
SSRG International Journal of Electrical and Electronics Engineering Volume 12 Issue 7, 184-199, July 2025

ISSN: 2348-8379/ https://doi.org/10.14445/23488379/IJEEE-V12I7P113 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Simulation Applied to Phase Detection in a Coriolis

Effect Based Flowmeter

Luis Fernando Gutierrez Belizario1, Javier Pablo Montesinos Quispe1, Carlos Enrique Villanueva Portal1,

German Alberto Echaiz Espinoza2*, Daniel Domingo Yanyachi Aco Cardenas2, Carmelo Mayta Ojeda3,

Fernando Enrique Echaiz Espinoza4

1Professional School of Electronic Engineering, Universidad Nacional de San Agustin, Arequipa, Peru.
2Academic Department of Electronic Engineering, Universidad Nacional de San Agustin, Arequipa, Peru.

3Academic Department of Physics, Universidad Nacional de San Agustin, Arequipa, Peru
4Institute of Mathematics, Federal University of Alagoas, Alagoas, Brazil.

*Corresponding Author : gechaiz@unsa.edu.pe

Received: 09 May 2025 Revised: 11 June 2025 Accepted: 10 July 2025 Published: 31 July 2025

Abstract - This paper presents a proposal for the electronic simulation of a Coriolis sensor based on the resonance frequency of

a straight tube made of stainless steel, with emphasis on the design of the simulation for the measurement of the angular phase

shift of the signals generated by the MPUs in the sensor. The system is based on an ESP32 microcontroller and two MPU-6050

sensors, whose data are displayed on a 4-digit, 7-segment display (TM1637). The code used in the simulation employs a C

algorithm that estimates the phase difference between the two signals; a digital PLL was implemented to obtain the phase of

each signal, and a DFT was used for the precise measurement of the phase difference, which is directly proportional to the mass

flow. Disturbances due to flow pulsations and their impact on system accuracy are also considered, incorporating Gaussian

noise in the simulation. Validation of the algorithm was performed by comparing the results simulated in Wokwi with those

obtained in the Octave software. The errors obtained were less than ±0.2°, which supports the feasibility of the algorithm for

measuring phase shift in a low-cost Coriolis sensor, applicable in industries such as chemical processing and fluid transport

monitoring.

Keywords - Coriolis sensor, Signal phase shift, Resonant frequency, Gaussian noise.

1. Introduction
1.1. Statement of the Problem and Justification of the

Research

This work proposes a replicable model and a system with

reasonably priced components (<US$200), thus addressing

two important shortcomings: the lack of detailed protocols for

phase detection in straight-tube Coriolis sensors and the

reliance on specialized hardware in current solutions.

Particularly valuable in sectors such as chemical processing,

fluid dosing, and quality control systems, Coriolis-based flow

meters constitute a basic technology for the direct and accurate

measurement of mass flow rate. The devices are quite reliable

under different conditions because, unlike other techniques,

they determine the fluid's mass without relying on its thermal

or pressure characteristics. However, a clear research gap

exists surrounding the electronic implementation of straight-

tube Coriolis sensors using accessible technologies. Technical

difficulties in accurately identifying angular displacement

among signals produced by tube-mounted inertial sensors

define the electronic implementation of Coriolis sensors,

particularly those with straight tubes [1]. The problems are

compounded by noise, flow pulsations, and mechanical

disturbances, which compromise the system's accuracy. These

challenges, underexplored in low-cost, open-source solutions,

limit the technology's real-world applicability in contexts

outside of specialized laboratories or large industries.

Currently, the technical literature is limited in terms of studies

that address these aspects with sufficient depth and

replicability, since most current studies address the problem

superficially, which restricts their practical relevance and

leaves an academic gap in terms of comprehensive and

repeatable methods. This article presents the simulation and

validation of a stainless-steel embedded system for a straight-

tube Coriolis sensor. The proposal is based on common, low-

cost components, such as an ESP32 microcontroller, two

MPU-6050 inertial sensors, and a seven-segment display with

driver (TM1637), all readily available on the market. Through

this intentional selection of low-cost hardware, Coriolis

technology is democratized and adopted in industrial,

academic, and resource-constrained SMEs, where commercial

solutions with specialized hardware are not always feasible.

The main method combines a phase-locked loop (digital PLL)

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

German Alberto Echaiz Espinoza et al. / IJEEE, 12(7), 184-199, 2025

185

for real-time tracking and a Discrete Fourier transform (DFT)

for angular displacement accuracy, thus estimating the

displacement between the two signals. The impact of flow

pulsations on measurement accuracy is investigated, and

Gaussian noise is included in the simulation to assess the

system's robustness to disturbances. By achieving an error of

less than ±0.2° and comparing the simulation results obtained

in Wokwi with those of GNU Octave, the validation supports

the feasibility of the proposal.This contributes to bridging a

significant gap between academic research and real-world

industrial needs by offering a replicable, accessible, and

scientifically validated solution. This lays the groundwork for

future advances in demanding environments where

component availability and cost-effectiveness are paramount,

combining sophisticated digital signal processing, rigorous

simulation, and integrated electronics at reasonable prices.

1.2. Fundamental Concept of Coriolis Flowmeters

Currently, flow meters are more common and are

distinguished by their high accuracy.

A Coriolis flow meter can come in different shapes and

sizes, but is primarily composed of one or two tubes vibrating

at their natural frequency. Its operating principle is the

Coriolis force, FC, which arises when a mass, m, has a

velocity, v, in a rotating reference frame. The rotating

reference frame has an angular velocity. The relationship is

described by: [1]

FC = −2mω × v (1)

In a Coriolis flowmeter, the moving mass is the fluid, and

the rotating reference system is the moving tube or tubes.

Figure 1 shows two cases in which a straight tube vibrates: in

the upper case, when it moves upward, and in the lower case,

when it moves downward. Ma C. explains that the Coriolis

force arises when the fluid collides with the walls of the tube,

which is slightly bent due to vibration. In the upper part of

Figure 1, the fluid on the left side collides with the bottom wall

of the tube, creating the downward Coriolis force. On the right

side, the opposite occurs, creating the upward Coriolis force.

[1].

Fig. 1 Illustration of coriolis forces acting on a straight tube put into vibration; the force arises when there is a flow through the tube. The image

depicts the tube at extremes of vibration [1].

2. State of the Art
2.1. Validation of the Use of Coriolis Mass Flow Meters as

Reference Standards in Custody Transfer Applications

2.1.1. Objective

To metrologically confirm the Coriolis-type mass flow

meters used as reference standards in the calibration of on-site

custody transfer flow meters, evaluate their performance

through comparisons between measurements made with the

National Standard for Liquid Flow and a bidirectional tester

under real operating conditions.

2.1.2. Methodology

Initial calibration: Coriolis Mass Flow meters (CMF)

were calibrated with the National Standard for Liquid Flow by

the gravimetric method using water as the working fluid.

