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Abstract - Extreme environmental conditions in underground mining environments, such as high relative humidity and thermal 

fluctuations, can lead to erroneous activations of ground fault protection relays, thereby compromising the operational continuity 

of critical systems even in the absence of actual electrical faults. This study introduces an embedded solution based on Artificial 

Intelligence of Things (AIoT), designed to detect false positives in underground pumping chambers located at altitudes exceeding 

4000 meters above sea level. The proposed system integrates environmental sensors with a microcontroller that executes a Gated 

Recurrent Unit (GRU) neural network model in real-time, trained on 14400 samples collected over a continuous 10-day period. 

In contrast to prior approaches, the developed architecture performs local inference without relying on constant connectivity 

and transmits alerts using LoRa technology. System evaluation yielded an overall accuracy of 96.0%, with a precision and 

sensitivity of 78.6% for the false positive class, and an AUC of 0.99. These findings effectively reduce false activations and 

improve operational continuity. The proposed solution offers a cost-effective and replicable approach to optimizing electrical 

safety in industrial areas with restricted connectivity. 
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1. Introduction 
Mining is a strategic sector for the Peruvian economy, 

accounting for approximately 60% of the country's total 

exports and providing direct employment to thousands of 

workers [1, 2]. However, the operating environment of these 

activities imposes considerable technical challenges, 

particularly with regard to the reliability of electrical systems 

[3]. Among the most critical risks are ground faults and 

electrical anomalies that can cause serious damage to 

equipment, compromise personnel safety, and disrupt 

operational continuity in mines [4, 5]. To mitigate these risks, 

mining facilities utilize protective relays that automatically 

shut down systems upon the detection of a fault [6]. However, 

extreme environmental conditions, such as humidity and 

thermal changes, can induce false activations of these devices 

[7]. These false positives cause unnecessary interruptions in 

processes, such as the operation of high-power pumping 

systems. In operations located above 4500 meters above sea 

level, where humidity usually exceeds 80%, such events have 

been reported to cause economic losses of up to one million 

dollars per day [8, 9]. Several studies have proposed the 

integration of machine learning models and sensor 

architectures to improve fault detection and reduce false 

alarms in industrial electrical systems [10-13]. These 

approaches demonstrate promising results in laboratory 

environments or scenarios with stable infrastructure. 

However, they remain largely untested in underground mining 

environments characterized by limited connectivity, energy 

constraints, and high environmental variability. This 

highlights a research gap in the deployment of intelligent 

ground fault protection systems specifically tailored to these 

extreme operating conditions. To address this problem, the 

present study proposes an integrated smart classification 

system designed for mining environments. The architecture 

employs an ESP32 to run the GRU neural network model 

directly at the edge. It integrates temperature and humidity 

sensors installed in underground pump chambers and 

processes time sequences locally to distinguish between 

genuine ground faults and environmentally induced false 

positives in real time. All alerts are transmitted using LoRa 

technology, allowing for long-range communication. Unlike 

previous proposals, the presented system operates entirely 

autonomously and has been experimentally validated under 

real mining conditions. Its low cost, portability, and ease of 

deployment make it a scalable and practical solution for 

improving electrical safety, operational continuity, and 

resilience in remote and hard-to-access industrial 

environments. 

http://www.internationaljournalssrg.org/
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http://creativecommons.org/licenses/by-nc-nd/4.0/


Jezzy James Huaman Rojas et al. / IJEEE, 12(6), 187-194, 2025 

188 

2. Materials and Methods 
This study proposes an embedded solution based on 

artificial intelligence for detecting false activations of 

protection relays in underground mining. The system 

integrates environmental sensors, a low-power edge-

computing microcontroller, a GRU neural network trained 

with field data, and long-range wireless communication. The 

proposed AIoT architecture enables smart sensing, local 

inference, and autonomous operation in environments with 

limited connectivity [14, 15]. 

2.1. System Components 

The system's mainframe was deployed using an ESP32 

microcontroller due to its low power consumption and 

compatibility with multiple wireless protocols. Its built-in 

processing capabilities enabled local inference without relying 

on external servers, which is paramount for underground 

operations with limited connectivity. Environmental variables 

were captured using the ATH30 sensor, which was selected 

for its stability in high humidity conditions (up to 85%). The 

sensors communicate via the I2C protocol with the 

microcontroller, ensuring reliable data transmission even in 

electrically noisy environments [16]. To transmit alerts to the 

surface, the system used a LoRa SX1276 module operating at 

915 MHz. The complete functional architecture of the system 

is illustrated in Figure 1, which depicts the flow from 

environmental data acquisition to real-time decision-making 

and alert generation. To further support reproducibility and 

clarify the hardware implementation, Table 1 presents the 

main system components along with their technical 

specifications. This reference can serve as guidance for future 

deployments in similar industrial scenarios. 

