
SSRG International Journal of Electrical and Electronics Engineering  Volume 12 Issue 6, 136-145, June 2025 

ISSN: 2348-8379/ https://doi.org/10.14445/23488379/IJEEE-V12I6P111    © 2025 Seventh Sense Research Group® 

          

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article 

Faults Identification and Classification in Power Systems 

Using Integrated Wavelet Transform and RBFNN 

Approach 

Nurhalim1, Kalimah Sakti Rinjani2, Suwitno3, Iswadi Hasyim Rosma4, Amir Hamzah5 

1,2,3,4,5Department Of Electrical Engineering, University of Riau, Pekanbaru, Indonesia. 

2Corresponding Author:  kalimahrinjani1@gmail.com 

Received: 07 April 2025 Revised: 09 May 2025 Accepted: 08 June 2025 Published: 30 June 2025

Abstract - This research presents an integrated Wavelet Transform and RBFNN approach for identifying and classifying power 

system faults. The RBFNN is trained to output values corresponding to specific fault classes based on WT-derived features, where 

a predicted value near 1 indicates a fault on a particular phase or Ground, and a value near 0 indicates no fault. The novelty of 

this work lies in the application of RBFNN with these features, aiming for improved performance over common Artificial Neural 

Network approaches. Various short-circuit faults were simulated on an IEEE 30-bus system using PSCAD. Fault parameters 

like location and resistance were varied to create 2541 scenarios. Discrete Wavelet Transform extracted features from phase 

and ground currents, comparing Daubechies 4 (dB4) and Symlet4 (sym4) wavelets at decomposition levels 1, 2, and 3. The 

RBFNN was trained with 90% of the data and tested on the remaining 10%. The outputs of the RBFNN are continuous values 

intended to approximate these binary (0 or 1) targets, and their proximity is measured by Mean Squared Error (MSE). Results 

showed that the dB4 wavelet at decomposition level 3 provided the best performance, achieving MSE values below the 10−5 

threshold for all phases (Phase A: 4.59621×10−8, Phase C: 2.7304×10−8). These low MSE values indicate high accuracy in 

the RBFNN's output regressing to the target binary vectors, thereby effectively classifying the fault types. This approach 

showcases an effective technique for identifying faults and then categorizing them. 

Keywords - Transmission lines, Radial basis function Neural network, Signal processing, Wavelet transformation, PSCAD. 

1. Introduction 
Power transmission is essential for transporting electrical 

energy from generation sources to consumers. These 

transmission systems are the pillar of dependable power 

delivery; however, they are vulnerable to disturbances that can 

significantly impact consumers and utility providers. 

Transmission lines are primarily categorized into overhead 

and underground lines. Overhead lines are often preferred due 

to their lower maintenance costs and greater ease of fault 

detection [1]. Faults in transmission systems are often 

characterized as short or open-circuit. [2, 3]. Short-circuit 

issues are one of the most severe risks. They indicate direct 

contact between phases or between a phase and the earth, 

leading to significant current flows that can interrupt power 

delivery, damage critical system components, and 

compromise overall system stability. Power systems may 

encounter a variety of such faults. One-phase line grounding 

is the most frequent kind of electrical fault. Line-to-line and 

line-to-line-to-ground faults are two more prevalent types 

besides single-line-to-ground faults. The three-phase short 

circuit is the most severe due to its balanced nature, which 

often simplifies analysis [4]. Various methods exist to mitigate 

power system faults, including modifying transients with earth 

wires, resistance switching, and diverting surges using devices 

like rod gaps and lightning arresters coordinated by switchgear 

and protective relays [4]. The critical first step remains the 

rapid and accurate detection and classification of these faults  

[5]. Delays or inaccuracies in this initial stage can exacerbate 

the impact of faults, leading to wider outages and increased 

repair costs. Methodologies for fault identification and 

classification have seen significant evolution. Early traditional 

methods that relied on reactive power measurements were 

often hampered by propagation delays, which reduced their 

accuracy [6]. Fourier Transform (FT) techniques were 

introduced, proving effective for stationary signals. When 

working with non-stationary signals, whose frequency 

components fluctuate over time—a common feature of fault 

transients—their usefulness was constrained. [7]. Although it 

analyzed signal segments, the Short Time Fourier Transform 

(STFT) improved; however, its time-frequency resolution was 

still constrained by its fixed window size. [5]. Consequently, 

Wavelet Transform (WT) became a more effective instrument 

praised for its better capacity in time-frequency localization 

and the study of transient disturbances [8]. Building on WT's 
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strengths, researchers such as Ali and Sinha (2023) and 

Aryaguna et al. (2021) effectively used WT in conjunction 

with Artificial Neural Networks (ANNs) and other 

computational learning systems for fault classification, so 

proving its efficacy in analyzing transient signals acquired 

during fault events. [9, 10]. 