On-site validation: Subsequently, the meters were

validated in the field using a bidirectional tester with

petroleum products as the working fluid.

Techniques employed:

 Calibration using reference standards.

 Comparisons between gravimetric and volumetric

methods.

 Evaluation of correction factors (density, temperature,

pressure).

 Calculation of error, Meter Factor (MF) and K-factor.

2.1.3. Results and Methodology

It was concluded that the laboratory and on-site

calibration results are equivalent within the specified

German Alberto Echaiz Espinoza et al. / IJEEE, 12(7), 184-199, 2025

186

uncertainty. The systematic errors between the gravimetric

and volumetric methods were acceptably low. Validation was

obtained for the use of Coriolis-type meters as reference

standards for custody transfer applications in the petroleum

industry.

2.1.4. Limitations

No leakage between the tester and the meter under

calibration was considered. Equal temperatures in the fluid

and the bodies of the gauges and testers were assumed, which

may not be perfectly met in the field.

Thin-walled cylinder theory was applied, which

introduces an approximation that may affect accuracy at

extreme pressure conditions. No rapid dynamic variations of

flow rate or transient operating conditions were addressed;

only stationary conditions.

2.2. A New Phase Difference Measurement Method for the

Coriolis Mass Flowmeter based on Correlation Theory [2]

2.2.1. Objective

To develop a new method for measuring phase difference

in Coriolis-type mass flow meters, based on correlation

theory, to improve accuracy, reduce bias in signals of

unknown frequency and solve the problem of non-integer

period sampling signals.

2.2.2. Methodology

Frequency estimation: An Adaptive Notch Filter (ANF)

is used to estimate the frequency of the signals and filter out

noise. Data extension: The length of the sample data is

adjusted to match an integer number of periods, avoiding edge

effects in the Hilbert Transform. The Hilbert Transform is

applied to extended signals to generate analytical signals.

Calculation of cross-correlation functions between analytical

and real signals. Determination of the phase difference using

a formula based on trigonometric functions on the results of

correlations.

2.2.3. Results and Methodology

The proposed method shows better accuracy than

traditional methods, such as:

 Standard correlation,

 Direct Hilbert transform,

 Sliding Goertzel Algorithm (SGA),

 Discrete Time Fourier Transform (DTFT).

 Maintained high accuracy even with low SNR (Signal-to-

Noise Ratio) signals and non-integer period samples.

 Better dynamic performance with lower computational

complexity compared to DTFT and SGA.

 Real experiments:

 Applied to a RHEONIK Coriolis meter (RHE08 sensor).

 The phase difference estimated with the proposed method

was closer to the theoretical value than the SGA and DTFT

methods.

 Relative errors of the new method were less than 0.15 %,

improving the accuracy of the flow measurement.

 Proposed an innovative method that eliminates the bias

caused by non-integer sampling periods.

 Improved noise resistance and accuracy under dynamic

conditions.

 Reduced computational complexity over existing high-

accuracy methods such as DTFT.

 Extended the applications of Coriolis mass flow signal

processing to scenarios where the frequency is unknown.

 Proposed a correlation-based scheme combined with

Hilbert that is different from traditional approaches.

2.2.4. Limitations

Algorithm complexity: Although it improves accuracy, it

may be more complex than necessary for applications where

only phase measurement is needed, without frequency

estimation.

Limited applicability: Currently the method was tested in

controlled flow environments; it remains to be tested in more

diverse energy fields.

Processing: Although the computational burden is lower

than in DTFT, it is still higher than purely correlation or zero-

crossing detection methods on simple signals.

2.3. A Simple Parametric Design Model for Straight-Tube

Coriolis Flowmeters [3]

2.3.1. Objective

Develop a simple parametric model to predict the

sensitivity and natural frequency of straight-tube Coriolis

flowmeters while minimizing reliance on expensive numerical

simulations.

2.3.2. Methodology

A one-dimensional (1D) numerical simulation, based on

the finite difference method, is used to derive a parametric

model characterized by three dimensionless parameters:

bending stiffness (Σ), proximity to the buckling limit (R) and

inter-sensor separation distance (χ). The model is

experimentally validated using 11 data sets.

2.3.3. Results and Methodology

The model predicts sensitivity with a margin of error of 2

to 5% and allows estimation of natural frequency, providing

designers with a quick and intuitive tool to optimize sensor

performance.

2.3.4. Limitations

The one-dimensional (1D) approach may not fully

capture complex three-dimensional dynamics, and validation

was performed under a limited range of conditions and

materials.

German Alberto Echaiz Espinoza et al. / IJEEE, 12(7), 184-199, 2025

187

2.4. Study on Resonant Frequency Control in Coriolis

Meters Using PLL [4]
2.4.1. Objective

To evaluate the performance of a Phase-Locked Loop

(PLL) control system to maintain the resonant frequency in a

straight-tube Coriolis meter, ensuring accurate fluid density

and mass flow measurements under different operating

conditions.

2.4.2. Methodology

DC component analysis for frequency correction, phase

comparison between signals to maintain resonance (90° phase

shift), electromagnetic excitation and vibration detection

using piezoelectric accelerometers, real-time control with a

PLL implemented in LabVIEW.

2.4.3. Results and Contributions

Settling time: ~2 s (to reach 90% of the target frequency),

steady-state error: ±0.003 Hz (high stability), proven

adaptability to density changes (e.g., water-to-air transition).

2.4.4. Limitations

Simplified linear model (does not consider real

nonlinearities), single accelerometer configuration (does not

fully evaluate Coriolis flow effects). Tests are only under

steady-state conditions (not rapid dynamics) and extreme

conditions (pressure, transient flows).

2.5. Comparison of Methods

The proposed hybrid approach (PLL + DFT) outperforms

traditional correlation-based methods [2] in three critical

aspects for low-cost Coriolis flowmeters: Accuracy, with a

phase error of <±0.2° (vs. ~0.5°–1° for correlation methods),

crucial for mass flow accuracy; Computational efficiency, as

the PLL operates in O(n) per sample and the DFT in O(N log

N), avoiding the O(N²) cost of cross-correlation; and

adaptability to noise and non-stationary frequencies, where

the PLL dynamically tracks phase shifts while correlation

requires additional adaptive filters (e.g., ANF). This

combination enables real-time performance on resource-

constrained hardware (e.g., ESP32), addressing a key gap in

affordable industrial solutions.

2.6. Analysis

Fig. 2 As the liquid flows through the oscillating sensor tubes, the coriolis force is produced, the transmitter of the measuring system processes the

sinusoidal signal from the detectors and determines the phase shift, ∆t (μs), of the signal between the sensor input and output

3. Resources and Methods
3.1. Computational Resources

In this study, a computational simulation of defase of a

stainless-steel straight tube Coriolis sensor was performed.

