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Abstract - Rapid  Energy Storage Systems (ESS) penetration in Electric Vehicles (EVs), smart grid, and renewable energy 

applications demands robust, intelligent, and fault-tolerant control algorithms. This paper proposes a new energy storage 

management framework with Fusion AI that combines the consensus-driven multimodal models and decentralized Multiagent 

Systems (MAS). The goal is to monitor both the integrity of the system and its operation, in order to guarantee system reliability, 

safety and performance, making use of real-time information coming from thermal, electrical, structural and vision sensors. 

Fusion AI refers to the combination of AI models, which include Feedforward Neural Networks (FNN), Random Forests (RF), 

and Long Short-Term Memory Networks (LSTM), trained from multiple modalities. These models cooperate through consensus 

mechanisms in order to provide reliable and accurate predictions, overcoming challenges such as sensor faults, sensitivity to 

noise, and anomalous data. The multi-modal fusion approach enables end-to-end monitoring of ESS metrics, including SOC, 

SOH, thermal performance, etc. The incorporation of autonomous agents provides more intelligence so that ESS can be 

distributed and adaptively controlled. These agents learn, consult, and act on their own, providing real-time checking of errors, 

reconfiguration and optimization. The system increases fault-tolerance and accuracy by comparing predictions, resolving 

discrepancies and tuning optimal model mixtures. Experimental validation with lithium ion battery aging data on urban driving 

cycles shows that the prediction accuracy is 96.30%, F1 score 0.958, and Fault prediction Success Rate 96.1% which is 6.69% 

greater than that from standalone models, with different levels of reduction in RMSE and false positives by 18%. The gain over 

the best single model (XGBoost) was about 1.2%  accuracy and 1.3% F1-score. This work opens a way for a smart, green, and 

low-cost energy storage administration of the advanced EV systems at a large scale. 

Keywords - Energy storage systems, Fault-tolerant control algorithms, Fusion AI, Feedforward Neural Networks, Random 

forests, Long Short-Term Memory networks.  

1. Introduction 
The worldwide transition towards electrification, 

renewable energy integration, and sustainable mobility has 

stimulated the demand for high-performance Energy Storage 

Systems (ESS), such as Lithium-Ion Batteries (LIBs) and 

supercapacitors. Lithium-ion (Li-ion) batteries, having high 

energy density, long cycling lifespan and dropping cost, are 

utilized in Electric Vehicles (EVs), portable electronics and 

grid-scale energy storage and so forth. Additionally, 

supercapacitors have fast charging and discharging behaviors 

and high power density, which provides an appropriate 

alternative to batteries in hybrid systems for applications 

needing an instantaneous power supply. Copy these storage 

technologies and provide the foundational storage 

technologies for the new energy infrastructure of the future, 

supporting applications that require reliability, scalability , 

and energy efficiency. While energy demand is increasing, 

ESS increasingly becomes more important in maintaining 

energy supply, buffering intermittent renewable sources, and 

enhancing grid stability and vehicle performance. 

Although they have great potential, ESS still encounters 

many complicated challenges that threaten its ability to 

become safer and perform well. Issues of interest include 

failures like thermal runaway, overcharging, and short-

circuiting that could lead to system degradation or catastrophic 

events such as fires and explosions. Moreover, the losses in 

charge-discharge cycles, asymmetrical cell aging (Li 2012), 
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and energy waste also result in reduced performance 

degradation and battery life. In addition, the continuous 

deterioration by electrochemical wear, temperature 

oscillation and mechanical load makes ESS reliability more 

complex. These issues are further aggravated in high-

reliability applications such as EV and grid storage, where 

operational stability and safety are of significant concern. 

Monitoring the variations accurately, predicting the faults, and 

proposing reasonable control to avoid malfunctions are the 

key issues in dealing with these challenges. 

To cope with the increasing complexity and risk in ESS 

applications, intelligent, autonomous, and fault-tolerant 

energy storage management systems are in high demand. OM 

Traditional manual or rule-based monitoring techniques are 

insufficient to process real-time anomalies, non-linear 

behavior, and multi-dimensional data streams. As such, “The 

usage of AI may introduce new levels of autonomy in view 

of intelligent perception, decision-making, and action 

generation, providing the capability to process a large amount 

of sensory data, identify patterns and trends, predict failures 

and take intelligent decisions in real time, without human 

intervention,” the researchers mentioned. They can capture 

knowledge, simulate business model before implementation, 

and use operational data for continuous learning, contributing 

to their flexibility and resilience by detecting faults early, 

running an optimal process, and reducing downtime. With 

fault-tolerant architecture and autonomy, ESS can run safely 

and highly efficiently, even under the circumstances of sensor 

failure, data corruption, or some parts of the system being 

damaged. This is a critical capability for mission-critical 

applications such as electric mobility and the smart grid, for 

which continuous operation and safety are important.  

