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Abstract - This paper presents a proposal for the electronic simulation of a Coriolis sensor based on the resonance frequency of 

a straight tube made of stainless steel, with emphasis on the design of the simulation for the measurement of the angular phase 

shift of the signals generated by the MPUs in the sensor. The system is based on an ESP32 microcontroller and two MPU-6050 

sensors, whose data are displayed on a 4-digit, 7-segment display (TM1637). The code used in the simulation employs a C 

algorithm that estimates the phase difference between the two signals; a digital PLL was implemented to obtain the phase of 

each signal, and a DFT was used for the precise measurement of the phase difference, which is directly proportional to the mass 

flow. Disturbances due to flow pulsations and their impact on system accuracy are also considered, incorporating Gaussian 

noise in the simulation. Validation of the algorithm was performed by comparing the results simulated in Wokwi with those 

obtained in the Octave software. The errors obtained were less than ±0.2°, which supports the feasibility of the algorithm for 

measuring phase shift in a low-cost Coriolis sensor, applicable in industries such as chemical processing and fluid transport 

monitoring. 

Keywords - Coriolis sensor, Signal phase shift, Resonant frequency, Gaussian noise.

1. Introduction  
1.1. Statement of the Problem and Justification of the 

Research 

This work proposes a replicable model and a system with 

reasonably priced components (<US$200), thus addressing 

two important shortcomings: the lack of detailed protocols for 

phase detection in straight-tube Coriolis sensors and the 

reliance on specialized hardware in current solutions. 

Particularly valuable in sectors such as chemical processing, 

fluid dosing, and quality control systems, Coriolis-based flow 

meters constitute a basic technology for the direct and accurate 

measurement of mass flow rate. The devices are quite reliable 

under different conditions because, unlike other techniques, 

they determine the fluid's mass without relying on its thermal 

or pressure characteristics. However, a clear research gap 

exists surrounding the electronic implementation of straight-

tube Coriolis sensors using accessible technologies. Technical 

difficulties in accurately identifying angular displacement 

among signals produced by tube-mounted inertial sensors 

define the electronic implementation of Coriolis sensors, 

particularly those with straight tubes [1]. The problems are 

compounded by noise, flow pulsations, and mechanical 

disturbances, which compromise the system's accuracy. These 

challenges, underexplored in low-cost, open-source solutions, 

limit the technology's real-world applicability in contexts 

outside of specialized laboratories or large industries. 

Currently, the technical literature is limited in terms of studies 

that address these aspects with sufficient depth and 

replicability, since most current studies address the problem 

superficially, which restricts their practical relevance and 

leaves an academic gap in terms of comprehensive and 

repeatable methods. This article presents the simulation and 

validation of a stainless-steel embedded system for a straight-

tube Coriolis sensor. The proposal is based on common, low-

cost components, such as an ESP32 microcontroller, two 

MPU-6050 inertial sensors, and a seven-segment display with 

driver (TM1637), all readily available on the market. Through 

this intentional selection of low-cost hardware, Coriolis 

technology is democratized and adopted in industrial, 

academic, and resource-constrained SMEs, where commercial 

solutions with specialized hardware are not always feasible. 

The main method combines a phase-locked loop (digital PLL) 

http://www.internationaljournalssrg.org/
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for real-time tracking and a Discrete Fourier transform (DFT) 

for angular displacement accuracy, thus estimating the 

displacement between the two signals. The impact of flow 

pulsations on measurement accuracy is investigated, and 

Gaussian noise is included in the simulation to assess the 

system's robustness to disturbances. By achieving an error of 

less than ±0.2° and comparing the simulation results obtained 

in Wokwi with those of GNU Octave, the validation supports 

the feasibility of the proposal.This contributes to bridging a 

significant gap between academic research and real-world 

industrial needs by offering a replicable, accessible, and 

scientifically validated solution. This lays the groundwork for 

future advances in demanding environments where 

component availability and cost-effectiveness are paramount, 

combining sophisticated digital signal processing, rigorous 

simulation, and integrated electronics at reasonable prices. 

1.2. Fundamental Concept of Coriolis Flowmeters  

Currently, flow meters are more common and are 

distinguished by their high accuracy.  

A Coriolis flow meter can come in different shapes and 

sizes, but is primarily composed of one or two tubes vibrating 

at their natural frequency. Its operating principle is the 

Coriolis force, FC, which arises when a mass, m, has a 

velocity, v, in a rotating reference frame. The rotating 

reference frame has an angular velocity. The relationship is 

described by: [1] 

FC = −2mω × v  (1) 

In a Coriolis flowmeter, the moving mass is the fluid, and 

the rotating reference system is the moving tube or tubes. 

Figure 1 shows two cases in which a straight tube vibrates: in 

the upper case, when it moves upward, and in the lower case, 

when it moves downward. Ma C. explains that the Coriolis 

force arises when the fluid collides with the walls of the tube, 

which is slightly bent due to vibration. In the upper part of 

Figure 1, the fluid on the left side collides with the bottom wall 

of the tube, creating the downward Coriolis force. On the right 

side, the opposite occurs, creating the upward Coriolis force. 

[1]. 

 
Fig. 1 Illustration of coriolis forces acting on a straight tube put into vibration; the force arises when there is a flow through the tube. The image 

depicts the tube at extremes of vibration [1]. 

2. State of the Art 
2.1. Validation of the Use of Coriolis Mass Flow Meters as 

Reference Standards in Custody Transfer Applications 

2.1.1. Objective 

To metrologically confirm the Coriolis-type mass flow 

meters used as reference standards in the calibration of on-site 

custody transfer flow meters, evaluate their performance 

through comparisons between measurements made with the 

National Standard for Liquid Flow and a bidirectional tester 

under real operating conditions. 

2.1.2. Methodology  

Initial calibration: Coriolis Mass Flow meters (CMF) 

were calibrated with the National Standard for Liquid Flow by 

the gravimetric method using water as the working fluid. 

On-site validation: Subsequently, the meters were 

validated in the field using a bidirectional tester with 

petroleum products as the working fluid. 

Techniques employed: 

 Calibration using reference standards. 

 Comparisons between gravimetric and volumetric 

methods. 

 Evaluation of correction factors (density, temperature, 

pressure). 