The resources used were the following:

3.1.1. Software

 Wokwi is a tool that includes an Arduino project

simulator and supports STM32 and ESP32

microcontrollers. In addition to running code and

demonstrating its functionality, it can visually simulate

moving objects and connecting boards, wires, and other

components [5].

 The GNU Octave: Programming environment is used to

solve the differential equations describing the tube

vibration and apply the Discrete Fourier Transform

(DFT).

 Custom algorithms: Octave scripts were created to

calculate the phase shift, frequency, and amplitude.

3.1.2. Hardware

ESP32: The ESP32 DevKit v1 is a development board

based on the ESP32-WROOM-32 module, which integrates a

32-bit, 240 MHz Xtensa LX6 dual-core Xtensa LX6

microcontroller with Wi-Fi and Bluetooth connectivity. It has

520 KB of internal SRAM memory and typically 4 MB of

external flash memory. This board provides a wide range of

1
f

∆ t

Signal from the

 detector

to the input

Signal from the

detector

to output

German Alberto Echaiz Espinoza et al. / IJEEE, 12(7), 184-199, 2025

188

peripheral interfaces, including digital GPIOs, 12-bit ADCs,

I2C, SPI and UART buses, ideal for embedded and IoT

applications. Figure 2 shows the simulated module [6].

MPU: The InvenSense MPU-6050 integrated circuit

contains a MEMS accelerometer and gyroscope in a single

package. 16-bit analog-to-digital converter on all axes. The

gyroscope has four user-programmable scales: ±250, ±500,

±1000 and ±2000 °/sec (dps). The accelerometer scale is user

programmable with values of ±2g, ±4g, ±8g and ±16g.

Integrated temperature sensor. Programmable low-pass filter

[7].

4-Digit display Module TM1637: It is a kind of special

Light-Emitting Diode (LED) display drive control circuit with

keypad scanning interface. It is internally integrated with the

MCU digital interface, latch data, LED high-pressure unit and

keypad scanning. This product is in a DIP20/SOP20 package,

type with excellent performance and high quality, which is

mainly applicable to the display drive of induction stoves,

microwave ovens and small household appliances [8].

3.2. Methodology

This paper is based on the simulation of the phase angle

detection of a Coriolis flowmeter using a digital pll and a DFT.

Full details of the simulation methodology are described in the

Simulation Methodology section. The use of widely available

commercial components, such as the MPU6050 inertial

sensor, the ESP32 microcontroller, a TM1637 7-segment

display, and a 3.5V rechargeable battery, enables the

development of a functional, compact, and low-cost phase

measurement system. These components, commonly used in

electronics and prototyping projects, offer an affordable

alternative to commercial Coriolis measurement systems,

which can cost over US$2,000. The ESP32, with Wi-

Fi/Bluetooth connectivity and greater processing power than

traditional microcontrollers such as the Arduino Uno, enables

local data storage and processing, such as natural frequency

calculation and phase estimation. The MPU6050 sensor,

which combines an accelerometer and a gyroscope,

communicates via I²C, facilitating the connection of multiple

sensors with only two pins (SDA and SCL), reducing circuit

complexity.

Table 1. Advantages and disadvantages of the prototype

Criteria Proposed System Coriolis Sensor

Total Cost Low (< US$200) High (US$2000 to US$5000)

Component Availability
High (commercial, online, maker-

friendly)
Limited (only authorized distributors)

Technical Accessibility
High (open hardware, easy to

program)
Low (closed systems, restricted documentation)

Measurement Accuracy Medium (±0.2° phase error)
High (certified accuracy and factory

calibration)

Size and Portability
High (compact, integrated

rechargeable battery)

Medium to Low (requires industrial power and

fixed installation)

User Interface
Basic (TM1637 display, serial,

optional Wi-Fi/Bluetooth)

Advanced (graphical displays, industrial

communication: HART, Modbus, etc.)

Ease of Maintenance
High (modular, replaceable

components)
Low (requires specialized technical service)

Physical Robustness Medium (assembly-dependent)
High (sealed housing, resistant to vibrations

and chemicals)

Laboratory

Reproducibility

High (ideal for prototypes and

academic validation)

Low (difficult to modify or integrate into open

experiments)

Application in Critical

Environments

Limited (not certified for

demanding industrial settings)

High (complies with international standards

and certifications)

4. Mathematical Formulation of Digital PPL and

Phase Detection from DFT
4.1. Signal Generation

Ideal signals are modeled as:

𝑥[𝑛] = 𝐴 𝑐𝑜𝑠(2𝜋𝑓0𝑡[𝑛] + 𝜃𝑥) (2)

𝑦[𝑛] = 𝐴 𝑐𝑜𝑠(2𝜋𝑓0𝑡[𝑛] + 𝜃𝑦) (3)

𝑥𝑛𝑜𝑖𝑠𝑦[𝑛] = 𝑥[𝑛] + 𝜎𝜔𝑁(0,1) (4)

Where 𝜎𝜔 is the standard deviation of the noise

𝑺𝑵𝑹 = 𝟏𝟎 𝒍𝒐𝒈𝟏𝟎(
𝑨𝟐/𝟐

𝝈𝝎
𝟐) (5)

Phase detection

𝑒[𝑛] = 𝑥𝑛𝑜𝑖𝑠𝑦[𝑛]. 𝑣𝑐𝑜[𝑛] (6)

𝑣𝑐𝑜[𝑛] = 𝑠𝑖𝑛(2𝜋𝑓[𝑛]𝑡𝑛 + ∅̂[𝑛]) (7)

German Alberto Echaiz Espinoza et al. / IJEEE, 12(7), 184-199, 2025

189

𝑓[𝑛 + 1] = 𝑓[𝑛] + 𝛼[𝑛]𝑒[𝑛] + 𝛽 ∑ 𝑒[𝑘]𝑛
𝑘=0 (8)

Where 𝑓[𝑛] is the estimated frequency y ∅̂[𝑛] is the

estimated phase

𝛼[𝑛] = 𝛼0𝑒−𝛾𝑛 (9)

DFT

𝝎𝑯[𝒏] = 𝟎. 𝟓 (𝟏 − 𝒄𝒐𝒔 (
𝟐𝝅𝒏

𝑵−𝟏
)) (10)

𝑋[𝑘] = ∑ 𝑥[𝑛]. 𝜔𝐻[𝑛]. 𝑒−𝑗2𝜋𝑘𝑛/𝑁𝑁−1
𝑛=0 (11)

Phase estimation

𝜃𝑥 = 𝑡𝑎𝑛−1 (
𝐼𝑚{𝑋[𝑘]}

𝑅𝑒{𝑋[𝑘]}
) (12)

5. Simulation Methodology
5.1. Electronic Diagram

Two MPU6050 sensors, an ESP32, a 7-segment and 4-

digit display, and a rechargeable battery with a 3.5V output

are used to assemble the electronic components. The ESP32

offers better data storage capacity for natural frequency

calculation with the MPU6050 sensor using I2C

communication for programming. The sensors are powered

with 3 to 5v which is connected to the VCC and GND

terminals of the ESP32, the SCL pin which is the line of the

clock pulses that synchronizes the system goes to pin 21 of the

ESP32 on the two sensors and the SDA pin which is the line

where the data is transferred between devices goes to pin 22.

