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Abstract - Smart Farming has transformed the agricultural sector, resulting in extensive agronomic developments. Using 

advanced technology and insights-driven solutions to streamline agricultural processes and enhance overall farm productivity 

is known as "smart farming."  Because data science enables the gathering, processing, and evaluation of vast amounts of farm-

generated data, it is essential for smart farming. These data sources include satellite imagery, weather data, soil sensors, 

machinery data, crop health diagnostics, and market trends. Data science techniques empower farmers to make informed 

decisions by providing actionable insights into farming, from crop planning to yield prediction. The study employs quantitative 

and qualitative methods to examine key trends, influential publications, and emerging data science and smart farming research 

areas. It discusses various factors, including publication patterns, reference sources, prominent countries, significant authors, 

impactful publications, networks, emerging themes, and trending topics, focusing on India. The outcomes emphasize the use of 

data science in smart farming. This study proposes a design cycle for data science-driven automation and a novel and multi-

phase framework for efficient agriculture. 

Keywords - Smart farming, Data science, Bibliometric analysis, Sustainable farming, Precision agriculture.

1. Introduction  
The global population of 7.6 billion is projected to 

increase by more than 2.2 billion to over 9.8 billion by 2050 

[1]. This growth is expected to continue, with a projected 

population of 11.2 billion by 2100. These demographic 

changes profoundly impact global resources, economic 

development, and environmental Sustainability. This will only 

significantly increase food demand and widen the gap between 

supply and demand.  

However, increasing urbanization restricts the increase in 

arable land for farming. The shrinking availability of farmland 

has reduced productivity and put enormous pressure on natural 

resources. Climate change, characterized by increased floods 

and droughts, has also heightened the pressure on agricultural 

productivity [2]. The 2024 Global Agricultural Productivity 

(GAP) Report shows worrying trends. While agricultural TFP 

(total factor productivity) averaged 1.9% per year from 2001 

to 2010, it declined to 0.7% between 2013 and 2022. This 

reduction is much less than the 1.91% yearly TFP growth rate 

estimated to meet agricultural needs by 2050, as shown in 

Figure 1. This rate falls significantly short of the estimated 

1.91% annual TFP growth required to meet agricultural 

demands by 2050, as shown in Figure 2. The TFP measures 

the efficiency of agricultural output relative to the combined 

inputs (land, labor, capital, and materials) used in production. 

The slowdown in productivity growth has created significant 

challenges for meeting the rising demand for food from one 

perspective and achieving environmental sustainability goals 

from the other. This highlights the urgent need to bridge the 

"valley of death, the divide between creating agricultural 

innovations and their adoption by farmers. This gap must be 

closed to boost productivity and meet growing food demands 

in the coming decades. “Smart farming”, also referred to as 

“Precision agriculture”, aims to revolutionize traditional 

farming practices by leveraging data science technologies 

such as Artificial Intelligence (AI), Machine Learning (ML), 

and Deep Learning (DL).  

These advances enable informed decision-making 

throughout the crop lifecycle, enhancing crop planning, soil 

productivity, yield forecasting, weed management, and pest 

control [3]. Smart farming is not just one technique but a 

collection of methods and strategies aimed at enhancing 

precision and agricultural productivity [4-6]. This shift toward 

smart farming can significantly increase the efficiency and 

Sustainability of agriculture. These advancements are 

particularly crucial for India, where agriculture supports the 

livelihoods of the majority and is responsible for around 17% 

of the country's GDP. Despite being the second-largest 

producer of agricultural goods globally, India's average crop 

yields lag 50–70% behind those of the top producers 

worldwide. Key agrarian outputs, such as food, industrial raw 

materials, and fuel, play a crucial role in nation-building [7]. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 Global productivity report 2024 [2] 

 
Fig. 2 Average annual growth rate 

India's expanding population, rapid urbanization, and 

growing economy intensify food demand. While projections 

suggest that by 2030–31, the nation will achieve production 

reliability in rice and wheat, commodities such as pulses, 

oilseeds, and fruits are expected to face supply-demand gaps 

[8, 9]. Additionally, significant postharvest losses aggravate 

these challenges. Recent studies indicate that India loses 

approximately 40% of its horticultural produce annually, with 

fruits and vegetables particularly susceptible due to their short 

shelf life [10]. Addressing these issues requires substantial 

reforms and investments in agricultural practices, 

infrastructure, and supply chain management to ensure food 

security in the coming decades. Indian agriculture faces 

several significant challenges, including the continued 

reliance on traditional farming methods, a heavy reliance on 

personal experience, and limited adoption of modern 
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technologies, particularly in remote areas. These factors make 

it difficult for farmers to select suitable crops for their farms 

accurately. Unpredictable climate fluctuations further 

complicate these issues, resulting in reduced crop yields. 

Inadequate farming practices, low-yielding crop varieties, and 

fragmented landholdings contribute to yields 35–50% below 

global standards. Mechanization in developed countries 

exceeds 90%, whereas in India, it remains below 50%. 

Furthermore, nearly 40% of the food produced in the country 

is lost or wasted [11]. 

India must enhance crop productivity through data-driven 

solutions to meet the increasing demand for food and ensure 

the effective use of natural resources. It is necessary to design 

and implement a practical analytical framework that supports 

farmers at each phase of the agricultural lifecycle. This 

solution can increase yields, encourage sustainable farming 

practices, and provide practical, area-specific 

recommendations to empower Indian farmers by integrating 

innovative approaches. 

“Data science is a multidisciplinary field that uses 

scientific methods, procedures, algorithms, and systems to 

extract information from organized, semi-structured, and 

unstructured data”. It includes data extraction, preparation, 

analysis, visualization, and management [12, 13]. Data 

science encompasses statistics, AI, ML, big data technologies, 

and DL. The component and field-based definition of data 

science [13] is stated below.  

Data science=statistics + informatics + computing + 

communication + sociology + management| data + 

environment + thinking (| means conditional on)  

AI is capable of mimicking human behavior. ML division 

of AI focuses on enabling machines to improve and adapt by 

examining data using statistical methods. DL is a specialized 

area within ML that employs algorithms designed to simulate 

human thought processes by learning from examples.  AI in 

smart farming tackles issues related to Sustainability by 

utilizing ML, DL, and time series analysis for crop selection, 

yield prediction, and demand forecasting [14]. AI-driven 

techniques optimize farming practices and emphasize the role 

of predictive algorithms in addressing future food security 

concerns. Precision Agriculture leverages ML to address 

challenges in crop yield prediction by analyzing complex 

datasets that include climate, soil, and fertilizer data. These 

models use historical data to recognize patterns and accurately 

predict future outcomes. Despite advancements, further 

algorithmic and data handling improvements are essential for 

enhanced performance [15]. DL models CNN, RNN, AlexNet, 

and ResNet are widely utilized in crop yield predictions. 

However, there is a need for advanced DL techniques to 

enhance model performance and reduce inference time for 

real-world applications [16]. The advancement of IoT 

technology and the increased accessibility of sensor data are 

key factors driving the adoption of smart farming practices. 

