gain 

Compared to MSE (%) 

QSPM (Proposed Model) 97,000 1,00,000 97% 14% 

Ajay et al. (2023) 85,000 1,00,000 85% 0% (Baseline) 

Melkumian (2024) 90,000 1,00,000 90% 5% 

 

 
Fig. 6 Maintenance scheduling efficiency comparisons 

The QSPM system achieves nearly full efficacy in 

maintenance scheduling, much better than the results shown 

by Ajay et al. (2023) (85%) and Melkumian (2024) (90%). 

The reason for the 14% better result than Ajay et al. (2023) 

and 5% better result than Melkumian (2024) is that 

blockchain-based smart contracts are used to automate 

scheduling and protect these records. Ajay et al. (2023) use a 

semi-automated system rated at 85%, requiring staff to 
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continue to schedule many events manually. Unlike other 

approaches, QSPM manages scheduling completely to 

reduce mistakes and the need for human support. Manually 

and semi-automatically scheduling jobs gives Melkumian 

(2024) an efficiency of 90%, whereas blockchain-driven 

automation at QSPM enables 97% efficiency. Blockchain 

technology makes it very difficult for anything to be wrongly 

manipulated in maintenance records.  

Blockchain makes maintenance records permanent, 

which means this method is effective, secure and scalable for 

predictive maintenance across different applications in the 

transportation sector. Comparing Maintenance Scheduling 

Efficiency results show that QSPM does much better than 

Ajay et al. (2023) and Melkumian (2024). Applying smart 

contracts on the Blockchain to QSPM makes maintenance 

scheduling automatic and secure, so no manual actions are 

needed, and tasks are organized at the best times. As a result, 

QSPM is better at predicting maintenance needs, keeping 

systems safe and growing with smart transport systems and 

connected vehicles. 

6. Conclusion 
This research presented Quantum-Secure Predictive 

Maintenance (QSPM), a brand-new idea that unites quantum-

safe communication with QKD, quick edge AI for on-site 

prediction and smart contracts on the Blockchain for 

organizing repairs. It was shown that QSPM provides better 

results than traditional models, achieving major 

improvements in Fault Detection Accuracy (94.82%), Packet 

Loss Rate (5.80%), Cyberattack Resilience (93.0%), 

Processing Latency (120ms) and Maintenance Scheduling 

Efficiency (97%). QKD technology, along with other 

quantum approaches, makes sure connected vehicle networks 

and smart transportation are strong against future quantum 

threats. 

Future researchers may look into connecting QSPM with 

networks containing autonomous vehicles and electric 

vehicles, which will help reveal how well the system can be 

used on a larger scale. Studying multi-agent systems for 

decentralized maintenance and applying the model to 

multiple cloud systems would also be helpful, as they could 

improve QSPM’s robustness.  

If edge AI models are tweaked and used with different 

sensor data, they will give more precise forecasts in real-life 

scenarios. Even more, researchers could look into making 

blockchain updates so that the scheduling system can 

respond to external data whenever a car uses the resource. 
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