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Abstract - This research addresses the critical need for accurate stress detection using speech signals, leveraging Machine 

Learning (ML) approaches applied to two distinct datasets: RAVDESS and TESS. Stress detection is pivotal in mental health 

monitoring and human-computer interaction; however, existing solutions often fail to generalize across diverse datasets due to 

the varying emotional complexities. The research gap lies in developing robust ML frameworks capable of handling nuanced 

emotional features, especially from datasets like RAVDESS, which exhibit significant overlap in stress-related signals. 

Comprehensive audio features, including Zero Crossing Rate (ZCR), Root Mean Square Energy (RMSE), Spectral Centroid, 

Spectral Bandwidth, Spectral Contrast, Spectral Rolloff, and Chroma features, are extracted to capture critical frequency and 

energy patterns. The study employs a suite of ML classifiers such as Random Forest (RF), Logistic Regression (LoR), Gradient 

Boosting (GB), K-Nearest Neighbors (KNN), Naïve Bayes (NB), and Support Vector Machines (SVM) with various kernels, along 

with an ensemble Voting Classifier. Among the models, SVM (linear) and Voting Classifi er performed best, achieving 100% 

accuracy on TESS and up to 88.97% on RAVDESS. In contrast, NB showed lower performance, particularly on RAVDESS, with 

an accuracy of 72.06%. These findings reflect the sensitivity of model performance to dataset complexity and class separability. 

The significance of this study is in highlighting the impact of dataset characteristics on ML performance, providing a framew ork 

for feature extraction and model selection. Enhanced results confirm the necessity of tailored approaches for stress detection, 

paving the way for more sophisticated, dataset-aware methodologies to expand accuracy and reliability in real-world 

applications. 

Keywords - Machine Learning, Stress detection, RAVDESS, TESS, Voting Classifier, K-Nearest Neighbors, Gradient Boosting, 

Support Vector Machines. 

1. Introduction 
Emotions are inner reactions that people experience in 

response to an event or scenario. Emotions are classified as 

happy, angry, sad, excited, peaceful, or neutral [1]. Emotions 

are an essential topic in communication. People can express 

their emotions through facial expressions and conversation. 

Since body language is often difficult to see or interpret, 

understanding emotions through sound becomes more crucial 

[2]. Humans communicate mostly through speech. Voice 

recognition, like speaker identification, is based on the 

analysis of audio signal data, as well as the construction of 

sound models, and, finally, when appropriate, language 

models. [3]. Understanding emotions from conversation is a 

sub-branch of voice detection. It can be challenging to 

interpret in human interactions, making determining human 

emotions using machines complex. Recent research has 

focused on ML and Deep Learning (DL), language, 

geography, age, cultural differences, and gender, which  

continue to have an impact on process performance [4]. 

Speech emotion recognition is most commonly utilized in 

medical care, educational recreation, and helping with driving, 

customer service, and online training. Essentially, th is 

research falls into various categories that are hard to appraise. 

Communication signals vary in speed and properties, and they 

are uncontrolled [5]. Depression is one of the most prevalent 

diseases in everyday life. Stress has a major impact on 

people’s lives. Anxiety can lead to a range of diseases, 

particularly heart problems, lung problems, breathing issues, 

and cancer. Global population growth has led to higher stress 

levels among individuals. Stress is a prevalent ailment among 

humans today. Stress can lead to serious, life-threatening 

issues for individuals worldwide. Stress can alter a person’s 

behavior and disrupt daily routines. To precisely analyze their 

behavior, observe them using ML algorithms incorporated 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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into the scheme continuously. In India, 85% of individuals 

suffer from stress. Nowadays, people suffer from depression 

as a result of their stress [6]. Everyone experiences stress in 

various forms, making it difficult to measure mental stress [7].  

Additionally, the accuracy of assessing and analyzing mental 

stress is influenced by the methodology used. Traditionally, 

stress has been assessed using subjective approaches. The 

results of the self-report questionnaires involve the estimated 

stress level. [8], are the most often utilized method [9]. Several 

studies have used questionnaires, self-reports, and interviews 

to evaluate mental stress levels. However, surveys are usually 

biased and require the user’s full focus. People could not be 

knowledgeable of their real anxiety levels. Self-report surveys 

may not correctly reflect stress levels. Furthermore, they 

appear to provide less information than physiological 

assessments. Physiological indicators of stress include Heart 

Rate Variability (HRV), Electrodermal Activity (EDA), 

Electromyogram (EMG), blood vessel pressure, eyeball size, 

cytoplasmic hormone cortisol and salivary alpha amylase 

[10]. Other factors, such as mental stress, can have an impact 

on physiological signs. Circadian rhythm affects cortisol 

levels, which fluctuate throughout the day. Physical activity 

has an impact on salivary alpha amylase levels [11], while 

EDA is affected by skin illness and humidity [12]. 

To overcome the limitations of subjective methods and 

the variability of physiological signals, recent research has 

turned to speech-based stress detection. While previous 

studies have utilized individual classifiers or limited datasets, 

they often struggle with emotional overlap and lack the 

robustness needed for generalization across diverse data. 

Many existing models achieve high accuracy on specific 

datasets but fail to perform consistently in more complex 

emotional environments, such as those represented in the 

RAVDESS dataset. The innovation of this work lies in its 

integration of both fundamental and advanced spectral audio 

features, such as Mel-Frequency Cepstral Coefficients 

(MFCC), Chroma features, and Spectral Centroid, with a 

diverse range of ML algorithms.  

Furthermore, the study explores how classifier 

performance is influenced by the clarity of emotional content 

in the datasets. It demonstrates that ensemble methods, 

particularly the Voting Classifier, offer better generalization 

capabilities, especially in datasets where emotional categories 

are more distinctly separated. This dataset-aware approach 

provides a scalable and robust framework for speech-based 

stress detection, an area that has received limited attention in 

the literature. In speech emotion recognition, existing ML 

models for stress detection still face robustness and cross-

dataset generalization challenges. Most perform well on 

structured datasets but falter when confronted with complex 

emotional data where stress features overlap with other 

emotions. Moreover, limited comparative analysis exists 

regarding how different classifiers perform across datasets 

with varying emotional clarity. Addressing this research gap, 

the present study systematically evaluates a broad range of 

ML classifiers including Random Forest (RF), Logistic 

Regression (LoR), Gradient Boosting (GB), K-Nearest  

Neighbors (KNN), Naïve Bayes (NB), and Support Vector 

Machine (SVM) with multiple kernel functions alongside an 

ensemble Voting Classifier. These models are applied to both 

the TESS and RAVDESS datasets to assess how dataset 

characteristics influence classification performance. To 

enhance emotional representation, the study incorporates 

advanced audio features such as Zero Crossing Rate, Spectral 

Centroid, Chroma features, and MFCCs. Ultimately, this work 

presents a robust and adaptable system for speech-based stress 

detection, underscoring the critical role of feature engineering 

and classifier selection in handling a wide range of emotional 

complexities in audio data. 

The key contribution of the study is stated as follows: 

• The study employs advanced audio features such as ZCR, 

RMSE, Spectra l Centroid, and Chroma features to 

capture detailed frequency and energy patterns, 

improving the robustness of stress detection models. 

• Through the comparison of ML classifiers’ performance 

on two datasets (TESS and RAVDESS), the study 

underlines the importance of dataset properties. TESS’s 

well-defined emotional borders are opposed to 

RAVDESS’s subtle data, illustrating the necessity of 

specific model approaches according to data complexity . 

• The research discloses performance heterogeneity with  

regard to datasets, especially with richer emotional data 

(RAVDESS), revealing a disparity in the current models’ 

generalizability. This finding warrants the need for more 

advanced, dataset-conscious methods in stress detection 

studies. 

The present study indicates the positive impact of diverse 

ML classifiers in stress detection using audio data, where 

ensemble models such as the Voting Classifier perform better. 

The significance of dataset properties is also brought out, as 

the distinct emotional characteristics of TESS result in more 

accurate results than the subtle RAVDESS database. Detailed 

feature extraction makes the model more robust, and the 

necessity for custom strategies according to data complexity 

is highlighted. These findings open up the possibility of more 

advanced, responsive stress detection devices in real-world  

use. 

2. Literature Survey  
The survey of literature emphasizes progress and 

limitations in ML model-based audio-based stress detection. 