Notwithstanding these developments, more research is 

needed to examine and validate alternative neural detection 

and classification methods fully. The authors concluded that 

network architectures combined with WT for possible 

methodology could improve power system reliability by 

improving fault classification performance. While WT-ANN 

approaches [9, 10] have shown promise, the unique 

characteristics of other neural networks might offer 

advantages in terms of training efficiency, generalization 

capabilities, or accuracy for specific fault signatures.  

This research addresses this gap by focusing on how 

faults in power systems are detected and categorized using a 

combination of Wavelet Transform and a Radial Basis 

Function Neural Network (RBFNN). This work's novelty lies 

in integrating and applying RBFNN with WT-derived features 

for power system fault analysis. Unlike the more commonly 

adopted ANN structures explored in [9, 10], RBFNNs possess 

distinct architectural advantages, such as simpler network 

structures and potentially faster convergence, which could 

prove beneficial for the rapid and accurate classification of 

complex fault patterns. An IEEE 30-bus test system is used in 

this study to model and simulate various short-circuit faults. 

Features from the fault signals are extracted using WT, which 

are then used to train and test an RBFNN. The RBFNN is 

trained to classify these faults by minimizing the MSE 

between its continuous output and target vectors representing 

predefined fault categories (0 and 1). The research addresses 

key questions about optimal fault identification strategies, 

effective feature extraction via WT for RBFNN, and robust 

model training for accurate fault classification.  

The scope is focused on the IEEE 30-bus power system 

simulated using PSCAD software, with WT for feature 

extraction and RBFNN for the classification task. 

Classification performance is inferred from the MSE of the 

RBFNN's continuous outputs against target class vectors, 

where a low MSE indicates the predicted outputs are close to 

the ideal binary (0 or 1) values representing the fault state of 

each phase and Ground. The expected outcomes include 

contributions to scientific literature through publications and 

a comprehensive thesis report. This research is anticipated to 

advance fault detection methodologies by presenting a 

rigorously evaluated WT-RBFNN framework, demonstrating 

how low MSE in regression can effectively translate to 

accurate fault classification, thereby providing a valuable 

reference and a potentially improved tool for researchers and 

practitioners in power system analysis, distinct from existing 

WT-ANN paradigms. 

2. Literature Review 
2.1. Prior Research 

A few researchers have conducted preceding studies to 

develop fault classification methods in power systems. A prior 

study by Ali and Sinha (2023) [9] focused on detecting and 

categorizing faults on transmission lines using Wavelet 

Transform. They developed a simulation model to analyze 

various fault types, applying the Wavelet Transform to current 

signals and extracting features via wavelet packet 

decomposition. Their findings showed precise fault 

classification and detection. The authors concluded that real-

time implementation of this methodology could improve 

power system reliability. The method's reliance on threshold 

values necessitating system-specific determination was one of 

its main limitations. They recommended using sophisticated 

computational techniques in future research to get around this 

restriction, employing technologies such as adaptive neuro-

fuzzy inference systems and artificial neural networks. 

Aryaguna et al. (2021) [10] studied the simulation of 

power quality disturbances in distribution lines. Both typical 

signals and various sag variations were included in the 

simulated disturbances. The hidden layer of this study's 

Artificial Neural Network (ANN) used a 5x5 neuron 

configuration. The outcomes demonstrated that ANN could 

detect fault signals with 100% accuracy. 

By combining Wavelet Transform with a Radial Basis 

Function Neural Network (RBFNN), Prasanth and Srinivas 

(2022) [11] proposed a fault identification and classification 

technique for electrical systems. Seeking to get beyond the 

restrictions of using wavelet transform alone, such as reliance 

on threshold values, this work obtained detailed coefficients 

of various fault types using Discrete Wavelet Transform 

(DWT), which the RBFNN then used to detect and classify. 

With RBFNN outputs closely matching the real fault 

conditions without depending on predefined threshold values, 

their MATLAB Simulink verification results revealed that this 

combined approach successfully identified and classified 

three-phase faults. 

