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Abstract - Energy harvesting using solar and wind energy is a major requirement in many applications. Also, to expand the 

efficacy of power generated from renewable sources, Maximum Power Point Tracking (MPPT) is crucial. Traditional MPPT 

controllers suffer from high error rates, slow convergence, and increased computational complexity, limiting their effectiveness. 

Thus, to solve these issues, an optimized Probabilistic Neural Network (PNN) controller to control the duty cycle of the boost 

converter has been designed. To improve performance, the proposed controller is optimized using a novel Hybrid Emperor 

Penguin–Salp Swarm Optimization Algorithm (HESS-SSA), which efficiently fine-tunes the neural network parameters. The 

proposed controller can optimize the duty cycle of the boost converter to maximize power extraction. Power extraction and duty 

cycle selection by HESS-SSA is compared with existing cuckoo search, Group Teaching Optimization Algorithm (GTOA), 

Dragonfly Optimization Algorithm (DOA), Particle Swarm Optimization (PSO) and PSO-Gravitational Search Algorithm (PSO-

GSA). Proposed controller outperforms traditional optimization methods, as shown by simulation results, achieving a greater 

power output of 4538.89W with enhanced convergence speed and decreased error. The improved MPPT approach guarantees 

increased system efficiency and stability, which makes it a viable option for integrating renewable energy into independent power 

systems and smart grids. 

Keywords - Hybrid renewable energy sources, Boost converter, Duty cycle, Emperor Penguin Optimization (EPO), Salp Swarm 

Optimization.  

1. Introduction 
The search for alternative power generation techniques 

has been fueled by growing worldwide issues like dangerous 

gas emissions and skyrocketing energy prices. Clean, 

renewable energy sources are being actively developed by 

researchers to increase the production of electricity. The goal 

is to meet rising energy demands while lessening the impact 

on the environment. Wind and solar power, two forms of 

renewable energy, are gaining popularity. The goal of these 

developments is to build an energy future that is efficient and 

sustainable [1]. Solar and wind are generally regarded as the 

most reliable and prospective Renewable Energy Sources 

(RES) due to their non-hazardous nature [2]. Nevertheless, 

due to their stochastic and intermittent characteristics, solar 

and wind provide only a limited volume of energy [3]. Owing 

to the lower power production from single RES and the 

increasing cost of power, Hybrid RES (HRES) are used [4]. 

The HRES is modelled by combining two or more RES that 

can be worked in either stand-alone or grid-tied mode [5]. 

Moreover, the HRES needs effective power converters for a 

flexible interconnection between RES to enable the operation 

in grid-tied or stand-alone mode. The converter-attached 

HRES has been used for power quality improvement, grid-

connected systems and reliability improvement [6, 7]. The 

basic concerns of the solar Photovoltaic (PV) scheme are solar 

insolation and heat. Moreover, the functioning of solar PV is 

explained by power-voltage and current-voltage curves [8]. A 

single point exists for peak power output in both solar and 

wind systems. The most efficient usage of HRES requires real-

time tracking of the MPP [9]. As an example, engineers have 

used Incremental Conductance (IC), the ripple correction 

method, Perturb and Observe (P&O), and fractional short 

circuit current [10] to maximize a system’s power output [11]. 

Among such methods, the IC method tracks MPP from the 

solar-wind model by examining the ratio between 

instantaneous and incremental conductance [12]. The major 

drawback of IC is the fluctuation around MPP; hence, it does 

not provide a satisfactory outcome. Similarly, the fuzzy logic 

controller can be applied in solar and wind RES but requires 

prior knowledge about the system [13]. However, these 
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methods provide satisfactory outcomes in constant wind speed 

and solar irradiance conditions, but they are ineffective for 

tracing maximum power under non-uniform conditions. 

Partial shading happens when solar irradiance and temperature 

are partially obscured in photovoltaic systems. Traditional 

MPPT controllers fail to account for both the local and global 

MPP, causing them to remain stuck at the initial peak power 

without considering the latter. Hence, the existing MPPT 

controllers caused power losses under varying climatic 

conditions [14]. To get around these problems, a lot of meta-

heuristic algorithms built on MPPT controllers have been 

implemented. Optimization methods are exploited to measure 

the supreme power output of solar PV. With greater precision, 

that method quickly finds the system’s peak power [15]. 

Furthermore, soft computing approaches are adopted to 

extract MPP. Soft computing-based algorithms are suitable for 

practical application due to their improved performance and 

the availability of microcontrollers. Due to these benefits, soft 

computing methods are omnipresent in RES to extract the 

peak power [16]. 

1.1. Research Gap and Motivation  

RES for MPPT with ANN-based methods has garnered a 

lot of attention lately. These networks are trained offline and 

then deployed online for real-time operation [17, 18]. 

Nevertheless, existing deep learning-based MPPT algorithms 

have poor real-time processing when operating on limited 

resources. Furthermore, training performance determines the 

accuracy of Artificial Neural Networks (ANN); as a result, the 

current approaches are laborious and lead to an increase in 

inaccuracy. Traditional algorithms’ inherent faults lower 

overall performance, causing the model to fall into low values 

rather than its MPP. Therefore, the NN is utilized in 

conjunction with hybrid optimization to address these 

problems, leading to the best solution globally. Should the 

neural network be updated with the optimal error-reduced 

value, the system will achieve its maximum power output.  