Fig. 3 Diagram for Wokwi simulation

Table 2. Details of the circuit components

Quantity Description Cost

1 Esp32 S/ 34.00

2 MPU6050 S/ 30.00

1 TM1637 S/ 10.00

1 Drive Coil S/ 85.31

1 4000mah Powerbank S/ 39.00

1 on/off switch S/ 2.50

10 Jumpers S/ 5.90

Total S/ 206.71

Table 3 Summarizes the parameters used in the phasing

simulation; these values were selected based on the resonance

frequency of a straight stainless steel tube.

Table 3. Parameters used in the simulation

Symbol Description Value Unit

A Signal amplitude 1 V

𝑓0
Fundamental

frequency

115
≈ 723𝑟𝑎𝑑

Hz

𝜃x, 𝜃y Initial phase 0, 𝜋/6 rad

∅ Phase difference 30º rad

t Continuous time 2 ms

n Discrete index 2000 dimensionless

𝑇𝑠 Sampling period 2 ms

𝑓𝑠
Sampling

frequency
2000 Hz

SNR
Signal-to-noise

ratio
20 dB

5.2. Phase Change and Mass Flow as a Function of Fluid

Velocity

The phase shift (Δφ) and mass flow rate (�̇�) were

calculated as a function of fluid velocity (V) using established

mathematical models. The results show that the phase shift

decreases as the fluid velocity increases, while the mass flow

rate follows an increasing linear trend.

5.2.1. Mathematical Model Used

The time lag is calculated using the following Equation

[9]:

𝛥𝜙 = 𝑐 (
2𝑓21𝑔1𝑀𝑓𝑉

𝐿𝜃2(𝑀𝑓+𝑀𝑡)(𝑔1
2−𝑔2

2)
) 𝐴1 (13)

Where:

 (𝛥𝜙): Phase difference.

 (�̇�): Mass flow.

 (𝑐): Modified amplitude.

 (𝑓21): Factor related to vibration modes.

 (𝑔1, 𝑔2): Sensor-related frequencies.

 (𝑀𝑓): Fluid mass.

 (𝑉): Fluid velocity.

 (𝐿): Tube length.

 (𝜃2): Factor related to the second vibration mode.

 (𝐴1): Amplitude ratio.

The mass flow is calculated as: [9]

�̇� =
𝛥𝜙 𝐿 𝜃2 (𝑀𝑓+𝑀𝑡) (𝑔1

2−𝑔2
2)

2𝐴1𝑔1𝑐𝑓21
. (14)

5.2.2. Derivation of the Second Expression

To derive the second expression, we start from the first

equation and isolate the mass flow rate. (�̇�). The procedure is

detailed below:

German Alberto Echaiz Espinoza et al. / IJEEE, 12(7), 184-199, 2025

190

 Starting with the phase difference in Equation (13)

 Isolating the term (𝑀𝑓𝑉):

𝑀𝑓𝑉 =
𝛥𝜙 𝐿 𝜃2 (𝑀𝑓+𝑀𝑡) (𝑔1

2−𝑔2
2)

2𝐴1𝑔1𝑐𝑓21
 (15)

 Rate (𝑀𝑓𝑉) for mass flow (�̇�), since

�̇� = 𝑀𝑓𝑉 (16)

 Finally, the mass flow is obtained.

�̇� =
𝛥𝜙 𝐿 𝜃2 (𝑀𝑓+𝑀𝑡) (𝑔1

2−𝑔2
2)

2𝐴1𝑔1𝑐𝑓21
 (17)

5.3. Description of the Program Used

5.3.1. Program 1: Phase Difference Estimation

It first shows a general algorithm for measuring the phase

difference between two sinusoidal signals with noise.

Algorithm 1: Phase Difference Estimation

1: Imputs

𝑓𝑠 = 2000 𝐻𝑧.

𝑁 = 2000.

𝑓0 = 115 Hz.

∅ = 30°.

2: Outputs

 𝑓𝑒𝑠𝑡.

 ∅𝑒𝑠𝑡

3: Initialize parameters

4: Generate signals 𝑥(𝑡) and 𝑦(𝑡)

5: Add noise

6: Estimate frequency using PLL

7: Calculate phases using DFT

8: Compute phase difference

9: Display results

5.3.2. Program 2: Generation of Sinusoidal Signals

It generates two sinusoidal signals with a specific phase

difference. The sampling frequency 𝑓𝑠 and the number of

samples N are used to generate a discrete time vector t first.

Then, the desired phase difference (𝛥𝜙) is converted from

degrees to radians ((𝜃2). In the end, two signals are obtained,

one of which is phase-shifted.

Algorithm 2: Sinusoidal Signal Generation

1: 𝑡 ← [0: 𝑁 − 1]/𝑓𝑠

2: 𝜃2 ← ∆𝜙𝑟𝑒𝑎𝑙 × 𝜋/180

3: 𝑥 ← cos (2𝜋𝑓𝑟𝑒𝑎𝑙𝑡)

4: 𝑦 ← cos(2𝜋𝑓𝑟𝑒𝑎𝑙𝑡 + 𝜃2)

5.3.3. Program 3: Gaussian Noise

To replicate realistic circumstances, Gaussian noise is

added to the clean sinusoidal signals x(t) and y(t). To get the

desired Signal-to-Noise Ratio (SNR), it first determines the

power of the original signal (𝑃𝑥) and the noise power (𝑃𝑛). The

noisy versions 𝑥𝑛𝑜𝑖𝑠𝑦 and 𝑦𝑛𝑜𝑖𝑠𝑦 are then produced by adding

Gaussian noise with zero mean and standard deviation √𝑃𝑛 to

both signals. This procedure makes it possible to assess the

system's performance in interference-prone environments.

Algorithm 3: Add Gaussian Noise

1: Calculate signal power 𝑃𝑥 ← 𝑣𝑎𝑟(𝑥)

2: Calculate signal power 𝑃𝑛 ← 𝑃𝑥/10
𝑆𝑁𝑅

10

3: Generate noisy 𝑛 ← 𝑁(0, √𝑃𝑛)

4: 𝑥𝑛𝑜𝑖𝑠𝑦 ← x + n

5: 𝑦𝑛𝑜𝑖𝑠𝑦 ← y + n

5.3.4. Program 4: PLL

Uses a Phase-Locked Loop (PLL) to estimate a noisy

signal's phase and frequency. The parameters are initialized (α

= 0.003, β=0.00003), and for every sample, a reference vco

signal is generated, the error is calculated by multiplying the

input signal by the vco, the frequency and phase are adjusted

using a PI (Proportional-Integral) filter, and the estimates are

updated iteratively. The resulting signals, estimated frequency

(𝑓𝑒𝑠𝑡) and estimated phase (𝜑𝑒𝑠𝑡), gradually approach the input

signal's true values.