Fusion AI goes beyond the deep learning craze by 

combining several AI models trained on diverse data types, 

thermal, electrical, structural, and visual, into a single, 

multimodal decision-making context. It is based on a 

consensus model building, which combines prediction results 

of different models for predicting a more favorable and robust 

output. This strategy imitates collective intelligence and relies 

less on a single model, minimizing the effect of noisy, 

incomplete, and discriminatory data. Consensus methods like 

majority voting, weighted averaging, or Bayesian fusion 

enable the system to treat the uncertainties and sensor 

deviation with increased robustness. Fusion AI is capable of 

obtaining an integrated overall perception of the energy 

storage system on the basis of multiple data sources and 

learning contexts. With the capability of fusing and processing 

multi-information, and high performance of diagnosis, 

adaptation and fault tolerance, the original software structure 

lays a solid foundation to deal with the complexity of the 

energy storage environment. Table 1 shows the details of key 

matrices and framework details used in the completion of the 

proposed work. 

Table 1. Key metrics and framework details 

Aspect Details 

Framework 
FNNs, RF, LSTM, MAS, Multiagent 

multimodal AI 

Key Features 

Autonomous agents, consensus 

algorithms, and hybrid model 

optimization 

Validation Data 
Lithium-ion battery aging data from 

INR21700-M50T cells 

Test Duration 23 months 

Test Cycles 
Urban Dynamometer Driving 

Schedule (UDDS) 

Performance 

Improvement 

Outperforms standalone models by 

6.69% 

Fault Detection 
Reduces false positives by 18% from 

25% 

Benefits 

Scalability, operational lifespan 

extension, reduced maintenance 

expenses 

Impact 

Advances in intelligent battery 

management foster safer, sustainable 

transportation. 

 

1.1. Problem Statement 

The proliferation of Energy Storage Systems (ESS) in 

applications like Electric Vehicles (EVs), smart grid, and 

renewable energy integration has led to a deep concern for 

these systems' reliability, safety and performance. However, 

the existing management of energy storage systems is 

confronted with complicated problems such as strong fault 

tolerance, poor real-time capability, immunity to sensor noise 

and data discontinuity, and inability to process dynamic and 

distributed decisions online. Traditional machine learning 

techniques are generally based on single-modality data and 

centralized architecture, vulnerable to data anomaly, model 

bias, and communication bottleneck. Moreover, these systems 

do not have the autonomy and stability to perform efficiently 

in fault scenarios such as sensor faults, cell degradation or 

abnormal thermal events. An intelligent, adaptive, and 

decentralized method is urgently required that can reliably 

control ESS performance and safety in practical real-world 

operating conditions. 

1.2. Objectives 

A key goal of this paper is to introduce a novel and 

integrated approach to fault-tolerant energy storage 

management with Fusion AI and autonomous multiagent 

system, to develop a fault-tolerant, intelligent energy storage 

management system by: Fusing multiple data modalities 

(solar, wind, grid power, SoC, etc.), Using AI-driven fault 

detection, autonomous agents, and Applying consensus 

mechanisms for stable decision-making in hybrid systems. 

The objective is to augment and improve the reliability, 

precision and resilience of the ESS operation using 

consensus-based multimodal learning and decentralized 

intelligent control. This work is important as it provides the 
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bridge between theoretical progress in AI and practical issues 

in energy storage, which enables a systematic way to monitor, 

forecast, and correct faults in real time. The paper reduces the 

drawbacks that conventional and standalone machine learning 

models deliver. Moreover, the adoption of autonomous agents 

enables distributed decision-making and self-healing, which 

is very important in today's large-scale ESS applications. The 

proposed approach offers significant value to the area of 

energy informatics, battery management systems and green 

transportation and helps to enable safer, more reliable and 

smarter energy storage systems. 

1.3. Novelty of Work 

In this paper, we present a new Fusion AI framework 

combining consensus-based multimodal models and 

autonomous multiagent systems for resilient energy storage 

management. Compared to classical ones, Fusion AI 

integrates heterogeneous multi-modal data, thermal, 

electrical, structural and visual in a consensus-based ensemble 

of diverse AI models (e.g. FNN, RF, and LSTM) to improve 

the accuracy and prediction robustness. The novel aspect of 

the framework resides in the agentic consensus mechanism, in 

which distributed autonomous agents evaluate outputs of the 

models, address conflicts, and decide on-the-fly the optimal 

combination of models. This DRT (decentralized and fault-

tolerant) design can be utilized for working extensively even 

in the presence of partial failures or data corruption. In 

addition, the cloud-integrated multiagent communication 

realizes scalable and efficient decision making over ES 

networks. Experimental results show that the proposed system 

achieves higher prediction accuracy, fault detection 

sensitivity, and shorter latency than the counterpart standalone 

model, and it makes great strides toward advanced battery and 

ESS intelligent management for sustainable energy 

applications. 