Figure 3 depicts the cyber-physical management system for 

smart farming. Data are gathered from diverse sources, 

including sensors, on-field robots, and satellite imagery, and 

are systematically stored in cloud-based systems. A critical 

human element remains integral, ensuring continuous analysis 

and effective planning for utilizing and managing these data 

[17, 18]. 

 
Fig. 3 Cyber-physical system for smart farming [19] 

Smart farming generates massive amounts of data that 

require advanced storage and management, utilizing data 

science. Data science models and design automation 

frameworks that apply during plant production and the entire 

smart farming supply chain. Despite significant advancements 

in AI-driven smart farming, several research gaps remain 

unaddressed. Current DL models are widely applied in crop 

yield prediction; however, their real-world deployment 

remains limited due to high inference times and insufficient 

optimization for practical agricultural settings.  

Moreover, the massive and heterogeneous data generated 

from sensors, satellites, and robotic systems present 

challenges regarding scalable data handling, integration, and 

real-time preprocessing. Most ML models focus on region- or 

crop-specific conditions, which restricts their generalizability 

across diverse agricultural environments. Additionally, the 

application of time series forecasting for dynamic and real-

time agricultural decision-making, particularly in yield and 

demand prediction, remains underexplored. Furthermore, the 

adoption and effectiveness of data science techniques in 

agronomy lack sufficient empirical evaluation, particularly 

from the perspective of practitioners. To systematically 

identify and address these gaps, this study employs 

Bibliometric analysis. By mapping research trends, citation 

networks, key contributors, thematic clusters, and 
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underexplored areas, Bibliometric analysis provides a 

complete summary of the current state of research. It helps 

identify overlooked topics, assess the evolution of 

technological focus areas, and uncover potential 

interdisciplinary opportunities that inform future research 

directions in smart farming. This research examines the 

acceptability of data science techniques in agronomy through 

a systematic literature review strategy with two primary 

components: 1) Conducting a comprehensive Bibliometric 

analysis of previous research to identify gaps and suggest 

potential solutions. 2) Adapting the outcomes to the context of 

smart farming in India. 

2. Methodology  
Bibliometric analysis is a quantitative, computer-assisted 

technique for assessing bibliographic data to identify key 

publications, notable authors, and leading institutions [20, 21]. 

It helps evaluate the effect and influence of research articles, 

authors, journals, and institutions by examining citation 

patterns, publication counts, keywords, and other metrics.  

This technique is widely used to find research trends, 

influential works, and knowledge gaps across various 

disciplines.  

A substantial dataset of bibliographic records was 

analyzed to uncover patterns, trends, and emerging research in 

smart farming. The bibliometric analysis was conducted using 

the methodology proposed by [22]. The process is organized 

into three main phases, as shown in Figure 4, which are 

detailed in the following sections. 

 
Fig. 4 Bibliometric analysis workflow 

2.1. Data Collection and Processing 

This study aims to identify key themes, publication 

trends, and information gaps to inform future research and 

policy guidelines. The Bibliometric review addresses the 

following Research Questions (RQs) related to data science in 

smart farming, adaptation, and agricultural Sustainability, 

which have remained unexplored. 

RQ 1: What are the trends in the pblication of data science-

driven smart farming research over the last two decades, and 

which nations and institutions have led the way in research on 

data science applications in smart farming? 

RQ 2: What are the major research themes, data science 

techniques, and latest technologies driving advancements in 

smart farming? 

RQ 3: Which crops are commonly studied in data science-

driven smart farming, and how are data science techniques 

used for yield prediction and resource optimization? 

RQ 4: How does Bibliometric analysis shape research 

priorities and address gaps in data science-driven smart 

farming? 

The study considers several well-established libraries and 

databases for Bibliometric analysis, including Scopus, Web of 

Science, and Dimensions [23]. These databases are selected 

due to their comprehensive coverage, accuracy, and 

widespread use in academic research. Google Scholar, 

although widely accessible, was excluded from the study due 

to its limitations in data reliability and consistency, which can 

impact the quality of citation metrics and analysis [24]. 

However, papers from other sources are considered. The 
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search is based on the relevant concepts at a basic level as 

applied directly within the scope of this review. First, keyword 

searching is conducted across various research articles to 

extract bibliographic information. The search focuses on key 

themes in smart farming, including core areas such as 

precision farming, smart agriculture, and data-driven 

techniques, with a special emphasis on trending technologies 

-IoT, ML, and big data. Application-specific keywords 

address crop yield prediction, pest management, and fertilizer 

optimization, whereas region-specific terms highlight studies 

on agriculture in India and localized systems within the 

country. Emerging trends and methodologies, including 

drones, blockchain, computer vision, and DL models, provide 

knowledge about the future of innovative farming. 

The keywords used for the study are combinations of 

these themes, as follows: 

 Data Science smart farming or precision agriculture 

 ML & smart farming or precision agriculture 

 Deep Learning smart farming or precision agriculture 

 Artificial Intelligence smart Farming or precision 

agriculture 

 Big Data Analytics smart farming or precision agriculture 

 Automation smart farming 

 Smart Farming or PA & Crop Recommendation 

 Smart Farming crop yield Prediction or  precision 

agriculture 

A search strategy is developed by starting with basic 

keywords and refining the search results using specific 

exclusion criteria. This process guarantees that only the most 

appropriate articles are selected. The search is conducted 

across three different databases, and results are generated in 

CSV format for the Scopus and Dimensions databases and in 

TXT format for the Web of Science [25-27]. Figure 5 shows 

the search strategy for the Scopus database. The exact process 

is applied to the other two databases, Web of Science and 

Dimensions. Table 1 shows the search keywords and the 

number of documents retrieved after applying exclusion 

criteria. 

 
Fig. 5 Document retrieval flow 

Publications are excluded based on several criteria to 

ensure relevance and quality. First, only English-language 

publications are considered, excluding those published in 

languages other than English. Second, publications unrelated 

to agriculture are omitted to maintain focus on the research 

domain. Third, studies published before 1995 are excluded to 

ensure contemporary relevance. Duplicate papers are removed 

to avoid redundancy. Open-access papers are included, 

aligning with the study's scope. Finally, a preliminary analysis 

and screening process is conducted to eliminate irrelevant 

Scopus 

(TITLE-ABS-KEY ("machine learning" AND "precision agriculture" OR 

"precision farming") OR TITLE-ABS-KEY ("deep learning" AND 

"precision agriculture" OR "precision farming") OR TITLE-ABS-KEY 

("data science" AND "precision agriculture" OR "precision farming" )OR 

TITLE-ABS-KEY ("crop recommendation" AND "precision agriculture" 

OR "precision farming") OR TITLE-ABS-KEY ("crop  

yield prediction" AND "precision agriculture" OR "precision  

farming") OR TITLE-ABS-KEY ("automation" AND "precision 

agriculture" OR "precision farming") OR TITLE-ABS-KEY ("artificial 

intelligence" AND "precision agriculture" OR "precision farming")  

OR TITLE-ABS-KEY ("big data analytics" AND "precision  

agriculture" OR "precision farming")) 
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papers and review articles that do not contribute to the 

research. 