Sundararaman and Jain (2023) [12] proposed an 

intelligent Wavelet Transform (WT)-based method for 

identifying and categorizing problems in electrical power 

transmission networks. This work employed a member of the 

Daubechies wavelet family, the Daubechies 4 (db4) wavelet, 

To examine phase and ground currents detail coefficients. Its 

primary focus was to accurately identify and categorize faults 

by observing significant differences in these maximum detail 

coefficients when the system fails. It provided a more suitable 

approach for analyzing fast electromagnetic transients than 

methods that require extensive training, such as neural 

networks or fuzzy logic. Tests employing a standard IEEE 5-

Bus system (modeled in MATLAB Simulink) verified that 

detailed wavelet coefficients could detect and identify fault-

related signals. 
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According to the literature review above, power systems 

have extensively used artificial neural network-based 

algorithms, Wavelet Transform, and other signal processing 

methods for classifying and detecting faults. However, there 

are ways to improve the accuracy and efficiency of these 

systems by integrating different methodologies and refining 

the parameters utilized in data processing and fault 

categorization. 

3. Methodology  
This study looks into A way to identify and categorize 

different types of power system faults on the IEEE 30 Bus 

system that integrates a Radial Basis Function Neural 

Network (RBFNN) with Wavelet Transform. Phase-to-phase, 

three-phase, and single-phase-to-ground faults were among 

the faults examined. RBFNN is trained to provide a vector 

representing each phase's fault status (a, b, c) and Ground (g), 

with '1' indicating a fault and '0' indicating no fault on that 

specific component.  

The success of the classification is determined by how 

closely the RBFNN's continuous output values resemble these 

binary objectives, with a low Mean Squared Error (MSE) 

indicating accurate classification, as shown in Figure 1.  
 

Fig. 1 Research flowchart 

 
Fig. 2 Identification & classification block diagram 

The methodology consists of defined processes that range 

from data collection and preprocessing to model training and 

performance evaluation. Figure 2 illustrates the overall block 

diagram for the identification and classification process. The 

diagram shows fault types as inputs ultimately classified by 

the RBFNN. The RBFNN (Fault Classifier) block processes 

input features to produce output vectors. The target outputs for 

the RBFNN are structured to represent specific fault types (ag, 

bg, cg, ab, ac, bc, abc, abcg, which correspond to 

combinations of 0 and 1 across the phase and ground outputs). 
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The performance evaluation relies on comparing the RBFNN's 

predicted output vectors to these binary target vectors using 

MSE. 

3.1. Data Generation and Characteristics 

Fault data was generated by modeling the IEEE 30 Bus 

test system using PSCAD V5.0.2. The simulations were 

designed to create a comprehensive dataset encompassing a 

variety of fault conditions. The specific fault types simulated 

include single-line-to-ground faults (a-g, b-g, c-g), line-to-line 

faults (ab, ac, bc), and three-line faults, including three-line-

to-ground (abc, abc-g), as outlined in the study's aims and 

represented in the fault type inputs shown in the block 

diagram. 

To ensure a diverse dataset reflective of real-world 

scenarios, key parameters were varied during the simulations: 

 Fault location: Faults were modeled at different locations 

along the transmission lines 0%, 50% and 100% of each 

transmission line in the IEEE 30 Bus. 

 Fault Resistance:  

 Sampling Rate: 50kHz. 

This process resulted in 2541 unique fault scenarios, 

forming the initial raw dataset for feature extraction. 

3.2. Feature Extraction using Wavelet Transform 

Discrete Wavelet Transform (DWT) extracted features 

from the generated fault signals. For this study, a comparative 

analysis of different Mother Wavelets was conducted to 

identify the most effective one for fault feature extraction. The 

Daubechies-4 (dB4) and Symlet4 (sym4) Mother Wavelets 

were specifically investigated. Features were extracted by 

focusing on the maximum coefficients from the detailed levels 

of the wavelet transformation for each selected mother 

wavelet. The study particularly investigated decomposition 

levels 1, 2, and 3 for these wavelets to determine the optimal 

level for classification accuracy. The extracted features from 

phase currents and ground currents served as the input vectors 

for the RBFNN model. Each fault case was thus represented 

by a feature vector of dimension maximum detailed 

coefficient of the phase currents and ground current.  

3.3. Dataset Preprocessing and Splitting 
Following feature extraction, the dataset of 2541 samples 

was prepared for the neural network using Radial Basis 

Functions (RBFNN). Regarding categorization, target output 

vectors were generated for each fault scenario. These vectors 

have four elements: phase a, phase b, phase c, and Ground.  

Every component has a binary value assigned to it: "1" if 

the fault involves the corresponding Ground or phase and '0' 

otherwise. The RBFNN is trained to regress these target 

vectors, meaning its continuous outputs should ideally be 

close to these 0 or 1 values. 