 Calculation of error, Meter Factor (MF) and K-factor. 

 

2.1.3. Results and Methodology 

It was concluded that the laboratory and on-site 

calibration results are equivalent within the specified 
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uncertainty. The systematic errors between the gravimetric 

and volumetric methods were acceptably low. Validation was 

obtained for the use of Coriolis-type meters as reference 

standards for custody transfer applications in the petroleum 

industry. 

2.1.4. Limitations 

No leakage between the tester and the meter under 

calibration was considered. Equal temperatures in the fluid 

and the bodies of the gauges and testers were assumed, which 

may not be perfectly met in the field.  

Thin-walled cylinder theory was applied, which 

introduces an approximation that may affect accuracy at 

extreme pressure conditions. No rapid dynamic variations of 

flow rate or transient operating conditions were addressed; 

only stationary conditions. 

2.2. A New Phase Difference Measurement Method for the 

Coriolis Mass Flowmeter based on Correlation Theory [2] 

2.2.1. Objective 

To develop a new method for measuring phase difference 

in Coriolis-type mass flow meters, based on correlation 

theory, to improve accuracy, reduce bias in signals of 

unknown frequency and solve the problem of non-integer 

period sampling signals. 

2.2.2. Methodology 

Frequency estimation: An Adaptive Notch Filter (ANF) 

is used to estimate the frequency of the signals and filter out 

noise. Data extension: The length of the sample data is 

adjusted to match an integer number of periods, avoiding edge 

effects in the Hilbert Transform. The Hilbert Transform is 

applied to extended signals to generate analytical signals. 

Calculation of cross-correlation functions between analytical 

and real signals. Determination of the phase difference using 

a formula based on trigonometric functions on the results of 

correlations. 

2.2.3. Results and Methodology  

The proposed method shows better accuracy than 

traditional methods, such as: 

 Standard correlation, 

 Direct Hilbert transform, 

 Sliding Goertzel Algorithm (SGA), 

 Discrete Time Fourier Transform (DTFT). 

 Maintained high accuracy even with low SNR (Signal-to-

Noise Ratio) signals and non-integer period samples. 

 Better dynamic performance with lower computational 

complexity compared to DTFT and SGA. 

 Real experiments: 

 Applied to a RHEONIK Coriolis meter (RHE08 sensor). 

 The phase difference estimated with the proposed method 

was closer to the theoretical value than the SGA and DTFT 

methods. 

 Relative errors of the new method were less than 0.15 %, 

improving the accuracy of the flow measurement. 

 Proposed an innovative method that eliminates the bias 

caused by non-integer sampling periods. 

 Improved noise resistance and accuracy under dynamic 

conditions. 

 Reduced computational complexity over existing high-

accuracy methods such as DTFT. 

 Extended the applications of Coriolis mass flow signal 

processing to scenarios where the frequency is unknown. 

 Proposed a correlation-based scheme combined with 

Hilbert that is different from traditional approaches. 

2.2.4. Limitations 

Algorithm complexity: Although it improves accuracy, it 

may be more complex than necessary for applications where 

only phase measurement is needed, without frequency 

estimation. 

Limited applicability: Currently the method was tested in 

controlled flow environments; it remains to be tested in more 

diverse energy fields. 

Processing: Although the computational burden is lower 

than in DTFT, it is still higher than purely correlation or zero-

crossing detection methods on simple signals. 

2.3. A Simple Parametric Design Model for Straight-Tube 

Coriolis Flowmeters [3] 

2.3.1. Objective 

Develop a simple parametric model to predict the 

sensitivity and natural frequency of straight-tube Coriolis 

flowmeters while minimizing reliance on expensive numerical 

simulations. 

2.3.2. Methodology  

A one-dimensional (1D) numerical simulation, based on 

the finite difference method, is used to derive a parametric 

model characterized by three dimensionless parameters: 

bending stiffness (Σ), proximity to the buckling limit (R) and 

inter-sensor separation distance (χ). The model is 

experimentally validated using 11 data sets. 

2.3.3. Results and Methodology  

The model predicts sensitivity with a margin of error of 2 

to 5% and allows estimation of natural frequency, providing 

designers with a quick and intuitive tool to optimize sensor 

performance. 

2.3.4. Limitations 

The one-dimensional (1D) approach may not fully 

capture complex three-dimensional dynamics, and validation 

was performed under a limited range of conditions and 

materials. 



German Alberto Echaiz Espinoza et al. / IJEEE, 12(7), 184-199, 2025 

 

187 

2.4. Study on Resonant Frequency Control in Coriolis 

Meters Using PLL [4] 
2.4.1. Objective 

To evaluate the performance of a Phase-Locked Loop 

(PLL) control system to maintain the resonant frequency in a 

straight-tube Coriolis meter, ensuring accurate fluid density 

and mass flow measurements under different operating 

conditions. 

2.4.2. Methodology 

DC component analysis for frequency correction, phase 

comparison between signals to maintain resonance (90° phase 

shift), electromagnetic excitation and vibration detection 

using piezoelectric accelerometers, real-time control with a 

PLL implemented in LabVIEW. 

2.4.3. Results and Contributions 

Settling time: ~2 s (to reach 90% of the target frequency),  

steady-state error: ±0.003 Hz (high stability), proven 

adaptability to density changes (e.g., water-to-air transition). 

2.4.4. Limitations 

Simplified linear model (does not consider real 

nonlinearities), single accelerometer configuration (does not 

fully evaluate Coriolis flow effects). Tests are only under 

steady-state conditions (not rapid dynamics) and extreme 

conditions (pressure, transient flows). 

2.5. Comparison of Methods 

The proposed hybrid approach (PLL + DFT) outperforms 

traditional correlation-based methods [2] in three critical 

aspects for low-cost Coriolis flowmeters: Accuracy, with a 

phase error of <±0.2° (vs. ~0.5°–1° for correlation methods), 

crucial for mass flow accuracy; Computational efficiency, as 

the PLL operates in O(n) per sample and the DFT in O(N log 

N), avoiding the O(N²) cost of cross-correlation; and 

adaptability to noise and non-stationary frequencies, where 

the PLL dynamically tracks phase shifts while correlation 

requires additional adaptive filters (e.g., ANF). This 

combination enables real-time performance on resource-

constrained hardware (e.g., ESP32), addressing a key gap in 

affordable industrial solutions. 