Table 1. Documents retrieved from each database after applying the 

search keyword and exclusion criteria 

Database Documents after Exclusion Criteria 

SCOPUS 2798 

Dimensions 1688 

Web of Science 8,321 

A total of 12,807 papers are considered for further studies. 

The datasets from Dimensions, Web of Science, and Scopus 

are combined for unified analysis, with careful handling to 

ensure accuracy and avoid duplication. Data from all three 

databases is exported in compatible formats, such as CSV or 

BibTeX, including key fields like DOI, title, authors, 

publication year, and journal. Data normalization is performed 

by standardizing fields such as author names, journal titles, 

and publication dates while ensuring consistent formatting and 

encoding.  

Duplicates are identified and removed using unique 

identifiers, such as DOIs, or by matching records based on 

title, authors, and publication year, with fuzzy matching 

employed to account for variations in these fields.  

Non-duplicate records are merged, and for duplicates, the 

complete version is retained, or complementary information is 

integrated, such as richer citation data from Scopus or funding 

data from Dimensions. An R script is designed to combine the 

data from all three databases, following the process shown in 

Figure 6. This study used 10,265 documents for bibliometric 

analysis. R Studio and VosViewer are utilized to perform the 

analysis. A separate dataset is prepared by filtering out all 

other information and retaining only the papers related to 

India. 

 
Fig. 6 Integration of data from all source databases 

2.2. Data Analysis 

Insights from the dataset are derived through a 

bibliometric analysis conducted using Biblioshiny [28] and 

VOSviewer [29]. The evaluation of key metrics such as 

productivity and the effect of leading researchers, 

organizations, journals, citation patterns, and nations within 

the domain is made feasible by Biblioshiny. To address RQ1, 

insights into publication growth trends over the past three 

decades are gained, and leading countries and institutions are 

identified by analyzing author affiliations and regional 

publication contributions.  

Keyword co-occurrence maps and thematic clustering are 

generated using bibliometric and VoSviewer software to 

identify commonly used terms, research themes, and emerging 

technologies in the field. These methods have revealed 

patterns in implementing data science techniques while also 

illustrating the evolution of thematic focus over time. A visual 

and quantitative analysis of keyword connections has helped 

to uncover both established and emerging trends, giving a 

complete view of the research addressing RQ 2. 

To address RQ 3, bibliographic data on study focus (e.g., 

keywords, abstracts, and titles) are used to determine the most 

frequently studied crops and farming systems. Citation 

analysis highlights the impactful studies addressing yield 

prediction and resource optimization. Bibliometric methods 

have helped to identify influential papers, citation networks, 

and collaboration patterns, helping to recognize 

underexplored topics, geographical gaps, and 

underrepresented methods. These insights address RQ 4 and 

guide the realignment of research priorities to address gaps 

and nurture interdisciplinary collaboration, ensuring a more 

comprehensive and impactful research landscape. 

2.3. Visualization and Reporting 

Through efficient reporting and visualization, 

bibliometric analysis via Biblioshiny and VOSviewer offers 

insightful information on research landscapes. Biblioshiny is 

used to visualize performance metrics, including the most 

prolific authors, influential journals, and collaborative 

networks. Thematic maps and charts are generated to track 

shifts in research focus, particularly in smart farming. 

VOSviewer is employed to create detailed network maps, such 

as citation networks highlighting key papers and keyword 

clusters that identify core and emerging research themes. 

Finally, comprehensive reports are prepared, and the results 

are analyzed to present a detailed scenario of the research 

trends. 

3. Analysis and Results 
This segment contains the outcomes of a bibliometric 

analysis conducted to investigate the usage of data science in 

smart farming and precision agriculture. This measurable 

methodology reveals the reasonable structure of these 

domains, monitors citation patterns, identifies emerging 

technologies and approaches, and highlights prospective 

future research possibilities. This investigation contributes to 
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a deeper understanding of how tools from data science are 

revolutionizing farming practices, encompassing crop 

monitoring, yield prediction, resource optimization, and pest 

control, thereby clearing the path for more sustainable and 

efficient agricultural systems. Document types [30] play a 

decisive role in bibliometric analysis, aiding the evaluation of 

research trends and their impact. Research articles and reviews 

are primary sources, providing detailed studies and summaries 

of research in specific areas. Overall, 8909 research 

documents were considered in the current study. Book 

chapters offer in-depth coverage of specialized topics, 

presenting expert perspectives and extensive research [31]. 

Conference papers are among the most recent available 

research and offer valuable insights into emerging trends. A 

total of 208 book chapters and 714 conference papers are 

available for analysis. Editorials: Editorials comment on 

critical issues in a discipline. A total of 85 editorials are 

available in the dataset. 26 Data papers are analyzed. Data 

papers give information on datasets. Information from data 

papers can be used to reuse and validate research data. Each 

type of document is important for understanding the dynamics 

of scholarly communication and for measuring research 

impact across disciplines [32]. Figure 7 shows the count of 

different types of documents used in the study. 

 
Fig. 7 Types of documents used in the study 

3.1. Research Productivity Analysis  
Research Productivity Analysis inspects the contributions 

of various research elements in bibliometric studies, whereas 

science mapping explores the connections among these 

components, enabling the evaluation of author and 

institutional productivity [33]. The dataset spans 3 decades, 

from 1995 to 2025. The dataset comprises 10,265 documents, 

with a yearly increase of 11.79%.  

 
Fig. 8 Key metrics on publications, authorship, collaboration, and 

citation trends 

The dataset has a typical age of 4.04 years, indicating that 

it is relatively new, and this subject is rapidly evolving and 

increasing in relevance. The sample's mean of citations per 

document is 17.58, indicating high influence. Figure 8 

provides key Metrics on Publications, Authorship, 

Collaboration, and Citation Trends. The research in this area 

is highly collaborative, with an average of 5.26 co-authors per 

document; however, international collaboration remains 

limited, at just 5.699%. Policymakers can address this by 

promoting cross-border research initiatives and international 

funding programs to nurture knowledge exchange and 

innovation transfer. The thematic diversity is also noteworthy, 

with 5,240 unique keywords highlighting the field's 

interdisciplinary nature, ranging from AI and machine 

learning to agronomy and Sustainability. This suggests a need 

for integrated policy frameworks encouraging cooperation 

between agricultural scientists, technologists, data scientists, 

and environmental experts. Moreover, the strong average 

citation rate of 17.58 per document reflects this research's high 

impact and academic relevance, indicating that robust 

scientific evidence can confidently inform policy decisions. 

The relatively young average document age of 4.04 years 

suggests that the most recent research is relevant to current 

challenges, providing a reliable foundation for formulating 

adaptive and forward-looking policies. With only 194 single-
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authored works among over 40,000 contributors, it is clear that 

the field relies heavily on team-based, interdisciplinary 

research. This highlights the need for environments that 

support collaborative research infrastructures, including 

shared data platforms, open-access initiatives, and cross-

institutional partnerships. Overall, this analysis underscores 

the importance of implementing policy mechanisms that 

support technical research and foster international 

collaboration, data governance, and capacity building within 

the smart farming ecosystem. 

