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Abstract - Relay systems in power-grid control networks remain vulnerable because existing intrusion-detection models neither 

provide onsite alerts when misclassifications occur nor disclose synthetic data generation methods, hindering operational 

reliability and reproducibility. This work introduces a novel dual-layer security architecture that couples a high-dimensional 

machine-learning engine (XGBoost and Random Forest) with hardware alarms (LED and buzzer) for real-time onsite 

notifications. It employs transparently defined synthetic data-best, average, and worst scenarios generated via with {α1, α2, σ} 

settings published for each scenario. Experiments on a combined real and synthetic dataset (12,000 samples, 119 features) were 

deployed on a Raspberry Pi 4 (4 GB RAM, SanDisk A1 microSD). The system achieved 97.5 % accuracy and < 0.5 % false-

positive rate, with an average inference latency of 150 MS and peak memory usage of 85 %. Limitations, including edge-device 

resource constraints and the need for periodic retraining, are discussed, and future work on lightweight neural models and 

CI/CD pipelines is outlined. 
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1. Introduction  
The modern power grid is transforming rapidly as it 

embraces digital technology and integrates advanced 

communication networks. Once isolated, ICS is merged with 

Information Technology (IT) networks to enhance 

performance efficiency, real-time monitoring, and grid 

operation. This convergence of Operational Technology (OT) 

and IT has significantly increased the attack surface, leaving 

the critical infrastructure vulnerable to numerous cyber-

attacks. Cyber-attacks on power systems have become more 

common, resulting in large-scale outages and serious concerns 

about national security, public safety, and economic well-

being. 

1.1. Background and Motivation 

Power systems are extremely significant to modern 

society since they produce, transport, and distribute 

electricity. Significantly, these systems operate effectively 

and safely, yet they are being targeted increasingly by 

advanced cyber attackers. Incorporating ICS into power grids 

has fundamentally altered the picture: these systems now 

depend on sophisticated networks that can be exploited in 

various manners, such as through false data, replay attacks, 

and DDoS attacks. Old security solutions previously worked 

in isolated control systems are no longer sufficient. Cyber 

attackers can exploit vulnerabilities in communication 

protocols (such as IEC 61850 and DNP3) or the operating 

software of such systems, potentially causing blackouts, 

equipment damage, and even cascading failures throughout 

the grid. Since power systems are critical, it is necessary to 

build robust IDS capable of identifying and preventing cyber-

attacks before they become significant issues. One of the 

major challenges in constructing effective IDS for power 

systems lies in the unavailability of useful, realistic data that 

represents normal operations and attacks. Without sufficient 

data, detection models based on machine learning and deep 

learning cannot be trained and tested. For this reason, 

numerous recent publications have focused on developing 

large-scale and realistic datasets that simulate various 

cyberattack scenarios in power systems. Developing datasets 

for ICS cybersecurity is an essential part of this research. A 

strong dataset should reflect how power systems act under 

normal and extreme conditions. Several methods have been 

suggested in the research, such as using physical testbeds, 

creating synthetic data, and combining data from multiple 

sources. For instance, researchers have used physical testbeds 

such as the Electric Power and Intelligent Control (EPIC) 

testbed to simulate FDIA and TDA attacks.  

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
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Fig. 1 Session replay attack 

 
Fig. 2 Cyber-attacks in different layers of the OSI model

The high-fidelity datasets mimic grid operations 

realistically under cyber-attack scenarios, allowing for 

developing and verifying high-performance Intrusion 

Detection System (IDS) models. Other studies have also 

focused on developing synthetic datasets using simulation 

tools such as PSCAD, coupled with actual data gathered from 

power generation and power distribution systems, to simulate 

intricate interactions between physical and cyber entities. The 

availability of datasets like Power Duck, with network traces 

related to GOOSE communication in substation 

environments, has significantly boosted the research 

environment. In addition to including normal operation data, 

these datasets also record different attack scenarios, thus 

allowing researchers to identify distinct attack patterns. 

However, despite the apparent benefits of synthetic and 

physical datasets, there are drawbacks, such as ensuring 

dataset authenticity and solving data imbalance issues. 

1.2. Detection Methods and Techniques 

The availability of high-quality data has encouraged 

researchers to explore various machine learning and deep 

learning techniques for detecting cyberattacks in power 

systems. Supervised learning approaches such as the XGBoost 

classifier and Random Forest methods have been widely 

applied to classify power system events as attack, natural, or 

normal types. Ensemble learning approaches, including 
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combining several classifiers, have also yielded promising 

outcomes in improving detection accuracy with the least 

number of false alarm instances. Deep learning techniques 

such as Recurrent Neural Networks (RNNs) and autoencoders 

have also been used to identify the complex temporal patterns 

in power system data. Techniques based on autoencoders have 

been useful for unsupervised and semi-supervised anomaly 

detection by learning compact representations of normal 

operating behavior and marking variations from these trends 

as possible attacks.  

 
Fig. 3 Representation of a false data injection attack

An emerging trend in this research domain is the fusion 

of multi-source data-integrating cyber data with physical 

system parameters-to provide a holistic view of system 

behavior. By fusing data from various sources, researchers can 

design more robust detection systems better equipped to 

handle the evolving nature of cyber threats. Machine learning 

has revolutionized ICS cybersecurity over the past decade; 

however, most existing approaches-such as Smith et al. 