Different investigations have tried feature extraction methods 

like Zero Crossing Rate, Spectral Centroid, and Chroma 

features to understand emotional intonations in speech. The 

set of classifiers including RF, LoR, and SVM variants, has 

proven to be of differential efficacy based on dataset 
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complexity. Studies show that for less complex datasets, such 

as TESS, higher accuracy results from distinguishable 

features, whereas more complex datasets like RAVDESS are 

problematic in that overlapping emotional signals occur. 

Current models lack generalizability, highlighting the 

importance of advanced, dataset-specific strategies to enhance 

stress detection consistency. 

Ismail et.al [13] improved the voice recognition process; 

the improvement of the proposed framework incorporates 

SVM with the Dynamic Time Warping (DTW) technique. The 

proposed technique is an ML-based scheme that can drive 

intelligent devices with an accuracy of 97% using voice 

commands. The findings enabled patients and older 

individuals to use and control IoT devices using speech 

recognition technology. The recommended voice detection 

system is scalable, versatile, and compatible with existing 

smart Internet of Things devices. It also protects privacy when 

monitoring patient equipment. The research shows a great 

method for connecting systems across medical facilities to 

help the elderly and sick. It may deteriorate in loud 

surroundings, and its integration with varied IoT platforms 

requires additional testing for universal compatibility. 

Rejaibi et.al [14], the proposed technique outperforms 

current methods on the DAIC-WOZ dataset in diagnosing 

depression, using a total precision of 76.27% and a root mean 

square error of 0.4, as well as predicting anxiety levels, with  

an RMS error of 0.168. The proposed framework has 

numerous benefits (including speed, non-invasiveness, and 

non-intrusion) that make it perfect towards applications that 

work in real time. The efficiency of the suggested strategy is 

evaluated using multi-modal and multi-feature tests. MFCC 

characteristics provide important data on anxiety. Including 

optical action units and other sounds boosts precision in 

classification by 20% and 10%, reaching 95.6% and 86%, 

respectively. However, the framework may struggle with  

cultural variations in depression expression and noisy real-

time data inputs. 

Liapis et.al [15], the study examines the effectiveness of 

Wearable Stress And Emotion Detection (WESAD), a 

publicly available physiological resource, with respect to User 

Experience (UX) evaluations. Three common ML methods 

for categorizing and a simple feedback DL Artificial Neural 

Network (ANN) that incorporates constant variables with 

entity embedding were trained using electrodermal activity 

(EDA) and Skin Temperature (ST) inputs from WESAD. Two 

training methods (DL and ML) attain an accuracy of 97.4%. 

Excellent results were obtained for the developed approaches’ 

pressure detection capability in a variety of contexts, including 

UX assessment. However, reduced accuracy when applied to 

diverse, real-world UX scenarios beyond the WESAD dataset. 

Yildirim et al. [16] tested the proposed algorithm against two 

metaheuristic search methods: a Non-Dominated Sorting 

Genetic Algorithm-II (NSGA-II) and Cuckoo Search, for 

emotion detection. The presented approach for feature 

selection accurately classifies emotions from speech while 

considerably reducing the amount of characteristics needed. In 

speaker-dependent experiments, the EMO-DB dataset 

attained 87.66% and 87.20% accuracy. Meanwhile, the 

IEMOCAP dataset recorded accuracies of 69.30% and 

68.32%. The speaker-independent trials yielded similar results 

from both datasets. The recognition rates for EMO-DB were 

76.80%, 76.82%, and 59.37% despite reduced performance in 

speaker-independent scenarios, highlighting challenges in 

generalizing across different speakers. 

Vázquez-Romero et al. [17] investigated a speech-based 

approach to predictive mood identification. The technique 

uses learning ensembles for Convolutional Neural Networks 

(CNN) and is tested employing files from the 2016 Audio-

Visual Emotion Challenge’s Depression categorization Sub-

Challenge. Speech signals are pre-processed into log-

spectrograms, with balanced sampling to retain both useful 

and irrelevant data. Multiple 1D-CNN models are trained and 

their outputs are combined using Collective Averaging to 

generate the final forecast. However, it struggles with  

generalization across diverse datasets or varying speaker 

conditions, limiting its robustness in real-world applications. 

Sardari et.al [18] suggested a framework that employs a 

CNN-based Autoencoder approach for extracting extremely 

important and exclusive qualities from raw consecutive audio 

information, which allows for better diagnosis of depression. 

Furthermore, to address the data mismatch issue, they employ 

a cluster-based choosing strategy, which significantly 

decreases the possibility of bias toward a majority class (not 

depressed). According to the data, the suggested approach 

outperforms earlier well-known audio-based ADD approaches 

by at least 7% in the F-measure for classifying depression. 

May struggle with generalization to diverse, real-world audio 

data, leading to reduced accuracy in uncontrolled 

environments. 

Zhu et al. [19] investigate the effectiveness of an actual-

time stress detection device using biological data derived from 

worn sensors. Smartwatches collect several biological signals, 

including EDA, ECG, and Photoplethysmograph (PPG), 

which are then analyzed for stress categorization. In the post-

acquisition phase, six methods from ML are used on a 

computer for categorization. SVM, KNN, RF, NB, LoR, and 

Stacking Ensemble Learning. Training and testing are carried 

out using data from two publicly available datasets. We assess 

the accuracy of each modality separately and as a whole. The 

results of the test show that when SEL is utilized for 

categorization, EDA has the highest accuracy. Furthermore, in 

both datasets, EDA outperforms other ML techniques in terms 

of reliability. The wearable device’s EDA offers great promise 

for use in a stress assessment system. It may be limited by 

individual variability in physiological signals, affecting its 

accuracy across different users. 
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Abd Al-Alim et al. [20] proposed an ML model for stress 

detection in free-living environments using the SWEET 

dataset collected from wearable sensors (ECG, ST, SC) of 238 

subjects. The study aimed to address the gap in real-world 

stress detection by shifting from controlled settings to 

spontaneous monitoring using four ML models, with KNN 

achieving 98% accuracy. To overcome data imbalance, the 

authors applied class reduction and SMOTE, demonstrating 

improved model stability. However, the inherent class 

imbalance and reduced stress label granularity may limit the 

ability to generalize stress levels or unseen subjects despite 

high accuracy. 

Abdelfattah et al. [21] investigated stress detection using 

multi-modal physiological signals (ACC, ECG, BVP, TEMP, 

RESP, EMG, EDA) from the WESAD dataset, comparing 

seven ML and three DL models across chest and wrist data. 

The study showed that RNN achieved an F1 score of 93% in 

cross-subject evaluation, while XGBoost a nd RF attained 99% 

F1 scores in intra -subject settings.  

The RNN’s ability to capture temporal dependencies 

benefited generalization across users, while tree-based ML 

models performed better but risked overfitting on subject-

specific patterns. A key limitation is the increased 

computational cost and training time of DL models compared 

to traditional ML. 

The reviewed literature highlights advancements in 

emotion and stress detection systems using ML, focusing on 

Biological signals including EDA, ECG, and speech data. 

Various classifiers, including SVM, RF, and CNN, have 

demonstrated high accuracy in diagnosing conditions like 

stress and depression, with some achieving up to 97% 

accuracy. Despite these promising results, challenges remain, 

such as difficulty in generalizing across different datasets, 

speaker conditions, and real-world environments, as well as 

individual variability in physiological signals. These models 

illustrate the potential for real-time applications in healthcare 

and user experience, yet further modification is essential to 

overcome these difficulties. 

3. System Methodology 
The suggested methodology for stress detection using 

audio signals is based on a stepwise procedure, from raw audio 

data acquisition to classification of levels of stress through 

different ML models. The suggested method of stress 

detection from audio signals adheres to a systematic approach, 

with data collection starting with preliminary processing, 

followed by feature acquisition for identification, as depicted 

in Figure 1.  

The process begins with the collection of audio samples, 

which are often gathered from reliable databases, such as the 

one held by the Toronto Emotion Speech Set (TESS) and the 

Ryerson Audio-Visual Database of Emotional Speech and 

Song (RAVDESS). These data sets are selected based on their 

extensive emotional tags, which are needed to accurately 

determine stress levels. This process is crucial in standardizing 

audio data by filtering out noise. 

Normalizing amplitude and removing silence provides 

consistency and quality in the dataset. This process is 

important as it gets the audio ready for accurate feature 

extraction, which in turn has a direct effect on the accuracy of 

the analysis that follows. Feature extraction is concerned with 

extracting both fundamental and higher-level audio features so 

that the subtleties of speech stress are accurately captured. 