2.6. Analysis  

 

 
Fig. 2 As the liquid flows through the oscillating sensor tubes, the coriolis force is produced, the transmitter of the measuring system processes the 

sinusoidal signal from the detectors and determines the phase shift, ∆t (μs), of the signal between the sensor input and output 

3. Resources and Methods 
3.1. Computational Resources  

In this study, a computational simulation of defase of a 

stainless-steel straight tube Coriolis sensor was performed. 

The resources used were the following:  

3.1.1. Software 

 Wokwi is a tool that includes an Arduino project 

simulator and supports STM32 and ESP32 

microcontrollers. In addition to running code and 

demonstrating its functionality, it can visually simulate 

moving objects and connecting boards, wires, and other 

components [5]. 

 The GNU Octave: Programming environment is used to 

solve the differential equations describing the tube 

vibration and apply the Discrete Fourier Transform 

(DFT). 

 Custom algorithms: Octave scripts were created to 

calculate the phase shift, frequency, and amplitude. 

3.1.2. Hardware 

ESP32: The ESP32 DevKit v1 is a development board 

based on the ESP32-WROOM-32 module, which integrates a 

32-bit, 240 MHz Xtensa LX6 dual-core Xtensa LX6 

microcontroller with Wi-Fi and Bluetooth connectivity. It has 

520 KB of internal SRAM memory and typically 4 MB of 

external flash memory. This board provides a wide range of 

1 
f 

∆ t 

Signal from the 

 detector 

to the input 

Signal from the 

detector 

to output 
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peripheral interfaces, including digital GPIOs, 12-bit ADCs, 

I2C, SPI and UART buses, ideal for embedded and IoT 

applications. Figure 2 shows the simulated module [6]. 

MPU: The InvenSense MPU-6050 integrated circuit 

contains a MEMS accelerometer and gyroscope in a single 

package. 16-bit analog-to-digital converter on all axes. The 

gyroscope has four user-programmable scales: ±250, ±500, 

±1000 and ±2000 °/sec (dps). The accelerometer scale is user 

programmable with values of ±2g, ±4g, ±8g and ±16g. 

Integrated temperature sensor. Programmable low-pass filter 

[7].  

4-Digit display Module TM1637: It is a kind of special 

Light-Emitting Diode (LED) display drive control circuit with 

keypad scanning interface. It is internally integrated with the 

MCU digital interface, latch data, LED high-pressure unit and 

keypad scanning. This product is in a DIP20/SOP20 package, 

type with excellent performance and high quality, which is 

mainly applicable to the display drive of induction stoves, 

microwave ovens and small household appliances [8].  

3.2. Methodology 

This paper is based on the simulation of the phase angle 

detection of a Coriolis flowmeter using a digital pll and a DFT. 

Full details of the simulation methodology are described in the 

Simulation Methodology section. The use of widely available 

commercial components, such as the MPU6050 inertial 

sensor, the ESP32 microcontroller, a TM1637 7-segment 

display, and a 3.5V rechargeable battery, enables the 

development of a functional, compact, and low-cost phase 

measurement system. These components, commonly used in 

electronics and prototyping projects, offer an affordable 

alternative to commercial Coriolis measurement systems, 

which can cost over US$2,000. The ESP32, with Wi-

Fi/Bluetooth connectivity and greater processing power than 

traditional microcontrollers such as the Arduino Uno, enables 

local data storage and processing, such as natural frequency 

calculation and phase estimation. The MPU6050 sensor, 

which combines an accelerometer and a gyroscope, 

communicates via I²C, facilitating the connection of multiple 

sensors with only two pins (SDA and SCL), reducing circuit 

complexity. 

Table 1. Advantages and disadvantages of the prototype 

Criteria Proposed System Coriolis Sensor 

Total Cost Low (< US$200) High (US$2000 to US$5000) 

Component Availability 
High (commercial, online, maker-

friendly) 
Limited (only authorized distributors) 

Technical Accessibility 
High (open hardware, easy to 

program) 
Low (closed systems, restricted documentation) 

Measurement Accuracy Medium (±0.2° phase error) 
High (certified accuracy and factory 

calibration) 

Size and Portability 
High (compact, integrated 

rechargeable battery) 

Medium to Low (requires industrial power and 

fixed installation) 

User Interface 
Basic (TM1637 display, serial, 

optional Wi-Fi/Bluetooth) 

Advanced (graphical displays, industrial 

communication: HART, Modbus, etc.) 

Ease of Maintenance 
High (modular, replaceable 

components) 
Low (requires specialized technical service) 

Physical Robustness Medium (assembly-dependent) 
High (sealed housing, resistant to vibrations 

and chemicals) 

Laboratory 

Reproducibility 

High (ideal for prototypes and 

academic validation) 

Low (difficult to modify or integrate into open 

experiments) 

Application in Critical 

Environments 

Limited (not certified for 

demanding industrial settings) 

High (complies with international standards 

and certifications) 

4. Mathematical Formulation of Digital PPL and 

Phase Detection from DFT  
4.1. Signal Generation 

Ideal signals are modeled as: 

 

𝑥[𝑛]  =  𝐴 𝑐𝑜𝑠(2𝜋𝑓0𝑡[𝑛]  +  𝜃𝑥) (2) 

𝑦[𝑛]  =  𝐴 𝑐𝑜𝑠(2𝜋𝑓0𝑡[𝑛]  + 𝜃𝑦) (3) 

𝑥𝑛𝑜𝑖𝑠𝑦[𝑛] = 𝑥[𝑛] + 𝜎𝜔𝑁(0,1) (4) 

Where 𝜎𝜔 is the standard deviation of the noise 

 

𝑺𝑵𝑹 = 𝟏𝟎 𝒍𝒐𝒈𝟏𝟎(
𝑨𝟐/𝟐

𝝈𝝎
𝟐 )  (5) 

Phase detection 

𝑒[𝑛] = 𝑥𝑛𝑜𝑖𝑠𝑦[𝑛]. 𝑣𝑐𝑜[𝑛] (6) 