 
Fig. 9 Publication of papers by year 

Figure 9 shows the annual publication of the papers. 

There has been a notable surge in publications since 2019, 

with a peak of 2,496 articles in 2024, indicating significant 

developments have occurred over the last five years. This 

implies that innovations in data science technologies, AI, ML, 

DL, CV, IoT, and increased financing for agricultural 

initiatives accelerate scientific and agro-industrial 

development. Relevant sources highlight high-impact 

publications, leading authors, and significant journals that 

shape the intellectual landscape [34]. Table 2 presents the top 

10 journals based on the total number of articles published, 

with Remote Sensing being the only one with over 600 

publications.  

Table 2. Top 10 journals with number of articles 

Sources Articles 

Remote Sensing 631 

Computers and Electronics in Agriculture 581 

Sensors 459 

Frontiers in Plant Science 413 

Agriculture-Basel 307 

Agronomy-Basel 302 

IEEE Access 245 

Applied Sciences-Basel 185 

Sustainability 183 

Precision Agriculture 179 

 
Fig. 10 Corresponding author’s countries 
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Fig. 11 Top 10 contributing authors 

 
Fig. 12 Affiliations production over time 
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security and agricultural innovation. Figure 12 illustrates the 

organization's contributions over time, providing insights into 

research organisations' history, strategic objectives, and 

influence on the global research landscape. 

3.2. Citation Analysis 
Citation analysis reveals that citations represent logical 

relationships between publications, formed when one 

publication refers to another [35]. The publications are 
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Table 3. Top cited countries 

Country TC Average Article Citations 

USA 7844 38.30 

India 6487 15.80 

China 6193 19.50 

Germany 3502 83.40 

Australia 3131 54.90 

Greece 2353 49.00 

Spain 2352 31.40 

Canada 2278 45.60 

Brazil 2160 26.00 

Italy 1601 20.00 

Figure 13 illustrates the average number of citations per 

year. The graph shows the average citations per year from 

1995 to 2025, showing a general upward trend with 

fluctuations until around 2020. A peak in citation averages 

occurs between 2017 and 2020, reflecting a period of high-

impact research. However, a sharp decline is observed after 

2021, primarily due to citation lag, as recent publications have 

not yet had sufficient time to accumulate citations.  

Table 4 displays the maximum cited global documents, 

including their publication location, the number of citations, 

and the annual citation count. The most frequently cited study 

[43], published in 2010, discusses how precision agriculture 

utilizes advanced technologies to optimize resources, enhance 

Sustainability, and increase agricultural output in value and 

volume.

 
Fig. 13 Number of citations year-wise 

The studies listed in the table emphasize the revolutionary 

impact of modern technology in PA. They stress using 

machine learning, wireless sensors, computer vision, and 

imaging technologies to enhance agricultural methods. Topics 

range from improving food security and crop yield prediction 

to disease detection and plant phenotyping using innovative 

tools, such as hyperspectral reflectance, vegetation indices, 

and UAVs. The works also underscore the significance of AI 

in grain crop management and fruit detection, showcasing the 

growing reliance on intelligent, automated systems to address 

agricultural challenges and improve efficiency. 

 

Table 4. Highly cited documents 

Source Digital Object Identifier Citations Year-wise citations Normalized citations 

[36] 10.1126/science.1183899 972 60.75 13.16 

[37] 10.1016/j.compag.2018.05.012 929 116.13 21.57 

[38] 10.1016/j.compag.2005.09.003 922 46.10 11.16 

[39] 10.14358/pers.70.5.627 905 41.14 11.75 

[40] 10.1016/j.compag.2008.03.009 813 45.17 11.25 

[41] 10.1016/j.compag.2010.06.009 770 48.13 10.43 

[42] 10.1016/j.compag.2018.08.001 681 85.13 15.81 

[43] 10.1016/j.compag.2007.05.008 662 36.78 9.16 

[44] 10.3390/s16081222 655 65.50 13.69 

[45] 10.1094/PDIS-03-15-0340-FE 650 65.00 13.58 
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The global citations reflect the count of citations of a 

document in the global dataset, regardless of source. The local 

citations represent the number of times a document is cited 

within a specific subset of the analyzed dataset, which is 

limited to citations from other papers in the uploaded dataset. 

Figure 14 illustrates the most frequently cited local 

documents. Journals concentrating on computer electronics 

and agricultural technologies are important in promoting 

precision agriculture research, emphasising UAVs, ML, 

sensors and other data science techniques. 

 
Fig. 14 most cited local documents 

3.3. Keyword and Authorship Mapping  

In keyword study, the focus is on analyzing "words" 

within the content of publications. It focuses on the contents 

of abstracts, titles, and keywords. Co-word analysis typically 

uses "author keywords," but if these keywords are 

unavailable, abstracts are used for word extraction [46]. A 

treemap generated using Biblioshiny is created to represent the 

hierarchical distribution of keywords from the abstracts of the 

papers, with a threshold value of 50. Treemap is represented 

using nested rectangles sized proportionally to their values, as 

shown in Figure 15. The treemap shows that the most 

frequently used keyword is 'data', indicating the data-driven 

modelling used in smart farming. The top 25 keywords can be 

grouped into Technology and Methods, Agriculture and 

Environment, and Research and Analysis. The "Technology 

and Methods" category includes precision, models, detection, 

accuracy, methods, learning, images, proposed, and 

performance. The "Agriculture and Environment" category 

encompasses terms like soil, crop, agriculture, yield, 

agricultural, plant, water, and field. The "Research and 

Analysis” category deals with data, study, results, and 

management. Coauthorship is a formal technique of working 

jointly [47]. Understanding how researchers network, 

including their affiliations, institutions, and countries, is 

essential. A coauthorship study of researchers from different 

nations is conducted using VoSviewer and is presented in 

Figure 16. The analysis employs an association method and 

generates 9 clusters comprising 65 countries. 

 
Fig. 15 Treemap of keywords in abstracts 

As shown in Figure 16, nodes represent countries, with 

larger nodes indicating higher contributions. It is observed that 

authors from the USA, India, and China are among the highest 

collaborators. Links signify coauthorship relationships, where 

thicker links denote stronger collaborations. The authors from 

India collaborate more intensely with authors from the USA, 

Brazil, the UAE, Nepal, and the United Kingdom. Figure 17 

shows the collaborations of authors from India. Clusters are 

used to group nodes based on connection strength, reflecting 

collaborative networks or research groups, and the analysis is 

performed using 9 clusters-Figure 18 shows cluster-wise 

densities. 
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Fig. 16 Coauthorship analysis 

 
Fig. 17 Network of indian authors 

 
Fig. 18 Clusters visualization 



Omprakash Mandge & Suhasini Vijaykumar / IJEEE, 12(6), 79-103, 2025 

 

91 

3.4. Network Analysis 

Network analysis examines interactions and 

collaborations between authors, institutions, countries, 

keywords, or citations [48]. Its purpose is to provide insights 

into the structural relationships and dynamics within a 

bibliometric dataset, identifying hubs, influential nodes, and 

the overall network structure. Network analysis focuses on 

any interconnected entities, including authors, institutions, 

keywords, or references. In-depth network analysis is 

performed using Biblioshiny and VosViewer, as shown in 

Figure 19. Network co-occurrence analysis reveals the links 

and significance of essential phrases in smart farming. 