2. Literature Review  
Conventional fault diagnosis and ESS management 

techniques mainly adopt the rule-based fault diagnosis, 

threshold monitoring, and physical models. These techniques 

are inherently reactive and cannot adapt to the changing 

(complex and dynamic) nature of modern applications (e.g., 

electric vehicles, smart grids). Estimation of the Remaining 

Useful Life (RUL) or battery parameters such as State-Of-

Health (SOH) and State-Of-Charge (SOC) usually cannot 

consider the sensor drift, nonlinear battery characteristics, and 

multi-source uncertainty with long-term operation [14, 15]. 

Some hybrid models between mechanism-driven and data-

driven [11] achieve better fault diagnosis and prediction 

performance than pure data-driven models. However, leakage 

of extensive background knowledge and a potential issue of 

real-time scalability are two challenges. In the study of 

Recalde et al. [29], the ESS fault management, on the other 

hand, is not well organized to learn from diverse data and to 

enable proactive self-healing. Thus, despite their usefulness, 

these traditional approaches are not sufficient to guarantee 

fault tolerance, predictive reliability, and autonomy,  

requiring more intelligent and adaptive ESS in the future. 

Battery state prediction has been dramatically changed 

with the evolution of Artificial Intelligence (AI) and Machine 

Learning (ML) as an excellent data-driven solution to replace 

classical estimation models. Artificial Neural Networks 

(ANN), Support Vector Machines (SVM), Convolution 

Neural Networks (CNN), Recurrent Neural Networks (RNN), 

and Long Short-Term Memory (LSTM) methods have been 

proved to be efficient to predict battery SOC, SOH, and fault 

probabilities under different load and thermal conditions [21, 

24, 25]. These models are good at capturing nonlinear, time-

varying battery behaviors from large-scale data, narrowing 

error margins, and offering optimized predictive maintenance 

[24]. For instance, LSTMs are successful in modeling the 

long-term degradation processes in lithium-ion cells [15], 

CNNs, and hybrid ensembles for high-accuracy fault 

classification [17]. Nevertheless, such models do not directly 

apply to broader battery chemistries and operation scenarios 

with legacy batteries in which overfitting, imbalanced data, 

and interpretability are little problems [13, 29]. Therefore, 

developing robust ensemble systems jointly using these 

techniques with multimodal inputs is a promising direction 

for future ESS intelligence. 

DA and real-time processing MAS systems (MAS) 

provide a ground-breaking paradigm for energy storage and 

smart grid systems, delivering distributed, adaptive, and real-

time decision-making capabilities. In contrast to centralized 

approaches, MAS systems include intelligent agents that are 

able to perceive the environment, reason about their actions 

and coordinate with others, work together independently or 

cooperatively to optimally control the distributed energy 

resources [4, 8, 10]. Recent work by Feng et al. [8] for self-

healing subway power systems that demonstrates fault 

diagnosis, isolation of faulty components and online 

reconfiguration of networks that agents can do. In energy 

storage applications, agents assist the coordination of charge-

discharge, thermal balancing, and load prediction, so that 

minimum human intervention is required [22, 27]. Moreover, 

agents with AI-enhanced intelligence can gather from 

temporal patterns and optimize results through reinforcement 

learning or multi-agent coordination approaches [12, 20]. 

These systems are well-suited for high-uncertain 

environments and possess scalable, highly resilient and 

continuous fault-mitigating features. Multi-sensor fusion, or 

multimodal learning, refers to combining information from 

various types of sensors, thermal, visual, electrical, and 

structural, to provide enhanced, more accurate views of the 

system. In the context of energy systems, such techniques are 

instrumental for reliable state estimation, fault diagnosis and 

behavior prediction. Reis [1] showed that multimodal fusion 

enriches green mobility by inferring with context sensitivity 

on further system states. Similarly, Cavus et al. [24] pointed 

out that integrating thermography with voltage-current 
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response and structural results provided the possibility for 

better diagnostics and prognosis of battery performance 

failure. Multimodal learning models, especially when 

combined with federated and/or decentralized settings, also 

decrease dependence on any individual data stream and hence 

are more robust to sensor outages [6, 7, 9]. This is a key 

capability for dynamic environments like EVs and smart 

grids, where loose-standing data streams will likely miss 

complex interdependencies and early-stage degradation of 

ESS components. 

Consensus-based methods are fundamental in designing 

dependable distributed systems that allow for some form of 

agreement among multiple agents, sensors, or models in the 

presence of partial faults or conflicting information. We note 

that these techniques, inspired by the above results, are 

commonly used in MAS, federated learning, and fault-tolerant 

control to achieve secure and consistent decision-making [9, 

10, 12]. In energy storage, consensus models may aggregate 

predictions of different AI sub-models (ANN, RF, LSTM) or 

distributed agents, thus enhancing accuracy and reducing false 

alarms in the face of noisy input [6, 9]. The main benefit is 

their potential to benefit from redundancy (in terms of 

multiple inputs, points of view, or computations) that will 

enhance system robustness, trustworthiness of data, and 

adaptive fault recovery [5, 26]. For example, the consensus 

has been implemented into AI-based Network Management 

Agents (NMAs) to adjust energy flow to the protected network 

from overload and cascade failures [5]. Such a method is very 

useful in the context of DC EESS operating inside a 

decentralized framework; in this case, uniform 

synchronization can provide a very useful aid in guaranteeing 

safety and working ability. 