𝑣𝑐𝑜[𝑛] = 𝑠𝑖𝑛(2𝜋𝑓[𝑛]𝑡𝑛 + ∅̂[𝑛])  (7) 
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𝑓[𝑛 + 1] = 𝑓[𝑛] + 𝛼[𝑛]𝑒[𝑛] + 𝛽 ∑ 𝑒[𝑘]𝑛
𝑘=0   (8) 

 

Where 𝑓[𝑛] is the estimated frequency y ∅̂[𝑛]  is the 

estimated phase 

𝛼[𝑛] = 𝛼0𝑒−𝛾𝑛  (9) 

DFT 

𝝎𝑯[𝒏] = 𝟎. 𝟓 (𝟏 − 𝒄𝒐𝒔 (
𝟐𝝅𝒏

𝑵−𝟏
)) (10) 

𝑋[𝑘] = ∑ 𝑥[𝑛]. 𝜔𝐻[𝑛]. 𝑒−𝑗2𝜋𝑘𝑛/𝑁𝑁−1
𝑛=0   (11) 

Phase estimation 

𝜃𝑥 = 𝑡𝑎𝑛−1 (
𝐼𝑚{𝑋[𝑘]}

𝑅𝑒{𝑋[𝑘]}
)  (12) 

5. Simulation Methodology 
5.1. Electronic Diagram 

Two MPU6050 sensors, an ESP32, a 7-segment and 4-

digit display, and a rechargeable battery with a 3.5V output 

are used to assemble the electronic components. The ESP32 

offers better data storage capacity for natural frequency 

calculation with the MPU6050 sensor using I2C 

communication for programming. The sensors are powered 

with 3 to 5v which is connected to the VCC and GND 

terminals of the ESP32, the SCL pin which is the line of the 

clock pulses that synchronizes the system goes to pin 21 of the 

ESP32 on the two sensors and the SDA pin which is the line 

where the data is transferred between devices goes to pin 22. 

 
Fig. 3 Diagram for Wokwi simulation 

Table 2. Details of the circuit components 

Quantity Description Cost 

1 Esp32 S/ 34.00 

2 MPU6050 S/ 30.00 

1 TM1637 S/ 10.00 

1 Drive Coil S/ 85.31 

1 4000mah Powerbank S/ 39.00 

1 on/off switch S/ 2.50 

10 Jumpers S/ 5.90 

Total S/ 206.71 

Table 3 Summarizes the parameters used in the phasing 

simulation; these values were selected based on the resonance 

frequency of a straight stainless steel tube. 

Table 3. Parameters used in the simulation 

Symbol Description Value Unit 

A Signal amplitude 1 V 

𝑓0 
Fundamental 

frequency 

115
≈ 723𝑟𝑎𝑑 

Hz 

𝜃x, 𝜃y Initial phase 0,  𝜋/6 rad 

∅ Phase difference 30º rad 

t Continuous time 2 ms 

n Discrete index 2000 dimensionless 

𝑇𝑠 Sampling period 2 ms 

𝑓𝑠 
Sampling 

frequency 
2000 Hz 

SNR 
Signal-to-noise 

ratio 
20 dB 

 

5.2. Phase Change and Mass Flow as a Function of Fluid 

Velocity 

The phase shift (Δφ) and mass flow rate (�̇�) were 

calculated as a function of fluid velocity (V) using established 

mathematical models. The results show that the phase shift 

decreases as the fluid velocity increases, while the mass flow 

rate follows an increasing linear trend. 

5.2.1. Mathematical Model Used 

The time lag is calculated using the following Equation 

[9]: 

𝛥𝜙 = 𝑐 (
2𝑓21𝑔1𝑀𝑓𝑉

𝐿𝜃2(𝑀𝑓+𝑀𝑡)(𝑔1
2−𝑔2

2)
) 𝐴1 (13) 

Where: 

 ( 𝛥𝜙): Phase difference. 

 (�̇�): Mass flow. 

 ( 𝑐 ): Modified amplitude.   

 (𝑓21): Factor related to vibration modes.     

 (𝑔1, 𝑔2): Sensor-related frequencies. 

 (𝑀𝑓): Fluid mass. 

 ( 𝑉 ): Fluid velocity. 

 ( 𝐿 ): Tube length.   

 (𝜃2): Factor related to the second vibration mode.   

 (𝐴1): Amplitude ratio.   

The mass flow is calculated as: [9] 

�̇� =
𝛥𝜙 𝐿 𝜃2 (𝑀𝑓+𝑀𝑡) (𝑔1

2−𝑔2
2)

2𝐴1𝑔1𝑐𝑓21
. (14) 

5.2.2. Derivation of the Second Expression 

To derive the second expression, we start from the first 

equation and isolate the mass flow rate. (�̇�). The procedure is 

detailed below: 
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 Starting with the phase difference in Equation (13) 

 Isolating the term (𝑀𝑓𝑉):   

𝑀𝑓𝑉 =
𝛥𝜙 𝐿 𝜃2 (𝑀𝑓+𝑀𝑡) (𝑔1

2−𝑔2
2)

2𝐴1𝑔1𝑐𝑓21
 (15) 

 Rate (𝑀𝑓𝑉) for mass flow (�̇�), since   

�̇� = 𝑀𝑓𝑉 (16) 

 Finally, the mass flow is obtained.   

�̇� =
𝛥𝜙 𝐿 𝜃2 (𝑀𝑓+𝑀𝑡) (𝑔1

2−𝑔2
2)

2𝐴1𝑔1𝑐𝑓21
 (17) 

5.3. Description of the Program Used 

5.3.1. Program 1: Phase Difference Estimation 

It first shows a general algorithm for measuring the phase 

difference between two sinusoidal signals with noise. 

Algorithm 1: Phase Difference Estimation 

1: Imputs 

𝑓𝑠 = 2000 𝐻𝑧. 

𝑁 = 2000. 

𝑓0 = 115 Hz. 

∅ = 30°. 

2: Outputs 

 𝑓𝑒𝑠𝑡. 