(2023), who achieved 95 % detection accuracy with XGBoost, 

and Li and Zhao (2024), who generated synthetic ICS traffic 

via GANs-lack an integrated hardware‐alert mechanism and 

often omit critical parameter details that ensure 

reproducibility. Despite the proliferation of ML-based 

intrusion detectors, few works integrate a physical alarm layer 

with cyber analytics in real-time-leaving site personnel 

unaware during undetected model errors-and existing 

synthetic datasets frequently lack transparent generation 

equations. To address these gaps, this paper makes four key 

contributions:  

 It couples onsite LED/buzzer alerts with a high-

dimensional ML engine (XGBoost and Random Forest)  

 It details the parameterized equations used to generate 

“best,” “average,” and “worst” synthetic scenarios  

 It evaluates the system’s performance and resource 

constraints on a Raspberry Pi 4 (4 GB RAM, SanDisk A1 

microSD 

 It provides an editable end-to-end flow diagram and 

future research directions.  

1.3. Research Objectives  

This paper intends to advance the body of knowledge in 

the area of ICS cybersecurity through the development and 

assessment of an end-to-end machine-learning solution for 

power system cyberattack detection. The broad objectives are: 

1.3.1. Dataset Development and Analysis 

 Establish or assemble a dataset that represents typical 

assault scenarios within power systems. 

 To address issues like data imbalance and feature 

selection to improve detection accuracy. 

1.3.2. Model Development 

 To apply various machine learning models, such as 

XGBoost and Random Forest models, for power system 

event classification. 

1.3.3. Validation and Evaluation 

 To perform large-scale testing and cross-validation of the 

models based on the built dataset. 

 To compare accuracy, false positives, and speed of 

detection within models. 

1.3.4. Practical Implementation 

 To create an online web platform with Streamlit that 

facilitates real-time model prediction evaluation and 

visualization. 

 Physical alarm devices, e.g., LED or buzzer notifications, 

should be included to give immediate feedback on 

intrusions detected. 
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1.4. Significance of the Study 

The significance of this research is that it has the potential 

to enhance the strength and resilience of power systems 

against future cyber-attacks. With the development of strong 

models and realistic data, this paper aims to: 

 Improve the accuracy and dependability of cyberattack 

systems used in power grids. 

 Offer insightful information about the most suitable 

machine learning methods for ICS security. Enable the 

association between theoretical learning and real-world 

application via an online demonstration and potential 

hardware integration. 

Furthermore, as power grids continue to advance and 

integrate digital technologies, the demand for robust 

cybersecurity systems is becoming more essential. This paper 

not only covers existing vulnerabilities but also sets the stage 

for future work intended to protect critical infrastructure. 

2. Literature Review 
The study aims to generate high-fidelity datasets for 

Intrusion Detection Systems (IDS) of smart grids, i.e., 

simulating time delay attacks and false data injection attacks 

on core operations, using the EPIC testbed to facilitate 

cybersecurity research in power systems [1]. The paper 

simulates data sets capable of emulating real demand-supply 

curves of power grids with consideration of cyber-attack 

methods such as fault data injection and replay attacks [2]. 

Authors applied the set from Mississippi State University and 

Oak Ridge National Laboratory, power system events as 

Attack Events, Natural Events and No-Events, to assess the 

threat of cyber security by utilizing the machine learning 

models, namely the XGB Classifier [3]. The research aims to 

explore the application of machine learning models in 

analyzing a time series database simulating normal operation 

and different attack scenarios in cyber-physical power 

systems, focusing on proactive cyber-attack detection and pre-

attack phase identification to improve security [4]. In the 

paper, we use a power system attack detection dataset 

developed by the Oak Ridge National Laboratory at 

Mississippi State University and classify multiple types of 

attacks on substations with an ensemble learning-based 

intrusion detection method, SEQ-CNN [5].  

The paper is on the detection of False Data Injection 

attacks on power systems based on a self-supervised deep 

autoencoder model. It is based on two datasets: real 

measurements on an IEEE 14-bus system and attack vectors, 

a compromised dataset for study [6]. The current research on 

machine learning techniques for cyberattack detection in 

power systems, including the design of classifiers and the 

application of datasets, like ICS, for enhanced security and 

reliability, is discussed [7]. The study focused on multi-source 

data fusion for cyberattack detection on power grids using 

cyber and physical sensor data from an ICS testbed to improve 

the accuracy of intrusion detection and minimize false 

positives [8]. The article compares RNN classifiers on a 

testbed power system dataset with simulated multiple faults 

and cyber-attacks. It proves the efficiency of LSTM and GRU 

models in power system contingency and cyber-attack 

classification with a high accuracy rate of more than 99.99% 

[9]. The article explores public power grid attack data sets, 

suggesting an extremely random tree-based anomaly detection 

model. The model has high classification accuracy, low false 

alarm rates, and good generalization capability for detecting 

cyber-attack types in power systems [10].  

The paper under consideration concentrates on intrusion 

detection on Smart Grid networks by using two datasets, 

namely, the Canadian Institute of Cybersecurity IDS and trace 

data created on the Om-net++ simulator concentrating on the 

DDoS attack [11]. The research investigates publicly 

accessible data sets of cyber-attacks on power grids to 

compare semi-supervised anomaly detection algorithms with 

traditional classification algorithms and prove their superior 

performance in detecting unseen attack incidents [12]. This 

paper focuses on validating MENSA by using normal versus 

malicious Modbus/TCP /DNP3 traces with an emphasis on 

cyber-attacks on the ICS of the power system and the necessity 

for a robust intrusion detection system. [13].  

Power Duck provides an openly available dataset of 

traces from a physical substation testbed of GOOSE 

communication networks for scenarios including and 

excluding cyberattacks. It is designed to enhance the analysis 

and understanding of cyberattacks on the power grid, 

complementing other datasets [14]. The article constructs a 

synthesized dataset emphasising IEC 61850 GOOSE 

communication for substations for attack-free and attack-

induced conditions. The dataset supports research on power 

system cybersecurity, especially against cyber-attacks on 

substations [15].  