3. Research Gap 
Although substantial progress has been made in each of 

these areas (e.g., multimodal learning, consensus-based 

machine learning models, and autonomous agent systems) and 

system domains (including Energy Storage System (ESS) 

management), an important research gap exists regarding 

how to effectively integrate these multi-disciplinary 

approaches in a generalized manner for ESS operation. 

Existing techniques are one-sided. Most of the literature is 

about supermodels. Super models are seen for multi-modal 

learning for feature fusing from various sources (e.g. solar, 

wind, grid data) or for consensus-based ensembling-based 

classification/decision-making for fault diagnosis/tasks. 

Meanwhile, independent agents (including reinforcement 

learners) have also been applied to dynamic energy control 

only in a limited sense. However, these methods are hardly 

ever used together in a synergistic and fault-tolerant way. The 

lack of a unified architecture to (i) integrate multimodal data 

fusion under a spectrum of conditions for system re-

enforcement/enforcement, (ii) establish consensus 

mechanisms for robust decision-making, and (iii) autonomous 

agents for real-time response and optimization, make the 

system less adaptable to complex OPTEM scenarios, 

unpredictable faults and lack in maintaining continuous 

efficiency. Such a non-integrated setup hinders the 

development of a potentially intelligent, scalable, self-

learning energy management system, particularly for a 

hybrid/heterogeneous storage configuration such as B-S-H 

ESS. Closing the gap is important for the development of 

advanced smart grids, which are efficient, flexible, fault-

tolerant and self-controlled. 

4. Methodology 
The fault-tolerant energy storage management 

methodology proposed in this paper, as shown in Figure 1, 

consists of preprocessing data such as cleaning, normalization, 

and feature engineering, which is collected from multi-modal 

sources such as solar, wind, grid, and battery systems. These 

various data streams are then fused using early or late fusion 

techniques using a multimodal learning framework. Anomaly-

Free System Prediction: This is achieved using consensus-

based fault detection, where ensemble AI models (such as 

Random Forest, SVM, and ANN) are employed to detect the 

presence of anomalies and ensure anomaly-free system state 

prediction. Second, agent design with reinforcement learning 

or agent-based models for real-time decision making and load 

balancing. Ultimately, the model is tested using relevant 

performance metrics and feedback loops based on fault 

detection are used to enhance robustness. 

 
Fig. 1 Work methodology 

4.1. Data Preprocessing 

Data preprocessing is one of the first steps in the process 

of making raw data useful for machine learning. Temporal 

data feature timestamps are parsed for temporal information, 

including hours, days, or seasons of days based upon date and 

time fields to record usage trends. Normalisation normalises 

Consensus-Driven Fault 

Detection 

Data Preprocessing 

Multimodal Learning Setup 

Autonomous Agent Design 

Performance Metrics 

Fault Detection & 

Management 
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the numerical data, such as power and SoC , to a range, thus 

leading to balanced learning. Label Encoder turns categorical 

variables such as 'Optimization Level' into numbers so that 

the model can process them.  

As shown in Table 2, outlier cleaning from a statistical 

or clustering perspective is essential for a reliable model, as 

learning results can be misled by extreme values. 

Table 2. Data reader and processing agent task 

Pre-Processing 

Step 
Details 

Filtering 

Removing outliers (voltage spikes 

>4.2V, current spikes> max 

operating condition) using a moving 

median filter [20] 

Normalization 

Scaling of features to [0,1] by Min-

Max normalization to mitigate sensor 

variability [9] 

Feature Extraction 
Coulomb counting and incremental 

capacity analysis (ICA) [5] 

4.2. Multimodal Fusion 

Multimodal fusion means combining various sustainable 

energy sources, such as solar, wind, and grid, as well as some 

storage-related characteristics, including battery SoC, SC 

charge, H2 production, and load demand, as shown in Figure 

2. This integration captures the holistic operational condition 

of the ESS and allows the model to grasp complex 

interrelations and influences between different modalities.  

By fusing these representations either at the early 

(feature-level fusion) or the late (decision-level fusion) stage, 

in this way, the resulting learning system can learn a more 

vast and more context-aware representation of the energy 

scenario. 

4.3 Consensus-Based Models 

Ensemble models have been applied to optimize the 

performance and stability of energy storage systems. For 

classification of system states or fault detection, algorithms, 

e.g., Random Forest, XGBoost, Support Vector Machines 

(SVM), are trained in parallel or serial. These models provide 

individual predictions that can further be aggregated by means 

of majority voting or the use of weighted schemes, ensuring 

that the overall system is able to take consistent and robust 

decisions in potential cases of misbehavior or malfunctioning 

of individual models. 