Numerous optimization techniques are employed in the 

literature to tune neural networks, but they have drawbacks 

such as undesired premature convergence and concerns with 

insufficient population diversity, which impair the neural 

network’s overall performance. In the meantime, the salp 

swarm optimized probabilistic neural network [19] has a lower 

error and a higher rate of convergence. However, the local 

solution has fallen as a result of the quantity of random 

coefficients at the exploitation stage. The Emperor Penguin 

algorithm [20], which has a great exploitation technique, is 

therefore hybridized with that method. Therefore, this 

research presented a single MPPT controller for monitoring 

the peak power from hybrid systems. Although several ANN-

based MPPT strategies have been proposed, most lack 

robustness and real-time adaptability due to inefficient 

parameter optimization. Existing deep learning-based MPPT 

controllers often show limited accuracy and higher 

computational complexity, making them less viable for 

embedded systems. Optimization techniques like PSO, GSA, 

and DOA have been used to fine-tune neural networks, but 

they are constrained by convergence issues and population 

diversity problems. Recent studies show that hybrid 

optimization methods can improve MPPT controller 

performance. However, there is a lack of research integrating 

hybrid algorithms with neural networks specifically for 

HRES. Motivated by this, the current work proposes a hybrid 

Emperor Penguin Optimization–Salp Swarm Algorithm 

(HESS-SSA) to optimize a Probabilistic Neural Network 

(PNN)-based MPPT controller. This approach aims to 

enhance convergence speed, reduce error, and ensure robust 

tracking of global MPP under varying environmental 

conditions. 

1.2. Contribution  

The main contribution of this work is given as follows,  

 Model HRES by combining solar and wind systems to 

improve power generation efficiency and grid stability. 

 Implement a Probabilistic Neural Network (PNN) based 

controller for MPPT to extract the maximum available 

power, and this ensures enhanced accuracy and 

adaptability to fluctuating renewable resources. 

 A combination of two algorithms, the EPO procedure and 

the Salp Swarm Algorithm (SSA) procedure, is used to 

improve PNN performance, ensuring faster convergence 

and decreased computational complexity.  

 Efficient duty cycle control dynamically optimizes the 

duty cycle of a boost converter to maximize power 

extraction from hybrid solar-wind sources. 

 Provide a robust and adaptive MPPT solution suitable for 

real-time renewable energy management under varying 

environmental conditions.   

The organization of this paper is given as follows: Section 

2 discusses various methods associated with the proposed 

method. The workflow of the suggested method and HRES 

modelling, along with the MPPT controller, is illustrated in 

Section 3. Outcomes gained by the proposed method are 

elaborated in Section 4. Overall conclusion of the proposed 

work and its performance efficacy is given in Section 5.  

2. Related Work 
MPPT is a key component in improving the efficiency of 

solar, wind, and HRES. Different types of MPPT controllers 

for tracking maximum power are discussed in this section. 

Using a dynamic differential annealed optimization and 

recalling technique, Rajesh, P. et al. [21] built an upgraded 

Recurrent Neural Network (RNN) to track the greatest power 

point in a wind energy alteration scheme. The D2AORERN2 

method is an acronym for “dynamic differential annealed 

optimization” and “recalling enhanced RNN,” the two 

components that make up the proposed system. Performance 

of the suggested approach, which is implemented in 
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MATLAB/Simulink, is contrasted with that of other 

approaches, such as Hill Climb Search (HCS), PSO, and 

Genetic Algorithm (GA). GA, PSO, HCS, and the suggested 

method had respective efficiencies of 81%, 85%, 89%, and 

99%. These outcomes show that the suggested strategy 

achieves the best efficiency and performs better than current 

techniques. 

 For photovoltaic systems that use a networked control 

system for observer-based control, Aslam [22] created a novel 

stochastic MPPT method. Networked Control Systems 

(NCSs) operating under an event-triggered paradigm 

primarily within a fuzzy system make up the suggested 

system. While accomplishing the targeted performance, the 

constructed model guarantees stochastic stability. An 

innovative model of the non-linear system is constructed in 

two stages by means of the T-P transformation: first, by 

assuring an acceptable controller input, and second, by 

assuring an appropriate vertex polytope for stability of the 

system. 

In order to track the highest power point of a Proton 

Exchange Membrane Fuel Cell (PEMFC), Fan et al. [23] 

combined fuzzy control with a hybrid Artificial Bee Colony 

(ABC) algorithm. One approach to construct an MPPT control 

method for PEMFC was offered as an ABC-fuzzy system, 

which integrates fuzzy control with the ABC algorithm. In 

contrast to the P&O, IC, and ABC methods, the test results 

show that PEMFC can achieve better anti-interference 

capability, faster response speed, lower oscillation, lower 

steady-state error, and higher output power with the ABC-

fuzzy examined. The ABC-fuzzy MPPT method enhances 

power supply efficiency and prolongs the service life of 

PEMFCs by increasing the device’s power output. 