Algorithm 4: Phase-Locked Loop

1: Inputs: Signal, 𝑓𝑠, 𝑓𝑖𝑛𝑖𝑡, t

Outputs: 𝑓𝑒𝑠𝑡 , ∅𝑒𝑠𝑡

2: Initialize:

𝛼 ← 0.003, 𝛽 ← 0.00003
𝑓𝑒𝑠𝑡[0] ← 𝑓𝑖𝑛𝑖𝑡 , ∅𝑒𝑠𝑡[0] ← 0
𝑒𝑖𝑛𝑖𝑡 ← 0

3: for k ← 1 to length(signal) do

4: vco ← sin (2𝜋𝑓𝑒𝑠𝑡[𝑘 − 1]𝑡[𝑘] + ∅𝑒𝑠𝑡[𝑘 − 1]
5: 𝑒 ← signal[k]. vco

6: 𝑒𝑖𝑛𝑡 ← 𝑒𝑖𝑛𝑡 + β. e

7: 𝑓𝑒𝑠𝑡[𝑘] ← 𝑓𝑒𝑠𝑡[𝑘 − 1] + 𝛼. e + 𝑒𝑖𝑛𝑡

8: ∅𝑒𝑠𝑡[𝑘] ← ∅𝑒𝑠𝑡[𝑘 − 1] + 2𝜋𝑓𝑒𝑠𝑡[𝑘]/𝑓𝑠

5.3.5. Program 5: DFT

It uses a ventaneated DFT to determine a signal's phase.

To lessen spectral leakage, it first creates and applies a Hann

window.

After that, it computes the windowed signal's FFT, finds

the frequency bin that is closest to the earlier estimate

(𝑓𝑒𝑠𝑡), and uses the atan2 function on the real and imaginary

components of that bin to determine the phase.

Because of the fenestration that reduces frequency-

domain artifacts, this technique offers a precise phase

estimation even in noisy signals. The estimated phase (𝜑𝑒𝑠𝑡)

in the bin of interest is the outcome.

German Alberto Echaiz Espinoza et al. / IJEEE, 12(7), 184-199, 2025

191

Algorithm 5: DFT

1: Inputs: 𝑠ignal, 𝑓𝑠, 𝑓𝑒𝑠𝑡 , 𝑁

2: Outputs: ∅𝑥

3: Generate Hann window:

𝜔 ← 0.5(1 − cos(2𝜋[0: 𝑁 − 1]/𝑁)
4: Apply window

𝑥𝑤𝑖𝑛 ← 𝑠𝑖𝑔𝑛𝑎𝑙. 𝜔
5: Calculate DFT:

𝑋 ← 𝐹𝐹𝑇(𝑥𝑤𝑖𝑛)

6: Find a good reference.
𝑓𝑎𝑥𝑖𝑠 ← [0: 𝑁 − 1]. 𝑓𝑠/𝑁

𝑘𝑒𝑠𝑡 ← arg mín𝑘|𝑓𝑎𝑥𝑖𝑠 − 𝑓𝑒𝑠𝑡|
7: Calculate phase

∅𝑥 ← atan2(Im(X[𝑘𝑒𝑠𝑡]), Re(X[𝑘𝑒𝑠𝑡]))

5.3.6. Program 6: Phase Difference

Calculates and corrects the phase difference between two

signals. It first obtains the raw difference (∆∅ = ∅𝑦 − ∅𝑥),

then uses the atan2 function to correct the result to ensure that

it is in the range [-π, π] radians. It then converts this difference

to degrees (∆∅𝑑𝑒𝑔) and adjusts the value to the range [0°,360°]

by adding 360° if it is negative.

Algorithm 6: Phase difference

1: Calculate gross difference

∆∅ = ∅𝑦 − ∅𝑥

2: Correct envelope:

∆∅𝑐𝑜𝑟𝑟 ← atan2(sin(∆∅) , cos (∆∅))
3: Convert to degrees

∆∅𝑑𝑒𝑔 ← ∆∅𝑐𝑜𝑟𝑟 . 180/𝜋

4: Adjust to range [0º: 360º]:
if ∆∅𝑑𝑒𝑔 < 0 then

∆∅𝑑𝑒𝑔 ← ∆∅𝑑𝑒𝑔 + 360

5: end if

6. Results and Discussion
The phase estimation algorithm is reliable (errors <

±0.2°), except near 360° (-0.179° error at 359°). The estimated

frequency seems to be insensitive to phase changes, which

indicates that it could be fixed or calculated with another

criterion (e.g. constant average). An error of ±0.2° is

equivalent to a margin of ±0.5% in mass flow rate for fluids

such as water, acceptable in chemical dosing (ISO 10790

standard).

Table 4 Summarizes the frequency phase differences

estimated for a real phase, the results were given according to

the code and the parameters of Table 2, knowing that the real

frequency is 115 Hz. The following image shows a time

domain signal plot.

Two sinusoidal signals labeled “Signal x” (in blue) and

“Signal y” (in red), both affected by noise, are presented. The

“y” signal is out of phase with respect to the “x” signal,

evidenced by the horizontal offset between their peaks. The

horizontal axis represents time (in seconds) and the vertical

axis represents amplitude. This graph is useful to visualize the

phase difference between the two signals, which is

fundamental in the estimation of the mass flow in Coriolis-

type sensors.

Tabla 4. Simulation table at different grades

Phase

difference ∆∅

(deg)

Estimated phase

difference

∆∅𝒆𝒔𝒕(deg)

Estimated

frequency

𝒇𝒆𝒔𝒕(Hz)

30 30.024 114.803

60 59.836 114.843

90 89.812 114.833

120 119.922 114.823

150 150.268 114.905

180 180.093 114.911

320 320.062 114.877

359 358.821 114.893

Fig. 4 Amplitude (v) vs. Time (s) relationship at a 30º displacement with

Gaussian noise

Fig. 5 Amplitude (v) vs. Time (s) relationship at a 90º displacement with

Gaussian noise

Fig. 6 Amplitude (v) vs. Time (s) relationship at a 150º displacement

with Gaussian noise

German Alberto Echaiz Espinoza et al. / IJEEE, 12(7), 184-199, 2025

192

Table 5. Simulation table in different degrees

∆∅

(deg)
∆∅𝒆𝒔𝒕(deg)

Absolute

error (°)

Relative

error (%)

30 30.024 0.024 0.080

60 59.836 0.164 0.273

90 89.812 0.188 0.209

120 119.922 0.078 0.065

150 150.268 0.268 0.179

180 180.093 0.093 0.052

320 320.062 0.062 0.019

359 358.821 0.179 0.050

Mean:

�̅� =
1

8
∑ |∆∅ − ∆∅𝑒𝑠𝑡|8

i=1 (18)

�̅� = 0.132° (19)

Standard deviation:

𝜎 = √
1

𝑛
∑ (𝑒𝑖 − �̅�)2𝑛

i=1 (20)

𝜎 = 0.077° (21)

The value of ±0.2° covers more than 87.5% of the

measured data and falls about one standard deviation above

the mean. Therefore, it is a statistically representative and

conservative margin.