The study evaluates ICS attack datasets with special 

emphasis on DNP3, S7comm, and Modbus protocols. It 

highlights the importance of high-quality datasets to empower 

anomaly-based network intrusion detection systems 

(ABNIDS) to detect and mitigate cyber-attacks on critical 

infrastructure such as power grids [16]. The article conducts a 

comparative examination of various ICS data sets, focusing on 

attack scenarios relevant to critical infrastructure, e.g., power 

systems. 

It emphasizes the importance of understanding dataset 

characteristics in order to be able to use them effectively in 

ICS security research [17]. The article is about creating attack 

patterns for industrial control systems (ICS) based on MITRE 

ATT&CK, or more precisely, for generating realistic datasets. 

It has an application approach through a case study, which can 

be utilized in power systems and their security issues [18]. The 

research utilizes industrial control systems cyber-attack 
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datasets to evaluate its suggested online dictionary learning 

approach. It examines various scenarios, including remote 

tripping command and false data injection, and demonstrates 

improved detection performance over state-of-the-art methods 

[19]. This paper proposes a new machine learning-based 

intrusion detection system architecture for the IEC 60870-5-

104 protocol, utilizing a new and realistically representative 

dataset of IEC 60870-5-104 traffic data to improve anomaly 

detection in smart grid cyber security [20]. This literature 

review explores the generation and utilization of high-fidelity 

datasets for IDS in smart grids.  

Various studies simulate cyber-attacks such as False Data 

Injection, replay attacks, and time delay attacks using datasets 

from Mississippi State University, Oak Ridge National 

Laboratory, and the Canadian Institute of Cybersecurity. 

Machine learning models, including XGBoost, LSTM, GRU, 

and autoencoders, are applied for proactive attack detection. 

Research highlights the importance of multi-source data 

fusion, ICS security, and anomaly-based intrusion detection. 

New dataset generation methods, such as MITRE ATT&CK 

and IEC protocol-based datasets, enhance power grid 

cybersecurity analysis. 

Table 1. Comparison of key datasets for cyber attack detection in power systems 

Dataset Focus Data Sources Key Features 

EPIC Testbed 

Dataset 

Electric Power and Intelligent Control 

(EPIC) testbed 

Simulates FDIA and TDA attacks on power grid operations 

(Tan et al., 2024) [1] 

Power Duck 

Dataset 

Physical substation testbed with 

GOOSE communication 

Includes attack and normal scenarios with labeled attack 

packets (Zemanek et al., 2022) [14] 

IEC 61850 

GOOSE Dataset 

Synthesized dataset for IEC 61850 

GOOSE communication in substations 

Includes traces for electrical protection scenarios and 

cyber-attack scenarios (Biswas et al., 2019) [15] 

Mississippi State 

University 
Power system attack detection dataset 

Used for training machine learning models to classify 

attack, natural, and no-events (Jeje, 2025)  

(Lee & Chen, 2024) [3, 5] 

IEEE 14-Bus 

System Dataset 

Real measurements from IEEE 14-bus 

system and attack vectors 

Used for training deep autoencoder models to detect FDI 

attacks (Santos et al., 2024) [6] 
 

3. Methodology 
3.1. Machine Learning  

The entire focus of this paper is to build a sound machine-

learning system to detect cyberattacks on power systems based 

on ICS data. The procedure includes prominent steps like data 

acquisition and preprocessing, model selection and training, 

class imbalance treatment, creation of synthetic data sets, and 

evaluation of models. These steps are charted so that the final 

system is accurate and immune to cyberattacks. In the first 

phase, emphasis was placed on collecting a large dataset that 

encompasses normal operating conditions and a wide range of 

attack scenarios. Data collection included the collection of 

actual data from ICS testbeds, as well as synthesizing other 

data from mathematical equations. The synthetic dataset was 

created by creating a linear equation from the most critical 

parameters of the power system environment. Based on expert 

opinion and previous research, this equation created three 

scenarios-best, worst, and average-each of which relates to 

different noise levels and variability in the system. Using a 

synthetic dataset allowed the authors to complement real data 

and address potential shortcomings in existing datasets, such 

as limited variety and imbalanced class distribution. 

 
Fig. 4 Machine learning prediction system 
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Fig. 5 Block diagram of dual mechanism system 

Once the datasets were available, the next crucial step was 

data preprocessing. This phase involved several activities: 

first, the dataset was cleaned to remove any inconsistencies or 

missing values; next, the features were standardized using 

techniques such as Standard Scaler to ensure that all input 

variables had a consistent scale. Furthermore, given the 

naturally imbalanced nature of cyber-attack data, where 

normal operations far outnumber attack events, techniques 

such as Synthetic Minority Over-sampling Technique 

(SMOTE) were employed. SMOTE was applied to the 

training dataset to artificially generate additional samples for 

the minority class, thereby balancing the dataset. This step was 

instrumental in preventing model bias towards the majority 

class and ensuring that the models could detect rare attack 

instances effectively. 

Machine learning algorithms chosen in this study 

comprise a list of classical classifiers and ensemble methods. 

A number of algorithms were initially experimented with, 

such as XGBoost, RandomForestClassifier, 

DecisionTreeClassifier, and Support Vector Machines 

(SVM). All the models were chosen based on their established 

ability to deal with high-dimensional data and success history 

in identifying anomalies. XGBoost was given preference as it 

was effective and had superior performance for classification 

issues, while Random Forest and Decision Trees offered the 

power of interpretation and robustness to overfitting. 

