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Abstract - The spectral analysis capabilities of Hyperspectral imaging produce large datasets that create problems when storing 

and transmitting the data, along with processing it in real-time. Traditional compression approaches that use transform-based 

and deep learning methods either need versatile adaptation features or considerable computational power. A real-time adaptive 

rate control hyperspectral image compression system based on FPGA and software co-design features the proposal. The 

proposed method optimizes compression efficiency through three elements, which include adaptive quantization and entropy 

coding and a dynamic rate control system. The method processes hyperspectral data at speeds faster than 25 frames per second 

while using less than 5 watts of power to deliver compression ratios between 10:1 and 50:1 and PSNR values from 35-45 dB, 

along with SSIM measures between 0.92 and 0.98. The approach achieves a lower bit rate level of 30–50% when compared to 

earlier research methods while delivering superior visual results. The proposed solution delivers an effective power-saving 

method for real-time hyperspectral image compression, which benefits satellite and UAV applications. 

Keywords - Field-Programmable Gate Array, Structural similarity index, Unmanned aerial vehicle, Airborne visible/infrared 

imaging spectrometer, Hyperspectral digital imagery collection, Rate-distortion optimization Experiment, Band sequential.

1. Introduction 
Hyperspectral imaging has stood out in recent years 

because it delivers precise information regarding wavelengths 

combined with spatial data throughout a broad spectrum. The 

extensive capability of hyperspectral sensors to measure 

hundreds of band segments differentiates them from standard 

imaging systems that acquire the RGB spectrum because this 

bandwidth allows for exact material detection and 

classification [1]. This technology applies to remote sensing 

as well as environmental monitoring services while 

simultaneously benefiting medical imaging practice and 

precision agriculture operations, together with military 

surveillance applications [2]. Hyperspectral imaging faces its 

main difficulty because sensor-generated data volumes 

become overwhelmingly large, which directly impacts storage 

needs, increases computational requirements, and data 

transmission requirements. Real-time processing and 

transmission of hyperspectral images requires effective 

compression methods because resource-limited satellite and 

UAV-based systems demand this capability [3]. The literature 

showcases various techniques for compressing hyperspectral 

images, which include transform-based and predictive 

methods and approaches based on machine learning. 

Hyperspectral data compression methods that preserve perfect 

image fidelity, such as Huffman coding, arithmetic coding, 

and predictive coding, prove insufficient when compressing 

highly related hyperspectral information because they do not 

produce notable compression efficiency improvements [4]. 

The combination of Discrete Wavelet Transform (DWT) with 

Karhunen–Loève Transform (KLT), along with JPEG2000, 

provides effective decorrelation of hyperspectral images that 

ultimately results in superior compression efficiency rates [5]. 

These compression techniques use too much processing power 

and cannot be used in real-time systems. Hyperspectral 

imaging has become a very effective tool in remote sensing 

because it is able to record a large amount of spectral data in 

hundreds of thin bands. Nevertheless, real-time processing, 

transmission, and storage are, in any case, bottlenecked by the 

sheer strength of hyperspectral sensor output, especially in 

cases where satellite and UAV technologies have limited 

computer and energy resources. The current techniques, like 

deep learning and transform-based, are either computationally 

expensive or fail to adjust to dynamic conditions. That leaves 

a research gap: there is a need for a real-time, low-power, 

adaptive coding scheme with the capability of bandwidth-

aware rate control. In this regard, the proposed work proposes 

an adaptive rate control mechanism on an FPGA that 

dynamically manipulates compression in reaction to the 

system constraints. This system would bridge that 

technological gap between software's high accuracy and 

hardware without flexibility at runtime systems that exists 

today. Deep learning-based compression techniques currently 
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lead to the best compression ratios and reconstruction quality 

possible. The compression of hyperspectral images benefits 

from the use of three main neural network approaches, 

including autoencoders and Convolutional Neural Networks 

(CNNs) with deep recurrent models [6]. The successful 

operation of deep learning-based compression methods exists 

within strict restrictions since it demands large processing 

capabilities with substantial datasets, which render them 

unusable in satellite board environments [7]. The majority of 

compression methods currently used do not have adaptive rate 

control features that enable bandwidth adaptation during real-

time transmission processes. Nevertheless, most of the 

techniques do not offer the dynamic rate control feature, and 

do not work well when faced with the variations in the 

bandwidth and cannot be used in real-time and resource-

constrained platforms. Such constraints emphasize the 

necessity of such a solution that is soft on power with an 

adaptive compression rate that can be varied on-the-fly, and 

yet the quality of the image is desirable under the constrained 

environment. 