Partially shaded solar PV systems published research by 

Kiran et al. [24] on reduced simulative performance analysis 

of variable step size ANN-based MPPT techniques. The 

suggested topology uses an MPPT based on a variable-step 

size ANN to enhance the topology. A boost converter is 

attached between the PV system and the load to raise the 

voltage of the PV supply.  

In their study on an optimized neural network-based 

energy management system for artificial rabbits was described 

by Sandeep, S. D. et al. [25], and an isolated DC microgrid 

system that uses Photovoltaic (PV), battery, and 

supercapacitor technology. The proposed system employs an 

ARONN control system for energy management, which 

stands for artificial rabbits optimized neural network. By 

controlling the battery’s low-frequency current control and the 

super capacitor’s high-frequency current control, this 

technique lessens the strain on the battery. The proposed 

energy management and regulation solutions are shown to be 

effective in the simulation results. 

Idrissi et al. [26] created a PI controller and an ANN to 

enhance MPPT for solar applications. In order to create an 

MPPT controller for use in PV applications, the suggested 

system employs the ANN method. The incorporation of a PI 

controller enhances its performance. Additionally, the 

performance of the ANN-based MPPT controller is compared 

to that of the traditional P&O technique. The outcomes of 

simulations can be examined using the MATLAB program. 

Haq et al. [27] developed a concept for an adaptable 

global sliding mode MPPT controller specifically for 

standalone PV systems that are based on neural networks. The 

proposed method guarantees that the sliding mode continues 

indefinitely by eliminating the reaching phase. The system 

response is free of chattering and harmonic aberrations. 

Finally, the simulation results conducted in the 

MATLAB/Simulink environment validate the proposed 

control approach’s accuracy, efficiency, and fast-tracking 

capabilities. To further validate the results, they are compared 

to the traditional non-linear backstepping controller when 

faced with sudden environmental changes. 

An MPPT Algorithm for Stand-Alone PV Systems 

employing an ANN was developed by Yılmaz et al. [28] with 

a Boost Converter architecture. An MPPT algorithm based on 

ANNs is the core of the suggested system. A reference voltage 

is produced by training the PV panel input temperature and 

irradiance data using the Levenberg-Marquardt approach. By 

contrasting this reference voltage with the voltage produced 

by the PV panel, MPPT is accomplished. The suggested 

procedure’s performance is evaluated by contrasting it with 

more conventional MPPT techniques like INC and P&O. 

According to simulation data, the ANN-based MPPT works 

better than traditional techniques. 

Venkata Siva Krishna Rao Gadi and Mande Praveen [34] 

have suggested that Emperor Penguin Optimiser (EPO) and 

Glowworm Swarm Optimisation (GSO) are combined to 

create a new hybrid emperor penguin glowworm swarm 

optimization method. Additionally, the techno-economical 

approach reduces power loss, voltage fluctuations, Diesel 

Generator (DG) costs, and energy supply costs.  

This optimization provides renewable energy sources by 

implementing wind turbines, DG, PV and ESS at their 

maximum capability. Additionally, metrics such as voltage 

variations, network power losses, DSM, initial and operational 

cost and the created model aid in the solution of the multi-

objective function. 

Gurumoorthi et al. [35] have presented a hybrid model 

that combines Quantum-inspired GA (DRL-QIGA) with Deep 

Reinforcement Learning (DRL). In the suggested approach, 

the proximal policy network is efficiently combined with the 

DRL to maximize power generation in real-time. DRL is 

appropriate for the suggested model since it can learn and 
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adjust to changes in a real-time context. As it searches for the 

best solutions to the optimal power flow problem, the QIGA 

improves the exploitation and exploration characteristics by 

strengthening the global search process using the quantum 

computing principle.  

Kuo-Hua Huang et al. [36] have developed the GA-ACO 

algorithm, a hybrid optimization controller that Combines Ant 

Colony Optimization (ACO) with GA. It is used to perform 

MPPT on a Photovoltaic Module Array (PVMA). In this 

manner, the system can continue to function at the global 

maximum power point even if the PVMA is partially shaded 

and the P-V characteristic curve has several peaks. It is 

demonstrated that a superior response performance of MPPT 

is achieved by appropriately adjusting the Gaussian standard 

deviation and the Pheromone evaporation rate of the suggested 

GA-ACO optimization. 

These analyses show that many of the existing methods 

are MPPT controllers for single RES, and few attempts were 

made on HRES. Moreover, in HRES, the hybrid optimization 

algorithm-based MPPT controller offers better performance 

than a single optimization algorithm. It was found that the 

neural network-based approaches perform well in finding the 

optimum PowerPoint. Owing to these facts, the proposed work 

modelled the Hybrid Emperor Penguin Salp Swarm (HESS) 

optimized PNN controller. 

3. Proposed Methodology 
Combining solar PV and wind turbines in this suggested 

project helps create HRES. Wind and solar systems are 

individually connected with boost converters. A HESS 

optimized PNN controller is presented to track the peak power 

from HRES. The PNN comprises four layers for processing 

the data to decide the Bayesian strategy. A combination of 

Emperor Penguin and Salp swarm optimization techniques, 

the HESS algorithm optimizes the PNN layer weight; hence, 

it enhances the tracking ability. The proposed HESS-PNN 

controller provides control signals to the converters to extract 

peak power. The complete layout of the suggested technique 

is presented in Figure 1. 