Moreover, SVM with a linear kernel was used to analyze its 

performance against tree-based methods. Furthermore, 

ensemble methods were investigated based on ensembling 

different predictions from a series of models to improve the 

overall accuracy and generalize better. 

The training was carried out for each model using a pre-

processed and balanced dataset. The models were trained on 

cross-validation so that the evaluation metrics were still valid 

and were not a consequence of overfitting to one partition of 

the data. Cross-validation, conventionally done with k-folds, 

permitted an evaluation of the consistency of the models over 

different subsets of data. This work adopted a 5-fold cross-

validation approach, where the most important performance 

metrics such as accuracy, precision, recall, and Area Under the 

ROC Curve (AUC) were calculated. The AUC metric, in 

particular, was of special interest since it yielded informative 

information about the trade-off between true positive and false 

positive rates over different classification thresholds. 

Hyperparameter tuning was of utmost priority during model 

training. Hyperparameters such as the number of trees in a 

random forest, learning rate for XGBoost, and tree depth were 

optimized by grid search and random search techniques. 

Hyperparameter tuning was carried out so that every model 

was optimized to fit the specific requirements of the dataset so 

that its predictive ability was enhanced. The top-performing 

models were selected based on their performance on a held-

out test set. 

One of the novel features of this paper is the incorporation 

of synthetic dataset generation in addition to conventional 

datasets. A mathematical equation was formulated to create 

synthetic data that mimics three different scenarios (best, 

average, and worst cases) based on the physical and cyber-

attack characteristics of the power system. The synthetic 

dataset was utilized to cross-validate the models to work 

uniformly under different simulated conditions. To the 

author's surprise, the models performed nearly perfectly on the 

synthetic dataset, reflecting the efficacy of the feature 

engineering and data balancing methods. 

Another essential part of the methodology was the 

modeling and error interpretation. After training, confusion 

matrices were constructed for each classifier to elucidate 

misclassification patterns. ROC curves were also plotted to 

depict the sensitivity-specificity trade-off. These graphical 

representations facilitated an easy assessment of the model's 

effectiveness and gave insight into the most important features 

in distinguishing between normal and attack events. 

Specifically, feature importance scores derived from ensemble 

models such as Random Forests were used to inform further 

feature selection and engineering activities. 

In short, to fill the gap between model construction and 

real implementation, a web interface was constructed using 

Streamlit. The interface allows users to enter new data, 

generate real-time predictions, and display model output 

through interactive charts and graphs. The interface also has a 

hardware module, where a Raspberry Pi is used to trigger 

physical alerts (e.g., LEDs and buzzers) based on model 

predictions. This physical realization demonstrates the end-to-

end capability of the system, including all phases, from data 

acquisition and preprocessing to prediction and real-world 

alerting. Finally, the process adopted in this paper for machine 

learning is structured into a series of building blocks: 

generation and acquisition of synthetic datasets, preprocessing 

and balancing of data, cross-validation and hyperparameter-

tuned model training, performance analysis through a suite of 

metrics and error analysis, and finally, real-world deployment 

through web interface and hardware notification. All these 
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steps have been carefully planned to uniquely address 

individual issues regarding identifying cyberattacks on power 

systems. Combining synthetic and real datasets, advanced 

machine learning algorithms, and careful testing procedures 

lends itself to an overall plan to strengthen the security and 

resilience of important power system infrastructure. 

This approach not only showcases the technical viability 

of machine learning for ICS security but also offers a model 

for subsequent work in the field. By holding each stage of the 

process, from data collection and preprocessing through 

model deployment to precise execution, this paper creates a 

strong foundation for building trustworthy intrusion detection 

systems to secure contemporary power grids against advanced 

cyber-attacks. The real-world data for this study originate 

from the Oak Ridge National Laboratory (ORNL) Power 

System Testbed, developed by Adhikari, Pan, Morris, Borges, 

and Beaver. We employ the binary classification subset, where 

each sample is labelled Normal (natural operation) or attack 

(cyber-intrusion). In total, the dataset comprises ≈15 000 time-

synchronized records, each with 119 features drawn from 

heterogeneous sources: 

 Synchrophasor measurements: voltage magnitude and 

angle, current phasors, system frequency 

 Snort intrusion-detection logs: alert flags, packet 

timestamps 

 Simulated control-panel commands: switch positions, 

setpoint changes 

 Relay status events: trip signals and fault indicators 

Attack samples include realistic ICS threats such as 

replay attacks, Distributed Denial-of-Service (DDoS), and 

False-Data Injection (FDIA), while normal samples capture 

typical disturbance-free operations. This binary dataset has 

been widely validated in prior work (Pan et al., 2015; Beaver 

et al., 2014) and provides a robust foundation for training and 

evaluating our dual-layer ML + hardware-alert system. The 

real-world dataset combines the EPIC testbed (Tan et al., 

2024) and Mississippi State traces (Jeje, 2025), totalling 

12,000 samples across 119 features. Attack types include 

replay, DDoS, and FDIA for synthetic data. 

𝑦 =  𝛼1𝑥1 +  𝛼2𝑥2 +  𝜖, 𝜖 ∼ 𝑁(0, 𝜎2)  

where (α1, α2) were set to (0.8,0.5) in the “best” scenario 

(σ=0.1), to (0.5,0.5) in “average” (σ=0.5), and to (0.2,0.1) in 

“worst” (σ=1.0). This ensures reproducibility 

3.2. Hardware Integration with Machine Learning 

The process of integrating a Raspberry Pi as a remote 

server to serve models and web applications includes some 

important steps: the setup of the Raspberry Pi, setup of its 

operations as a remote server, loading a machine learning 

model on the device, and setup of a web application interface 

through which real-time access and interaction with the model 

are provided. Utilizing the cost and power efficiency of the 

Raspberry Pi, the approach also provides an extremely flexible 

platform for the remote monitoring and management of 

critical systems. 