       ∅𝑒𝑠𝑡 

3: Initialize parameters 

4: Generate signals 𝑥(𝑡) and 𝑦(𝑡)  

5: Add noise 

6: Estimate frequency using PLL 

7: Calculate phases using DFT 

8: Compute phase difference 

9: Display results 

 

5.3.2. Program 2: Generation of Sinusoidal Signals 

It generates two sinusoidal signals with a specific phase 

difference. The sampling frequency 𝑓𝑠 and the number of 

samples N are used to generate a discrete time vector t first. 

Then, the desired phase difference (𝛥𝜙) is converted from 

degrees to radians ((𝜃2). In the end, two signals are obtained, 

one of which is phase-shifted. 

Algorithm 2: Sinusoidal Signal Generation 

1: 𝑡 ← [0: 𝑁 − 1]/𝑓𝑠 

2: 𝜃2 ← ∆𝜙𝑟𝑒𝑎𝑙 × 𝜋/180 

3: 𝑥 ← cos (2𝜋𝑓𝑟𝑒𝑎𝑙𝑡) 

4: 𝑦 ← cos(2𝜋𝑓𝑟𝑒𝑎𝑙𝑡 + 𝜃2) 

 

5.3.3. Program 3: Gaussian Noise 

To replicate realistic circumstances, Gaussian noise is 

added to the clean sinusoidal signals x(t) and y(t). To get the 

desired Signal-to-Noise Ratio (SNR), it first determines the 

power of the original signal (𝑃𝑥) and the noise power (𝑃𝑛). The 

noisy versions 𝑥𝑛𝑜𝑖𝑠𝑦  and 𝑦𝑛𝑜𝑖𝑠𝑦  are then produced by adding 

Gaussian noise with zero mean and standard deviation √𝑃𝑛 to 

both signals. This procedure makes it possible to assess the 

system's performance in interference-prone environments. 

Algorithm 3: Add Gaussian Noise 

1: Calculate signal power 𝑃𝑥  ←  𝑣𝑎𝑟(𝑥) 

2: Calculate signal power 𝑃𝑛  ←  𝑃𝑥/10
𝑆𝑁𝑅

10  

3: Generate noisy 𝑛 ←  𝑁(0, √𝑃𝑛) 

4: 𝑥𝑛𝑜𝑖𝑠𝑦 ← x + n 

5: 𝑦𝑛𝑜𝑖𝑠𝑦 ← y + n 

 

5.3.4. Program 4: PLL 

Uses a Phase-Locked Loop (PLL) to estimate a noisy 

signal's phase and frequency. The parameters are initialized (α 

= 0.003, β=0.00003), and for every sample, a reference vco 

signal is generated, the error is calculated by multiplying the 

input signal by the vco, the frequency and phase are adjusted 

using a PI (Proportional-Integral) filter, and the estimates are 

updated iteratively. The resulting signals, estimated frequency 

(𝑓𝑒𝑠𝑡) and estimated phase (𝜑𝑒𝑠𝑡), gradually approach the input 

signal's true values. 

Algorithm 4: Phase-Locked Loop 

1: Inputs: Signal, 𝑓𝑠, 𝑓𝑖𝑛𝑖𝑡, t 

Outputs: 𝑓𝑒𝑠𝑡 , ∅𝑒𝑠𝑡 

2: Initialize:  

𝛼 ← 0.003, 𝛽 ← 0.00003  
𝑓𝑒𝑠𝑡[0] ←  𝑓𝑖𝑛𝑖𝑡 , ∅𝑒𝑠𝑡[0]  ← 0  
𝑒𝑖𝑛𝑖𝑡 ← 0 

3: for k ← 1 to length(signal) do 

4: vco ← sin (2𝜋𝑓𝑒𝑠𝑡[𝑘 − 1]𝑡[𝑘] + ∅𝑒𝑠𝑡[𝑘 − 1] 
5: 𝑒 ← signal[k]. vco 

6: 𝑒𝑖𝑛𝑡 ← 𝑒𝑖𝑛𝑡 + β. e 

7: 𝑓𝑒𝑠𝑡[𝑘] ←  𝑓𝑒𝑠𝑡[𝑘 − 1] + 𝛼. e + 𝑒𝑖𝑛𝑡 

8: ∅𝑒𝑠𝑡[𝑘] ← ∅𝑒𝑠𝑡[𝑘 − 1] + 2𝜋𝑓𝑒𝑠𝑡[𝑘]/𝑓𝑠 

 

5.3.5. Program 5: DFT 

It uses a ventaneated DFT to determine a signal's phase. 

To lessen spectral leakage, it first creates and applies a Hann 

window. 

After that, it computes the windowed signal's FFT, finds 

the frequency bin that is closest to the earlier estimate 

(𝑓𝑒𝑠𝑡), and uses the atan2 function on the real and imaginary 

components of that bin to determine the phase.  

Because of the fenestration that reduces frequency-

domain artifacts, this technique offers a precise phase 

estimation even in noisy signals. The estimated phase (𝜑𝑒𝑠𝑡) 

in the bin of interest is the outcome. 
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Algorithm 5: DFT 

1: Inputs: 𝑠ignal, 𝑓𝑠, 𝑓𝑒𝑠𝑡 , 𝑁 

2: Outputs: ∅𝑥 

3: Generate Hann window:  

𝜔 ← 0.5(1 − cos(2𝜋[0: 𝑁 − 1]/𝑁)  
4: Apply window 

𝑥𝑤𝑖𝑛 ← 𝑠𝑖𝑔𝑛𝑎𝑙. 𝜔 
5: Calculate DFT: 

𝑋 ← 𝐹𝐹𝑇(𝑥𝑤𝑖𝑛) 

6: Find a good reference. 
𝑓𝑎𝑥𝑖𝑠 ← [0: 𝑁 − 1]. 𝑓𝑠/𝑁 

𝑘𝑒𝑠𝑡 ←  arg mín𝑘|𝑓𝑎𝑥𝑖𝑠 − 𝑓𝑒𝑠𝑡| 
7: Calculate phase 

∅𝑥 ←  atan2(Im(X[𝑘𝑒𝑠𝑡]), Re(X[𝑘𝑒𝑠𝑡])) 

 

5.3.6. Program 6: Phase Difference 

Calculates and corrects the phase difference between two 

signals. It first obtains the raw difference (∆∅ = ∅𝑦 − ∅𝑥), 

then uses the atan2 function to correct the result to ensure that 

it is in the range [-π, π] radians. It then converts this difference 

to degrees (∆∅𝑑𝑒𝑔) and adjusts the value to the range [0°,360°] 

by adding 360° if it is negative.   