Major features like ZCR, RMSE, Spectral Centroid, and 

MFCCs are extracted to analyze the frequency, amplitude, and 

timbre of the signal.  

These attributes are essential for differentiating stressed 

speech from neutral or relaxed speech, thereby filling the gap 

in research that effectively identifies stress using subtle vocal 

cues. More sophisticated spectral features, such as Spectral 

Bandwidth, Spectral Contrast, and Chroma features, enhance 

the analysis further, presenting a more precise representation 

of the emotional state in speech.  

The classification process utilizes a variety of ML 

models, such as LoR, RF, GB, K-NN, NB, and different SVM 

kernels. The incorporation of ensemble models such as RF and 

Voting Classifier solves the issue of model bias and variance, 

which enhances the strength and accuracy of stress 

identification.  

The significance of employing multiple classifiers is due 

to their ability to identify unique patterns from sound data, 

leading to a comprehensive analysis. This strategy addresses 

the gap in research in optimizing classifier performance for 

detecting stress, as demonstrated by Figure 1, which is 

typically constrained by the variation of speech patterns 

among individuals. 

The main benefit of this approach is that it is holistic, 

combining various audio features with an ensemble of 

classifiers, and hence, the detection accuracy is increased. The 

use of both spectral and temporal features makes the analysis 

more accurate, thereby making this approach particularly 

useful for real-world applications such as mental health 

monitoring and workplace stress measurement.  

Through the use of ensemble classifiers, the method 

proposed improves the capability of the system to generalize 

to different sets of data, thus addressing limitations connected 

to overfitting and underfitting issues inherent in conventional 

models. The extensive flow not only fulfils current gaps in 

stress detection precision but also provides a scalable 

approach to the deployment of stress monitoring systems in 

real-world situations. 
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Fig. 1 Architecture of the proposed ML-based stress detection framework 

3.1. Data Acquisition 

The process starts with gathering audio recordings, most 

often in .wav format, from popular datasets such as the TESS 

and the RAVDESS. These datasets are widely used in the 

domain of emotion detection due to the broad range of 

emotional states they cover, ranging from stress and anxiety 

to calm. 

3.2. Pre-Processing 

Irrelevant sounds and background noise are removed by 

methods such as adaptive filtering. The process eliminates 

everything except the necessary parts of the speech signal. 

Noise reduction by adaptive filtering is a process of 

continuously reducing the background noise without 

degrading the necessary components of the speech. A noise 

profile is first estimated from low-speech or silence regions to 

create a baseline for the filtering process.  

An adaptive filter using Least Mean Squares (LMS) is set 

up to modify its parameters according to the input signal. A 

reference noise signal from background sounds is subtracted 

from the main audio signal, and the filter is adjusted constantly 

to cancel this noise without altering the speech quality. Any 

remaining noise may further be suppressed with additional 

refinement, like spectral subtraction. This adaptive method 

leads to purer audio data, improves feature extraction 

accuracy, and improves the accuracy of ML methods in stress 

detection problems. 

3.3. Feature Extraction 

Proper identification of stress from an audio signal is 

dependent to a large extent on the extraction of significant 

features that convey the affective content of speech. The 

approach utilizes a combination of primitive and higher-level 

audio features for constructing a comprehensive feature set. 

Primitive features like ZCR capture frequency change, while 

RMSE captures signal power, which is critical for detecting 

stress-induced amplitude variations. Spectral Flatness 

expresses the noisiness of the signal, and Spectral Centroid is 

related to the perceived brightness of sound. Spectral 

Bandwidth estimates frequency dispersion, providing 

information on speech complexity, while Spectral Contrast 

expresses amplitude differences between spectral valleys and 

peaks, indicating stressed speech versus neutral tones. 

Spectral Rolloff estimates the overall distribution of a 

wavelength and identifies the primary frequency range. Mel-

Frequency Cepstral Coefficients are central to the 

representation of the timbral texture of speech, successfully 

encoding fine-grained emotional subtleties. Chroma Features 

examine energy distribution over pitch classes, mirroring 
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intonation and pitch variations associated with stress. These 

extracted features are incorporated into many ML models. The 

Voting Classifier combines predictions from various models 

to provide improved accuracy and reliability. This multi-

dimensional feature extraction method ensures detailed 

analysis, allowing for trustworthy and accurate stress 

detection in speech. 

3.3.1. Zero Crossing Rate (ZCR) 

ZCR represents the frequency at which a signal changes 

sign, indicating variations in its frequency content. It measures 

the rate at which the signal shifts from positive to negative or 

vice versa, capturing rapid changes in energy. ZCR is a crucial 

property for recognizing short and loud sounds; it identifies 

minor variations in the amplitude of a signal. It is used to 

determine whether human speech is present in a speech 

sample or not. ZCR is employed in all speech processing 

applications, including synthesis, augmentation, and 

recognition. The negative crossing count represents the rate at 

which electricity gathers in the signal wavelength. [22]. ZCR 

is also used to evaluate the spectral features of speech signals, 

as shown by 

ZCR −
1

𝑁−1
∑  𝑁−1

𝑛−1 𝕀{𝑥[𝑛]𝑥[𝑛 − 1] < 0} (1) 

Where,  𝑁 specifies the total no of samples, 𝑥[𝑛] states 

the audio signal, and 𝕀{⋅} is the indicator function that equals 

1 if the argument is true and 0 otherwise. 

3.3.2. Root Mean Square Error (RMSE) 

Reflects the strength of the auditory indication, with  

amplitude fluctuations potentially indicating stress levels. 

(RMSE) Calculates an audio signal’s power by taking the 

square root of its average squared amplitudes over a segment. 

It captures alterations in the signal’s amplitude, reflecting 

deviations in intensity that can indicate stress. The process 

involves dividing the audio into short frames, squaring each 

amplitude value to eliminate negative effects, averaging these 

squares, and then returning the square root to the original 

amplitude scale. RMSE is particularly useful in stress 

detection because stressed speech often exhibits higher and 

more irregular energy patterns compared to calm speech, 

making it a  reliable feature for identifying emotional states. 

RMSE − √
1

𝑁
∑  𝑁

𝑛−1  𝑥[𝑛]2  (2) 

Where: 

• 𝑥[𝑛] is the audio signal. 

• 𝑁 is the total number of samples 

3.3.3. Advanced Spectral Features 

Higher-order spectral features are characteristics 

generated by the amplitude domain of a sound signal that offer 

finer details about its spectral content. Such features, including 

Spectral Centroid, Spectral Bandwidth, and Spectral Contrast, 

give information regarding the quality of tone, texture, and 

frequency distribution variation, improving emotional state 

discrimination in stress detection. 

Spectral Centroid 

The position of the center of gravity of the wavelength is 

related to the brightness of the audio signal as observed. In 

order to calculate the Spectral Centroid, the audio input is first 

broken up into small structures, which are next converted to 

the frequency domain using a Fourier Transform (FT). The 

center of the spectrum is subsequently obtained by 

approximating the weighted average among the wavelengths 

in the spectrum. Each frequency is weighted by its magnitude. 

This means adding the product of each frequency bin and its 

value and dividing by the total of all values. This process helps 

to calculate the middle of the spectrum’s weight, where the 

principal frequency region is. Large spectral centroid values 

correspond to bright sounds with a larger amount of high-

frequency information, while small values correspond to 

darker sounds with low frequency, providing valuable 

information for stress classification in speech. 

Spectral Centroid −
∑  𝑁−1

𝑘−0  𝑓[𝑘]⋅|𝑋[𝑘] |

∑  𝑁 −1
𝑘 −0  |𝑋[𝑘]|

 (3) 

Where: 

• 𝑓[𝑘] is the frequency at bin 𝑘. 

• 𝑋[𝑘] states that the magnitude of the FT is measured at 

bin k. 

Spectral Bandwidth 

The extent of frequencies in the audio signal gives 

information about the complexity of speech. The Spectral 

Bandwidth is a measure of the spread or extent of frequencies 

in an audio signal, showing how spread out the spectral energy 

is relative to the spectral centroid. It is calculated based on the 

normalized (RMS) deviation around frequency towards the 

spectral centroid, employing the magnitudes of each 

frequency bin as weights. Mathematically, it is a  sum of the 

squared differences between every frequency f[k] and the 

spectral centroid, weighted by the magnitude ∣X[k]∣, and a 

square root taken from it. Increasing spectral bandwidth 

indicates an increased spread of frequencies, which means a 

noisier or complex signal, whereas decreased bandwidth 

indicates a more tonal and centralized sound. Variations in 

spectral bandwidth in stress detection can mirror voice quality 

and intensity changes and help distinguish between stressed 

and neutral speech patterns. 