Table 6. Phase difference at different frequencies

∆∅ real

(°) a 100

Hz

∆∅ est (°) a

100Hz

∆∅ real

(°) a 100

Hz

∆∅ est (°) a

100Hz

30 30.027 30 30.098

60 59.831 60 60.204

90 89.808 90 90.184

120 119.082 120 119.052

150 150.081 150 150.24

180 180.093 180 179.03

320 320.212 320 320.012

359 358.941 359 358.98

7. Conclusion
To estimate mass flow rate by examining the angular

phase shift caused by the Coriolis effect, this work

demonstrated the feasibility of implementing an embedded

system for a low-cost straight-tube Coriolis sensor using an

ESP32 microcontroller and MPU-6050 inertial sensors. The

phase difference between the gyroscope signals could be

accurately estimated by translating it into an optimized

computational algorithm in C. The use of digital signal

processing methods, such as the Discrete Fourier Transform

(DFT), in combination with a Phase-Locked Loop (PLL),

allowed the vibration frequency and relative phase angle, two

crucial parameters for determining mass flow rate, to be

estimated reliably and efficiently. Using time windowing

(Hann) and proportional-integral control filtering strategies

proved effective even in the presence of noise and

disturbances typical of industrial environments, such as flow

pulsations. The suggested approach offers a lower error rate in

both frequency estimation and phase difference, according to

system validation, based on a comparison with the results from

Octave software.

However, to strengthen the conclusions, it is

recommended to complement these results with case studies

in real-life industrial environments, evaluating factors such as

electromagnetic interference, temperature variations, or

multiphase flows. This would more convincingly demonstrate

the potential of these sensors for practical applications,

especially when scalability, cost, and ease of use are priorities.

7.1. Future Works

Based on the design simulated and validated in this study,

the physical implementation of the straight-tube Coriolis

sensor prototype is suggested as a next step. The main

objective will be to build and test the entire system-which

includes the ESP32 microcontroller, the MPU-6050 sensors,

and the stainless-steel-tube-under realistic mass flow

conditions. During this phase, several important factors will

be taken into account:

 Experimental calibration: To create an accurate

quantitative relationship between the measured deviation

and the actual mass flow rate, the system must be carefully

calibrated with a commercial reference flowmeter and

validated in at least three representative industrial

scenarios (e.g., laminar, turbulent, and multiphase flow).

 Design and construction of the mechanical support: To

reduce external vibrations, ensure proper sensor

alignment, and allow for installation in realistic fluid

conduits, a robust structure will be created. Its

performance will be evaluated under typical low

mechanical vibrations (e.g., 10–100 Hz ranges) to ensure

its robustness. Due to its ability to produce precise and

regulated displacements at high frequencies, the moving

coil linear motor model GVCM-016-010-01 [10] was

demonstrated for the actuator part. Thanks to its fast

response, high acceleration and superior dynamic control

without the need for an intermediate mechanical

transmission, this type of actuator is especially suitable for

stimulating the system at its resonant frequency.

Nevertheless, future work will have to quantify its energy

efficiency and lifetime in continuous operation, since these

aspects are critical for its industrial adoption.

Water and solutions with different densities and

viscosities will be used to test sensor performance and

examine how they affect system sensitivity and linearity.

Additionally, it is recommended to include non-Newtonian

fluids and gas-liquid mixtures to cover a broader range of

applications.

German Alberto Echaiz Espinoza et al. / IJEEE, 12(7), 184-199, 2025

193

Stability and repeatability analysis: Extensive

experiments will be conducted to evaluate measurement

repeatability in the presence of disturbances, with a minimum

of 100 test cycles per condition.

The stability of the detected phase shift will also be

examined under varying pressure or temperature conditions

ranging from 0–100°C and 1–10 bar, parameters common in

industrial environments.

The creation of this prototype will pave the way for the

incorporation of low-cost Coriolis sensors into industrial flow

monitoring and control systems. To ensure adoption,

experimental results must be published against ISO or ASTM

standards and validated with at least one industrial partner.

Furthermore, the data obtained will allow fine-tuning the

mathematical model and optimizing the algorithm for

complex scenarios.

Acknowledgment
The authors would like to thank the National University

of San Agustin (UNSA) and Dr. Fernando from the Federal

University of Alagoas (UFAL) for their support during the

development of this research. Special thanks to colleagues

who provided valuable comments and suggestions during the

preparation of this manuscript.

References
[1] Evelina Ekström, “Evaluation and Optimatization of PolyCor - A Single- Use Coriolis Flowmeter,” Master’s Thesis, Umea University, pp.

1-45, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[2] Tao Wang, and Roger Baker, “Coriolis Flowmeters: A Review of Developments Over the Past 20 Years, and An Assessment of the State

of the Art and Likely Future Directions,” Flow Measurement and Instrumentation, vol. 40, pp. 99-123, 2014. [CrossRef] [Google

Scholar] [Publisher Link]

[3] Jože Kutin, and Ivan Bajsić, “PLL Control of the Coriolis Meter Resonance Frequency,” Conference: Proceedings 16th IMEKO World

Congress, Vienna, Austria, vol. 6, pp. 25-28, 2000. [Google Scholar]

[4] C.L. Ford, “A Simple Parametric Design Model for Straight-Tube Coriolis Flow Meters,” Flow Measurement and Instrumentation, vol.

79, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[5] Wokwi: A Simulator for Arduino, ESP32, and STM32 Projects, Microsiervos, 2022. [Online]. Available:

https://www.microsiervos.com/archivo/hackers/wokwi-simulador-proyectos-arduino-esp32-stm32.html

[6] ESP32 DevKit V1 NodeMCU 32 30 PIN ESP32 WIFI Micro USB, Naylamp Mechatronics, 2023. [Online]. Available:

https://naylampmechatronics.com/espressif-esp/384-esp32-devkit-v1-nodemcu-32-30-pin-esp32-wifi-micro-usb.html

[7] Interface MPU6050 Accelerometer and Gyroscope Tutorial with Arduino, Last Minute Engineers, 2025. [Online]. Available:

https://lastminuteengineers.com/mpu6050-accel-gyro-arduino-tutorial/

[8] Titan Micro Electronics, LED Drive Control Special Circuit TM1637, 2023. [Online]. Available: https://uelectronics.com/wp-

content/uploads/2018/01/AR0217-Modulo-4-Digitos-7-Segmentos-TM1637-Datasheet.pdf?srsltid=AfmBOopnRItM8ew-

ZoWtYC9Q9YN8VC0Tj_ERRn7y5oNwpWoKn_zrMTgs

[9] R. Cheesewright, and C. Clark, “The Effect of Flow Pulsations on Coriolis Mass Flow Meters,” Journal of Fluids and Structures, vol.