Algorithm 6: Phase difference 

1: Calculate gross difference 

∆∅ =  ∅𝑦 − ∅𝑥  

2: Correct envelope:  

∆∅𝑐𝑜𝑟𝑟 ← atan2(sin(∆∅) , cos (∆∅))  
3: Convert to degrees 

∆∅𝑑𝑒𝑔 ← ∆∅𝑐𝑜𝑟𝑟 . 180/𝜋 

4: Adjust to range [0º: 360º]: 
if ∆∅𝑑𝑒𝑔 < 0 then 

∆∅𝑑𝑒𝑔 ←  ∆∅𝑑𝑒𝑔 + 360 

5: end if 

 

6. Results and Discussion 
The phase estimation algorithm is reliable (errors < 

±0.2°), except near 360° (-0.179° error at 359°). The estimated 

frequency seems to be insensitive to phase changes, which 

indicates that it could be fixed or calculated with another 

criterion (e.g. constant average). An error of ±0.2° is 

equivalent to a margin of ±0.5% in mass flow rate for fluids 

such as water, acceptable in chemical dosing (ISO 10790 

standard). 

Table 4 Summarizes the frequency phase differences 

estimated for a real phase, the results were given according to 

the code and the parameters of Table 2, knowing that the real 

frequency is 115 Hz. The following image shows a time 

domain signal plot.  

Two sinusoidal signals labeled “Signal x” (in blue) and 

“Signal y” (in red), both affected by noise, are presented. The 

“y” signal is out of phase with respect to the “x” signal, 

evidenced by the horizontal offset between their peaks. The 

horizontal axis represents time (in seconds) and the vertical 

axis represents amplitude. This graph is useful to visualize the 

phase difference between the two signals, which is 

fundamental in the estimation of the mass flow in Coriolis-

type sensors. 

Tabla 4. Simulation table at different grades 

Phase 

difference ∆∅ 

(deg) 

Estimated phase 

difference 

∆∅𝒆𝒔𝒕(deg) 

Estimated 

frequency 

𝒇𝒆𝒔𝒕(Hz) 

30 30.024 114.803 

60 59.836 114.843 

90 89.812 114.833 

120 119.922 114.823 

150 150.268 114.905 

180 180.093 114.911 

320 320.062 114.877 

359 358.821 114.893 

 

 
Fig. 4 Amplitude (v) vs. Time (s) relationship at a 30º displacement with 

Gaussian noise 

 
Fig. 5 Amplitude (v) vs. Time (s) relationship at a 90º displacement with 

Gaussian noise 

 
Fig. 6 Amplitude (v) vs. Time (s) relationship at a 150º displacement 

with Gaussian noise 
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Table 5. Simulation table in different degrees 

∆∅ 

(deg) 
∆∅𝒆𝒔𝒕(deg) 

Absolute 

error (°) 

Relative 

error (%) 

30 30.024 0.024 0.080 

60 59.836 0.164 0.273 

90 89.812 0.188 0.209 

120 119.922 0.078 0.065 

150 150.268 0.268 0.179 

180 180.093 0.093 0.052 

320 320.062 0.062 0.019 

359 358.821 0.179 0.050 
 

Mean:  

�̅� =
1

8
∑ |∆∅ − ∆∅𝑒𝑠𝑡|8

i=1   (18) 

�̅� = 0.132°  (19) 

Standard deviation: 

𝜎 = √
1

𝑛
∑ (𝑒𝑖 − �̅�)2𝑛

i=1  (20) 

𝜎 = 0.077°  (21) 

The value of ±0.2° covers more than 87.5% of the 

measured data and falls about one standard deviation above 

the mean. Therefore, it is a statistically representative and 

conservative margin. 

Table 6. Phase difference at different frequencies 

∆∅ real 

(°) a 100 

Hz 

∆∅ est (°) a 

100Hz 

∆∅ real 

(°) a 100 

Hz 

∆∅ est (°) a 

100Hz 

30 30.027 30 30.098 

60 59.831 60 60.204 

90 89.808 90 90.184 

120 119.082 120 119.052 

150 150.081 150 150.24 

180 180.093 180 179.03 

320 320.212 320 320.012 

359 358.941 359 358.98 
 

7. Conclusion 
To estimate mass flow rate by examining the angular 

phase shift caused by the Coriolis effect, this work 

demonstrated the feasibility of implementing an embedded 

system for a low-cost straight-tube Coriolis sensor using an 

ESP32 microcontroller and MPU-6050 inertial sensors. The 

phase difference between the gyroscope signals could be 

accurately estimated by translating it into an optimized 

computational algorithm in C. The use of digital signal 

processing methods, such as the Discrete Fourier Transform 

(DFT), in combination with a Phase-Locked Loop (PLL), 

allowed the vibration frequency and relative phase angle, two 

crucial parameters for determining mass flow rate, to be 

estimated reliably and efficiently. Using time windowing 

(Hann) and proportional-integral control filtering strategies 

proved effective even in the presence of noise and 

disturbances typical of industrial environments, such as flow 

pulsations. The suggested approach offers a lower error rate in 

both frequency estimation and phase difference, according to 

system validation, based on a comparison with the results from 

Octave software. 

However, to strengthen the conclusions, it is 

recommended to complement these results with case studies 

in real-life industrial environments, evaluating factors such as 

electromagnetic interference, temperature variations, or 

multiphase flows. This would more convincingly demonstrate 

the potential of these sensors for practical applications, 

especially when scalability, cost, and ease of use are priorities. 

7.1. Future Works 

Based on the design simulated and validated in this study, 

the physical implementation of the straight-tube Coriolis 

sensor prototype is suggested as a next step. The main 

objective will be to build and test the entire system-which 

includes the ESP32 microcontroller, the MPU-6050 sensors, 

and the stainless-steel-tube-under realistic mass flow 

conditions. During this phase, several important factors will 

be taken into account: 

 Experimental calibration: To create an accurate 

quantitative relationship between the measured deviation 

and the actual mass flow rate, the system must be carefully 

calibrated with a commercial reference flowmeter and 

validated in at least three representative industrial 

scenarios (e.g., laminar, turbulent, and multiphase flow). 