Spectral Bandwidth − √
∑  𝑁−1

𝑘−0   ∣𝑓[𝑘]− Spectral Centroid |2⋅|𝑋[𝑘]|

∑  𝑁 −1
𝑘−0  |𝑋[𝑘]|

 (4) 
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Where: 

•  𝑓[𝑘] And 𝑋[𝑘] are as defined above. 

Spectral Contrast 

Preserves amplitude variation between the peaks and 

troughs of each spectrum, enabling stressed speech to be 

differentiated from neutral speech. Spectral difference is a 

variation in magnitude between highs and lows in different 

spectrum bands of a stream of audio, representing changes in 

spectral structure. It is derived by combining the variation 

among each band’s greatest (peak) and the lowest (valley) 

magnitudes. High spectral contrast indicates significant 

differences between frequency components, often found in 

stressed speech due to increased vocal tension and dynamic 

variation. In contrast, lower spectral contrast values suggest  

smoother, more uniform signals typical of calm or neutral 

speech. This property is essential for stress detection since it 

distinguishes states of mind according to the level of detail and 

texture of the spoken signals. 

Spectral Contrast −
1

𝐵
∑  𝐵

𝑏 −1 (Peak𝑏 −  Valley
𝑏

) (5) 

Where: 

• 𝐵 is the total number of bands of frequency. 

• Peak 𝑏 and Valley
𝑏
 are the peak and valley amplitudes in 

band𝑏. 

Spectral Flatness 

Assesses how noise-like a signal is; stress-induced speech 

often shows different spectral flatness patterns compared to 

neutral speech. The spectrum flats are determined by 

multiplying the geometrical average of all the spectrum values 

by the mathematical mean. High spectrum flattening indicates 

that the spectrum characteristics are more evenly dispersed. 

Low spectral Flatness suggests that energy is concentrated in 

specific frequency components rather than being evenly 

spread. The spectral flatness values for spectra obtained using 

the SFF and ZTW methods are presented in Equation (6) [23]. 

Spectral Flatness −
(∏  𝑁−1

𝑘−0  |𝑋[𝑘]|)
1

𝑁 
1

𝑁
∑  𝑁 −1

𝑘−0  |𝑋[𝑘]|
 (6) 

Spectral Roll off 

Describes the wavelength under which a particular 

percentage (e.g., 85%) of the overall spectral power lies, 

which aids in capturing the signal’s spectral distribution. 

Spectral rolloff is the frequency at which a specific percentage 

of the overall spectral energy is concentrated, often 85%. It is 

calculated by summing the magnitudes of the spectral 

components and determining the frequency at which this 

cumulative sum reaches 85% of the total energy. This feature 

helps capture the distribution of energy across the spectrum, 

distinguishing between tonal and noisy sounds. Higher rolloff 

values indicate a greater concentration of energy in higher 

frequencies, often associated with stressed or excited speech, 

while lower values suggest energy is focused in lower 

frequencies, typical of neutral or calm speech. Spectral rolloff 

is crucial in stress detection, providing insights into vocal 

tension and energy distribution patterns. 

Spectral Rolloff − 𝑓𝑇  such that ∑  𝑇
𝑘−0

|𝑋 [𝑘]| − 0.85 ×
∑  𝑁 −1

𝑘−0
|𝑋[𝑘]| (7) 

Where: 

• 𝑓𝑟  is the rolloff frequency. 

• 𝑋[𝑘] is the magnitude of the FT (Fourier Transform) at 

bin 𝑘. 

3.3.4. Mel-Frequency Cepstral Coefficients (MFCCs) 

MFCCs are commonly utilized in speech recognition 

because they accurately represent the timbral texture in audio 

sources. These coefficients are retrieved by applying a 

logarithmic filter bank on the signal’s energy bandwidth, then 

performing a  discrete cosine transform. Mel-Frequency 

Cepstral Coefficients are important characteristics in speech 

analysis because they capture the timbral texture of audio 

signals by simulating the human auditory system’s sensitivity 

to various wavelengths. The extraction method begins with 

transforming the audio signal to its frequency range 

representation utilizing the Fourier Transform. The power 

spectrum is processed over a series of overlapping triangular 

filters spaced on the Mel scale. Logarithm of the filter bank 

energies SmS_mSm is then computed, emphasizing the 

perceptually important frequency components. 

Discrete Cosine Transform is employed on logarithmic 

values to decorrelate the filter outputs and produce the MFCC 

coefficients. The mathematical formula for the n-th coefficient 

is given as: 

MFCC𝑛 − ∑  𝑀
𝑚−1 log 𝑆𝑚 𝑐𝑜𝑠 [

𝑛(𝑚−0.5)𝜋

𝑀
] (8) 

Where: 

• 𝑀  denotes the Mel filters. 

•  𝑆𝑚  specifies log energy at filter 𝑚. 

• 𝑛 demonstrates the MFCC coefficient index. 

3.3.5. Chroma Features 

These characteristics show the distribution of energy 

across distinct tone categories, which may suggest differences 

in intonation and pitch caused by stress. Chroma Features 

indicate the distribution of spectral energy over twelve unique 

pitch classes. (e.g., C, C#, D, etc.), capturing harmonic and 

melodic characteristics of an audio signal. These features are 
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taken from a signal’s frequency domain representation, and 

each frequency bin is mapped to its associated pitch class, with 

magnitudes summed within each class. Mathematically, the 

Chroma value for a pitch class c is calculated as: 

 Chroma Feature 𝑐 − ∑  𝑘 ∈ pitch class 𝑐 |𝑋|𝑘|| (9) 

Where: 

• 𝑐  Represents a particular pitch class (e.g., C, C#, D, etc.). 

3.4. Classification 

The process concludes by identifying the retrieved 

features to detect stress using different training algorithms. 

The research investigates the effectiveness of various 

classifiers, including: 

3.4.1. Random Forest 

RF is a  supervised ML method frequently employed for 

classification and regression problems, such as stress 

detection from audio signals. It performs by creating multiple 

decision trees from data samples and then aggregating their 

outputs to get a final forecast via majority voting. This 

ensemble approach enhances accuracy and reduces the risk of 

overfitting compared to individual decision trees. In the 

context of audio feature analysis, RF starts by assigning all 

labelled data to a root node and randomly selecting a feature 

subset. Each feature is evaluated against a threshold to split 

the data into left and right subsets. These subsets are 

recursively split further, forming branches until a  stopping 

criterion (e.g., a  minimum sample size) is reached. At this 

point, leaf nodes are created, and everything is labelled 

according to the majority class of information it contains. 

The method employs a technique known as “feature 

bagging,” in which a random selection of features is chosen at 

each split. Such randomization increases variety across the 

structures, which improves the model’s generalization 

performance. MFCCs, spectral properties, and Chroma values 

are evaluated over many trees to detect auditory stress. By 

leveraging the strength of diverse features and the ensemble 

voting mechanism, RF can accurately detect stress patterns in 

speech, even when dealing with complex and noisy audio data  

[24]. 

Algorithm: 1 

Step 1: Initialize Inputs: 

Given training data X (features) and y (class labels), the 

number of decision trees num_trees, and test data Xtext  

Step 2: Create an Empty Forest: 

Initialize an empty list forest to store decision trees. 

Step 3: Build Decision Trees: 

For each tree (repeat num_trees times), generate a 

bootstrap sample by randomly selecting data points (with  

replacement) from X and y. Train a decision tree on the 

bootstrap sample. Add the trained tree to the forest. 

Step 4: Make Predictions: 

  For each test data point in Xtext  

• Collect predictions from all decision trees in the forest. 

•  Aggregate the forecasts using majority voting to 

determine the final class label. 

Step 5: Return Final Predictions: 

Output the predicted class labels for all test data points 

based on majority voting across all trees. 

3.4.2. Logistic Regression 

LoR is an effective statistical technique for modeling and 

analyzing multivariate issues. LR analyzes the likelihood of a 

classification being associated with a set of explanatory 

elements (includes) and the link among factors and a variable 

that responds. In the case of M categories and N recorded 

earthquake qualities, the logistic model determines the 

probability for every category except the final one. LR helps 

estimate the likelihood of an outcome based on the input 

features, providing valuable insights into the data. 