 Normalization: To optimize the RBFNN training process, 

the extracted features were normalized using min-max 

scaling. 

 Stratified Sampling: The dataset was separated into 

training and testing portions using stratified sampling 

after normalisation. This approach was selected to ensure 

that every fault type maintained a proportional 

representation across both subsets, which is vital for 

developing a dependable model and conducting an 

impartial evaluation. 

 Dataset Composition: The dataset was partitioned such 

that 90%, amounting to 2287 samples, was used for 

training the RBFNN, while the other 10%, or 254 

samples, was kept for testing the network's performance. 

4. Results and Discussion 
Mean Squared Error (MSE) is used to assess the 

effectiveness of RBFNN training and testing. The MSE 

quantifies how close the RBFNN's continuous predicted 

outputs (for each phase and Ground) are to the binary (0 or 1) 

actual target values that define the fault class. A lower MSE 

indicates a more accurate classification.  

4.1. RBFNN Training Results dB4 and Sym4 Level 1 

The training results of the RBFN using Mother Wavelet 

Daubechies 4 (dB4) and Symlet 4 (Sym4) at level 1 are 

presented in Figure 3 and Figure 4 . The training process was 

completed with a maximum of 1000 epochs, a spread value of 

one, and a goal Mean Squared Error (MSE) of 0.0001. The 

performance of the model was assessed using the training 

dataset.  

 
Fig. 3 Training MSE of RBFNN using dB4 Level 1  

Figure 3 shows the training results using the dB4 wavelet, 

illustrating the network's capacity to learn patterns from the 

training dataset. The convergence behavior and final MSE 

demonstrate the usefulness of the specified parameters in 

optimizing the model. 



Kalimah Sakti Rinjani et al. / IJEEE, 12(6), 136-145, 2025 

 

140 

 
Fig. 4 Training MSE of RBFNN using Sym4 Level 1  

Figure 4 shows the training results using the Sym4 

wavelet, illustrating the network's capacity to learn patterns 

from the training dataset. The convergence behavior and final 

MSE demonstrate the usefulness of the specified parameters 

in optimizing the model. 

4.2. RBFNN Training Results dB4 and Sym4 Level 2 

Figure 5 and 6 show the training results of the RBFNN 

with the Mother Wavelet Daubechies 4 (dB4) and Symlet 4 

(Sym4) at level 2. The training process was completed with a 

maximum of 1000 epochs, a spread value of one, and a goal 

Mean Squared Error (MSE) of 0.0001. The training dataset 

was used to evaluate the model's performance. 

 
Fig. 5 Training MSE of RBFNN using dB4 Level 2 

Figure 5 shows the Mean Squared Error (MSE) values 

obtained while teaching an RBFNN using Mother Wavelets 

Daubechies 4 (dB4) at level 2. At epoch 1000, with a spread 

value of 1, the MSE of the RBFNN was 0.00314703. 

 
Fig. 6 Training MSE of RBFNN using Sym4 Level 2 

Figure 6 shows the Mean Squared Error (MSE) values 

obtained while teaching an RBFNN using Mother Wavelets 

Symlet 4 (Sym4) at level 2. At epoch 1000, with a spread value 

of 1, the MSE of the RBFNN was 0.00299206. The results 

show that as the epochs increase, the MSE value decreases, 

proving the network's potential to improve its performance 

over time. This pattern indicates that further training rounds 

benefit the model by lowering error and improving accuracy.  

 
Fig. 7 Training MSE of RBFNN using dB4 Level 3 

4.3. RBFNN Training Results dB4 and Sym4 Level 3 

The training results of the Radial Basis Function Neural 

Network (RBFNN) using the Mother Wavelet Daubechies 4 

(dB4) and Symlet 4 (Sym4) at level 3 are presented in Figure 

7 and Figure 8. The training process was conducted with a 

maximum of 1000 epochs, a spread value of 1, and a target 

Mean Squared Error (MSE) of 0.0001. The performance of the 

model was evaluated using the training dataset. Figure 7 

shows the Mean Squared Error (MSE) values produced while 

teaching an RBFNN using Mother Wavelets Daubechies 4 



Kalimah Sakti Rinjani et al. / IJEEE, 12(6), 136-145, 2025 

 

141 

(dB4) at level 3. At epoch 1000, with a spread value of one, 

the MSE of the RBFNN was 1.26263e-08. 