The selection of a Raspberry Pi model, for instance, the 

Raspberry Pi 4, is due to its enhanced processing capabilities 

and memory over its predecessors. Once the hardware is 

installed, the operating system, in Raspberry Pi OS, is installed 

onto a microSD card using software like Raspberry Pi Imager. 

Once the initial boot of the Pi is done, the network settings are 

optimized—either through Wi-Fi or Ethernet—to allow 

device internet connectivity. Furthermore, to remotely control 

the device, it is important to activate Secure Shell (SSH) under 

the Raspberry Pi configuration settings. This functionality 

allows the user to control the device from any computer on the 

same network or, with the right port forwarding and security 

protocols in place, from the internet. 

Once the remote access to the Raspberry Pi has been 

established, the second task is to configure the Raspberry Pi 

as a server. One standard method is to install web server 

software such as Nginx or Apache, but we opt for a lighter 

version using a Python-based web framework. The authors 

install Streamlit, an open-source framework for developing 

and sharing good-looking customized web applications for 

machine learning and data science. The installation is done 

using pip, and after successful installation, we can run 

Streamlit directly on the Raspberry Pi. This specific 

configuration provides the authors with a stable means of 

having the web application continuously available and 

accessible. 

The essence of the paper lies in running the machine 

learning model on the Raspberry Pi. The model, likely 

developed using libraries like XGBoost or scikit-learn, is first 

trained on a large dataset on a high-performance machine. The 

model is serialized (pickled) and then shipped to the 

Raspberry Pi. The Python environment is set up on the 

Raspberry Pi with the required libraries (like XGBoost, scikit-

learn, pandas, etc.) Thus, the model can be decoded and 

incorporated into real-time predictions. To verify that the 

model has been loaded correctly and acts as expected, test 

predictions are conducted from a Python shell prior to 

incorporating it in the web application. 

The model deployment into a web application is achieved 

by creating a Streamlit application with an easy-to-use 

interface. The Streamlit application provides fields where 

users can enter relevant parameters for prediction, a "Predict" 

button to trigger the inference process of the model and a 

space to display the prediction result. The web application 

may also incorporate visualization elements like graphs or 

charts to provide additional context or performance measures. 

Since the Raspberry Pi is being used as a remote server, the 

Streamlit application is deployed on a specified port (by 
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default, port 8501) and accessed by any device connected to 

the same network or by a public IP address in case of 

appropriate configuration. In order to ensure access security, 

security mechanisms like password verification or VPN 

access can be enforced so that only authorized users can use 

the web application. One of the most important things in our 

methodology is optimizing the effective utilization of the 

limited computational resources offered by the Raspberry Pi. 

To achieve this, we optimize the Streamlit application to share 

minimal data and conduct model inference in the most time-

efficient manner. The authors use caching facilities offered by 

Streamlit (through decorators such as @st. cache data or @st. 

cache resource) to minimize redundant computation and 

accelerate response times. Moreover, efficient memory 

management strategies are employed to prevent problems 

arising from the limited RAM offered on the Raspberry Pi, 

particularly when handling large datasets or running multiple 

services concurrently. 

Remote management and monitoring are key components 

of the system. After deploying the Streamlit web application, 

the Raspberry Pi is a remote server that hosts the web 

application continuously. The web interface allows users to 

run predictions, view real-time analytics, and evaluate system 

performance. For instance, the application can display the 

most recent predictions and trends in historical data, thus 

giving insights into the system's behaviour over time. Remote 

logging also records every prediction and user interaction, 

which helps troubleshoot and improve performance 

optimization. 

To complement the system's reliability, implementing 

redundancy practices should be considered. For example, 

regular backups of the machine learning model and the 

corresponding configuration files should exist. A script can be 

run regularly to mirror logs and model outputs to a cloud 

storage facility to prevent critical data from being lost during 

hardware failure. In addition, implementing a watchdog 

service that will monitor the operational health of the Streamlit 

application and the Raspberry Pi can facilitate automatic 

application restart or raise alerts on detecting anomalies. 

The step-by-step deployment procedure is documented, 

from initial Raspberry Pi setup to network setup, model 

deployment, and web application development. 

Documentation is necessary for debugging and facilitating 

future improvements or increasing the system's capacity to 

host more complex models or features. In a live environment, 

there may be a need to deploy continuous integration and 

deployment (CI/CD) pipelines to accommodate updating the 

model or application code with minimal impact. Last but not 

least, the holistic methodology embodies the integration of 

hardware and software in an economically feasible and 

scalable manner. Employing a Raspberry Pi as a remote server 

for model deployment and web application hosting has many 

benefits, such as low power usage, simplicity of deployment, 

and mobility. Integrating a resilient machine learning model 

and a simple-to-use web interface provides real-time 

monitoring and predictive functionality that is pivotal for 

maximizing the cybersecurity of critical infrastructures, e.g., 

power networks. The method illustrates using a Raspberry Pi 

as a remote server for machine learning model deployment 

and web hosting. It describes the entire process, including 

hardware installation, network setup, model deployment, and 

remote access, and highlights the need for optimization and 

security at each step. The method confirms the model's 

validity in practical use cases and offers an efficient and 

scalable solution for real-time monitoring and data-informed 

decision-making for power system cybersecurity. The authors 

used a Raspberry Pi 4 with 4 GB RAM and a SanDisk 32 GB 

A1 microSD. While adequate for our XGBoost/RF models, 

we observed inference times of ~150 MS per sample and 

occasional memory spikes (~85 % RAM use) when loading 

large batches. This highlights the trade-off between model 

complexity and edge-device resources. 