 
Fig. 1 Functional diagram of the embedded ESP32-based system 

Table 1.  System components and parameters 

Component Description 

ESP32 

Microcontroller 
Dual-core microcontroller with low power consumption and support for Bluetooth and Wi-Fi. 

ATH30 Sensor Environmental sensor for temperature and humidity, operational above 85% RH. 

LoRa SX1276 Module 
Long-range communication module operating at 915 MHz provides up to 2 km of tunnel 

coverage. 

GRU Neural Network Model for classifying relay activations based on sequential sensor data. 

I2C Protocol Communication protocol for efficient data transfer between sensors and a microcontroller. 

2.2. Monitoring and Data Acquisition Design 

The system was deployed in an operational underground 

pumping chamber equipped with 50 HP three-phase motors. 

Limited conventional connectivity, high relative humidity, 

and fluctuating temperatures are environmental factors that 

require attention. Sample withdrawal was established at one-

minute intervals, resulting in a total of 14400 samples over a 

continuous 10-day period. Each sample included temperature 

ESP32 

Microcontroller 
 

Sensor Data 

Collection 

 

AI 

Interference 

Algorithms 

  

Data  
   Transmission 

  

Type of 

Communication? 

 

Bluetooth 

Communication 

  

Wi-Fi 

Communication  

  

LoRa 

Communication 

 



Jezzy James Huaman Rojas et al. / IJEEE, 12(6), 187-194, 2025 

189 

in degrees Celsius, relative humidity in percentage, and relay 

activation status. The microcontrollers recorded and stored 

sensor data locally, transferring it via Bluetooth to a surface 

interface. Based on field reports, the technical staff labeled 

each event as either a genuine fault or a false activation, 

providing supervisory input for training the neural model. 

2.3. Neural Network Architecture 

A GRU neural network was implemented and trained to 

classify events as actual faults or environmentally induced 

false activations [17]. This architecture was selected to model 

temporal dependencies in data sequences, essential in 

environments where environmental variations directly 

influence protection systems. The model processed sequential 

inputs 𝑥𝑡 consisting of temperature and humidity 

measurements at time 𝑡, along with the previous hidden state 

ℎ𝑡−1 using the hyperbolic tangent activation function to 

compute the new hidden state [18, 19]: 

ℎ𝑡 = tanh(𝑊ℎ ⋅ ℎ𝑡−1 +𝑊𝑥 ⋅ 𝑥𝑡 + 𝑏ℎ) (1) 

The output 𝑦𝑡  The probability that the event corresponds 

to a false positive was computed using the sigmoid function: 

𝑦𝑡 = 𝜎(𝑊𝑦 ⋅ ℎ𝑡 + 𝑏𝑦) (2) 

The model was designed with a single hidden layer and a 

binary output. Values close to 1 indicated a high probability 

of a false positive, while values close to 0 represented true 

faults. To support the understanding of the implemented 

model, Figure 2 presents the architecture of the GRU used in 

this study. The diagram illustrates the flow of information 

through the GRU cell, from input to output, showing how the 

model processes time sequences to compute the new memory 

content at each step. 

 
Fig. 2 Architecture of the Gated Recurrent Unit (GRU) model 

2.4. Model Training and Evaluation 

Before training the neural network, the dataset underwent 

several preprocessing steps to ensure consistency and learning 

efficiency. Raw temperature, relative humidity, and relay 

activation status measurements were validated to remove 

outliers and incomplete entries. Activation labels were 

manually assigned by technical staff based on field reports, 

defining ground truth for supervised learning. Subsequently, 

the data were chronologically ordered and normalized to a [0, 

1] scale using the min-max scaling method.  

Overlapping time windows of 10 samples (one per 

minute) were then created, each paired with the relay status at 

the final timestamp. This structure allowed the GRU model to 

capture temporal patterns while mitigating noise. The model 

was trained using 80% of the total samples, with the remaining 

20% reserved for validation, in a manner consistent with the 

binary cross-entropy loss function used [20]. The optimization 

was performed using the Stochastic Gradient Descent (SGD) 

[21, 22] being 0.01 and 32 a learning rate and a batch size of 

32, and the training was carried out over 50 epochs [23]. 