𝑃(𝑚|𝑍) =
𝑒𝑧

1+∑ 𝑒𝑧𝑀−1
𝑚 =1

 (10) 

The final group has a chance of  

𝑃(𝑀) = 1 − (∑ 𝑃(𝑚|𝑍)𝑀−1
𝑚=1

) =
1

1+∑ 𝑒𝑧𝑀−1
𝑚 =1

 (11) 

While P (m|Z) determines the category responses to 

factors xi, which represents the probability of a given result, 

m, Z is a logistic model-computed amount of observable 

predictor elements xi to classification m. The logistica l 

framework is a weighted average of a set of factors that 

explain, given as: 

𝑍 = ∑ 𝛽𝑖𝑥𝑖 + 𝛽𝑜,𝑁
𝑖=1  (12) 

Whereas β0 is a constant (capture) and βi are the predictor 

variables (regression coefficients) determined using the 

highest probability approach. In this scenario, the result 

factors are the occurrence depth categories (deep or shallow), 

and P(m|Z) represents the likelihood of occurrence as a very 

deep event, depending on the observed characteristics (xi).  

The probability of a deep event is influenced by the term 

βixi. An event characterized by seismic attribute xi is 

classified as a deep event, P (deep|Z) is bigger than P 

(shallow|Z) (Amidan&Hagedom 1998). 

 

Algorithm: 2 

Step 1: Initialize Weights and Bias 
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Set initial values for weights w (usually small random 

values) and bias b (usually set to 0 or a  small random value). 

Step 2: For each epoch, Calculate Predictions 

• Compute the predicted output using the sigmoid function 

𝑦 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑋. 𝜔 + 𝑏) (13) 

• Let X be the input features, w be the weight vector, and b 

be the bias term. 

Step 3: Compute the Loss 

• Compute the binary cross-entropy loss between the actual 

labels y and the predicted labels. 𝑌 

Loss= -
1

𝑁
 ∑ (𝑁

𝑖=1 𝑦𝑖 log 𝑦𝑖) + (1 − 𝑦𝑖
)log (1 − 𝑦𝑖)) (14) 

• Let N be the number of samples, 𝑦𝑖  is the actual label, 

and𝑦𝑖 is the predicted label. 

Step 4: Update Weights and Bias 

• Compute the gradients of the loss function with respect to 

weights and bias. 

𝜕𝐿𝑜𝑠𝑠

𝜕𝑤
=

1

𝑁
𝑋𝑇 (�̂�-y) (15) 

𝜕𝐿𝑜𝑠𝑠

𝜕𝑏
=

1

𝑁
 ∑ (𝑁

𝑖=1 �̂�𝑖  -𝑦𝑖 ) (16) 

• Update weights and bias using gradient descent    

𝑤 = 𝑤−∝ .
𝜕𝐿𝑜𝑠𝑠    

𝜕𝑏
 (17) 

b = b – 𝛼 .
𝜕𝐿𝑜𝑠𝑠

𝜕𝑏
 (18) 

Where α\alphaα is the learning rate (step size). 

Step 5: Return Weights and Bias 

After training, return the optimized weight vector, w and 

bias b.  

3.4.3. Gradient Boosting: 

The enhancement of gradients is an example of team 

learning. Ensemble education, which combines weak learners 

to create strong learners, differs from traditional approaches. 

Unlike the bagging strategy, which creates models 

independently, the ensemble boosting technique creates 

models sequentially by repeatedly decreasing errors from 

previously learned models. The model predicts results by 

integrating M additive tree models (f0, f1, and f2… FM) 

Equation (19). 

f (x) = ∑ 𝑓𝑚(𝑥)
𝑀
𝑚=0  (19) 

To optimize the tree ensemble model, the anticipated 

generalization error (L) is reduced using Equation (20). 

𝐿 = ∑ (𝑦𝑖 − �̂�𝑖
)2𝑛

𝑖  (20) 

The loss function L calculates the delta loss between a 

data point’s target (𝑦𝑖 ) and prediction 𝑦𝑖 [25]. 

Algorithm: 3 

Step 1: Initialize Inputs 

Given training data X (features), (target values), and the 

number of weak learners num_estimators. 

Step 2: Initialize the Model 

Start with an empty list model to store decision trees 

(weak learners). 

Step 3: Iterative Boosting Process 

For each estimator (repeat num_estimators times): 

• Compute the residuals (errors) by subtracting the current 

predictions from the true target values y. 

• Train a new Decision Tree on the residuals to model the 

errors. 

• Add the trained decision tree to the model. 

Step 4: Make Predictions 

For each test data point in 𝑋𝑡 𝑒𝑥𝑡  

• Initialize the predicted value as zero. 

• Sum the predictions from each tree in the model. 

Step 5: Return Final Predictions: 

Output the final aggregated predictions by summing the 

contributions from all weak learners. 

3.4.4. K-Nearest Neighbors (K-NN) 

The KNN divides information into groups according to 

the distance between its features. When the distance between 

data points is small, a  group is produced. When the distance is 

large, multiple groups are formed. KNN is a popular classifier 

for categorizing EEG signals in research. 

The KNN is a non-parametric classification approach that 

compares test and training data. The majority vote of each 

object’s KNN determines its classification, placing the item in 

the most common class (where k is a positive number).  

The optimal match among the training and testing data 

was found using a range of k values. The item is assigned to 

the KNN class if k = 1. The widely used Euclidean distance 

metric has the following definition: 

Xi and Xj represent the starting point evaluation and 

training data . In this study, a value of k was selected to 

oscillate between two. This k value outperforms all others in 

terms of categorization performance. 
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𝑑(𝑋𝑖 𝑋𝑗 ) = √∑ (𝑋𝑖 − 𝑋𝑗 )𝑖  (21) 

Algorithm: 4 

Step 1: Initialize Inputs 

• Input training data 𝑋𝑡𝑟𝑎𝑖𝑛  (feature set) and 𝑦𝑡𝑟𝑎𝑖𝑛  

(corresponding labels). 

• Input test data𝑋𝑡𝑟𝑎𝑖𝑛    (data points to classify). 

• Define k, the number of nearest Neighbors to consider. 

Step 2: For each test point in 𝑋𝑡𝑒𝑠𝑡   for Calculate Distance 

• Determine the distance from each test point to each of the 

other points. In 𝑋𝑡 𝑟𝑎𝑖𝑛  

• Common distance metrics include Euclidean distance, 

which is used for the 3 equation. 

• Where 𝑋𝑖 and 𝑋𝑗   are data points, and D is the number of 

features. 

Step 3: Find Nearest Neighbors 

• Identify the k training points with the shortest distance to 

the test point. 

• Store these k nearest Neighbors and their corresponding 

labels. 

Step 4: Perform Majority Vote 

• Calculate the number of instances of every category 

among the k closest relatives. 

• Determine the class label with the highest vote (majority 

class) 

Step 5: Assign Predicted Class 

• Assign the group with the most votes to take the test point. 

3.4.5. Naïve Bayes  

NB classifier assumes independent feature values for a 

given class variable. Dependence between qualities is 

generally determined by chance. The category having the 

highest posterior likelihood is allocated to the information 

point [26]. In order to classify several classes, each group’s 

chance must be evaluated, and the class with the greatest 

probability is selected as the final forecast result.  Given an N-

dimensional vector of attributes 𝑥 , 𝑃(𝑥|𝑦)), the probability of 

class 𝑦, may be calculated as 

𝑃(𝑦|𝑥) =
𝑃 (𝑥|𝑦)𝑃(𝑦)

𝑃 (𝑥)
 (22) 

The vector of features x is assigned to the category having 

the highest posterior value (MAP), which may be computed 

by 

𝑦𝑀𝐴𝑃 =𝑎𝑟𝑔 max
𝑦𝜖𝛾

𝑃(𝑦|𝑥) 

 (23) 

𝑦
𝑀𝐴𝑃 =𝑎𝑟𝑔 max

𝑦𝜀𝛾

𝑃(𝑥|𝑦)𝑃(𝑦)

𝑃(𝑥)

  (24) 

𝑦𝑀𝐴𝑃 =𝑎𝑟𝑔 max
𝑦𝜀𝛾

 𝑃(𝑥|𝑦)𝑃(𝑦)  (25) 

The probability P (x|y) is given by 

P (𝑥|𝑦) =
1

√2𝜋𝜎𝑦
2

𝑒
−

(𝑥−𝜇𝑦)
2

2𝜎𝑦
2

 (26) 

Where μy and σ_y^2 are the average and the variance of 

every characteristic related to class y, respectively, p (y) is 

computed by multiplying the probability of every category in 

the collection of data by the total number of vectors with 

features. NB’s train and run time complexities are O (Q^N.Y) 

and O (N.Y), where Q denotes the feature vectors (data points) 

and Y specifies the total classes [27] 

Algorithm: 5 

Training Phase: 

Step 1: Input X (features) and y (class labels). 