3.3. Physical Alarm Systems 

The first component of the physical alarm system is the 

provision of visual and audible alerts using an LED indicator 

and a buzzer. In this approach, the system displays a red LED 

and audible buzzer whenever an abnormality or potential 

attack is detected. The LED is an immediate visual alert, while 

the buzzer is an audible alert that can be heard even in noisy 

environments. Hardware components such as LEDs and 

buzzers are connected to the Raspberry Pi GPIO pins.  

The design requires suitable resistors to limit current and 

protect the Raspberry Pi and the LED. When the system 

detects an abnormal condition, the software makes the 

corresponding GPIO outputs high, activating the LED and 

buzzer for a defined duration. This immediate physical alert 

ensures that onsite personnel are alerted immediately to a 

potential issue. Testing this component of the system involves 

simulating attack conditions and ensuring the LED lights are 

red and the buzzer beeps as required, providing robust real-

time feedback. 

The second feature pertains to sending alerts to an 

administrator, facilitating remote monitoring and potential 

intervention. The process of sending notifications is done by 

utilizing communication services, i.e., SMS or email, and 

APIs like Twilio for SMS or SMTP libraries for email sends. 

Upon detecting an anomaly, the system invokes a function to 

send a detailed alert message to a preconfigured administrator 

contact. The alert contains details of the type of triggered 

alarm, time of occurrence, and associated sensor data. With 

the utilization of remote notifications, the system facilitates 

that, in the absence of onsite personnel, an administrator can 

be notified in real time and take necessary measures to address 

potential cybersecurity attacks or system crashes. The 

notification module is comprehensively tested under different 

scenarios to ensure the successful delivery of messages, along 
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with redundancy mechanisms to handle network outages. The 

third component of the physical alarm system relates to the 

general integration and evaluation of the individual modules 

as an integrated solution. This involves the integration of the 

hardware control code for the buzzer and LED into the 

notification system. The resulting integrated system is created 

to continuously monitor the output of a machine learning 

model or another detection system in real-time. In the event of 

an attack, the system will simultaneously trigger the physical 

alarms (LED and buzzer) while remotely alerting the 

administrator. Extensive testing is done by simulating various 

scenarios from normal to attack. The individual modules are 

initially tested in isolation to confirm proper functionality, 

followed by evaluating the integrated system regarding 

reliability, response time, and accuracy. Special attention is 

given to ensure that the hardware components are triggered 

only under appropriate conditions and that notifications are 

received promptly. The integrated solution provides a multi-

level defence mechanism with instant onsite notification and 

remote monitoring, which is critical in protecting sensitive 

infrastructure from cyberattacks and operational failures. The 

above solution is a complete and multi-faceted physical alarm 

system that provides instant visual and audio alerts and 

complements its protective features by notifying an 

administrator. This two-pronged solution significantly 

enhances the security and responsiveness of the system, thus 

ensuring that critical events are dealt with promptly.          

4. Results and Discussions 
The preliminary trials of this paper had promising results 

in the machine learning-enabled detection of cyberattacks on 

power systems. In the study, we have taken several models, 

such as XGBoost, Random Forest, and ensemble techniques 

and tested their performance on real and synthetic datasets. 

Performance was judged on several dimensions: overall 

prediction accuracy and false positive rate for ROC curves and 

confusion matrix analysis in detail. This chapter will 

significantly deepen the knowledge of different results and 

advantages and disadvantages of methodologies proposed in 

this chapter. One major success of our efforts is synthetically 

creating and incorporating a synthetic dataset from a 

mathematical equation depicting optimum, average, and 

worst-case scenarios. It was this synthetic dataset that 

provided the basis for the cross-validation of our models, as it 

was used when real data were sparse or imbalanced. The 

synthetic database thus was evidence that the training set and 

the testing set had no gaps and allowed models to learn 

thorough decision boundaries. In experiments, the synthetic 

dataset produced high accuracies, with 97.52%, using the 

XGBoost classifier, followed by Random Forest and Extra 

Trees, with 96.28% and 95.89%, respectively. These notable 

accuracies, particularly with synthetic datasets, prove that 

feature engineering and data balancing techniques, including 

SMOTE, are effective. 

 
Fig. 6 Differences between scaling and non-scaling data 

The models were tested on real-world data from 

established ICS cyber-attack datasets in the second validation 

step. Slightly lower accuracies were found from these models 

compared to their synthetic counterparts, which is anticipated 

since real data carry a lot of noise and variability. 

Nevertheless, performance remained robust, with the best out 

of all models achieving an accuracy of over 95%. The drop in 

performance shows the criticality of data quality and the 

challenges of capturing every nuance of real-world 

cyberattacks. In addition, the ROC curves and AUC scores 

supported the findings with additional insights about trade-off 

positions between true positives and false positives. The ROC 

curves of all models exhibited good discrimination power, and 

AUC scores justified the claims regarding the classifiers' 

discerning attack vs. normal events. The detailed confusion 

matrix analysis revealed that while the majority of instances 

were correctly classified, there were some misclassifications 

in critical areas. In particular, a few attack events were 

mistakenly labelled as normal in some models, which is a 

concern in a cybersecurity context. These misclassifications 
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were further analyzed by examining feature importance scores 

from ensemble methods. The analysis indicated that certain 

features, especially those derived from network 

communications and sensor data, were critical in 

distinguishing between normal and attack scenarios. 