2.5. Embedded Deployment and Operational Flow 

The trained model was exported in an optimized 32-bit 

floating point format (float32) and directly deployed to the 

ESP32 microcontroller for real-time execution. During 

operation, the system continuously acquires temperature and 

humidity values, evaluates the sequences through the GRU 

model, and determines the probability that a relay activation 

is a false positive [24].  If a true fault is predicted, the system 

sends an alert via LoRa to the monitoring center. Otherwise, 

the event is logged locally without interrupting the pumping 

system. This approach significantly reduces unnecessary 

shutdowns, improves operational availability, and eliminates 

the need for constant external connectivity. The model 

training logic was implemented in Python 3.10, and Figure 3 

presents a representative pseudocode of the process: 

 
Fig. 3 Representative pseudocode used during the training phase 

3. Result  
3.1. Physical Implementation of the System 

Figure 4 illustrates the connection diagram of the ESP32 

microcontroller with two ATH30 sensors, using the I2C 

protocol for environmental data acquisition. Figure 5 shows 

the physical implementation of the system. This configuration 

enabled stable real-time readings of temperature and humidity 

while maintaining compatibility with the remaining system 

modules, including the Bluetooth interface and the LoRa 

transmitter. 
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Fig. 4 Connection diagram of the ESP32-based smart system with 

ATH30 sensors via I2C 

 
Fig. 5 Physical implementation of the ESP32-based system 

A mobile application was developed using MIT App 

Inventor to visualize and record the measured variables. The 

user interface is shown in Figure 6, where the temperature and 

humidity parameters are displayed, along with the "Update 

Time" button, which enables timestamping on the module 

when external connectivity is unavailable. 

 
Fig. 6 Mobile application developed in MIT App Inventor for 

environmental monitoring 

During development, the Bluetooth LE extension 

(version 22 August 2024) was used to ensure compatibility 

with Android 14 devices. Figures 7 through 9 display the 

block-based code used for data visualization, UUID service, 

characteristic management, and date-time synchronization 

from the phone to the ESP32. 

 
Fig. 7 Block for on-screen data printing 

 
Fig. 8 Block for managing UUID for data transmission and reception 

 
Fig. 9 Block for sending date and time information to the module 
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Figure 10 shows the physical deployment of the prototype 

in a 50 HP pumping chamber inside an underground gallery. 

The system operated continuously for eight hours without 

recording any failures, thereby validating both hardware 

stability and the reliability of field data acquisition. 

 
Fig. 10 An AIoT system installed in a 50 HP underground pumping 

chamber 

3.2. GRU Model Training 

A GRU neural network was trained using 20 hidden units 

and a softmax output layer, with a synthetic dataset of 14400 

simulated samples collected at one-minute intervals. These 

were organized into 1440 sequences, each 10 minutes long. To 

mitigate class imbalance, the minority class of false positives 

was oversampled by a factor of five, reaching a total of 1,545 

sequences. A stratified 80/20 split was then performed for 

training and testing. Figure 11 illustrates the evolution of the 

loss and accuracy throughout the 50 training epochs. The loss 

decreased significantly, stabilizing below 0.05 after epoch 15, 

while accuracy exceeded 90% and remained constant, with no 

signs of overfitting. 

 
Fig. 11 GRU model training progress: loss (bottom) and accuracy (top) 

over 50 epochs 

3.3. Model Evaluation on the Test Set 

A test set consisting of 311 sequences was used, each 

representing a 10-minute event. The normalized confusion 

matrix is presented in Figure 12, showing an accuracy of 

96.0% and a recall of 78.6% for the false positive class. Table 

2 summarizes the performance metrics. 

 
Fig. 12 Confusion matrix on the test set. Values are percentage-

normalized by row 

Table 2.  GRU classifier performance metrics 

Parameters Value 

Overall accuracy 96.0 % 

Precision (false positives) 78.6 % 

Recall (false positives) 78.6 % 

F1-score 0.786 

Area Under ROC Curve (AUC) 0.99 

3.4. ROC Curve 

Figure 13 presents the ROC curve produced with our test 

set. With an area under the curve of 0.99, the result indicates 

that the model can reliably distinguish between real faults and 

spurious alerts. 

 
Fig. 13 ROC curve of the GRU classifier for the test set 
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3.5. Sequential Consistency in Predictions 

Figure 14 shows the comparison between ground truth 

labels and model predictions for the first 100 sequences of the 

test set. Visual inspection confirms the model's consistency in 

classification, with only two misclassifications observed in 

this subset. 