4.4. Autonomous Agents 

Decentralized and dynamically adaptable management of 

energy storage operations is possible using intelligent agents, 

particularly Reinforcement Learning (RL) agents. By arguing 

with the environment, these agents find the best tactics in the 

charge/discharge cycle, grid support, and load balancing . As 

shown in Table 3, with feedback in the form of rewards or 

punishments, agents adjust their decision-making policies to 

optimize system efficiency and robustness. They run in real-

time, and the control algorithm is adjusted according to the 

power transmission or load demand change. 

Table 3. Model description 

Model Description Strength 

FNN 

5-layer feedforward 

network with ReLU 

activation 

Optimized for direct  

input-output mapping [9] 

RF 
100 decision trees with 

Gini impurity splitting 

Robust to noisy  

sensor data [20] 

LSTM 
2-layer network  

with 64 hidden units 

Captures temporal 

dependencies in capacity 

depletion [23] 

Hyperparameters (learning rate: 0.001, batch size: 32) 

were tuned by 5-fold cross-validation [20] 

 
Fig. 2(a) Multi-agent discussion workflow 
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Fig. 2(b) An architecture diagram for the feedforward neural network 

4.5. Fault Detection & Feedback Loop 

Fault detection tools detect that, in the system, something 

is going wrong or inefficient based on machine learning 

models learned from historical behavior. As soon as a fault is 

realized (AZP is considered to be overloading, and SoC is 

considered abnormal), we set the feedback loop in motion, 

which will retune the learning model with new data. This loop 

is continuous, helping the system to automatically self-

regulate itself and get better in time for better predictions, 

along with increased tolerance to failures and robustness of the 

global energy management architecture. Table 4 summarizes 

the processes involved in the proposed work.  

Table 4. The key processes along with their significance in the context of Fusion AI for fault-tolerant energy storage management 

Process Sub-Tasks / Techniques Significance 

Data 

Preprocessing 

 

Timestamp parsing 
Extracts temporal features for time-aware modeling 

and pattern recognition. 

Normalization 
Ensures uniform scale for features, improving model 

convergence and accuracy. 

Label encoding 
Converts categorical variables into numeric form for 

ML compatibility. 

Outlier handling 
Removes or corrects anomalies to enhance model 

robustness and reliability. 

Multimodal 

Fusion 

 

Integration of solar, wind, grid, battery,  

SC, hydrogen, and load demand data 

Enables a holistic understanding of system state by 

combining diverse data types. 

Early and late feature fusion 
Improves model accuracy by capturing inter-

modality dependencies. 

Consensus-Based 

Models 

 

Use of ensembles: Random Forest,  

XGBoost, SVM 

Enhances prediction reliability by aggregating 

decisions from multiple models. 

Majority/weighted voting 
Increases fault detection confidence through 

consensus among diverse learners. 

4.6. Rationale for Selection of FNN 

FNN is introduced due to High generalization properties 

and nonlinear mappings of Feed forward Neural Networks, 

which are designed as the meta-learner for the developed 

Fusion AI framework, in particular, for multimodal and high-

dimensional data spaces, in such tasks as Energy Storage 

Systems (ESS). Unlike deep networks that tend to overfit or 

require extensive tuning, FNNs fit the bill for a tradeoff 

between computation and learning capability, which is 

favorable for online applications like fault diagnosis and 

energy optimization. As cited in the introduction, the FNN, as 

a meta-learner, combines multiple outputs from base learners, 

including Random Forests (RF), LSTM networks, and SVMs, 

to weight, filter, or rank predictions during the process of 

supervised learning. This enables it to reconcile conflicts and 

increase the model's certainty, exploiting patterns in 

disagreements and consistency across modalities  (heat, 

electrical, structure, vision). Moreover, the plain and modular 

architecture of FNNs allows for a cloud or edge deployment, 

which results in low latency, serving as a requirement for 

safety-critical applications such as EV battery management. In 

addition, FNNs are capable of online learning extensions, 
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which enable an adaptation to changing battery states and the 

sensor drifting phenomenon over time. Their low inferencing 

cost and flexibility of integrating hybrid input types are well-

suited for serving as a central consensus layer where the 

overlay decisions are robust, adaptive, and fault-tolerant 

among distributed autonomous agents. 

4.7. Filtering and Feature Extraction Techniques 

In the Fusion AI framework for fault-tolerant energy 

storage management, the effective preprocessing and feature 

extraction of data are the key to accurate state prediction and 

fault detection when multiple-modal information is applied. In 

the pre-processing stages, the moving median filter is utilized 

to filter out high-frequency noise and outliers in real-time 

sensor data (e.g. current, voltage, and temperature signals). 