 
Fig. 8 Training MSE of RBFNN using Sym4 Level 3 

Figure 8 shows the Mean Squared Error (MSE) values 

obtained while teaching an RBFNN using Mother Wavelets 

Symlet 4 (Sym4) at level 3. At epoch 1000, with a spread value 

of one, the MSE of the RBFNN was 0.000453216. The results 

show that as the epochs increase, the MSE value decreases, 

proving the network's potential to improve its performance 

over time.  

4.4. RBFNN Testing Performance dB4 and Sym4 Level 1 

The 'Actual Values' in the following tables represent the 

target binary outputs (0 for no fault, 1 for fault) for each phase 

(and Ground), indicating the actual state for a specific fault 

type. The 'Predicted Values' are the continuous outputs from 

the RBFNN, which ideally should be close to these binary 

targets for accurate classification. The Actual vs. predicted 

values for the Mother Wavelet dB4 and Sym4 at Level 1 in the 

testing data are presented in Table 1 to Table 2 and Table 4 to 

Table 5. In these tables, the First two columns after the data 

set represent the actual (target) values obtained from the 

testing dataset. Meanwhile, the subsequent 2 columns display 

the predicted (continuous output) values generated by the pre-

trained RBFNN model. 

Table 1. RBFNN phase A & B prediction results compared to the actual 

output values of mother wavelet dB4 level 1  

Set 

Actual  

Value  

Phase A 

Actual  

Value  

Phase B 

Predicted  

Value  

Phase A 

Predicted  

Value  

Phase B 

1 0 1 0.807335 0.805473 

2 1 1 -0.09262 1.217983 

3 0 1 0.399593 0.742409 

… …. …. …. …. 

253 1 1 0.959038 0.305832 

254 1 0 0.627438 0.649929 

Table 2. RBFNN phase C & ground prediction results compared to the 

actual output values of mother wavelet dB4 level 1  

Set 

Actual 

Value 

Phase C 

Actual 

Value 

Ground 

Predicted 

Value 

Phase C 

Predicted 

Value 

Ground 

1 1 0 0.744476 0.244047 

2 1 0 1.064831 0.462688 

3 1 0 0.598675 0.655682 

… …. …. …. …. 

253 1 1 0.887829 0.562401 

254 0 1 0.567593 0.634171 

The Actual vs. predicted values for the Mother Wavelet 

dB4 at Level 1 in the testing data are presented in Table 1. To 

Table 2. In this table, the first two columns after the data set 

represent the actual values obtained from the testing dataset. 

Meanwhile, the subsequent 2 columns display the predicted 

values generated by the pre-trained RBFNN model. The MSE 

is first calculated for each phase (Phase A, B, C, and Ground) 

before determining the overall MSE, as shown in the 

following table. 

Table 3. MSE value for mother wavelet dB4 level 1  

Group Phase A Phase B Phase C Ground 

MSE 0.177678 0.187425 0.170585 0.158634 

From Table 3, as can be seen, the highest MSE value for 

Phase A is 0.177678. This value, significantly higher than the 

predefined threshold of 10−5, suggests that the RBFNN's 

output for this phase does not consistently align closely with 

the target binary values, thereby indicating suboptimal 

classification performance for this configuration. 

Table 4. RBFNN phase A & B prediction results compared to the actual 

output values of mother wavelet Sym4 Level 1  

Set 

Actual 

Value 

Phase A 

Actual 

Value 

Phase B 

Predicted 

Value 

Phase A 

Predicted 

Value 

Phase b 

1 1 1 1.023941 6.44E-01 

2 1 1 0.836273 0.9687004 

3 0 1 0.816162 9.18E-01 

… …. …. …. …. 

253 1 0 7.76E-01 0.4379959 

254 1 1 0.152679 0.9912109 

Table 5. RBFNN phase C & ground prediction results compared to the 

actual output values of mother wavelet Sym4 level 1  

Set 

Actual 

Value 

Phase C 

Actual 

Value 

ground 

Predicted 

Value 

Phase C 

Predicted 

Value 

Ground 

1 1 0 0.9750671 7.30E-01 

2 0 0 2.30E-01 3.77E-02 

3 1 0 0.4433212 2.07E-01 

… …. …. …. …. 

253 1 1 0.7442474 0.7030029 

254 0 1 -0.058441 1.0557251 
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The Actual vs. predicted values for the Mother Wavelet 

Sym4 at Level 1 in the testing data are presented in Table 4 -

Table 5. In this table, the first two columns after the data set 

represent the actual values obtained from the testing dataset. 

Meanwhile, the subsequent 2 columns display the predicted 

values generated by the pre-trained Radial Basis Function 

Neural Network (RBFNN) model.  