Step 2: Calculate prior probabilities P(c) for each class. 

Step 3: Calculate likelihoods P(𝑋𝑓 |𝑐) for each feature. 

Step 4: Return prior_probabilities and likelihoods 

Prediction Phase: 

Step 1: Input 𝑋𝑡𝑒𝑠𝑡  , prior probabilities, and likelihoods. 

Step 2: For each test point: 

Step 3: Calculate posterior probabilities for all classes. 

Step 4: Choose the group that has the highest posterior 

likelihood. 

Step 5: Return a list of projected class labels. 

3.4.6. Voting Classifier 

In this study, an ensemble technique was employed by 

generating multiple weak classifiers and combining their 

outputs using a Voting Classifier [28]. Specifically, the hard 

voting approach was applied, where each individual ML 

model independently classifies each instance in the dataset.  

Each model acts as a “vote” to select the projected class 

identification. The majority class label determines the ultimate 

forecast for a specific instance, which is the class that receives 

the votes from all approaches.  

This ensemble technique enhances the overall precision  

and robustness of recognizing stress in audio signals by 

leveraging the strengths of various models, mitigating 

individual biases, and compensating for their weaknesses. 

This approach enhances reliability, especially when dealing 

with complex audio features such as MFCCs, spectral 

characteristics, and Chroma features, ensuring a more 

consistent and accurate detection of stress in speech. 

Algorithm: 6  

Step 1:  Input: 

• Models: A list of trained models. 
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• X_test: Test dataset for prediction. 

Step 2: Initialize: 

Create an empty list prediction to store each model’s 

prediction. 

Step 3: For each model in models: 

• Use the model to predict the output for X_test. 

• Append the predicted output to the predictions list. 

Step 4:  Aggregate Predictions: 

• Perform a majority vote on the predictions. 

• Choose the class label that has the most votes for each test 

instance. 

Step 5:   Return: 

The final predicted class labels are based on majority voting. 

3.4.7. Support Vector Machines (SVM) 

SVM constitutes a nonlinear ML method [26]. Support 

vectors are features from altered categories with a small 

separation among each other in an N-dimensional feature 

space. These are used to create a hyperplane defined as  

W^γ x + b =0, (27) 

Two more hyperplanes that lie on the support vectors and 

split the two classes are given by  

𝑊𝛾 𝑥 +  𝑏 = 1, 𝑎𝑛𝑑 𝑊𝛾 𝑥 +  𝑏 =  −1, (28) 

The two hyperplanes are created by addressing an 

optimization problem that maximizes the distance between 

them , with a difference of 2/‖W‖. To effectively deal with 

nonlinear data, SVM may employ a kernel known as the 

Radial Basis Function (RBF). SVM can be used to perform 

binary classification and classification of multiple classes. 

Provides the complete institutionalization of SVM. SVM has 

training and run time complexities of O (Q.R) and O (Q.U), 

where U specifies support vectors. RBF-SVM has train and 

run time complexity of O(Q^2.N+Q^3) and O(U.N), 

accordingly  

Linear Kernel  

A Linear Kernel in SVM is applied to stress detection in 

audio signals when features exhibit linear separability. It 

computes the dot product between feature vectors, 

establishing a linear decision boundary. This Kernel 

effectively differentiates stressed and neutral speech by 

capturing key features like spectral energy and pitch. Its 

computational efficiency makes it ideal for simpler 

classification tasks, ensuring clear distinctions in emotional 

states within audio data. 

Polynomial Kernel 

A Polynomial Kernel in SVM is used to detect nonlinear 

patterns in stress identification from audio signals. It 

transforms input features, like spectral and temporal 

properties, into a higher space so that the model can identify 

complicated patterns in speech. It works best when indicators 

of stress are weak or non-linearly distributed. The analysis of 

interaction among features enhances classification accuracy in 

detecting subtle emotional changes in audio data. 

Radial Basis Function (RBF) Kernel 

The RBF Kernel in SVM was very effective in capturing 

complex, nonlinear patterns in stress detection in audio 

recordings. It transforms audio features, such as spectral and 

frequency features, into an infinite-dimensional space, 

allowing the model to identify subtle emotional variations. 

The Kernel is especially helpful when indicators of stress are 

subtle and non-linearly spread out. Its adaptability ensures 

accurate discrimination between stressed and neutral speech, 

resulting in overall classification efficiency.  

4. Result and Discussion 
Each classifier’s performance is measured using metrics 

including precision, recall, F1-score, and a confusion matrix. 

After training and assessing numerous models, a  comparison 

study is conducted to select a particularly effective classifier 

for stress detection. The ensemble models, particularly RF and 

Voting Classifier, are expected to show superior performance 

due to their ability to reduce variance and bias. 

4.1. Dataset Description 

The analysis of two datasets, RAVDESS and TESS, 

reveals that RAVDESS captures nuanced emotional features, 

while TESS provides clearer, more distinguishable data for 

stress detection. For consistency in evaluation, the emotional 

labels from both datasets were mapped into two stress-related 

classes, forming a binary-class classification problem: 

Class 0 - No Stress  

Class 1 - Stress  

This mapping ensures that each audio sample is 

categorized based on its likely psychological stress 

implication. This study uses these class labels (0 and 1) 

consistently across all figures, confusion matrices, and 

evaluations. 

4.1.1. RAVDESS 

The RAVDESS provides a validated, comprehensive 

dataset for emotional speech. The words, like the song, 

express tranquillity, happiness, sadness, rage, fear, 

astonishment, and disdain. Every movement is produced with 

a range of mental strength and an expression that is neutral. 

All conditions are presented in a voice-only format. The 7356 

recordings were evaluated ten times for emotional validity, 

intensity, and genuineness. A further 72 participants provided 
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test-retest results. There were reports of strong emotion 

accuracy and reliability between tests. Researchers can choose 

stimuli based on corrected accuracy and composite 

“goodness” evaluations. Refer to Table 1 for comparison.  

4.1.2. TESS 

It provides extremely high-quality audio samples. A 

significant portion of the other sample consists of male 

speakers, resulting in a relatively lopsided sample. As a result, 

this collection of data would make a great training set for the 

emotion classifier in terms of standardization.  

Table 1. Class description 

Files used RAVDESS TESS 

Angry 192 400 

Sad 192 400 

Neutral 96s 400 

Happy 192 400 

Total 672 1600 

A total of 200 objective sentences were spoken in the 

speaker’s phrase, and each emotion was recorded (anger, 

disgust, fear, joy, pleasant surprise, sorrow, and neutral). 

There are 2800 data points (audio files) in total. The  collection  

is organized so that every reaction is saved in its own folder. 

It contains all 200 target word audio files. See Table 1 for more 

details.  

4.2. Performance Evaluation of Various ML Classifiers 

The effectiveness of different ML classifiers, including 

RF, LoR, GB, KNN, NB, and SVMs with different kernels, 

along with a Voting Classifier. The TESS dataset showed 

consistently high accuracy, especially with KNN and Voting 

Classifier achieving perfect results.  

In contrast, the RAVDESS dataset presented more 

challenges due to its nuanced features, with SVM and LoR 

performing better. NB exhibited the lowest accuracy, 

highlighting the importance of feature dependencies.  

Overall, classifier performance varied significantly based 

on dataset complexity and model robustness. 

4.2.1. Confusion Matrix  

The confusion matrix offers a detailed view of each 

classifier’s performance by illustrating true and false 

predictions across classes. It enables a clearer understanding 

of class-wise accuracy, especially in distinguishing between 

stress and no-stress states across both datasets. 

 
Fig. 2 Confusion matrices obtained for RF using: (a) RAVDESS data set, and (b) TESS dataset. 

As shown in Figure 2, the RF model achieved flawless 

classification on the TESS dataset, correctly classifying all 80 

examples of both stressed (Class 1) and unstressed (Class 0) 

conditions. It predicted 107 stress samples and 7 no-stress 

samples correctly on the RAVDESS dataset, but mispredicted 

21 no-stress samples as stress and 1 stress sample as no stress. 