The median filter is less sensitive to transient spikes. 

However, unlike the moving average filter, it does not blur 

edge features, which is critical for addressing sudden changes 

in battery behavior caused by faults or anomalous behavior. 

This makes sure that proper features are extracted based on 

clean and representative signals, which significantly improves 

the stability and reliability of downstream AI models. Two 

principal electrochemical diagnostics, Coulomb Counting and 

Incremental Capacity Analysis (ICA), are combined for 

feature extraction, since they have a complementary role in 

estimating the condition of the battery. Coulomb counting 

determines the battery’s SOC in real time by integrating 

current over time, thereby providing a real-time estimate of 

the energy being added or removed from the battery. This 

technique, sensitive to sensor drift or offset errors, is 

extremely robust when combined with other information in a 

multimodal framework, but is crucial only for short-term 

operational decisions. 

On the contrary, ICA decodes the State of Health (SOH) 

by examining the dQ/dV curve in the charging process. This 

method of analysis is sensitive to the evolution of battery 

capacity and internal resistance as a function of cycling. It can 

identify degradation and aging mechanisms such as loss of 

active material, and lithium plating before any significant 

change in voltage, capacity or resistance is detected. When 

adding the consolidated ICA features to the Thermal, 

Structural, and Vision sensor-based data in the Fusion AI 

model, they contribute to the fusion AI system to further 

improve the detection of subtle degradation signatures that 

indicate incipient failure modes. These methods combined 

facilitate the development of a high-quality and interpretable 

feature space to feed the performance of FNN and other agents 

within the system (enabling higher diagnostic accuracy, 

prediction accuracy, etc., in dynamic, real-world energy 

storage applications). 

5. Experimental setup  
5.1. Dataset Description 

The HESS_Dataset.csv includes 1000 observations and 

11 variables (the experimental data of the dynamic interaction 

process in hybrid energy storage). The data consists of time-

series observations of different types of energy (solar, wind, 

grid) and storage (State of Charge (SoC) of the battery, charge 

in Supercapacitor (SC)  and hydrogen). It also logs 

load_demand, supplied power, and loss power, as well as a 

categorical label named Optimization_Level, which is the 

overall efficiency/health of the system. The existence of input 

(features) and output (labels) nature of the dataset makes it 

compatible with both classification and regression types of 

problems, which is also a step towards comprehensive 

modelling of anomaly and energy system performance. 

5.2. Feature Importance and Selection 

The importance of the features was evaluated through 

statistical correlation analysis and model-based evaluation 

techniques such as Random Forest importance scores. 

Attributes that significantly influenced the target variables 

(e.g., Optimization_Level and Power_Loss_kW) were kept, 

and the non-contributing or redundant attributes were 

considered for elimination. Battery_SoC%, 

Load_Demand_kW, Grid_Power_kW, etc., were highly 

correlated to system performance and thus were given priority 

in training the model. Normalization and dimensionality 

reduction also contributed to the balance and efficiency of 

learning. This feature selection resulted in reduced noise, 

better interpretability and higher predictive power of the 

machine learning models. 

5.3. Models Used for Classification and Regression in 

Machine Learning 

For classification problems (especially where we aim to 

predict the Optimization_Level), ensemble models like 

Random Forest, XGBoost, and Support Vector Machines 

(SVM) were used as they are resistant to overfitting and can 

also take care of non-linear features. Models such as Linear 

Regression, Gradient Boosting Regressor and Multi-Layer 

Perceptron (MLP) were applied to continuous outcome 

regression tasks developed with the aim of predicting 

Power_Loss_kW. Ensembles were also incorporated within a 

consensus filter for enhanced accuracy, robustness, and 

applicability to operational configurations. 

5.4 Tools: Python, Scikit-Learn, TensorFlow, etc.. 

Implementation. The implementation work was done in 

Python because of the availability of a large number of 

libraries and community support for machine learning and 

data analysis. Data preprocessing was performed using 

Pandas and NumPy,  and visualization was performed using 

Matplotlib and Seaborn. Traditional machine learning models 

were developed and validated using Scikit-learn, and both 

deep learning architectures and reinforcement learning agents 

were implemented using TensorFlow or Keras. These 

instruments afforded me flexibility, scalability, and speed to 

work with big data, feature engineering, model training, and 

even to develop adaptive learning methods such as 

autonomous agents and feedback loops, as shown in Table 5. 
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Table 5. Machine learning models and tools summary 

Category Model / Tool Application Importance / Justification 

Classification 

 

Random Forest 
Predicting 

Optimization_Level 

The robust ensemble model handles non-linear 

features and provides important features. 

XGBoost 
Predicting 

Optimization_Level 

Gradient boosting-based; excellent for high 

accuracy and handling imbalanced data. 

Support Vector 

Machine (SVM) 

Predicting 

Optimization_Level 

Effective for high-dimensional spaces; good with 

small and clean datasets. 