12, no. 8, pp. 1025-1039, 1998. [CrossRef] [Google Scholar] [Publisher Link]

[10] Linear Voice Coil Motors with Shaft and Internal Bearing, Moticont. [Online]. Available: https://www.moticont.com/GVCM-016-010-

01.htm

[11] G. Bobovnik, J. Kutin, and I. Bajsic, “The Effect of Flow Conditions on the Sensitivity of the Coriolis Flowmeter,” Flow Measurement

and Instrumentation, vol. 15, no. 2, pp. 69-76, 2004. [CrossRef] [Google Scholar] [Publisher Link]

[12] Evgeniia Shavrina et al., “Fluid-Solid Interaction Simulation Methodology for Coriolis Flowmeter Operation Analysis,” Sensors, vol. 21,

no. 23, pp. 1-20, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[13] Steven C. Chapra, and Raymond P. Canale, Numerical Methods for Engineers, 3rd ed., Mexico, McGraw-Hill, 2000. [Google Scholar]

[Publisher Link]

[14] Dennis G. Zill, and Warren S. Wright, Advanced Engineering Mathematics, 4th ed., Jones and Bartlett Publishers, USA, 2011.

[15] C. R. Wylie, Advanced Engineering Mathematics, 3rd ed., McGraw-Hill, USA, 1966.

[16] Lisandro Massera, Mauro Podoreska, and Mónica Romero, “Coriolis Mass Audible Meter Design and Implementation,” Computational

Mechanics, vol. XXVI, no. 35, pp. 3019-3042, 2007. [Google Scholar] [Publisher Link]

https://doi.org/10.1038/s41598-024-69483-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Hybrid+Deep+Learning+Approach+to+Solve+Optimal+Power+Flow+Problem+in+Hybrid+Renewable+Energy+Systems&btnG=
https://www.nature.com/articles/s41598-024-69483-4
https://doi.org/10.1016/j.flowmeasinst.2014.08.015
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Coriolis+flowmeters%3A+A+review+of+developments+over+the+past+20+years%2C+and+an+assessment+of+the+state+of+the+art+and+likely+future+directions&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Coriolis+flowmeters%3A+A+review+of+developments+over+the+past+20+years%2C+and+an+assessment+of+the+state+of+the+art+and+likely+future+directions&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0955598614001149
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PLL+Control+of+the+Coriolis+Meter+Resonance+Frequency&btnG=#d=gs_cit&t=1753769797006&u=%2Fscholar%3Fq%3Dinfo%3AGaGenmjb4P4J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Den
https://doi.org/10.1016/j.flowmeasinst.2021.101958
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+simple+parametric+design+model+for+straight-tube+coriolis+flow+meters&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0955598621000674
https://doi.org/10.1006/jfls.1998.0176
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+effect+of+flow+pulsations+on+Coriolis+mass+flow+meters&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0889974698901761
https://www.moticont.com/linear-motor-with-bearing.htm
https://doi.org/10.1016/j.flowmeasinst.2003.12.001
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+effect+of+flow+conditions+on+the+sensitivity+of+the+Coriolis+flowmeter&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0955598603000761
https://doi.org/10.3390/s21238105
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fluid-solid+interaction+simulation+methodology+for+coriolis+flowmeter+operation+analysis&btnG=
https://www.mdpi.com/1424-8220/21/23/8105
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=M%C3%A9todos+Num%C3%A9ricos+para+Ingenieros%2C+3ra&btnG=
https://analisisnumerico.com/documents/MetodosNumericosParaIngenierosStevenCChapra.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Audal%C3%ADmetro+M%C3%A1sico+De+Efecto+Coriolis+Dise%C3%B1o+E+Implementaci%C3%B3n.&btnG=
https://cimec.org.ar/ojs/index.php/mc/article/view/1255

German Alberto Echaiz Espinoza et al. / IJEEE, 12(7), 184-199, 2025

194

Appendix 1: Link to the Mendeley database
Additional resources are available at the Mendeley link below. They include an explanatory video of the model and its

implementation, and the open-source software files and code used in the simulations. [Publisher Link]

Appendix 2: Simulation in Wokwi

Fig. 7 Wokwi simulation for 15 degrees

Fig. 8 Wokwi simulation for 30 degrees

https://data.mendeley.com/preview/dk3xvrsvtw?a=1abb90c5-2d68-45df-9b4e-56782af7e3f4

German Alberto Echaiz Espinoza et al. / IJEEE, 12(7), 184-199, 2025

195

Appendix 3: Flowchart

Fig. 9 Flowchart 1: PLL algorithm

PLL Home

vco Initialize: freq=f vco initial error phase=0 int=0

For each sample k (1 to N):

Generate voltage-controlled oscillator signal (VCO): vco signal (2 sin = π · vco freq · t k + vco phase)

Phase shift detector: Mistakee= signal.vco signal

Filter PI: error int ← error int + β · vco error freq ← vco freq + α · error + error int

Update phase of VCO: vco phase ← vco phase +
2 π · vco freq

fs

Keep: f est [k]= vco phase freq est [k]= vco phase

¿ k<N ? End of the PLL

German Alberto Echaiz Espinoza et al. / IJEEE, 12(7), 184-199, 2025

196

Fig. 10 Flowchart 2: DFT algorithm

Appendix 4: Code for Simulation
Code 1: Code in Octave without Hardware

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

%% Initial setup

clear all; close all; clc;

pkg load signal;

%% Parameters optimized for speed and accuracy

fs = 2000; % Sampling rate

N = 2048; % Number of points (speed-accuracy balance)

t = (0:N-1)/fs; % Time vector

f_real = 115; % Actual frequency

phase_diff_real = 30; % Actual phase difference (degrees)

A = 1; B = 1; % Amplitudes

SNR = 20; % Signal-to-noise ratio

%% Signal generation

theta1 = 0; % theta1

Home function

Input:signal,𝑓𝑠,N,𝑓𝑒𝑠𝑡

Calculate Hann window

Multiply signal by window

Calculate FFT: X = fft (signg
n

· window)

 Build frequency axis: f =(0: N − 1) · fs/N

Search index idx Closest to f est

Extract phase: ϕ = angle (X [idx])

Return phase ϕ

German Alberto Echaiz Espinoza et al. / IJEEE, 12(7), 184-199, 2025

197

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

theta2 = deg2rad(phase_diff_real); % Initial phase signal 2

x = A*cos(2*pi*f_real*t + theta1);

y = B*cos(2*pi*f_real*t + theta2);

x_noisy = awgn(x, SNR, 'measured');

y_noisy = awgn(y, SNR, 'measured');