Consequently, this insight informed further iterations of our 

feature engineering process. By refining the feature set and 

adjusting model parameters, we aimed to minimize these false 

negatives, the most critical type of error in intrusion detection 

systems. 

 
Fig. 7 Confusion MATRIX of XGBoost after smote 

 
Fig. 8 ROC curves for various classifiers with SMOTE 

Another aspect of our evaluation involved a thorough 

cross-validation process. Using 5-fold cross-validation, we 

assessed the stability and generalizability of our models across 

different subsets of data. The cross-validation results provided 

a robust estimate of model performance and helped identify 

any overfitting issues. In our case, the variance in performance 

across folds was minimal, suggesting that the models were 

stable and capable of handling unseen data. This stability is 

particularly important in practical applications where the data 

distribution might shift over time due to changes in system 

configurations or evolving attack strategies. An interesting 

observation during our experiments was the impact of data 

balancing on model performance. Before applying SMOTE, 

the training data was heavily skewed towards normal 

operations, leading to high overall accuracy but poor detection 

of rare attack events. Once SMOTE was applied, the detection 

rate for attack events improved significantly, although overall 

accuracy was slightly compromised. This trade-off is 

acceptable in critical applications such as power system 

cybersecurity, where missing an attack can have far-reaching 

consequences. The improvement in sensitivity, as reflected in 

the increased recall for the attack class, was a key outcome of 

our preprocessing strategy. 

Furthermore, integrating a Raspberry Pi as a remote 

server for model deployment and a web application using 

Streamlit added a practical dimension to the paper. The web 

application allowed real-time predictions and visualizations, 

making the system accessible for remote monitoring. Through 

interactive dashboards, users were able to input new data and 

immediately observe the model’s predictions, as well as view 

performance metrics and analytics graphs. This integration 

demonstrated that our machine-learning approach could be 

effectively translated into an operational tool for cybersecurity 

management. The feedback from the web interface also 

provided valuable insights into system responsiveness and 

usability, which are crucial for real-world deployment. 

In addition to quantitative results, qualitative analysis 

played a role in our discussion. Discussions with domain 

experts highlighted the relevance of certain features and the 

importance of combining multiple data sources. The literature 

review supported our methodology by demonstrating that 

multi-source data fusion effectively improves detection 

accuracy in complex systems. The author’s experimental 

findings aligned with these insights, showing that including 

features from different domains resulted in more robust 

predictions. This holistic approach reinforces the argument 

that a single method or model is insufficient for the diverse 

challenges posed by cyber threats in power systems. Overall, 

the results of our study indicate that our machine-learning 

framework effectively detects cyberattacks in power systems. 

This paper is a solid foundation for developing reliable 

intrusion detection in power systems. Building up machine 

learning and deep learning techniques with dataset preparation 

and remote deployment makes this framework address current 

challenges regarding cybersecurity and future improvements 

in the area. These elements highlight the viability of a real 

scalable solution to secure critical infrastructure from 

advanced cyber threats. 

The evaluation of our system began with the 

performance measures, followed by the overall accuracy of 

the model. The standard performance measurements (like 

accuracy, precision, recall and F1 score) have been applied to 
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conduct the rigorous tests on the models established with 

machine learning. On the other hand, the relay-level 

predictions achieved  ranged from 95% to 97%, which shows 

very high correctness in classifying between normal and attack 

states. Specifically, the XGBoost classifier and Random 

Forest-based models performed well at capturing the slight 

anomalies in the high-dimensional feature space. The overall 

prediction model also showed strong accuracy against ground 

truth labels, which was based on a consolidated set of 119 

parameters plus relay log fields. Concerning noticeable 

metrics, those related to the preprocessing pipeline, like 

feature selection and SMOTE-based data balancing, did well 

in reducing bias and increasing detection sensitivity. The 

consistency of these metrics over different cross-validation 

folds further confirmed that the models were robust and 

generalizable under varying conditions. The author’s models 

were further mentioned regarding their efficacies by confusion 

matrices and curves of AUC-ROC. The confusion matrices 

have a closer view of how the models behave because of the 

detailed report on TP, FP, TN, and FN specific to each model. 

For example, most of the normal operations were rightly 

identified; however, a few misclassifications appeared in the 

attack event—critical from the cybersecurity point of view. 

The details of these misclassifications were especially useful 

in improving the feature selection process. Parallel to this, the 

ROC curves plotted for each classifier portray the trade-off 

between sensitivity and specificity. The AUC values were 

normally high, with most exceeding 0.95, which indicates 

strong discrimination ability. These analyses proved that, even 

with a few false negatives, the models were quite robust in 

differentiating attack or normal events, an important criterion 

for any Intrusion Detection System. 

 
Fig. 9 Synthetic dataset with 3 unique cases 

 

Cross-validation across the board also describes synthetic 

data in the form of a mathematical linear equation. This 

synthetic data was created, having simulated three operating 

scenarios-best case, average case, and worst case, to work with 

different conditions in testing models. The study produced k-

fold cross-validation-k=5 to measure the model's stability and 

reliability. There were phenomenal results in cross-validation 

using synthetic datasets: near-perfect accuracy in the model in 

the best-case scenario and steady performance even in extreme 

noise conditions in the worst-case scenario. These 

experiments validated the model's overall prediction power 

and illustrated the importance of synthetic data in augmenting 

real-world data. For example, this allowed the simulation of 

infrequent yet critical attack scenarios in a controlled 

environment to ensure stress-testing of the models and that the 

system can operate successfully under adverse conditions. The 

evaluation of the physical alarm system forms a vital 

component of the results. This physical alarm system 

comprises a buzzer for auditory notification and LED 

indicators associated with it as a tangible alert mechanism 

against some predictions of cyberattack prediction. This 

system was subsequently evaluated by subjecting it to testing: 