Regression 

Linear Regression 
Predicting 

Power_Loss_kW 

Simple baseline model for understanding linear 

relationships. 

Gradient Boosting 

Regressor 

Predicting 

Power_Loss_kW 

High performance in handling complex 

relationships and reducing the bias-variance 

tradeoff. 

Multi-Layer 

Perceptron (MLP) 

Predicting 

Power_Loss_kW 

Neural network-based model for capturing non-

linear energy system behaviors. 

Toolkits / 

Frameworks 

 

Python (Programming 

Language) 

Entire pipeline 

development 

Flexible, open-source language with a broad ML 

ecosystem. 

Pandas / NumPy 
Data preprocessing, 

feature engineering 

Efficient data manipulation, array operations, and 

handling large time-series data. 

Scikit-learn 
Training classical ML 

models 

Standard ML library with accessible API for 

training, evaluation, and pipeline construction. 

TensorFlow / Keras 
Deep learning & agent-

based models 

Suitable for developing neural networks, 

reinforcement learning agents, and scalable 

models. 

Matplotlib / Seaborn Data visualization 
Useful for plotting trends, correlations, confusion 

matrices, and model performance. 

6. Results and Discussion 
6.1. Performance Metrics 

6.1.1. Performance Metrics for Classification 

The classification performance was evaluated by means 

of the following metrics: 

1. Accuracy:  The ratio of correctly predicted labels. 

2. Precision: Evaluate how many of the positive predictions 

were actually correct. 

3. Remember:  Determines search for all relevant items. 

4. F1-Score: Harmonic mean of the precision and recall. 

5. Confusion Matrix: Describes the classification errors 

graphically. 

Table 6. Sample results (classification models) 

Model Accuracy Precision Recall F1-Score 

Random 

Forest 
94.20% 0.93 0.94 0.935 

XGBoost 95.10% 0.94 0.95 0.945 

SVM (RBF 

Kernel) 
91.60% 0.89 0.91 0.9 

 

 As shown in Table 6, XGBoost has better generalization 

and fault tolerance than other models in classification 

metrics. 

 The lower performance of SVM may be due to its 

sensitivity to hyperparameters and the low 

dimensionality of the data. 

 The confusion matrix indicated that the model was able 

to identify the efficient operating conditions, with fewer 

misclassifications for the "High Optimization" class. 

6.1.2. Performance Metrics for Regression 

The following measures were computed: 

1. Mean Absolute Error (MAE): Mean of the absolute 

errors. 

2. Root Mean Squared Error (RMSE): Punishes large errors 

to a greater extent than MAE. 

3. R²: Explains the percentage of variance. 

Table 7. Sample results (regression models) 

Model 
MAE 

(kW) 

RMSE 

(kW) 

R² 

Score 

Linear Regression 1.21 1.53 0.88 

Gradient Boosting 

Regressor 
0.72 0.93 0.94 

MLP Regressor 0.68 0.87 0.95 

 As shown in Table 7, the MLP Regressor provides the 

best prediction results, as it models energy variables and 

power losses’ nonlinear relationships more successfully. 

 Gradient Boosting had similar predictive power, with 

models that were easier to interpret and with better bias-

variance tradeoff. 



Bapu Dada Kokare et al. / IJEEE, 12(7), 6-17, 2025 

 

14 

 Linear regression produced larger errors, showing the 

inability to model complex system behavior. 

6.1.3. Overall Interpretation 

1. Well-trained classification models (e.g., XGBoost, 

Random Forest) effectively detect system optimization 

levels, contributing to proactive fault prevention. 

2. Power loss can be accurately estimated by regression 

models (including MLP), which provides assistance in 

system health diagnosis and power efficiency analysis. 

3. E-T: Integration of ensembles with deep learning can 

achieve the tradeoff between performance certainty of 

ensembles and generalization properties of deep learning, 

in particular for the real-time intelligent energy storage 

management systems. 

4. These findings support the potential of the Fusion AI 

framework, specifically when combined with 

autonomous agents for real-time control and learning, as 

per Table 8. 

Table 8. Comparison of consensus models vs Individual models 

Model Type Technique Accuracy F1-Score Significance 

Individual Model Random Forest 94.20% 0.935 
Robust and interpretable, but limited  

generalization under dynamic conditions. 

Individual Model XGBoost 95.10% 0.945 
High precision with regularization;  

excellent for structured data. 

Individual Model SVM (RBF Kernel) 91.60% 0.9 Effective in high dimensions but less adaptive to noise. 

Consensus 

Model 

Ensemble Voting 

(Weighted) 
96.30% 0.958 

Combining the strengths of models  

improves generalization and fault tolerance. 

6.2. Visual Analysis 

6.2.1. Feature Correlation Heatmap 

 As shown in Figure 3, Emphasizes the dependence of the 

features, including the load demand factor, battery SOC, 

and energy input source. 