Analysis metrics include PageRank, Betweenness and 

Closeness.  

PageRank measures the importance of a node (e.g., 

keyword, author, or paper) based on the number and quality 

of links it receives from other nodes [49]. Betweenness 

measures the extent to which a node lies on the shortest path 

between other nodes in the network. A keyword with high 

betweenness (e.g., "data fusion") might connect two distinct 

research subfields, remote sensing and machine learning, as a 

bridge between them. Closeness measures how close a node is 

to all other nodes in the network. It reflects the efficiency or 

speed at which information can spread from one node to 

another. In author Networks, a researcher with high closeness 

centrality can access diverse information across the network 

more efficiently, making them a good collaborator. Two 

groups emerged from this investigation. 

 

 
Fig. 19 Co-occurrence analysis, (a) Using bibliophily, and (b)using VOSviewer.
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3.4.1. Cluster 1: Core Themes in Smart Farming 

Precision agriculture stands out, with the highest 

betweenness (32.965) and PageRank (0.096), indicating its 

importance in connecting related topics and the overall 

significance in the research field. Other secondary but 

significant topics are crops (Betweenness: 8.536, PageRank: 

0.056) and machine learning (Betweenness: 3.729, PageRank: 

0.039). This implies an emphasis on modern crop 

management and monitoring technology. Moderate 

Betweenness and PageRank values are noted in remote 

sensing, artificial intelligence, and computer vision. 

Supporting topics include irrigation, soil moisture, decision 

support systems, and weed control, focusing on practical 

applications and challenges in precision agriculture. 

3.4.2. Cluster 2: Advanced Machine Learning Techniques 

Deep learning emerges as a key term in this group, with a 

high Betweenness score of 5.428 and a PageRank of 0.055, 

indicating an increasing role of deep learning in precision 

agriculture research. Specific techniques, including 

convolutional neural networks, show high betweenness at 

0.490 and PageRank at 0.025, thus highlighting advanced 

methods for image analysis and classification. Plant disease 

monitoring, image classification, and object identification 

underline the use of ML in assessing plant health and 

optimizing agricultural outputs. Furthermore, the terms plants 

and fruits reflect the use of ML in certain plant-based agrarian 

studies. Trend analysis helps to understand research 

directions, predict future trends, and identify gaps for further 

exploration. Figure 20 shows the study's trend topics. The 

trend topics chart shows the evolution of key research terms 

in precision agriculture from 2004 to 2024. Recent years 

highlight growing interest in advanced methods like image 

coding, IoT, and deep learning. Term frequency is visualized 

by bubble size, with larger bubbles indicating more frequent 

usage. 

 
Fig. 20 Trend topics global 

3.5. Bibliometric Analysis of Smart Farming in India 

To focus specifically on research conducted in India, the 

datasets from all three databases are refined to include only 

publications originating from India. The filtered data are then 

analyzed using bibliometric techniques, including citation 

analysis, network analysis, and trend analysis. These analyses 

provide insights into India's contributions to precision 

agriculture research, enabling comparisons with global trends. 

Figure 21 highlights the trending topics within the Indian 

context. The chart displays trending research topics in 

precision agriculture within India. Recent focus areas include 

deep learning, machine learning, and convolutional neural 

networks, indicating a shift toward AI-driven approaches. 

Larger bubbles show higher term frequency, with deep 

learning emerging as the most dominant theme. While global 

research in precision agriculture adopts advanced 

technologies such as IoT, ML, and DL, the Indian context 

reflects a dual focus: addressing irrigation management, soil 

moisture monitoring, and crop yield optimization while 

gradually incorporating these cutting-edge technologies. The 

network analysis shown in Figure 22 highlights that Indian 

research also follows the global trend of high-tech, resource-

intensive solutions. Citation analysis reveals a growing 

influence of Indian research, with key publications addressing 

region-specific issues. Trend analysis reveals that while global 

research encompasses automation, robotics, and AI-driven 

innovations, Indian studies focus on practical applications that 

address immediate agricultural challenges, reflecting the 

socio-economic and environmental contexts of the region. 

This comparative approach underlines the unique 

contributions of Indian research while highlighting areas for 

potential alignment with global advancements.  
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Fig. 21 Trend topics - India 

 
Fig. 22 Co-occurrence analysis – India 

 
Fig. 23 Most relevant sources – India 
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Figure 23 shows the most relevant sources from the 

Indian context. The graph displays the most relevant 

publication sources for research in precision agriculture. 

"Smart Agricultural Technology" leads with the highest 

number of documents, followed by journals like "International 

Journal of Intelligent Systems and Applications" and "IEEE 

Access." The bubble size indicates the volume of publications 

per source. This highlights where the most impactful and 

frequent research is being published in the domain. 

5. Discussion 
Bibliometric analyses in precision agriculture offer 

significant comprehension of development and progress [50, 

51]. This study [52] guides researchers and practitioners in 

utilizing deep learning in agriculture. This study [53] uses 

bibliometric analysis with VOSviewer to map the author 

network in precision agriculture, revealing key collaboration 

patterns and offering insights for enhancing research 

partnerships and advancing sustainable agricultural 

innovations. 

This study builds on existing research by providing 

valuable insights into key areas, including integrating 

emerging technologies, a holistic evaluation of Sustainability, 

and regional and contextual variations. It expands the 

understanding of how advanced tools and methods work 

together to enhance smart farming, examines Sustainability 

from economic, environmental, and social perspectives, and 

highlights the importance of tailoring approaches to the 

distinctive needs of different areas and farming systems. 

5.1. Predominant Research Themes in Smart Farming 

The core themes in smart farming encompass advanced 

technologies such as ML, DL, agricultural robotics, and deep 

learning. These technologies collectively drive innovation and 

efficiency in modern agriculture. Key applications include 

crop yield prediction, crop recommendation systems, fertilizer 

optimization, weed management, pesticide application, and 

soil management. These associated techniques aim to enhance 

productivity, ensure sustainable resource utilization, and 

support informed decision-making processes in agricultural 

practices. By incorporating these technologies, smart farming 

enables precision agriculture, transforming traditional farming 

into a more efficient and environmentally friendly approach. 