 Design and construction of the mechanical support: To 

reduce external vibrations, ensure proper sensor 

alignment, and allow for installation in realistic fluid 

conduits, a robust structure will be created. Its 

performance will be evaluated under typical low 

mechanical vibrations (e.g., 10–100 Hz ranges) to ensure 

its robustness. Due to its ability to produce precise and 

regulated displacements at high frequencies, the moving 

coil linear motor model GVCM-016-010-01 [10] was 

demonstrated for the actuator part. Thanks to its fast 

response, high acceleration and superior dynamic control 

without the need for an intermediate mechanical 

transmission, this type of actuator is especially suitable for 

stimulating the system at its resonant frequency. 

Nevertheless, future work will have to quantify its energy 

efficiency and lifetime in continuous operation, since these 

aspects are critical for its industrial adoption. 

 

Water and solutions with different densities and 

viscosities will be used to test sensor performance and 

examine how they affect system sensitivity and linearity. 

Additionally, it is recommended to include non-Newtonian 

fluids and gas-liquid mixtures to cover a broader range of 

applications. 
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Stability and repeatability analysis: Extensive 

experiments will be conducted to evaluate measurement 

repeatability in the presence of disturbances, with a minimum 

of 100 test cycles per condition.  

The stability of the detected phase shift will also be 

examined under varying pressure or temperature conditions 

ranging from 0–100°C and 1–10 bar, parameters common in 

industrial environments.  

The creation of this prototype will pave the way for the 

incorporation of low-cost Coriolis sensors into industrial flow 

monitoring and control systems. To ensure adoption, 

experimental results must be published against ISO or ASTM 

standards and validated with at least one industrial partner. 

Furthermore, the data obtained will allow fine-tuning the 

mathematical model and optimizing the algorithm for 

complex scenarios. 
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Appendix 1: Link to the Mendeley database 
Additional resources are available at the Mendeley link below. They include an explanatory video of the model and its 

implementation, and the open-source software files and code used in the simulations. [Publisher Link] 

Appendix 2: Simulation in Wokwi  

 
Fig. 7 Wokwi simulation for 15 degrees 

 
Fig. 8 Wokwi simulation for 30 degrees 

https://data.mendeley.com/preview/dk3xvrsvtw?a=1abb90c5-2d68-45df-9b4e-56782af7e3f4
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Appendix 3:  Flowchart 

 
 

Fig. 9 Flowchart 1: PLL algorithm 

PLL Home 

vco Initialize: freq=f vco initial error phase=0 int=0 

For each sample k (1 to N ): 

Generate voltage-controlled oscillator signal (VCO): vco signal (2 sin = π · vco freq · t k + vco phase ) 

Phase shift detector: Mistakee= signal.vco signal  

Filter PI: error int ← error int + β · vco error freq ← vco freq + α · error + error int 

Update phase of VCO: vco phase ← vco phase + 
2 π · vco freq 

fs 

Keep: f est [ k ]= vco phase freq est [ k ]= vco phase 

¿ k<N ? End of the PLL 
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Fig. 10 Flowchart 2: DFT algorithm 

 

Appendix 4: Code for Simulation  
Code 1: Code in Octave without Hardware 

  1 

  2 

  3 

  4 

  5 

  6 

  7 

  8 

  9 

 10 

 11 

 12 

 13 

 14 

 15 

%% Initial setup 

clear all; close all; clc; 

pkg load signal; 

 

%% Parameters optimized for speed and accuracy 

fs = 2000;          % Sampling rate 

N = 2048;           % Number of points (speed-accuracy balance) 

t = (0:N-1)/fs;     % Time vector 

f_real = 115;       % Actual frequency 

phase_diff_real = 30; % Actual phase difference (degrees) 

A = 1; B = 1;       % Amplitudes 

SNR = 20;           % Signal-to-noise ratio 

 

%% Signal generation 

theta1 = 0;                         % theta1 

Home function 

  

Input:signal,𝑓𝑠,N,𝑓𝑒𝑠𝑡   

Calculate Hann window 

Multiply signal by window 

Calculate FFT: X = fft ( signg
n 

 

· window ) 

    Build frequency axis: f =(0: N − 1) · fs/N 

Search index idx Closest to f est 

Extract phase: ϕ = angle ( X [ idx ]) 

Return phase ϕ 
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 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 

 51 

 52 

 53 

 54 

 55 

 56 

 57 

 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 

 66 

 67 

 68 

 69 

 70 

 71 

 72 

 73 

 74 

 75 

 76 

 77 

 78 

 79 

 80 

 81 

 82 

 83 

 84 

 85 

theta2 = deg2rad(phase_diff_real);  % Initial phase signal 2 

 

x = A*cos(2*pi*f_real*t + theta1); 

y = B*cos(2*pi*f_real*t + theta2); 

x_noisy = awgn(x, SNR, 'measured'); 

y_noisy = awgn(y, SNR, 'measured'); 

 

%% PLL  

function [f_est, phase_est] = optimized_pll(signal, fs, f_initial, t) 

    alpha = 0.003;   % Optimized proportional gain 

    beta = 0.00003;  % Optimized integral gain 

     

    n = length(signal); 

    f_est = zeros(1,n); 

    phase_est = zeros(1,n); 

    error_int = 0; 

    vco_phase = 0; 

    vco_freq = f_initial; 

     

    for k = 1:n 

        % VCO signal 

        vco_signal = sin(2*pi*vco_freq*t(k) + vco_phase); 

         

        % Phase detector 

        error = signal(k) * vco_signal; 

         

        % PI filter 

        error_int = error_int + beta*error; 

        vco_freq = vco_freq + alpha*error + error_int; 

        vco_phase = vco_phase + 2*pi*vco_freq/fs; 

         

        % Save estimates 

        f_est(k) = vco_freq; 

        phase_est(k) = vco_phase; 

    end 

end 

 

%% Frequency estimation with PLL 

[f_est_x, ~] = optimized_pll(x_noisy, fs, 110, t); 