Solar PV

DC-DC boost 

converter
Inverter Grid

Duty cycle

Hybrid emperor penguin salp swarm (HESS) 

optimized probabilistic neural network (PNN) 

controller

Wind turbine

Rectifier DC-DC boost 

converter

Duty cycle

Vpv Ipv

Vw Iw

 
Fig. 1 Proposed methodology  

3.1. Modeling of Solar PV  
Solar PV works by absorbing solar energy from sunlight 

and converting it into electricity. PV panel obtains the 

irradiance from the sun, and the atom in the panel tends to 

move, producing charged particles. The performance of solar 

PV is estimated through the connection between current and 

voltage. The current output of solar is assumed as follows,  

𝑘 = 𝑘𝑝ℎ − 𝑘0 (𝑒𝑥𝑝 (
𝑉+𝑟𝑠𝑘

𝑌
− 1) −

𝑉+𝑟𝑠𝑘

𝑟𝑠ℎ
) (1) 

𝑌 =
𝑁𝑠𝑤𝑛𝐸𝑇

𝑄
 (2) 

In the above equation, 𝑘𝑝ℎ represents the photocurrent of 

the PV cell, the series resistance represented by 𝑟𝑠, 𝑘0 

represents the capacity present, 𝑉 symbolize output voltage. 𝑘 

denotes current output, and the shunt resistance is denoted by 

𝑟𝑠ℎ. The amount of series PV cells is characterized as 𝑁𝑠, the 

Boltzmann constant is represented by 𝐸, 𝑤𝑛denotes the 

ideality factor, 𝑇 denotes the temperature and ideality factor is 

denoted by 𝑌.  

3.2. Wind Energy Conversion System  

Mechanical power (𝑃𝑚) produced by wind can be 

calculated using the formula below. The following formula, 

which looks at the power produced by a wind turbine, can be 

used to express the mechanical power (𝑃𝑡𝑢𝑟𝑏𝑖𝑛𝑒) of the wind 

turbine:  

𝑃𝑡𝑢𝑟𝑏𝑖𝑛𝑒 =
1

2
𝜌𝜋𝑟2𝑑3𝑈𝑝𝑜𝑤𝑒𝑟  (3)    
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In an ideal wind turbine, the power captured would be the 

one given by Equation (3). The actual power of the wind 

turbine here 𝜌signifies air density, 𝑟signifies turbine radius, 

𝑑represents wind velocity, 𝑈 represents power coefficients 

[29].  

3.3. Modeling of the Boost Converter 

The DC voltage is increased through a boost converter 

that is a part of the hybrid system. Duty cycle and switching 

frequency can be changed to maximize the boost converter’s 

efficiency. An inductor, a freewheeling diode, a switching 

power MOSFET (S), and an output filter capacitor make up 

four primary parts. Figure 2 illustrates the architecture of the 

boost converter.  

RES

L

S

D

C R

 
Fig. 2 Architecture of the boost converter 

Output current, voltage and transfer gains are expressed 

as,  

𝑉𝑜 = (
1

1−𝑊
)𝑉𝑝𝑣  (4) 

𝑢𝑜 = (
1

1−𝑊
) 𝑢𝑝𝑣 (5) 

Here, output voltage is represented by 𝑉𝑜 , 𝑢𝑜represents 

output current, 𝑉𝑝𝑣signifies solar output voltage, 𝑢𝑝𝑣signifies 

solar current, 𝑊represents duty cycle [30]. 

3.4. Proposed HESS-PNN Controller 

The MPPT controller is used to remove peak power from 

HRES. The existing MPPT controller had the disadvantage of 

a fixed step size, which led to higher power oscillations. Thus, 

HESS based PNN controller is suggested in this work for 

tracking the maximum available power from HRES. By 

manipulating the prices of the weights and biases connected 

amongst the layers of neurons, an artificial neural network can 

learn to perform tasks.  

This network is composed of interconnected groups of 

simple processing elements called artificial neurons. An 

important aspect of a neural network is its learning process, 

activation role, and the way connections are organized 

between the layers of neurons. The PNN works based on 

interconnection patterns, weights and activation functions 

[30]. Figure 3 shows the architecture of the PNN controller. 
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p1

p4
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S
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S
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Input layer

Pattern layer
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Output layer

 
Fig. 3 Architecture of PNN 

3.4.1. Probabilistic Neural Network (PNN) 

PNN is a supervised learning network based on a 

probabilistic algorithm. The PNN will produce sufficient 

training data for training the Bayesian classifier. In PNN, the 

weights of layers are adjusted automatically, which has the 

advantage of a higher training speed. As an activation 

function, PNN processes the Gaussian function over many 

layers [31, 32].  

Signal categorization systems and real-time fault 

detection are perfect applications for Probabilistic Neural 

Networks (PNNs) due to their quick training pace.  

A radial basis layer in its architecture separates input and 

hidden layers, while a competitive layer connects hidden and 

output layers. The transformation layers of PNN are given 

below, 

Input-Pattern Layer: This is the first stage of a PNN, and 

it entails feeding a sequence of shapes into the pattern layers 

as input. In order to multiply the input, the pattern layer 

receives it from the input layer.  