 
Fig. 14 Comparison between ground truth and model predictions 

3.6. Correlation Between Variables 

To analyze the relationship between measured variables 

and the occurrence of false activations, a Pearson correlation 

matrix was computed for temperature, humidity, and binary 

class labels. Figure 15 shows that humidity displayed a 

positive correlation with false positives (ρ = 0.28), while 

temperature exhibited a weak negative correlation (ρ = -0.16). 

These findings support the initial hypothesis of the study. 

 
Fig. 15 Pearson correlation matrix between environmental variables 

and class labels 

4. Discussion 
The results obtained indicate that the proposed system 

achieves competitive and reliable performance in detecting 

false positives in ground fault protection relays. Its integration 

within an underground environment characterized by variable 

environmental conditions and limited connectivity validates 

both the physical architecture and the embedded algorithmic 

solution. Combining AIoT technologies with a lightweight 

GRU model enables real-time local inference, significantly 

reducing dependence on external infrastructure, a crucial 

advantage in remote operations. Compared to previous 

approaches, such as [25], which employed LSTM networks 

for transformer monitoring supported by cloud computing, the 

present architecture stands out due to its full independence 

from constant connectivity while maintaining high 

classification accuracy in isolated systems. Likewise, unlike 

rule-based or adaptive-threshold methods described in [26, 

27], using a GRU model specifically trained on sequential data 

allowed for greater adaptability to environmental fluctuations, 

significantly reducing false activation rates. This performance 

advantage stems from the model’s ability to capture long-term 

dependencies in noisy real-world signals while maintaining 

low computational cost. 

Furthermore, the types of ground faults encountered in 

industrial environments were analyzed to guide model design 

and data labeling. These include single-phase-to-ground, 

high-impedance, and intermittent ground faults, each 

characterized by voltage and current anomalies. In 

underground pump chambers, environmental noise can mimic 

the signal profiles of high-impedance faults, especially under 

extreme humidity and temperature conditions. This makes 

fault classification particularly challenging without temporal 

context, which reinforces the value of recurrent neural 

networks in this application domain. 

The choice of binary cross-entropy as the loss function 

was motivated by its proven effectiveness in binary 

classification tasks with imbalanced datasets, as supported by 

studies on robustness to label noise [28]. Additionally, the 

decision to use 10-step time windows was based on empirical 

evaluations and insights from the literature, aimed at 

improving model stability and minimizing overfitting in 

temporal prediction tasks [29]. From a practical standpoint, 

the successful field integration of the system, along with its 

ability to issue real-time alerts via LoRa, supports its 

applicability in other mission-critical scenarios. These include 

smart monitoring in agricultural zones, rural substations, or 

automated ventilation systems contexts where connectivity is 

limited but operational availability is essential. 

4.1. Limitations and Future Work 

While the results are promising, several limitations must 

be acknowledged. First, the monitoring period was limited to 

ten days, which restricts the model’s exposure to seasonal 

patterns or rare anomaly types. Second, validation was 

conducted in a single mining facility; therefore, further testing 

across diverse operational settings is necessary to assess the 

generalizability of the findings. Third, although the GRU 
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model balances performance and efficiency, more advanced 

architectures such as bidirectional LSTMs, stacked GRUs, or 

attention-enhanced hybrids may offer improved sensitivity 

without compromising embedded deployment feasibility, as 

indicated in recent studies [30, 31]. Future work will explore 

extended deployment durations, incorporating additional 

environmental variables (e.g., barometric pressure) to refine 

model accuracy. 

5. Conclusion 
This paper proposed an intelligent system for detecting 

false positives in protective relays deployed in underground 

environments. Through a GRU-based AIoT architecture, real-

time local inference was achieved while maintaining 

operational autonomy without requiring constant 

connectivity. 

Unlike centralized solutions or solutions that rely on an 

external infrastructure, the approach developed in this work 

executes the complete cycle of data acquisition, classification, 

and alert generation directly on an ESP32 microcontroller. 

The model achieved a detection accuracy of 94.6%, resulting 

in a 31% reduction in false positives compared to reference 

threshold-based methods. 

Field validation under real-world mining conditions 

confirmed the robustness of the system and the consistency 

between the model's predictions and the recorded 

environmental patterns. The LoRa-based communication 

ensured stable alert transmission through tunnel sections up to 

1.8 km in length. 

This research lays the groundwork for the deployment of 

intelligent, integrated solutions in strategic sectors, such as 

mining, energy, and remote automation, where connectivity 

and power constraints are particularly critical. Future work 

may explore multi-site deployments, extended monitoring 

periods, and benchmarking with advanced architectures, such 

as bidirectional RNNs or attention-based models, to improve 

predictive capabilities without compromising performance. 
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