Machine learning involves creating programs based on 

input data and corresponding outputs, making it ideal for 

building predictive models. Various ML methods have 

recently been applied in agriculture to enhance crop yields, 

classify soil types, and perform other applications. Integrating 

data from sensors converts agricultural management platforms 

into real-time, AI-driven solutions, providing farmers with 

actionable insights and recommendations for better decision-

making [54]. A mobile system powered by machine learning 

that uses ML algorithms can help optimize farmland and 

monitor crops. This app provides farmers with valuable land 

information to support better decision-making. Machine 

learning models for setting parameters should be integrated 

directly into mobile applications for seamless use [55]. A 

machine learning-driven automation approach for agriculture 

has been proposed [56], suggesting that ensemble learning can 

effectively fine-tune parameters. Additionally, a mobile 

application could support farmers by providing valuable 

insights and guidance throughout the farming process, from 

seed sowing to crop production. 

This study [57] presents a framework using Naive Bayes 

classification to recommend optimal crops for farmers in 

Tumakuru, Karnataka, leveraging machine learning and the 

IoT to enhance agricultural productivity and economic 

growth. This study evaluates the effectiveness of two PCA-

based methods, NIPALS and EM, in imputing missing values 

within high-dimensional agro-meteorological datasets, 

specifically focusing on reference Evapotranspiration (ETo). 

The study analyzed meteorological data from 45 weather 

observatories in São Paulo, Brazil, from 2011 to 2021, 

simulating five degrees of missing data (10% to 50%) to assess 

the effectiveness of these strategies [58]. There is a growing 

need to integrate these individual approaches to achieve better 

automation in precision agriculture. Table 5 shows analyses of 

ML regarding its capabilities and limitations.  

Table 5. Capabilities of ML techniques in precision agriculture 

Strengths Weaknesses 

ML can integrate and 

handle heterogeneous data 

sources such as images, 

sensor outputs, weather 

data, and textual inputs, 

which is essential in 

precision agriculture [59]. 

The effectiveness of models 

depends heavily on data 

quality; noise or bias in data 

can lead to incorrect 

predictions or decisions. It 

requires filtering of low-

quality and misleading data 

[60] 

It allows flexibility in 

discovering hidden 

patterns and relationships 

from data without being 

constrained by prior 

assumptions or models 

[61].  

It needs extensive data 

transformation and 

aggregation - Preprocessing 

steps like normalization, 

feature engineering, and 

integration of diverse 

datasets can be time-

consuming and complex [62] 

Effectively captures 

intricate relationships 

among variables (e.g., soil 

health, crop yield, climate 

factors), improving 

prediction accuracy. 

Lacks a guiding theory for 

direct application -Since 

models often rely solely on 

data, they may lack 

explainability or theoretical 

grounding, which can hinder 

trust and understanding 

among domain experts. 

Enables data-driven 

decisions designed for 

specific fields, crops, or 

Computationally intensive 

training with significant time 

demands -Training complex 
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even individual plants, 

enhancing productivity 

and resource use efficiency 

[63, 64] 

models like deep learning 

can require high-

performance computing 

resources and long training 

times, which may not be 

feasible in all agricultural 

settings. 

 

Robots and artificial intelligence have been integrated 

into automated production processes as part of Industry 4.0, 

and robotic applications powered by AI are essential in 

producing high-quality, efficient products in competitive 

industrial nations [65]. The review analyzed 25 studies using 

computer vision in disease detection, grain quality assessment, 

and plant phenotyping. It highlighted opportunities to utilize 

GPU hardware and advanced AI techniques, focusing on 

applications for major grain crops [42]. The study [66] 

explored the practical applications of AI and IoT in farms, 

including innovative machinery, irrigation systems, pest 

management, greenhouse cultivation, and crop health 

monitoring. It highlights the transition of these technologies 

from concept to implementation, addressing their technical 

aspects and adoption challenges. AI applications in irrigation, 

weeding, and spraying enhance resource efficiency, improve 

soil health, increase labor productivity, and improve the 

quality of agricultural output [67]. A study on maize yield 

prediction in Nigeria identified Stochastic Gradient Descent 

(SGD) as the most effective algorithm, achieving a high R² 

score of 0.985. The Python-based system aids farmers and 

industries in decision-making and resource planning [68]. 

This work integrates DL, IoT, and digital technologies in 

smart agriculture, showing that deep learning outperforms 

traditional methods in accuracy. It also proposes web-

crawling bots for gathering crop data, offering valuable 

insights for researchers to apply deep learning to agricultural 

challenges [69]. This paper [70] presents a crop disease 

prediction model utilizing deep convolutional neural networks 

that can be used on a mobile phone. The dCrop app, which can 

identify 38 crop diseases with high accuracy, operates offline, 

making it accessible to farmers worldwide. Future 

enhancements could include support for regional languages 

and recommendations for pesticides or fertilizers tailored to 

the identified diseases. Machine learning-driven machinery 

enhances farming efficiency and crop quality, while advanced 

systems detect diseases, reduce pesticide use, and transform 

the agricultural industry [70]. This study presents a DL-based 

approach using the IoT to assist decision-making in smart 

farming. Utilizing the LSTM algorithm, the system 

outperforms other classification methods, providing 

intelligent prediction and control for greenhouse plants [72]. 

Precision agriculture minimizes direct farmer involvement by 

utilizing IoT systems to monitor and control soil properties, 

crop yield, and temperature. Sensors collect data transmitted 

to an IoT cloud for remote observation and analysis. This aids 

in duties such as animal intrusion detection and crop 

projections. The IoT also serves as a data storage technology, 

enabling more informed decision-making and improved 

forecasting for agricultural production [73, 74]. This study 

introduces a CNNIR-OWELM technique for early detection 

and categorising rice plant maladies in smart farming, utilizing 

IoT devices for image capture and cloud transmission. To 

increase classification accuracy, the model integrates 

histogram segmentation, a deep learning-based foundation 

using ResNet v2, and an optimized WELM (OWELM) with 

the Flower Pollination Algorithm (FPA), outperforming 

previous models [75]. 

A simplified weed identification model based on an 

upgraded YOLOv8s network was developed to address the 

challenges of high computational demands and deployment in 

maize fields. Key features include the newly designed D-PP-

HGNet, AFAM, and Global Max Pooling, which aim to 

enhance feature extraction. The model's performance 

improved significantly, with accuracy increasing from 91.2% 

to 95.8%, recall rising from 87.9% to 93.2%, and mAP@0.5 

improving from 90.8% to 94.5%.  

This improved model beat current discovery models, 

including YOLOv5s and YOLOv8l Faster R-CNN, delivering 

higher accuracy and efficiency, making it ideal for weed 

identification in resource-constrained applications [76]. 

AgroTec 4.0 [77], a smart farming system that integrates edge 

computing, has improved strawberry cultivation in Ecuador's 

Andean region, boosting yields by 15%, reducing water usage 

by 20%, and enhancing fruit quality with a higher Brix index 

and increased weight. The system also delivered significant 

economic benefits, achieving a 103% ROI for small-scale 

producers. CNNs are often used in agricultural research due to 

their outstanding image-processing capabilities. Deep 

learning applications are commonly used for plant and crop 

classification.  

Table 6. Notable domains used in smart farming studies 

Domain Deep Learning Implementation 

Diseases 

Wheat disease diagnostic procedures 

are among the methods for plant-

specific identification of diseases. [78], 

A DL-powered sensor designed to 

detect tomato illnesses and pests [86] 

and identify disorders in tea leaves. 