These findings indicate the model’s excellent performance on 

clean data (TESS) and average confusion in Recognizing 

Subtle Stress Patterns In Complex Sounds (RAVDESS). As 

shown in Figure 3, the LoR was assessed employing a binary 

classification setup. The RAVDESS dataset correctly 

predicted 16 no-stress instances and 104 stress instances but 

misclassified 12 no-stress samples as stress and 4 stress 

samples as no stress, suggesting mild confusion due to 
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emotional overlap. On the TESS dataset, it achieved perfect 

classification, accurately labeling all 160 samples, 

demonstrating its strong generalization on clearer emotional 

patterns. 

 
Fig. 3 Confusion matrices obtained for logistic regression using: (a) RAVDESS data set, and (b) TESS dataset. 

 
Fig. 4 Confusion matrices obtained for gradient boosting using: (a) RAVDESS data set, and (b) TESS dataset. 

As shown in Figure 4, the GB model correctly predicted 

101 stress instances in the RAVDESS dataset but struggled to 

distinguish between stress and no-stress samples, with some 

no-stress samples being misclassified.  

The TESS dataset accurately predicted all 80 no-stress 

instances but misclassified 5 stress instances, indicating a 

minor limitation in detecting certain stress patterns. As shown 

in Figure 5, the KNN model on the RAVDESS dataset showed 

confusion with only 4 correctly predicted instances of “no 

stress” and 24 misclassified as “stress.” However, it showed 
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strong performance in detecting stress, with 107 instances 

correctly predicted and 1 misclassified. On the TESS dataset, 

the model accurately classified all 80 instances as “no stress” 

and “stress” without misclassifications. 

 
Fig. 5 Confusion matrices obtained for K-Nearest Neighbors using: (a) RAVDESS data set, and (b) TESS dataset. 

 
Fig. 6 Confusion matrices obtained for NB using: (a) RAVDESS data set, and (b) TESS dataset. 

As shown in Figure 6, the NB model on the RAVDESS 

and TESS datasets struggled to distinguish between “no 

stresses” and “stress,” with 28 instances of false negatives, 

suggesting potential bias towards predicting “stress” due to 

overlapping features or data distribution limitations. 

The model also showed misclassification in Class 0 and 

Class 1, indicating potential issues with distinguishing 

between stress and no-stress signals. As shown in Figure 7, the 

SVM with Linear Kernel model achieved 100% accuracy on 

the TESS dataset, correctly classifying 16 instances as “no 
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stress” and 105 instances as “stress,” despite some 

misclassifications in the “no stress” class. However, some 

misclassifications in the “no stress” class suggest potential 

challenges in distinguishing between stress and no-stress 

signals. 

 
Fig. 7 Confusion matrices obtained for SVM with linear Kernel using: (a) RAVDESS data set, and (b) TESS dataset. 

 
Fig 8: Confusion matrices obtained for SVM with poly Kernel using: (a) RAVDESS data set, and (b) TESS dataset. 

As shown in Figure 8, the RAVDESS and TESS datasets 

show strong performance in detecting stress, with 7 instances 

correctly predicted and 108 correctly classified, respectively.  

However, difficulty in distinguishing no-stress instances 

may be due to class imbalance or feature overlap. The 

confusion matrix for the RAVDESS dataset shows 79 

instances correctly classified as no stress, while all 80 

instances were correctly classified as stress. As shown in 

Figure 9, the SVM with RBF Kernel achieved perfect 

classification on the TESS dataset, correctly identifying all 80 

samples of No Stress (Class 0) and all 80 samples of Stress 
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(Class 1) without any misclassifications. This result  

demonstrates the exceptional capability to distinguish  

between stress and no-stress emotional speech when the 

dataset is clean, well-balanced, and acoustically distinct. The 

RBF kernel’s nonlinear decision boundary likely contributed 

to capturing the subtle emotional patterns effectively. 

 
Fig. 9 Confusion matrices obtained for SVM with poly Kernel using: (a) TESS dataset  

 
Fig. 10 Confusion matrices obtained for voting classifier using (a) RAVDESS data set, and (b) TESS dataset. 

As shown in Figure 10, the model correctly classified 107 

instances of Stress (Class 1) and 8 instances of No Stress 

(Class 0) on the RAVDESS dataset.  

However, it misclassified 20 No Stress instances as stress 

and 1 Stress instance as No Stress, indicating difficulty in 

distinguishing between stress and non-stress patterns in more 

emotionally complex or overlapping data like RAVDESS. 

These results emphasize the Voting Classifier’s robustness on 

well-structured datasets and highlight the challenges of 

generalizing across nuanced emotional datasets without 

misclassification.  

4.2.2. ROC Curve 

The ROC curve is used to evaluate the trade-off between 

sensitivity (true positive rate) and specificity (false positive 
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rate) for each classifier. It provides a visual measure of 

classification performance, with the AUC indicating the 

model’s ability to distinguish between stress and no-stress 

classes. As shown in Figure 11, the ROC curve of the Random 

Forest model on the RAVDESS database Figure 11(a) 

indicates an AUC of 0.83, demonstrating good but not ideal 

class discrimination as a result of overlapping emotions. On 

the other hand, the TESS database Figure 11(b) had a perfect 

AUC of 1.00, indicating error-free discrimination between 

stress and non-stress classes. This emphasizes that RF does 

extremely well with clean, well-segregated emotional data, 

but has moderate difficulties with intricate signals. 

 
(a) 

 
(b) 

Fig. 11 ROC curve obtained for Random forest using: (a) RAVDESS 
data set, and (b) TESS dataset. 

 
(a) 

 
(b) 

Fig. 12 ROC curve obtained for Logistic Regression using: (a) 
RAVDESS data set, and (b) TESS dataset. 

As expressed in Figure 12, the ROC curve for LoR 

registers an AUC of 0.87 on the RAVDESS dataset, pointing 

to excellent but not ideal class separation. The TESS data 

yielded an AUC of 1.00, indicating ideal classification 

performance with zero false positives and false negatives.  

As shown in Figure 13, the GB classifier achieved an 

AUC of 0.81 on the RAVDESS dataset, indicating good 

classification with some class overlap.  

On the TESS dataset, it was at 0.99, reflecting nearly 

perfect separation between stress and no-stress classes. As 

shown in Figure 14, the ROC curve for KNN on the 

RAVDESS dataset has an AUC of 0.81, which is a good 

performance with some class overlap.  

On the TESS dataset, KNN has a perfect AUC of 1.00, 

which proves that it can perfectly differentiate stress and no-

stress classes in well-defined emotional speech data. 
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(a) 

 
(b) 

Fig. 13 ROC curve obtained for Gradient Boosting using: (a) RAVDESS 
data set, and (b) TESS dataset. 

 
(a) 

 
(b) 

Fig. 14 ROC curve obtained for KNN using: (a) RAVDESS data set, 

and (b) TESS dataset. 

 
(a) 

 
(b) 

Fig. 15 ROC curve obtained for Naïve Bayes using: (a) RAVDESS data 
set, and (b) TESS dataset. 
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As shown in Figure 15, in the RAVDESS dataset, Naïve 

Bayes achieved a moderate AUC of 0.74, indicating a limited 

capability to distinguish between stress and no-stress 

conditions due to overlapping emotional cues. Conversely, the 

model did very well on the TESS dataset at an AUC of 0.99 

with near-perfect classification in a more differentiated 

emotional setting. 

As shown in Figure 16, the ROC curve of SVM with a 

linear kernel on the RAVDESS dataset has an AUC of 0.87, 

indicating good classification performance with some 

misclassifications due to overlapping features. On the TESS 

dataset, it had a spotless AUC of 1.00 and exhibited perfect 

discrimination between stress and no-stress cases. As shown 

in Figure 17, the SVM with a polynomial Kernel achieved an 

AUC of 0.85 on the RAVDESS dataset, indicating good 

classification despite some false positives. On the TESS 

dataset, it attained a perfect AUC of 1.00, reflecting excellent 

class separation between stress and no-stress samples. 

 
(a) 

 
(b) 

Fig. 16 ROC curve obtained for SVM with linear Kernel using:                                 
(a) RAVDESS data set, and (b)TESS dataset. 

 
(a) 

 
(b) 

Fig. 17 ROC curve obtained for SVM with poly Kernel using: (a) 
RAVDESS data set, and (b)TESS dataset. 

4.3. Comparison Metrics 

To measure the effectiveness of the proposed models, a  

comprehensive comparison was conducted across multiple 

classifiers on two benchmark datasets, such as TESS and 

RAVDESS. 