𝜋𝑗𝑘(𝑥) =
1

2𝜋
𝑑
2𝜎𝑑

(−
‖𝑥−𝑥𝑗𝑘‖

2

2𝜎2 ) (6) 

Here, 𝑑 signifies the problem dimension, 𝜎 signifies the 

smoothing parameter, 𝑥 signifies the input, and 𝑥𝑗𝑘 signifies 

the pattern vector. The following equation examines the 

summation,  



C. Jeeva & Ambarisha Mishra / IJEEE, 12(7), 16`9-183, 2025 

 

174 

𝑂𝑗(𝑥) =
1

2𝜋
𝑑
2𝜎𝑑

1

𝑁𝑖
∑ 𝑒𝑥𝑝

𝑁𝑖∑(−
‖𝑥−𝑥𝑥𝑦‖

2

2𝜎2 )

𝑘=1  (7) 

Here, 𝑁𝑖 signifies the number of classes.  

Summation to Output Layer: Finding the output helps one 

to ascertain the vector’s last class. Changing the equation 

given by the hidden layer helps one to investigate its result.  

𝑐(𝑥) = 𝑎𝑟𝑔 𝑀 𝑎𝑥{𝑂𝑖(𝑥)}, 𝑖 = 1,2,3. . . 𝑐 (8) 

Here, Euclidean distance is estimated by ‖𝑥 − 𝑥𝑗𝑘‖.   

3.4.2. Hybrid Emperor Penguin Salp Swarm Optimization 

Algorithm (HESS)   

HESS is developed by combining EPO and SSA. The 

proposed HESS overcomes the drawbacks of lower 

convergence and diversity. The SSA needs higher 

computational efforts; thus, to overcome such issues, the EPO 

is added to the SSA. The information-carrying behavior of 

SSA is improved by adding EPO [33].  

Because they are such gregarious creatures, emperor 

penguins hunt and forage in groups. Each penguin makes an 

equal contribution to the group effort as they cuddle together 

to survive the harsh Antarctic winters, exhibiting a strong 

feeling of solidarity and cooperation. The emperor penguin 

exhibits (1) Create and explore huddling behavior. (2) 

Calculate the huddle’s surrounding temperature. (3) Find the 

distances separating every penguin. (4) Relocated effective 

mover.  

The SSO algorithm was modeled after the flocking 

behavior of salps during their deep-sea foraging and 

navigation. A mathematical representation of this behavior is 

a salp chain, which is separated into two groups: followers and 

leaders.  

The followers march sequentially after the leader, who 

hints at the chain from the front. The salp chain is a 

mathematical model for this behavior. The flow of HESS is 

explained below.  

The position updating equation of SSA is expressed as 

follows,  

𝑆𝑎
1 = {

𝐺𝑖 + 𝑑1((𝑢𝑎 − 𝑙𝑎)𝑑2 + 𝑙𝑎), 𝑑3 ≥ 1
𝐺𝑖 − 𝑑1((𝑢𝑎 − 𝑙𝑎)𝑑2 + 𝑙𝑎), 𝑑3 < 1

 (9) 

Here, 𝑆𝑎
1 signifies the initial position in 𝑎𝑡ℎdimension, 𝐺𝑖 

signifies the position of food basis, 𝑢and 𝑙signifies the upper 

and lower limits, respectively. Random numbers are 

represented by 𝑑1, 𝑑2and 𝑑3.𝑑1 is ensures improved 

exploration and exploitation, which is termed as,  

𝑐1 = 2𝑒−(
4𝑐

𝑚𝑎𝑥
()2)

 (10) 

Here, 𝑐 signifies the current repetition, and 𝑚𝑎𝑥signifies 

maximum iteration. The updated position of the remaining 

parameters is given below,  

𝑆𝑎
𝑏 =

1

2
𝐴𝑇2 + 𝑉0𝑇, 𝑗 ≥ 2 (11) 

Here, 𝑆𝑎
𝑏 signifies the follower position, 𝑇signifies the 

time duration, and 𝑉𝑜signifies the starting speed. Moreover, 

𝐴can be calculated by,  

𝐴 =
𝑉𝑒𝑛𝑑

𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙
 (12) 

𝐴 =
𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑋𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑡
 (13) 

Here 𝑉𝑒𝑛𝑑 , 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 the final and initial speeds are 

signified, 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝑋𝑖𝑛𝑖𝑡𝑖𝑎𝑙  are the current and initial 

positions, respectively. If the initial velocity is zero, then the 

position updating equation is assessed by the subsequent 

equation,  

𝑆𝑎
𝑏 =

1

2
(𝑠𝑎

𝑏 + 𝑠𝑎
𝑏−1) (14) 

The penguin huddling behavior is used in SSA to recover 

the convergence speed. The following equation examines the 

boundary of huddling,  

𝜆 = 𝛻𝜎 (15) 

Here, 𝜎 and 𝜆 signifies wind velocity and gradient, 

respectively. Moreover, the complex potential is given as 

follows, 

𝐶 = 𝜎 + 𝑖𝛼 (16) 

Here, 𝑖 signifies the constant of the imaginary  𝐶 signifies 

the role of the polygon plane. The following equation 

examines the temperature of the cluster,  

𝑃′ = (𝑃 −
𝐼𝑚𝑎𝑥

𝑊−𝐼𝑚𝑎𝑥
) (17) 