[79]. 

Plant 

Classification 

Deep CNN is applied for sorting of 

haloid maize seeds [80] 

Pest 

Recognition 

Deep learning methods for classifying 

moth images [81]  

Weed Detection 
Learning approach employing CNN 

for weed detection  [82] 

Land  Cover 

Identification 

A method for creating sustainable goal 

indicators assessment using high-

resolution satellite data [83] 
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Still, they also play a crucial role in predicting soil 

moisture, estimating yields, classifying leaves, detecting 

diseases, and identifying plants. The Table 6 highlights how 

deep learning techniques are applied across bright farming 

areas. 

5.2. Crops Studied in Smart Farming 

This section highlights the most extensively explored 

crops in data science models, focusing on four key elements 

of crop management: yield forecasting, disease identification, 

crop recognition, and crop quality. A total of 634 papers 

related to crop species were examined. Maize (corn) ranks first 

due to its widespread cultivation and diverse applications, 

including human consumption, animal feed, and biofuel 

production. Wheat and rice follow, with wheat being the most 

widely traded crop globally and rice being the most prominent 

in Asia. Soybeans, widely cultivated in the USA, East Asia, 

Africa, and Australia, are also frequently studied. Other 

notable crops include cotton, sugarcane, and barley, which are 

widely cultivated and researched. Table 7 lists the notable 

crops used in the study and their intended purposes. 

Table 7. Notable crops studied in the literature 

Crop Purpose 

Maize 

(Corn) 

Early detection of plant diseases minimizes 

crop losses [84]. 

Forecasting Maize Downy Mildew (MDM) 

[85] 

A multi-temporal model, leveraging machine 

learning and critical maize density features, 

achieved enhanced estimation accuracy (R² = 

0.602, RMSE = 0.094) during key growth 

stages, such as leaf development, stem 

elongation, and tasselling [86]. 

Identifying Infected Maize Crop Using Leaf 

Images [87] 

Predicting Maize Biomass Yield [88] 

Yield Prediction [89] 

Wheat prediction of crop yields [90] 

UAVs in agriculture showcasing automated 

ear counting as a scalable solution for 

accurate yield prediction and improved 

sustainability [91] 

The Average Fertilizer Production Score 

established the optimal nitrogen application 

rate. [92] 

Rice Fertilizer Optimization [93] 

rice production [94] 

rice cropped using subsurface drip irrigation 

[95] 

5.3. Research Directions 

The primary purpose of smart farming is to enhance 

agricultural output while minimizing resource consumption, 

thereby increasing farmers' return on investment. India's 

growing interest in smart farming and precision agriculture 

reflects global influence and local necessity. While the 

deployment of technologies such as AI, IoT, and deep learning 

has gained momentum, the Indian context presents unique 

challenges that must be addressed to ensure the sustainable 

adoption of these technologies. This analysis presents 

emerging themes, critical gaps, and forward-looking strategies 

across technological and research dimensions. 

5.3.1. Data Management and Standardization 

A recurring challenge in India’s precision agriculture 

ecosystem is the collection, cleaning, integration, and secure 

sharing of agricultural data. Given the diverse sources and 

formats, ranging from sensor outputs and satellite imagery to 

manual inputs from farmers, data heterogeneity severely 

restricts the development of reliable predictive systems. 

Region-specific variances further compound the issue, making 

standardization a necessary yet underdeveloped area [96].  

AI and ML models' success relies heavily on the 

availability of high-quality, integrated datasets. However, 

fragmented and inconsistently formatted data and limited 

interoperability across systems hinder model training and 

cross-comparative analyses. This restricts the scalability of 

solutions from pilot stages to broader, real-world deployments 

[97]. Future strategies must prioritize the creation of open, 

standardized data platforms that support region-specific 

annotation integration across stakeholders, including 

government, private, farmer-level, and real-time accessibility. 

5.3.2. The Practical Edge of AI, ML, and DL Technologies 

AI, ML, and DL hold great promise for optimizing 

agricultural processes, including crop monitoring, yield 

prediction, resource optimization, and disease detection [98]. 

Their ability to replace intuition-driven decisions with data-

driven insights is a critical advancement, especially in a 

country where traditional farming still dominates. 

Implementing AI is essential to optimize cultivation processes 

and establish a conducive environment for agricultural 

markets [68].  

Despite this, the deployment of AI/ML in India remains 

limited due to poor infrastructure, insufficient access to 

computing power, and a lack of localized models. 

Furthermore, the large-scale training of these models requires 

data and computational resources, such as high-capacity 

servers and cloud systems, which are often unavailable to 

smaller institutions or remote areas. Investment in cloud-

based and edge computing infrastructure, combined with 

lightweight AI models designed for low-resource 

environments, will be critical to unlocking the potential of 

these technologies in Indian agriculture. 

5.3.3. Cybersecurity and IoT Vulnerabilities 

As Indian farms become increasingly digitized and 

connected through IoT, they also become vulnerable to cyber 
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threats, particularly malware propagation across devices [99]. 

Given the limited technical expertise of end users (i.e., 

farmers), detecting and mitigating such threats pose serious 

concerns for operational stability and data integrity. Security 

must be embedded in the design of agricultural IoT systems. 

This includes user-friendly malware detection frameworks, 

lightweight antivirus protocols for embedded devices, and 

farmer education on basic digital hygiene. 

5.3.4. Technological Trends 
Future trends suggest utilizing swarm intelligence to 

enhance AI and IoT applications in precision agriculture 

[100]. Adaptive algorithms, such as SVM-PSO and ANN-

GWO, can enhance forecasting in diverse ecosystems. UAV 

swarms equipped with cameras and computer vision can 

enable real-time field monitoring, automated pesticide 

spraying, and irrigation management. Mobile robots can 

automate harvesting and weed control tasks, while meta-

heuristic algorithms can optimize sensor deployment [101].  

Offline chatbots can support farmers in areas with limited 

connectivity, providing expert advice and solutions. AI-driven 

renewable energy plants could further reduce operational costs 

and enhance Sustainability in agriculture [102]. Adopting 

these trends requires multi-sectoral collaboration among 

agronomists, AI engineers, policymakers, and local 

communities. R&D must focus on cost-effective technologies 

custom-made for Indian agro-climatic zones. 

5.3.5. Strategic Outlook 

Despite technological advancements, the adoption of 

precision agriculture in India remains limited. Key challenges 

such as fragmented data, low levels of digital literacy, 

inconsistent infrastructure, and cybersecurity risks need to be 

addressed through inclusive, policy-driven innovation. While 

the global Agriculture 4.0 model offers valuable insights, its 

successful application in India requires careful adaptation to 

the local socio-economic context. Building agro-tech capacity 

among farmers and field officers is essential, as is integrating 

renewable energy and automation to promote sustainable 

farming practices. To improve precision agriculture in India, 

some clear policy steps are needed.  

Creating a national agriculture data system is important. 