The MSE is first calculated for each phase (phases A, B, 

C, and Ground) before determining the overall MSE, as shown 

in the following table. 

Table 6. MSE value for mother wavelet Sym4 Level 1  

Group Phase A Phase B Phase C Ground 

MSE 0.152682 0.150574 0.138027 0.122615 

Table 6 shows that the highest MSE value in phase A is 

0.152682, which is still significantly higher than the 

predefined threshold of 10−5, indicating a less accurate 

approximation of the target binary fault state. 

4.5. RBFNN Testing Performance dB4 and Sym4 Level 2 

The Actual vs. predicted values for the Mother Wavelet 

dB4 and Sym4 at Level 2 in the testing data are presented in 

Table 7 to Table 8 and Table 10 to Table 11. These tables 

compare the RBFNN's continuous predicted outputs against 

the binary (0 or 1) actual target values for each phase and 

Ground. 

Table 7. RBFNN phase A & B prediction results compared to the actual 

output values of mother wavelet dB4 level 2  

Set 

Actual  

Value  

Phase A 

Actual  

Value  

Phase B 

Predicted  

Value  

Phase A 

Predicted  

Value  

Phase B 

1 1 1 0.9911 0.9845 

2 1 1 1.0020 1.0027 

3 0 1 0.0379 0.9907 

… …. …. …. …. 

253 1 0 1.0115 0.0585 

254 1 1 1.0132 1.0157 

Table 8. RBFNN phase C & ground prediction results compared to the 

actual output values of mother wavelet dB4 level 2 

Set 

Actual  

Value  

Phase C 

Actual  

Value  

ground 

Predicted  

Value  

Phase C 

Predicted  

Value  

Ground 

1 1 0 1.0221 -0.0001 

2 0 0 -0.0007 0.0000 

3 1 0 1.0171 -0.0001 

… …. …. …. …. 

253 1 1 0.9010 0.9999 

254 0 1 -0.0008 1.0000 

The MSE is first calculated for each phase (Phase A, B, 

C, and Ground) before determining the overall MSE, as shown 

in the following table. 

Table 9. MSE value for mother wavelet dB4 level 2  

Group Phase A Phase B Phase C Ground 

MSE 0.008949 0.005442 0.005883 0.000000 

From Table 9, it can be observed that the highest MSE 

value in phase A is 0.008949. This is still significantly higher 

than the predefined threshold of 10−5, suggesting that the 

classification based on the proximity of predicted values to the 

binary targets (0 or 1) is not yet optimal. 

Table 10. RBFNN phase A & B prediction results compared to the 

actual output values of mother wavelet Sym4 level 2  

Set 

Actual  

Value  

Phase A 

Actual  

Value  

Phase B 

Predicted  

Value  

Phase A 

Predicted  

Value  

Phase B 

1 1 0 1.000067 -1.14E-05 

2 1 1 1.005067 1.008451 

3 1 0 0.998966 6.06E-03 

… …. …. …. …. 

253 0 1 -2.1E-02 1.011227 

254 0 1 -0.00106 0.985338 

Table 11. RBFNN phase C & ground prediction results compared to the 

actual output values of mother wavelet Sym4 level 2  

Set 

Actual 

Value 

Phase C 

Actual 

Value  

Ground 

Predicted  

Value 

Phase C 

Predicted  

Value  

Ground 

1 1 0 1.000053 -2.98E-07 

2 0 0 5.71E-01 3.51E-06 

3 1 0 0.997959 -1.52E-06 

… …. …. …. …. 

253 1 1 -2.1E-02 1.011227 

254 1 1 -0.00106 0.985338 

The Actual vs. predicted values for the Mother Wavelet 

Sym4 at Level 2 in the testing data are presented in Table 10 -

Table 11. The MSE is first calculated for each phase (phases 

A, B, C, and Ground) before determining the overall MSE, as 

shown in the following table. 

The MSE is first calculated for each phase (phases A, B, 

C, and Ground) before determining the overall MSE, as shown 

in the following table. 

Table 12. MSE value for mother wavelet Sym4 level 2  

Group Phase A Phase B Phase C Ground 

MSE 0.234892 0.051758 0.359282 9.87E-07 

Table 12 shows that the highest MSE value in phase C is 

0.359282, which is still significantly higher than the 

predefined threshold of 10−5, indicating a poorer match 

between predicted outputs and the actual binary fault states. 

4.6. RBFNN Testing Performance dB4 and Sym4 Level 3 

The Actual vs. predicted values for the Mother Wavelet 

dB4 and Sym4 at Level 3 in the testing data are presented in 
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Table 13 to Table 14 and Table 16 to Table 17. A low MSE in 

these results would mean the RBFNN's continuous outputs are 

very close to the target '0' or '1' values, signifying accurate 

fault classification. 