𝑃′ = {
0, 𝑖𝑓𝑟 > 0.5
1, 𝑖𝑓𝑟 < 0.5

 (18) 

Here, 𝑊signifies current iteration, 𝐼𝑚𝑎𝑥 signifies 

maximum iteration, 𝑟signifies radius, 𝑃signifies the duration 

for finding the best solution. The following equation examines 

the distance between two penguins,  

�⃗⃗� 𝐸𝑃 = 𝐴𝑏𝑠(𝑆(𝑋 ). �⃗� (𝑎) − 𝑋 . �⃗� 𝑒𝑝(𝑎)) (19) 
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Start 

Generate the initial 

population and maximum 

iteration 

Calculate the fitness 

value of the layers

Examine the huddling and 

swarm behavior using the 

equation 

Update the weight of 

the layers 

Examine the fitness value 

of all layers 

Examine the fitness value of all 

layers along with the voltage and 

current 

Repeat the searching process if 

the optimum weight is not 

chosen 

Determine optimum layer weight 

End 

Check the halt 

condition 

YES NO

 
Fig. 4 Flow chart of HESS 

Here, �⃗⃗� 𝐸𝑃 the gap between the search agent and the best 

fittest agent 𝑎represents the present iteration, the 

parameter𝑋 avoids the collision, �⃗�  and �⃗� 𝑒𝑝represents the best 

optimum solution and position vector, respectively, 

𝑆(. )signifies the social behavior.  

𝑟 = (𝑀 × (𝑃′ + 𝑔𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 × 𝑟𝑎𝑛𝑑()) −)𝑃′ (20) 

𝑔𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝐴𝑏𝑠(�⃗� − �⃗� 𝑒𝑝) (21) 

𝐶 = 𝑟𝑎𝑛𝑑() (22) 

Here, 𝑀signifies a movement parameter that maintains 

the distance to avoid a collision. In most cases, the moment 

parameter is set as 2, 𝑃′which signifies the temperature level 

of the group, and the polygon grid accuracy is represented as 

𝑔𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  and 𝑟𝑎𝑛𝑑()represents an arbitrary quantity between 

0 and 1. The following equation can be used to examine social 

behavior,  

𝑆(𝑋 ) = (√𝑓. 𝑒−
𝑥

𝑐 − 𝑒−𝑥)

2

 (23) 

Here 𝑒, it signifies the function of expression 𝑓and 

𝑐control of the exploitation and exploration that lies in the 

range between [1.5, 2] and [2, 3]. The position updating 

equation is given by,  

�⃗� 𝑒𝑝(𝑢 + 1) = �⃗� 𝑒𝑝(𝑢) − 𝑟 × �⃗⃗� 𝑒𝑝 (24) 

Nevertheless, the computation of SSA parameters 

necessitates significant processing power. The EPO procedure 

is used to solve this difficulty. Utilizing the EPO process’s 

huddling habit helps SSA overcome its difficulties in 

managing essential information. Consequently, a new hybrid 

algorithm that combines the advantages of SSA and EPO is 

suggested. The PNN’s weight is updated by the HESS to 

adjust the duty cycle of the boost converter.  

The input layer contains four neurons, while the output 

layer contains two. The proposed HESS-PNN is used to tune 

the duty cycle of the boost converter to generate peak power. 

By utilizing HESS, the ideal number of layers is selected to 

enhance the boost converter’s power tracking capability. The 

HESS workflow for optimizing the layer weights is depicted 

in Figure 4. Algorithm 1 denotes the pseudocode Emperor 

Penguin Salp Swarm Optimization 

Algorithm 1: Pseudocode Emperor Penguin Salp Swarm 

Optimization 

Start 

1. Initialize the emperor penguin and salp swarm 

populations with a random PNN weight vector 

2. Evaluate the fitness function 

Fitness=f (voltage, current) 

3. While (t< MaxIter)  

For each salp  

     If i==leader 

           Update position using Equations (9)-(10) 

      Else  

           Update follower position using Equations (11)-

(14) 

For each emperor penguin  

      Evaluate temperature and huddling behavior using 

Equations (15)-(18) 

        Update convergence using EPO dynamics 

Combine SSA and EPO outputs into a unified HESS 

update 

Update PNN weights with new positions 

Evaluate updated fitness (power output) using PNN 

   If new fitness > best fitness 

           Store new weights as optimal 

   t ← t + 1 

4. End 

5. Output final PNN weights and corresponding optimal 

duty cycle 

Stop  

 

4. Results Validation 
To inspect the stability of the HESS-PNN based on the 

MPPT controller, HRES is modelled in the 

MATLAB/Simulink platform. The PV and wind as HRESs are 

considered to be the source of the Simulink.  

Additionally, the model incorporates a boost converter to 

increase power levels. The boost converter’s ideal duty cycle 

was adjusted using the suggested controller. Figure 5 shows 

the whole Simulink process for the suggested work. 
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Fig. 5 Simulink model of proposed work 

The HRES with the boost converter to path maximum 

power using the parameter values is illustrated in Table 1.  