This means building open, standardized platforms that allow 

real-time, location-based data sharing among different groups. 

Funding research on simple, flexible AI models that work in 

rural areas should also support local AI solutions. These tools 

should be designed with help from farmers so they are easy to 

use and meet real needs. Digital safety is another big concern-

basic cybersecurity rules should be required for farming 

devices, and farmers should be taught how to stay safe online.  

Research in this field also needs a better structure. 

National datasets and shared methods to test AI tools can help 

researchers compare results and build stronger solutions. 

Finally, supporting small companies and research teams in 

creating affordable offline tools is important. Smart farming 

tools should also include clean energy options to make 

farming more sustainable. 

5.3.6. Methodological Gaps 

A significant methodological weakness across many 

studies is the absence of comparative AI and data science 

techniques analyses. Without rigorous side-by-side 

evaluations, it is difficult to determine which models or 

algorithms are most effective under specific agricultural 

conditions.  

Moreover, many studies do not employ standardized 

evaluation metrics or benchmarking datasets, leading to 

challenges in reproducibility and validation. This hinders 

accumulating a cohesive body of knowledge and restricts the 

ability to build upon previous work systematically.  

The field urgently needs methodological consistency 

through the establishment of benchmark datasets, cross-

validation strategies, and standard performance indicators. 

These would enhance the scientific validity of findings and 

facilitate model transferability across regions and crops. 

5.3.7. Future Research Directions 

There is a growing need to move beyond purely applied 

technological approaches in smart farming and instead 

develop unified theoretical frameworks that integrate AI, 

agronomy, decision sciences, and behavioral economics. Such 

interdisciplinary integration would provide a more 

comprehensive understanding of how smart farming 

technologies interact with environmental systems and human 

decision-making.  

To achieve this, collaboration between technical experts 

and agricultural domain specialists is essential, as it 

encourages the development of context-aware models and 

decision-support systems. 

In addition to theoretical advancements, methodological 

innovations are critical for ensuring the reliability and 

applicability of predictive models. Robust cross-validation 

techniques and standardized benchmarking protocols are 

necessary to evaluate not only traditional metrics, such as 

accuracy or F1-score, but also practical outcomes, including 

yield enhancement, resource efficiency, and environmental 

Sustainability.  

Open-access datasets and collaborative research 

platforms should be established to facilitate reproducibility 

and thorough testing of AI models in real-world farming 

conditions. Future solutions must prioritize lightweight and 

modular AI architectures that can function on mobile devices 

or offline settings. Involving farmers and agricultural 

extension agents in the design process is vital to ensure 
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usability, adaptability, and successful adoption across diverse 

agro-climatic and socio-economic contexts. 

5.3.8. Implications for Future Research 

Although smart farming has made progress, considerable 

research gaps still exist in the application of data science-

based automation in Indian agriculture. These gaps can be 

summarized as follows. 

1) Existing research lacks region-specific models addressing 

varied climatic and soil conditions. Existing crop 

advisory systems do not incorporate multi-source 

agricultural data, which reduces their accuracy.  

2) Yield forecasting models are imprecise because data 

collection is not uniform, and farm-level variables are 

missing.  

3) There is also a deficit in real-time, automated crop 

monitoring technology, which makes pest management, 

weed control, and disease identification primarily 

manual.  

4) Furthermore, fertilizer strategies remain suboptimal and 

often promote the inefficient use of resources.  

5) Furthermore, constraints such as technology adoption, 

cost, digital skills, and connectivity hinder large-scale 

deployment.  

Filling these gaps requires a comprehensive, scalable, and 

farmer-centric innovative farming platform that leverages 

Machine Learning, Deep Learning, and Computer Vision for 

improved crop management, informed decision-making, and 

enhanced automation.  

By addressing these research gaps, future studies can 

contribute to a more robust and impactful integration of data 

science in smart farming, ensuring Sustainability and 

efficiency across diverse agricultural landscapes. 

6. Proposed System 
Farming systems are complex and dynamic, comprising 

numerous interconnected subsystems that involve various 

stakeholders with different roles and expectations.  

These systems rely on vital data about natural resources 

and external processes.  

Data flows across the supply chain, from suppliers and 

producers to processors, traders, and consumers, and plays a 

key role in enabling data science and automation in smart 

farming. The study employs a design-based approach, 

utilizing an information-based management cycle for farming. 

Crops are shortlisted based on lifecycle duration, categorized 

as short-term or long-term, and initially tested on short-term 

crops.  

The data science process is customized for crop 

management, involving six key steps: defining research goals 

to optimize crop production, collecting and storing large 

datasets from heterogeneous sources on a Big Data platform, 

preparing data through pre-processing techniques, exploring 

data to uncover patterns and anomalies, building and 

validating predictive models using machine learning and 

statistical methods, and finally presenting results and 

automating processes for improved decision-making. 

This iterative, prototype-driven approach can be adapted 

for other crops in similar categories, enabling scalable and 

efficient solutions. A general approach has been proposed to 

achieve the desired goal.  

The design process includes 1) defining and identifying 

the problem, 2) designing a framework, 3) testing the 

framework, and 4) automating and applying the framework.  

This process will be repeated for each problem, and the 

resulting frameworks will be integrated to build the final 

system. The overall system design integrates all processes to 

provide an optimal solution for efficient farming.  

The system identifies data types, collects data from 

various sources, stores and processes it using Big Data 

systems, and performs data analysis and decision generation.  

These functions are applied to each objective and various 

plant inputs. Figure 24 outlines the approach taken to design 

the framework, while Figure 25 illustrates the complete 

system design. 
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Fig. 25 Proposed system architecture 

7. Conclusion  
Data science in smart farming has the potential to 

transform traditional agricultural processes by increasing crop 

yields and improving farm management. For Indian farmers, 

these techniques can support informed decision-making and 

better resource utilization. Bibliometric analyses reveal that 

India, the United States, China, and Brazil are the most active 

nations in this research area. Key focus topics include plant 

diseases, soil management and analysis, crop yield prediction, 

crop recommendation and fertilizer optimization. However, 

applying DL algorithms in precision farming presents 

significant challenges, addressing which can advance the field 

and promote its adoption among stakeholders. This study 

proposes an integrated system framework that automates data 

across every stage of the crop management lifecycle. The 

framework is adaptable to various crops, focusing on accurate 

crop yield forecasting and prediction. The system aims to 

provide an efficient, resource-optimized solution to enhance 

agricultural productivity. 

7.1. Future Work 

The suggested system architecture provides a solid basis 

for practical farming; nevertheless, more improvements are 

required for greater application and scalability. Future studies 

will focus on expanding the system to accept larger datasets 

and more diversified agricultural techniques, making it ideal 

for huge farming regions. The utilization of IoT devices for 

gathering data in real-time, including moisture in the soil and 

temperature, besides insect detection, improves decision 

accuracy. Advanced ML and DL algorithms will be developed 

to increase prediction accuracy and automate decision-making 

processes. Customization for various crops and locales will 

include regional agronomic approaches and environmental 

considerations. 
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