[f_est_y, ~] = optimized_pll(y_noisy, fs, 120, t); 

f_est = mean([f_est_x(end-50:end), f_est_y(end-50:end)]); 

 

%% Optimized DFT (corrected version)) 

function phase = optimized_dft(signal, fs, N, f_est) 

    % Apply Hann window 

    window = hann(N)'; 

    X = fft(signal .* window, N); 

     

    % Find nearest bin 

    f_axis = (0:N-1)*fs/N; 

    [~, idx] = min(abs(f_axis - f_est)); 

     

    % Calculate phase 

    phase = angle(X(idx)); 

end 

 

%%  

phase_x = optimized_dft(x_noisy, fs, N, f_est); 

phase_y = optimized_dft(y_noisy, fs, N, f_est); 

 

% (sintaxis fix) 

phase_diff = phase_y - phase_x; 

phase_diff_est = rad2deg(angle(exp(1i*phase_diff)));  

 

% 0-360° 

if phase_diff_est < 0 

    phase_diff_est = phase_diff_est + 360; 

end 

 

%% Show 
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 95 

 96 
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 99 

100 

101 
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103 

104 
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107 

108 

109 

110 

111 

112 

113 

114 

115 

figure('Position',[100,100,800,600]); 

 

% Signs in time 

subplot(2,1,1); 

plot(t, x_noisy, 'b', t, y_noisy, 'r'); 

title('Signals with noise'); 

xlabel('Time (s)'); ylabel(' Amplitude '); 
legend('sign x', 'Sign y'); 

xlim([0 0.05]); grid on; 

 

% PLL Convergence 

subplot(2,1,2); 

plot(t, f_est_x, 'b', t, f_est_y, 'r'); 

hold on; line([0 t(end)], [f_real f_real], 'Color', 'k', 'LineStyle', '--'); 

title('Frequency estimation frecuencia (PLL)'); 

xlabel('Time (s)'); ylabel('Frequncy (Hz)'); 

legend(' Frequency x', ' Frequency y', 'Real value'); 
ylim([f_real-10 f_real+10]); grid on; 

 

%% Numerical results 

fprintf('\n----------------------------------------\n'); 

fprintf(' RESULTADOS FINALES\n'); 

fprintf('----------------------------------------\n'); 

fprintf(' Frecuencia real: %.2f Hz\n', f_real); 

fprintf(' Frecuencia estimada: %.3f Hz (Error: %.3f%%)\n',... 

        f_est, 100*abs(f_est-f_real)/f_real); 

fprintf(' Diferencia de fase real: %.2f°\n', phase_diff_real); 

fprintf(' Diferencia estimada: %.3f° (Error: %.3f%%)\n',... 

        phase_diff_est, abs(phase_diff_est-phase_diff_real)/phase_diff_real*100); 

fprintf('----------------------------------------\n'); 

 

  
 

 
Code 2: Code in Wokwi with Hardware 

1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

#include <TM1637TinyDisplay.h> 

#include <math.h> 

 

#define CLK 19 

#define DIO 18 

TM1637TinyDisplay display(CLK, DIO); 

 

const int N = 2000; 

const float fs = 2000.0; 

const float dt = 1.0 / fs; 

const float f_real = 100.0; 

const float phase_diff_real = 50.0; //  

const float A = 1.0; 

const float B = 1.0; 

 

float x[N], y[N], t[N]; 

 

// Ventana de Hann 

float hann[N]; 

void generateHannWindow() { 

  for (int i = 0; i < N; i++) 

    hann[i] = 0.5 * (1 - cos(2 * PI * i / (N - 1))); 

} 

 

// Generar señales simuladas 

void generateSignals() { 

  float theta1 = 0; 

  float theta2 = phase_diff_real * PI / 180.0; 

  for (int i = 0; i < N; i++) { 

    t[i] = i * dt; 

    x[i] = A * cos(2 * PI * f_real * t[i] + theta1); 

    y[i] = B * cos(2 * PI * f_real * t[i] + theta2); 

  } 

} 
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60 
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71 

72 

73 
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81 
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99 

// Estimate frequency using PLL 

float pll_freq_est(float* s, float f_init) { 

  float alpha = 0.003, beta = 0.00003; 

  float vco_freq = f_init, vco_phase = 0, err_int = 0; 

  float f_sum = 0; 

  for (int i = 0; i < N; i++) { 

    float vco = sin(2 * PI * vco_freq * t[i] + vco_phase); 

    float error = s[i] * vco; 

    err_int += beta * error; 

    vco_freq += alpha * error + err_int; 

    vco_phase += 2 * PI * vco_freq / fs; 

    if (i >= N - 50) f_sum += vco_freq; 

  } 

  return f_sum / 50.0; 

} 

 

// Estimar fase con DFT y ventana 

float estimate_phase(float* s, float freq_est) { 

  float re = 0, im = 0; 

  for (int i = 0; i < N; i++) { 

    float angle = 2 * PI * freq_est * t[i]; 

    re += s[i] * hann[i] * cos(angle); 

    im -= s[i] * hann[i] * sin(angle); 

  } 

  return atan2(im, re); 

} 

 

// Mostrar en display 

void showPhase(float phase_deg) { 

  int value = (int)phase_deg; 

  display.showNumberDec(value, true); 

} 

 

void setup() { 

  Serial.begin(115200); 

  display.setBrightness(7); 

  display.showString(“INIT”); 

  delay(1000); 

 

  generateHannWindow(); 

  generateSignals(); 

 

  float f_est_x = pll_freq_est(x, f_real - 5); 

  float f_est_y = pll_freq_est(y, f_real + 5); 

  float f_est = (f_est_x + f_est_y) / 2.0; 

 

  float phase_x = estimate_phase(x, f_est); 

  float phase_y = estimate_phase(y, f_est); 

 

  float dphi = phase_y - phase_x; 

  float deg = dphi * 180.0 / PI; 

  if (deg < 0) deg += 360.0; 

 

  Serial.println(“----RESULTS ----”); 

  Serial.print(“Estimated frequency:”); Serial.println(f_est); 

  Serial.print(“Estimated offset”); Serial.print(deg); Serial.println(“degrees “); 

 

  showPhase(deg); 

} 

 

void loop() { 

  // show  

  delay(1000); 

} 
 

 