Table 13. RBFNN phase A & B prediction results compared to the 

actual output values of mother wavelet dB4 level 3 

Set 

Actual  

Value  

Phase A 

Actual  

Value  

Phase B 

Predicted  

Value  

Phase A 

Predicted  

Value  

Phase B 

1 1 0 1.00020 -0.00007 

2 1 1 0.99996 0.99998 

3 1 0 0.99985 -0.00002 

… ….. …. …. …. 

253 0 1 -0.00002 1.00002 

254 0 1 -0.00014 0.99999 

Table 14. RBFNN phase C & ground prediction results compared to the 

actual output values of mother wavelet dB4 level 3  

Set 

Actual  

Value  

Phase C 

Actual  

Value  

Ground 

Predicted  

Value  

Phase C 

Predicted  

Value  

Ground 

1 1 0 0.99998 0.00000 

2 0 0 0.00001 0.00000 

3 1 0 1.00001 0.00000 

… …. …. …. …. 

253 1 1 1.00010 1.00000 

254 1 1 1.00013 1.00000 

The MSE is first calculated for each phase (Phase A, B, 

C, and Ground) before determining the overall MSE, as shown 

in the following table. 

Table 15. MSE value for mother wavelet dB4 level 3 

Group Phase A Phase B Phase C Ground 

MSE 4.59621E-08 3.86603E-08 2.7304E-08 9.19482E-12 

Table 15 shows that the highest MSE value among the 

phases is for Phase A at 4.59621×10−8. All individual phase 

and ground MSE values are well below the predefined 

threshold of 10−5. This extremely low MSE across all outputs 

signifies that the RBFNN's predicted vectors closely match the 

target binary vectors representing the true fault classes (i.e., 

predicted values are very near 0 or 1 as appropriate), 

indicating a high accuracy in classifying the fault types. 

Table 16. RBFNN phase A & B prediction results compared to the 

actual output values of mother wavelet Sym4 level 3  

Set 

Actual  

Value  

Phase A 

Actual  

Value  

Phase B 

Predicted  

Value  

Phase A 

Predicted  

Value  

Phase B 

1 0 1 5.96E-04 1.003412 

2 1 0 1.003788 -0.00243 

3 1 0 9.98E-01 -1.2E-03 

… …. …. …. …. 

253 1 0 1.001135 -0.00027 

254 1 0 1.001947 0.001321 

Table 17. RBFNN phase C & ground prediction results compared to the 

actual output values of mother wavelet Sym4 level 3 

Set 

Actual  

Value  

Phase C 

Actual  

Value  

Ground 

Predicted  

Value  

Phase C 

Predicted  

Value  

Ground 

1 1 0 0.985884 -3.16E-06 

2 1 0 9.94E-01 -9.6E-07 

3 1 0 1.00E+00 -4.70E-07 

… …. …. …. …. 

253 0 1 3.81E-05 0.999998 

254 0 1 0.014292 0.999986 

The Actual vs. predicted values for the Mother Wavelet 

Sym4 at Level 3 in the testing data are presented in Table 16 

to Table 17. The MSE is first calculated for each phase (phases 

A, B, C, and Ground) before determining the overall MSE, as 

shown in the following table. The MSE is first calculated for 

each phase (Phase A, B, C, and Ground) before determining 

the overall MSE, as shown in the following table. 

Table 18. MSE value for mother wavelet Sym4 level 3 

Group Phase A Phase B Phase C Ground 

MSE 0.011125 0.004289 0.00409 1.9E-08 

From Table 18, it can be observed that the highest MSE 

value in phase A is 0.011125. This is still significantly higher 

than the predefined threshold of 10−5, suggesting that this 

configuration does not classify faults (by predicting values 

close to the binary targets) as accurately as the dB4 level 3 

configuration. 

4.7. RBFNN Diagram and  MSE Comparison 

This section presents the RBFNN diagram and a 

comparative evaluation of the model's performance across the 

three defined levels. RBFNN diagram depicted in Figure 9 and 

the classification accuracy and Mean Squared Error (MSE) for 

each level are summarized in Table 19. 