Table 2. Comparison with existing models 

Reference 
Dataset(s) 

Used 
Techniques Accuracy 

[14] DAIC-WOZ 
RNN with 

MFCC 
95.6% 

[15] WESAD DL + ANN 97.4% 

[16] 
EMO-DB, 

IEMOCAP 

NSGA-II, 

Cuckoo + 

SVM 

87.66% 

Proposed TESS 
Voting 

Classifier 
100% 

Proposed RAVDESS SVM (Linear) 88.97% 
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Table 2 offers a comparative evaluation of the proposed 

approach with notable recent studies in stress and emotion 

recognition. 

While [16] employed a metaheuristic feature selection 

approach and achieved respectable accuracy, especially in 

speaker-dependent setups, their models demonstrated 

significant drops in speaker-independent settings.  

In contrast, the proposed approach maintains robust 

performance across two datasets, TESS and RAVDESS, 

without relying on DL or physiological signals.  

Notably, the ensemble model using only audio-based 

features achieved 100% accuracy on TESS and 88.97% on the 

more complex RAVDESS dataset, outperforming several 

prior works. 

Table 3. Comparison of algorithm 

Models 
Accuracy (%) Precision (%) Recall (%) F1-score 

RAVDESS TESS RAVDESS TESS RAVDESS TESS RAVDESS TESS 

RF 83.82 99.38 0.83 1 0.99 0.98 0.90 1 

Logistic  Regression 88.24 83.09 0.89 0.85 0.96 0.93 0.96 1 

Gradient Boosting 82.35 96.88 0.85 1 0.93 0.93 0.89 0.96 

K-NN 81.62 100 0.81 1 0.99 1 0.89 1 

Naïve Bayes 72.06 91.88 0.88 0.90 0.74 0.93 0.80 0.92 

SVM with Linear Kernel 88.97 100 0.89 1 0.97 1 0.93 1 

SVM with Poly Kernel 84.56 99.38 0.83 0.98 1 1 0.91 1 

SVM with rbf Kernel 83.09 100 0.82 1 1 1 0.91 0.99 

Voting Classifier 84.56 100 0.84 1 0.99 1 0.91 1 

The outcome of the evaluation of different ML algorithms 

utilizing the TESS and RAVDESS datasets gives useful 

information about their efficiency in detecting stress using 

audio features.  

4.3.1. Comparative Performance based on Accuracy 

As shown in Figure 18, the TESS dataset always reported 

higher accuracy values for all the classifiers than the 

RAVDESS dataset. Some models, like SVM with Linear 

Kernel, SVM with RBF Kernel, K-NN, and Voting Classifier, 

attained 100% accuracy on TESS. This indicates that TESS 

can possibly have more unique features or lower variability, 

which might make it easier for models to classify stress 

accurately. On the other hand, the RAVDESS dataset was 

more difficult to distinguish, with the best accuracy of 88.97% 

attained by SVM Linear Kernel. The comparatively lower 

accuracy on RAVDESS suggests that perhaps there’s more 

complexity or noise in the dataset, and more advanced 

techniques or pre-processing might be necessary to attain 

similar performance. 

 
Fig. 18 Comparison of accuracy for various classifiers 
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4.3.2. Comparative Performance based on Precision 

Comparison of the performance of classifiers between the 

TESS and RAVDESS datasets captures the considerable 

impact of data properties on the efficacy of a model. The TESS 

dataset had excellent performance for the majority of the 

classifiers, indicating that it has more separable features and 

sharper decision boundaries.  

The RAVDESS dataset, on the other hand, had more 

subtle and intermingled features, making it more difficult to 

get such results, hence necessitating sophisticated modeling 

methods. This highlights the pivotal position played by dataset 

choice in stress detection studies, perhaps explaining why, to 

best optimize model performance, the underlying data 

characteristics must be understood. 

 
Fig. 19 precision comparison of different models 

4.3.3. Comparative Performance based on Recall  

 
Fig. 20 Recall of different ML models 
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4.3.4. Comparative Performance based on F1-Score  

Comparison of TESS and RAVDESS datasets illustrates 

the significance of data properties in model efficiency. The 

TESS dataset illustrated uniformly high accuracy across 

models, which indicates the existence of easily separable 

features that create clearer boundaries of decision. The 

RAVDESS dataset showed more complexity with subtle or 

overlapping features that defied some models and needed 

sophisticated methods for best performance. These results 

highlight the importance of choosing appropriate datasets and 

knowing their characteristics to improve the efficacy of 

anxiety detection devices. 

 
Fig. 21 F1-score of different ML models 

4.4. Discussion 

The performance evaluation using the TESS and 

RAVDESS datasets highlights the significant impact of 

dataset characteristics on classifier behaviour. Models such as 

SVM with linear and RBF kernels demonstrated stable and 

consistent performance across both datasets, confirming their 

robustness in identifying stress-related patterns. In contrast, 

K-Nearest Neighbors (KNN) achieved perfect accuracy on the 

TESS dataset but showed poor results on RAVDESS, likely  

due to its sensitivity to noise and overlapping emotional 

features.  

Similarly, Naïve Bayes performed suboptimally on 

RAVDESS, reflecting the limitations of its feature 

independence assumption in more complex datasets. The 

Voting Classifier emerged as the best-performing model on 

TESS, benefiting from ensemble diversity and effectively 

combining individual learners’ strengths. This underscores the 

potential of ensemble strategies in achieving higher accuracy 

in scenarios where emotional features are well-separated. 

Notably, all classifiers performed better on the TESS dataset, 

with Voting Classifier and KNN achieving 100% accuracy, 

making TESS a promising dataset for practical stress detection 

applications. On the more emotionally complex RAVDESS 

dataset, Logistic Regression and SVM (linear) achieved F1-

scores exceeding 0.96, while other models showed diminished 

accuracy. These observations reinforce the importance of 

selecting classifiers based on the complexity and distribution 

of dataset features. Compared to prior studies such as Abd Al-

Alim et al. (2024), who achieved 98% accuracy using 

wearable sensor data, and Abdelfattah et al. (2025), where 

RNN models reached an F1-score of 93% with multi-modal 

physiological data, the proposed approach achieved 100% 

accuracy on the TESS dataset and 88.97% on RAVDESS 

using only speech-based acoustic features. This superior 

performance is largely attributed to the use of carefully 

selected spectral and prosodic features. This binary 

classification framework reduces emotional overlap, and the 

ensemble Voting Classifier, which enhances predictive power 

by combining multiple base learners. In contrast to deep 

learning and sensor-based methods, the proposed approach is 

lightweight, non-invasive, and well-suited for scalable, real-

time applications. This study exclusively used publicly  

available, anonymized datasets (TESS and RAVDESS), 

which are ethically approved for academic research. No 

personal or identifiable data was processed, and no human 

subjects were involved directly. However, as stress detection 

systems advance toward real-world deployment, it is vital to 

consider the societal implications, including privacy, 
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informed consent, and potential misuse in sensitive domains 

like insurance or employment. Ethical deployment must be 

guided by principles of transparency, data security, and 

responsible use. Overall, the findings not only validate the 

effectiveness of classical machine learning classifiers for 

audio-based stress detection but also emphasize the critical 

role of dataset structure, feature design, and model selection 

in achieving generalizable and ethical outcomes. 

5. Conclusion 
This study contributes greatly to stress detection with  

audio features by comparing different ML classifiers, such as 

RF, LoR, GB, KNN, NB, and SVM models, on two different 

datasets (RAVDESS and TESS). The research highlights the 

need for detailed feature extraction methods like Zero 

Crossing Rate, Spectral Centroid, and Chroma features to 

capture emotional patterns successfully. The Voting 

Classifier’s superior performance with 100% accuracy on the 

TESS dataset shows the strength of ensemble techniques in 

stress detection tasks. The results also indicate the influence 

of dataset features on model efficiency and that more detailed 

datasets, such as RAVDESS, need tailored approaches for 

accurate detection. To further develop this research, further 

work will investigate the integration of DL methods more 

appropriately to manage temporal and nonlinear emotional 

patterns from speech. Cross-dataset testing and real-world 

deployment in embedded or mobile platforms will be 

examined for better generalizability and usability. In addition, 

hyperparameter tuning, feature selection methods, and 

automated model optimization will be utilized to increase 

accuracy at the expense of efficiency. Finally, the creation of 

morally accountable, privacy-protecting stress detection 

systems will take precedence to allow secure deployment in 

healthcare and real-world applications. 
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