Table 1. System description 

Systems Parameter Values 

Solar PV 

Cells per module 83 

Series-connected 

modules per string 
15 

Voltage at MPP 43.4V 

Current at MPP 8.18A 

Diode 

ideality factor 
1.0705 

Open circuit voltage 60V 

Short circuit current 8.68A 

Wind 

Speed 2000rpm 

Torque 10Nm 

Nominal  

mechanical power 
5000W 

Base wind speed 12m/s 

MPPT 

controller 

Duty cycle limits [0.8, 0.3] 

Number of initial 

population 
10 

Number of iterations 100 

Grid 
Phase 3 

Frequency 60 

Boost Converter 
Diode on-state resistance 1e-4ohm 

Diode snubber resistance 1e6ohm 

 

The proposed HESS-PNN-based MPPT controller is 

evaluated under two cases,   

Case 1: System performance under constant sources  

Case 2: System performance under varied sources  

Case 1: In the first case, the system is evaluated by adding 

constant 1000𝑊/𝑚2solar irradiance and 12𝑚/𝑠2wind speed 

sources. P-V and I-V features of solar PV under constant 

sources are depicted in Figure 6. The results show that the 

curves are smooth under constant sources.  

 
(a) 

 
(b) 

Fig. 6 Performance analysis of solar PV under constant irradiance:  

(a) I-V, and (b) P-V characteristics. 
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The control stability of the converter is examined using 

the modulation index, which defines the extension of the 

modulation to the carrier signal. The modulation index’s 

optimum value minimizes the converter’s power loss and 

increases the converter’s stability.  

The stability of the modulation index is achieved at 0.9 in 

0.5 seconds. The modulation index provided by the proposed 

HESS-PNN is portrayed in Figure 7, as it has been seen that 

the suggested controller provides a constant modulation index 

to the converter.   

 
Fig. 7 Analysis of modulation index under constant source 

The power extraction from HRES will be improved by 

choosing the optimum value for the duty cycle. The MPPT 

ability of the proposed controller and the existing controller is 

shown in Figure 8.  

To measure the performance of the proposed HESS-PNN 

controller, the existing controllers such as GTOA [37], 

PSOGS [38], DFO [39], PSO [40] and cuckoo [41] 

optimization algorithm-based MPPT controller.  

The results analysis implies that the single algorithm-

based MPPT controllers provided lower power due to the 

lower convergence speed needed to track maximum power. In 

addition, the power tracking ability is poor in existing 

controllers due to the oscillations around peak power.  

The proposed system yields 1.5×106 at 1 second. At the 

same time, the proposed method yields higher power due to 

the higher computational speed of the MPPT controller. 

Figure 9 shows the DC link voltage of the inverter during 

constant source. The DC link voltage is hiked to 1028V before 

it settles at 1000V at 0.5 seconds. Moreover, it is verified that 

the DC link voltage is the same for removing maximum power 

from the hybrid scheme. The purpose of the DC link voltage 

is to supply a steady flow of voltage, which ensures the MPPT 

and protects the power electronic component. 

 
Fig. 8 Comparative analysis of MPPT controller 

 
Fig. 9 Analysis of DC link voltage 

The grid’s voltage and current are displayed in Figure 10. 

The enhanced power extraction raises the voltage and current 

that are fed into the grid. The grid’s current in the d-q frame 

implies that the proposed controller model reaches the 

reference values.  

 
(a) 
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(b) 

 
(c) 

 
(d) 

Fig. 10 Performance analysis of grid in constant sources: (a) Voltage, (b) 

Current, (c) Id, and (d) Iq. 

Active and reactive power on the grid side during constant 

sources is depicted in Figure 11. It was found that reactive 

power compensation performed well in the system with the 

proposed controller. In order to guarantee dependable and 

effective power distribution, the electrical grid is essential. 

Numerous variables, including system flexibility, economic 

benefits, and energy stability, make it necessary. 

 
(a) 

 
(b) 

Fig. 11 Estimation of (a) Active power, and (b) Reactive power on the 

grid side under constant sources. 

Case 2: In the second case, system functioning is analyzed 

by varying the sources of irradiance from 1000𝑊/𝑚2to 

200𝑊/𝑚2. The P-V and I-V curve of solar PV is depicted in 

Figure 12. By analyzing the waveforms, it is found that the 

power increases with the increasing level of irradiance. 

A boost converter is added to HRES, and an MPPT 

controller is used to optimize power output from HRES. 

Selecting the appropriate duty cycle value improves the boost 

converter’s power conversion capability.  

Thus, a PNN-based MPPT controller is used, whereas a 

HESS-PNN optimizes the layer weights. The modulation 

index waveform provided to the converter by the proposed 

controller is depicted in Figure 13. 
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(a) 

 
(b) 

Fig. 12 Performance analysis of solar PV under varied irradiance:                 

(a) I-V, and (b) P-V. 

Power obtained from the hybrid solar PV-wind structure 

is depicted in Figure 14. The power removed from the hybrid 

system indicates that the power production from both sources 

varies due to the varying irradiance levels. Power tracking 

varies due to the various sources that cause oscillations around 

the system and lead to power loss. The comparative analysis 

of the MPPT controller for peak power extraction indicates 

that the proposed controller yields higher power under varied 

sources owing to the optimum tuning of the converter duty 

cycle. 