Figure 9, titled "RBFNN Diagram", illustrates the 

architecture of the Radial Basis Function Neural Network 

(RBFNN) used in the study, which processes 4 input features 

(representing maximum detailed coefficients from phase and 

ground currents Ia, Ib, Ic, Ig) through a hidden layer and an 

output layer to produce 4 output values. The hidden layer, or 

first "Layer" block, contains 1000 neurons, each employing a 

radial basis activation function (depicted as a Gaussian-like 

curve) with associated weights (W) and biases (b); the study 

also mentions a spread value of 1 was used for these neurons.  

Following this, the second "Layer" block, the output 

layer, consists of 4 neurons that sum weighted inputs (W) with 

biases (b) and apply a linear activation function (depicted as a 

straight diagonal line). The final 4 outputs from this layer 

represent the continuous values corresponding to the fault 

status of each phase (a, b, c) and Ground (g), which are 

intended to approximate binary targets. 
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Fig. 9 RBFNN diagram 

Table 19. MSE value for mother wavelet and level combination 

Mother 

Wavelet 
Level Highest MSE 

dB4 1 0.177678 

dB4 2 0.008949 

dB4 3 4.59621×10−8 

Sym4 1 0.152682 

Sym4 2 0.359282 

Sym4 3 0.011125 

4.8. Comparative Discussion 

The methodology and results presented in this research 

demonstrate notable advancements in identifying and 

classifying power system faults compared to several existing 

techniques reported in the literature. The successful 

combination of Discrete Wavelet Transform (DWT) using 

Daubechies 4 (dB4) mother wavelet at decomposition level 3 

for feature extraction, followed by an RBFNN for 

classification, yielded exceptionally low Mean Squared Error 

(MSE) values. The best configuration achieved MSEs well 

below the predefined 10−5 threshold for all phases and ground 

(e.g., Phase A: 4.59621×10−8, Phase C: 2.7304×10−8, and 

Ground: 9.19482×10−12). This high level of precision in 

mapping fault signatures, represented by binary target vectors 

(1 for fault, 0 for no fault per phase/Ground), to their 

respective classes, forms the basis of the improved 

performance. 

5. Conclusion 
This research successfully demonstrated the application 

of an RBFNN combined with Wavelet Transform (WT) for 

identifying and classifying faults in an IEEE 30-bus power 

system. The classification of fault types was achieved by 

training the RBFNN to produce output vectors whose 

elements (corresponding to phases A, B, C, and Ground) 

should regress to binary target values (1 for fault, 0 for no 

fault). Performance was evaluated based on the MSE between 

the predicted continuous outputs and these binary target 

vectors. The study systematically evaluated the performance 

of different mother wavelets (Daubechies 4 - dB4 and Symlet 

4 - sym4) at various decomposition levels (1, 2, and 3) for 

feature extraction. The key findings indicate that the choice of 

mother wavelet and decomposition level significantly impacts 

the RBFNN's classification accuracy, as reflected in the MSE 

values. While level 1 and level 2 decompositions for both dB4 

and sym4 wavelets resulted in MSE values that were still 

considerably higher than the predefined threshold of 10−5 

during testing (indicating less precise mapping of the RBFNN 

outputs to the correct binary fault class representation), the 

level 3 decomposition proved to be more effective. 

Specifically, the RBFNN model utilizing features 

extracted with the dB4 mother wavelet at decomposition level 

3 achieved the best performance. The MSE values for all 

phases (Phase A: 4.59621×10−8, Phase B: 3.86603×10−8, 

Phase C: 2.7304×10−8) and Ground (Ground: 

9.19482×10−12) were well below the target threshold. This 

demonstrates the capability of this configuration to accurately 

predict fault conditions, with the low MSE signifying that the 

network's outputs closely align with the target binary values 

(0 or 1) for each fault class, thus effectively classifying them.  

In contrast, while the sym4 wavelet at level 3 showed 

improved performance compared to its lower decomposition 

levels, its highest MSE in phase A (0.011125) still exceeded 

the desired threshold, implying less reliable classification for 



Kalimah Sakti Rinjani et al. / IJEEE, 12(6), 136-145, 2025 

 

145 

specific conditions with this wavelet, as its outputs did not 

approximate the binary targets as closely. Therefore, the study 

concludes that the combination of DWT using the dB4 mother 

wavelet at decomposition level 3 for feature extraction, 

followed by an RBFNN for classification, provides a robust 

and accurate method for identifying and classifying various 

fault types in power transmission systems. The classification 

is effectively performed as the RBFNN's continuous outputs, 

representing the fault state (fault/no-fault) of individual phases 

and Ground, closely match the actual binary fault conditions, 

evidenced by the low MSE values. This approach successfully 

overcame the limitations associated with reliance on 

predefined threshold values often seen in wavelet-only 

methods.  
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