%% PLL

function [f_est, phase_est] = optimized_pll(signal, fs, f_initial, t)

 alpha = 0.003; % Optimized proportional gain

 beta = 0.00003; % Optimized integral gain

 n = length(signal);

 f_est = zeros(1,n);

 phase_est = zeros(1,n);

 error_int = 0;

 vco_phase = 0;

 vco_freq = f_initial;

 for k = 1:n

 % VCO signal

 vco_signal = sin(2*pi*vco_freq*t(k) + vco_phase);

 % Phase detector

 error = signal(k) * vco_signal;

 % PI filter

 error_int = error_int + beta*error;

 vco_freq = vco_freq + alpha*error + error_int;

 vco_phase = vco_phase + 2*pi*vco_freq/fs;

 % Save estimates

 f_est(k) = vco_freq;

 phase_est(k) = vco_phase;

 end

end

%% Frequency estimation with PLL

[f_est_x, ~] = optimized_pll(x_noisy, fs, 110, t);

[f_est_y, ~] = optimized_pll(y_noisy, fs, 120, t);

f_est = mean([f_est_x(end-50:end), f_est_y(end-50:end)]);

%% Optimized DFT (corrected version))

function phase = optimized_dft(signal, fs, N, f_est)

 % Apply Hann window

 window = hann(N)';

 X = fft(signal .* window, N);

 % Find nearest bin

 f_axis = (0:N-1)*fs/N;

 [~, idx] = min(abs(f_axis - f_est));

 % Calculate phase

 phase = angle(X(idx));

end

%%

phase_x = optimized_dft(x_noisy, fs, N, f_est);

phase_y = optimized_dft(y_noisy, fs, N, f_est);

% (sintaxis fix)

phase_diff = phase_y - phase_x;

phase_diff_est = rad2deg(angle(exp(1i*phase_diff)));

% 0-360°

if phase_diff_est < 0

 phase_diff_est = phase_diff_est + 360;

end

%% Show

German Alberto Echaiz Espinoza et al. / IJEEE, 12(7), 184-199, 2025

198

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

figure('Position',[100,100,800,600]);

% Signs in time

subplot(2,1,1);

plot(t, x_noisy, 'b', t, y_noisy, 'r');

title('Signals with noise');

xlabel('Time (s)'); ylabel(' Amplitude ');
legend('sign x', 'Sign y');

xlim([0 0.05]); grid on;

% PLL Convergence

subplot(2,1,2);

plot(t, f_est_x, 'b', t, f_est_y, 'r');

hold on; line([0 t(end)], [f_real f_real], 'Color', 'k', 'LineStyle', '--');

title('Frequency estimation frecuencia (PLL)');

xlabel('Time (s)'); ylabel('Frequncy (Hz)');

legend(' Frequency x', ' Frequency y', 'Real value');
ylim([f_real-10 f_real+10]); grid on;

%% Numerical results

fprintf('\n--\n');

fprintf(' RESULTADOS FINALES\n');

fprintf('--\n');

fprintf(' Frecuencia real: %.2f Hz\n', f_real);

fprintf(' Frecuencia estimada: %.3f Hz (Error: %.3f%%)\n',...

 f_est, 100*abs(f_est-f_real)/f_real);

fprintf(' Diferencia de fase real: %.2f°\n', phase_diff_real);

fprintf(' Diferencia estimada: %.3f° (Error: %.3f%%)\n',...

 phase_diff_est, abs(phase_diff_est-phase_diff_real)/phase_diff_real*100);

fprintf('--\n');

Code 2: Code in Wokwi with Hardware

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

#include <TM1637TinyDisplay.h>

#include <math.h>

#define CLK 19

#define DIO 18

TM1637TinyDisplay display(CLK, DIO);

const int N = 2000;

const float fs = 2000.0;

const float dt = 1.0 / fs;

const float f_real = 100.0;

const float phase_diff_real = 50.0; //

const float A = 1.0;

const float B = 1.0;

float x[N], y[N], t[N];

// Ventana de Hann

float hann[N];

void generateHannWindow() {

 for (int i = 0; i < N; i++)

 hann[i] = 0.5 * (1 - cos(2 * PI * i / (N - 1)));

}

// Generar señales simuladas

void generateSignals() {

 float theta1 = 0;

 float theta2 = phase_diff_real * PI / 180.0;

 for (int i = 0; i < N; i++) {

 t[i] = i * dt;

 x[i] = A * cos(2 * PI * f_real * t[i] + theta1);

 y[i] = B * cos(2 * PI * f_real * t[i] + theta2);

 }

}

German Alberto Echaiz Espinoza et al. / IJEEE, 12(7), 184-199, 2025

199

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

// Estimate frequency using PLL

float pll_freq_est(float* s, float f_init) {

 float alpha = 0.003, beta = 0.00003;

 float vco_freq = f_init, vco_phase = 0, err_int = 0;

 float f_sum = 0;

 for (int i = 0; i < N; i++) {

 float vco = sin(2 * PI * vco_freq * t[i] + vco_phase);

 float error = s[i] * vco;

 err_int += beta * error;

 vco_freq += alpha * error + err_int;

 vco_phase += 2 * PI * vco_freq / fs;

 if (i >= N - 50) f_sum += vco_freq;

 }

 return f_sum / 50.0;

}

// Estimar fase con DFT y ventana

float estimate_phase(float* s, float freq_est) {

 float re = 0, im = 0;

 for (int i = 0; i < N; i++) {

 float angle = 2 * PI * freq_est * t[i];

 re += s[i] * hann[i] * cos(angle);

 im -= s[i] * hann[i] * sin(angle);

 }

 return atan2(im, re);

}

// Mostrar en display

void showPhase(float phase_deg) {

 int value = (int)phase_deg;

 display.showNumberDec(value, true);

}

void setup() {

 Serial.begin(115200);

 display.setBrightness(7);

 display.showString(“INIT”);

 delay(1000);

 generateHannWindow();

 generateSignals();

 float f_est_x = pll_freq_est(x, f_real - 5);

 float f_est_y = pll_freq_est(y, f_real + 5);

 float f_est = (f_est_x + f_est_y) / 2.0;

 float phase_x = estimate_phase(x, f_est);

 float phase_y = estimate_phase(y, f_est);

 float dphi = phase_y - phase_x;

 float deg = dphi * 180.0 / PI;

 if (deg < 0) deg += 360.0;

 Serial.println(“----RESULTS ----”);

 Serial.print(“Estimated frequency:”); Serial.println(f_est);

 Serial.print(“Estimated offset”); Serial.print(deg); Serial.println(“degrees “);

 showPhase(deg);

}

void loop() {

 // show

 delay(1000);

}