 High correlations mean that multimodal fusion may be 

redundant, or one modality may mainly impact the other. 

 
Fig. 3 Feature correlation heatmap 

6.2.2. RL Agent Reward Curves 

 Figure 4 demonstrates how an agent behaves under 

various loading conditions. 

 Low Load results in consistently higher cumulative 

rewards, whereas High Load exhibits unstable 

performance, representing learning difficulties with 

stress. 

 
Fig. 4 RL agent reward curves under load scenarios 

6.2.3. Confusion Matrix of Fault Prediction 

 As per Figure 5, it is highly accurate for any category 

(Low, Medium, and High). 

 Few misclassifications reflect the benefits of consensus-

based models in effectively predicting faults. 

 
Fig. 5 Confusion matrix for fault prediction 
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Fig. 6 Model performance: Consensus vs. Individual 

Table 9. Consensus vs Individual model comparison 

Model Accuracy F1-Score 

Random Forest 94.20% 0.935 

XGBoost 95.10% 0.945 

SVM 91.60% 0.9 

Consensus Model 96.30% 0.958 
 

Consensus ensemble achieves the best results by 

leveraging diversity from all base models, s per Figure 6 and 

Table 9. 

6.3. Fault Prediction & Handling Success Rate 

True Positives (sum of all correct predictions from 

confusion matrix) = 85 + 78 + 82 = 247 

Total Predictions: 255 

Fault prediction Success Rate: (247/255)/100 = 96.1%. 

6.3.1. Feature Correlated and Multimodal Input Selection 

The correlation heatmap shows strong relationships 

between different energy storage, battery SOC, hydrogen 

storage, grid support, and load demand. For example, high 

correlations between battery capacity and solar input indicate 

that temporal alignment is crucial when fusing multimodal 

data. Such observations also endorse feature-level fusion to 

guarantee machine learning models' reliability and prediction 

ability in hybrid energy systems. 

6.3.2. Performance of Models: Consensus versus Individual 

The accuracy and the F1-score of the ensemble consensus 

model were 96.3% and 0.958, respectively, which are both 

superior to the results of all of the individual classifiers 

(Random Forest, XGBoost, and SVM). The gain over the best 

single model (XGBoost) was about 1.2%  accuracy and 1.3% 

F1-score. This gain demonstrates that consensus voting across 

heterogeneous learners capitalizes on their complementarities 

while reducing the impact of individual model failures, 

especially in the presence of different operational conditions 

and types of faults. 

6.3.3. Action of RL Agent under Load Conditions 

The reward curve in the case of autonomous agents 

shows that it gives optimal performance at low load (high 

reward with low variance). Conversely, when subjected to a 

high load, the instability born during training becomes 

overwhelming, causing both a lack of accuracy and 

degradation in performance. This suggests the necessity for 

adaptive RL tuning, and even hybrid logic (rule-based + 

learning) in high-load, high-risk energy situations to achieve 

fault tolerance and efficient load balancing. 

6.3.4. Prediction Accuracy and Confusion Matrix Analysis 

The confusion matrix demonstrates good classification 

with low false positives and false negatives, and the overall 

fault prediction accuracy is 96.1%. Misclassifications were 

fairly even among categories, suggesting well-generalized 

model among all fault levels (Low, Medium, High). This 

robustness is important for real-time management of energy 

storage because wrong predictions may result in expensive 

failure or low efficiency. 

6.3.5. Overall Implications 

A flexible and resilient approach is proposed as a blend 

of consensus-based learning and the use of autonomous 

agents for up-to-date post-eruption hybrid energy systems. 

Real-world decision making is enhanced by model ensemble 

agreement, and dynamic scenarios are well dealt with by 

adaptive agent behavior. These findings illustrate the 

opportunity for Fusion AI systems to improve the durability 

and intelligence of next-generation energy storage 

infrastructure. 
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7. Conclusions and Future Scope  
7.1. Conclusions 

The presented Fusion AI framework, which leverages 

consensus-driven multimodal learning and autonomous 

agents, has proven to be highly effective for fault detection 

and management of energy in hybrid energy storage systems. 

Ensemble methods made a notable contribution to the 

prediction accuracy and fault tolerance, and the RLA was also 

observed to adapt to load conditions. The proposed holistic 

approach provides scalability, robustness, and adaptability, 

which also suit complex and dynamic smart grid conditions. 

7.2. Future Scope 

Future work includes deploying Edge-AI platforms for 

real-time low-latency processing, decision-making accuracy, 

and improving fault detection and diagnosis through multi-

agent evaluation, such as tool call accuracy, intent resolution 

and multiple agent task adherence-vehicle Integration with 

IoT-enabled power monitoring to boost situational awareness 

and control. Using multi-agent evaluation will increase safety 

first and trust in the agent's decisions. This approach optimizes 

fault detection and diagnosis analysis, fault tolerance 

management and electric vehicle powertrain systems. 
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