 
Fig. 13 Analysis of modulation index under varied sources 

 
Fig. 14 Comparative analysis of the MPPT controller in varied sources 

Figure 15 shows the grid voltage and current under 

various sources. As can be observed, the proposed MPPT 

controller increases the power to the grid in the given manner.  

 
(a) 

 
(b) 

 
(c) 
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(d) 

Fig. 15 Performance analysis of grid in varied sources: (a) Voltage,                   

(b) Current, (c) Id, and (d) Iq.  

Figure 16 shows the grid-side analysis of active and 

reactive power. By examining outcomes, the proposed method 

provides better reactive power compensation under varied 

sources. Moreover, it is found that the real power to the grid 

varied due to a varying range of sources. In contrast, the 

proposed controller minimizes the reactive power to the grid.  

 
(a) 

 
(b) 

Fig. 16 Estimation of (a) Active power, and (b) Reactive power on the 

grid side. 

4.1. Discussion  

By contrasting the effectiveness of the suggested 

controller in duty cycle selection by using an optimization 

technique to compare its performance with that of the current 

MPPT controller. Figure 17 shows the relative analysis of the 

MPPT controller concerning the provision of an optimal duty 

cycle in constant sources. According to the findings, the 

optimal duty cycle cannot be achieved by the PSO-tuned 

MPPT controllers because of their reduced convergence rate. 

In addition, the PSOGS yields a better duty cycle, which also 

creates oscillations in the system for an increased duration. 

The cuckoo algorithm provides varied duty cycles. Thus, it 

cannot improve the converter performance. However, the 

proposed controller can yield an optimum duty cycle due to 

the better convergence speed when adopting the hybrid 

algorithm. The relative analysis shows that the suggested 

controller yields a better duty cycle on both the constant and 

varied sources due to its higher tracking ability.  

 
(a) 

 
(b) 

Fig. 17 Investigation of MPPT controllers for duty cycle selection 

under: (a) Constant sources, and (b) Varied sources. 

Table 2. Quantitative performance comparison of various MPPT 

MPPT 

Controller 

RMSE 

(W) 

MAE 

(W) 

Tracking 

Efficiency 

(%) 

Convergence 

Time (s) 

Proposed 

HESS-PNN 
12.45 9.87 99.1 0.38 

PSO 34.21 27.56 96.5 0.72 

PSOGSA 28.63 21.44 97.2 0.65 

DFO 30.05 23.87 96.8 0.61 

Cuckoo 

Search 
37.88 30.14 95.9 0.75 

GTOA 25.39 18.93 97.8 0.53 
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Table 2 presents a quantitative performance comparison 

of various MPPT controllers based on four key metrics: Root 

Mean Squared Error (RMSE), Mean Absolute Error (MAE), 

tracking efficiency, and convergence time. The proposed 

HESS-PNN controller demonstrates superior performance 

with the lowest RMSE (12.45 W) and MAE (9.87 W), 

indicating higher accuracy in MPPT.  

It also achieves the highest tracking efficiency of 99.1% 

and the fastest convergence time of 0.38 seconds. In contrast, 

conventional methods like Cuckoo Search and PSO exhibit 

higher error values and slower convergence. These results 

confirm that the HESS-PNN controller not only enhances 

tracking precision but also ensures faster and more stable 

MPPT performance under dynamic conditions. Proposed 

HESS-PNN controller leverages the synergistic strengths of a 

novel hybrid optimization algorithm to meticulously train a 

probabilistic neural network. This foundational design choice 

enables an unparalleled balance of global exploration, precise 

exploitation, rapid adaptation, and accurate tracking, leading 

to demonstrably superior performance in terms of power 

extraction, convergence speed, error minimization, and 

overall system stability when compared to conventional and 

other meta-heuristic-based MPPT techniques.  

4.2. Limitations and Future Work 

This study is limited to simulation-based validation using 

idealized converter models, without considering hardware 

non-linearities, sensor noise, or environmental disturbances. 

The computational complexity of the HESS algorithm may 

also challenge real-time implementation. Additionally, the 

work focuses only on a fixed solar-wind hybrid system. Future 

research will involve hardware implementation and 

experimental testing, exploring real-time deployment on 

embedded platforms, and extending the controller to multi-

source hybrid systems with advanced learning techniques for 

improved adaptability and robustness. 

5. Conclusion  
This study introduces a new method for improving the 

boost converter’s duty cycle in solar-wind HRES using the 

HESS-PNN controller. Unlike the traditional method, which 

requires separate converters, the suggested topology improves 

power generation efficiency while reducing system costs. A 

hybrid HESS algorithm, which combines the EPO and SSA to 

provide faster convergence and better performance, is used to 

optimize the controller after it has been structured using a 

PNN. The proposed topology is validated in variable and 

constant energy sources to assess the system’s efficiency. 

Modulation index and solar PV properties are examined, and 

a comparison with other MPPT controllers such as GTOA, 

DFO, PSOGA, PSO, and cuckoo-based methods is carried out. 

The findings show that the HESS-PNN controller improves 

the boost converter’s ability to choose the ideal duty cycle, 

hence enhancing power tracking performance across various 

operating conditions. These results demonstrate how the 

suggested approach may help hybrid renewable systems 

achieve more reliable and effective energy collection. 
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