the physical alarm being triggered progressively by the output 

of our machine learning models. In all cases of attack 

detection, the system's response was manifested by 

illuminating the red LED and activating the buzzer for 

immediate audio-visual alerting. Under normal conditions, the 

system operated by inducing a green LED, indicating that the 

system was working as expected. Testing was extensive, 

ensuring the reliability of these physical alarms in generating 

corresponding responses that fell within the expected time and 

under the desired condition. A layered approach is developed 

to strengthen further the digital predictions with a potential 

human response to vital infrastructures that require failures in 

an assumption of immediate human intervention. The authors 

chose XGBoost and Random Forest due to their robustness to 

high-dimensional, imbalanced data and interpretability via 

feature importance. In contrast, Bagging and AdaBoost 

underperformed (AUC < 0.85) due to overfitting on noisy ICS 

traces, while Logistic Regression and SVM struggled to 

capture nonlinear interactions. Finally, the comparison was 

made on all prediction models, relay-wise and overall-based. 

The relay-wise models operate independently using data from 

each relay to achieve high accuracy and localized insights into 

the working state of the system. 
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Table 2. Various algorithms and their accuracy scores 

ML Algorithm Accuracy Score 

Logistic Regression 0.77736 

Decision Tree 0.89479 

SVM Classifier 0.78852 

Gradient Boosting 0.87407 

XG Boost 0.96493 

Extra Trees 0.95696 

AdaBoost 0.74388 

Bagging 0.94952 

 
The predictions from each relay, when aggregated into an 

overall prediction model- an overall prediction model trained 

on a full set of 119 parameters plus relay log fields a more 

holistic perspective of the system security status. This was 

further displayed as the model's strength in detecting subtle 

patterns that ultimately went unnoticed when individually 

analysed relays. Besides some minor differences observed 

between the two approaches, the overall prediction model was 

superior in detecting a more robust and holistic presentation 

of cyber threats. This comparison emphasised the value of 

combining localized and global perspectives in cybersecurity 

systems. Whereas relay models can capture and pinpoint 

problems in very specific subsystems, the overall would tend 

to miss some details but is better in overall anomalies 

throughout the system. Somehow, it enhances the resilience of 

the security architecture overall.  

The results demonstrate that the dual-architecture 

mechanism amplifies individual relay analysis with an overall 

comprehensive prediction. Coupled with detailed confusion 

matrix and ROC curve analyses and cross-validation on 

multiple synthetic datasets, the incorporation of well-defined 

performance metrics further strengthens the argument behind 

our approach.  

Also emphasized by the reliable operational capacity of 

physical alarms and synergetic benefit observed when 

combining relay-wise and full predictions, the integrated 

solution effectively delivers robust cybersecurity in relay 

systems. It addresses much of the challenge associated with 

cyberattack detection and provides a scalable and applicable 

framework in the real-world context of critical infrastructures. 

5. Conclusion 
The Robust Cyber Security in Relay Systems through 

Dual Architecture Mechanism paper has successfully 

validated a holistic model for fortifying security in essential 

power systems. Integrating state-of-the-art machine learning 

algorithms, advanced data preprocessing, and practical 

hardware implementation addressed the critical detection of 

cyberattacks in a highly diverse relay environment. The dual 

architecture scheme embraces digital detection schemes by 

models such as XGBoost and Random Forest and backs these 

with some physical alerts from the LEDs and buzzers. The 

result is a multi-layered defence that considerably reinforces 

the overall security posture of the relay system as it allows 

rapid response to onsite threats and monitoring them remotely.  

There is an extensive process of dataset creation and 

prepping within the paper that laid the foundations. Based on 

combining real data from the Oakridge University Dataset 

with synthetic data generated with the help of a mathematical 

linear equation, a sufficiently extensive and balanced training 

data set was developed and captured numerous operational 

scenarios-from best to average and worst-case scenarios.  

The application of SMOTE for class imbalance further 

enhanced the sensitivity of models on rare occurrences of 

cyberattack events, thereby minimizing the risk of 

experiencing false negatives, which could seriously impact a 

power system. Feature selection was critical in isolating the 

most important 119 parameters, which ensured that the models 

could quickly learn and generalize beyond high 

dimensionality.  

Models could show high accuracy, strong ROC-AUC 

performance, and reliability in detecting localized relay 

anomalies or system-wide threats. The individual relay 

models illuminate in detail the actual operational states of each 

subsystem while aggregating these into one general model to 

form a holistic prediction that augments system-level security.  

Moreover, cross-validation results further confirmed that 

the models are robust and can maintain performance under 

varied conditions. On hardware, the successful integration of 

the Raspberry Pi as a remote server, tied perfectly with the 

hardware alarm system, epitomizes the combination of 

Operational Technology (OT) and Information Technology 

(IT).  

The physical alerts triggered by the machine learning 

predictions, thus, ensure intervention could exclusively be 

made immediately to mitigate the detection of anomalies in 

the system without exposing it to any associated risks of 

failure. Streamlit online application makes data real-time 

input, prediction, and visualization user-friendly, enabling 

operators and administrators easy access through continuous 

monitoring and timely interference. Limitations: Current 

models require periodic retraining to adapt to novel attack 

vectors, and Pi memory constraints preclude deep‐learning 

deployment. 

Future Directions: Explore lightweight neural 

architectures (e.g., Tiny ML), CI/CD pipelines for model 

updates, and multi-Pi clustering for scalability 
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