Previous works suffer from an essential weakness 

because they lack hardware-efficient implementations. The 

high power consumption of GPUs makes them ineffective for 

power-sensitive applications since they require significant 

energy to offer their processing speed. The sequential 

execution design of CPUs makes them incapable of reaching 

real-time processing speeds. Field-Programmable Gate Arrays 

(FPGAs) present themselves as a suitable solution for 

hyperspectral image compression in real time because they 

offer low latency and parallel computing as well as 

reconfiguration capabilities [8]. Most FPGA-based 

implementations described in the literature depend on fixed-

rate compression techniques that fail to dynamically optimize 

bandwidth utilization. An adaptive framework for efficient 

hyperspectral image compression must be developed because 

of existing challenges to achieve: The compression system 

should automatically modify its compression speed according 

to available system resources and network bandwidth. The 

system should manage both exceptional image quality and 

substantial data compression results [9]. An FPGA 

acceleration system enables time-responsive operation along 

with low-power utilization for processing [10]. The system 

supports effective data hyperspectral transfer and storage 

capabilities in resource-limited platforms, including satellite 

and UAV systems, as well as edge devices. The objective 

comes from the pitfalls of fixed-rate compression in 

bandwidth optimization and the high computational resource 

needs of deep learning compression techniques [11]. The 

proposed method integrates adaptive compression's beneficial 

properties with FPGA hardware speedup for creating a 

practical system that handles real-time hyperspectral image 

processing. A real-time adaptive rate control framework that 

serves as an improvement to existing hyperspectral image 

compression methods through hardware-software co-designed 

solutions [12]. It contains the following particular goals: The 

goal is to create and execute a real-time FPGA-based 

hyperspectral image compression system that uses system 

constraints as inputs to modify compression rates dynamically 

[13]. An adaptive rate control system needs development for 

finding the optimal balance among compression ratio, image 

quality and transmission bandwidth levels. Hooking up 

hardware-based compression capabilities like DWT, adaptive 

quantization and entropy coding into an FPGA system 

architecture [14]. The proposed approach requires evaluation 

through measurement of compression ratio together with Peak 

Signal-to-Noise Ratio (PSNR), Structural Similarity Index 

(SSIM), processing speed and power consumption levels [15]. 

The proposed method will be tested against current 

compression techniques to demonstrate its superior 

compression speed and real-time operation capabilities. 

A new adaptive quantization together with an entropy 

coding mechanism controls compression rates in real-time 

based on the operating system requirements [16]. The 

integration of an embedded processor with an FPGA-based 

parallel processing unit enables real-time hyperspectral image 

compression that operates efficiently through minimal latency 

[17]. The proposed system maintains PSNR levels above 35 

dB with SSIM scores greater than 0.92 yet achieves 30–50% 

better data compression efficiency than static compression 

methods [18]. The FPGA-based processing method delivers 

real-time data compression at 5W power use, which surpasses 

GPU implementations with their substantial energy 

consumption [19]. The proposed method receives evaluation 

using actual hyperspectral datasets, which include AVIRIS 

and HYDICE, while conducting a comparative study with 

leading compression techniques developed [20]. New 

learning-based compressive techniques combined with 

optimized FPGA implementations represent the current work 

direction. 

The following structure arranges the rest of this 

document: This section reviews recent hyperspectral image 

compression techniques and explores their current limitations, 

as it leads to the proposed approach [21]. The proposed real-

time adaptive compression framework contains details about 

the hardware-software co-design strategy, FPGA 

implementation and adaptive rate control mechanism in 

Section 3. Section 4 outlines the experimental design that 

incorporates informative details about the datasets together 

with the evaluation metrics and the specific hardware 

specifications for the FPGA testing platform [22]. The 

findings alongside performance evaluations are disclosed in 

Section 5, where competitors' approaches are measured for 

data compression effectiveness and speed alongside electricity 

utilization and image quality metrics (PSNR, SSIM) [23]. It 

finishes by exploring potential avenues for additional 

investigation, which include adding machine learning 

adaptive compression methods alongside more FPGA 

performance enhancements [24]. Relative to remote sensing 

applications, hyperspectral images necessitate urgent 
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compression solutions because they deal with excessive 

amounts of data and bandwidth restrictions alongside 

performance restrictions. Current compression systems 

exhibit two main shortcomings: using static compression 

rates, which are expensive to compute and producing 

suboptimal hardware designs [25]. The presented study 

develops a real-time adaptive compression system built 

around FPGAs, which dynamically controls compression rates 

for optimal efficiency and low latency with energy 

conservation. This approach solves major issues in 

hyperspectral image processing by delivering improved 

performance over existing methods regarding compression 

efficiency, along with increased processing speed and 

enhanced adaptability. However, the feature of dynamic rate 

control is not provided by the majority of the techniques, and 

they perform rather poorly when challenged with the 

fluctuations of the bandwidth, hence are not applicable in real-

time and resource-constrained platforms. The need for such a 

solution that is soft on power with an adaptive compression 

rate that can be varied on-the-fly, but the quality of the image 

should be acceptable in a limited environment is stressed. 

2. Literature Review 
A novel hardware implementation of a lossy multispectral 

and hyperspectral image compressor for onboard operation in 

space missions. The compression algorithm extends the 

Consultative Committee for Space Data Systems (CCSDS) 

123.0-B-1 lossless standard by adding a bit-rate control stage 

that allows managing losses during compression to achieve 

higher compression ratios while maintaining image quality 

[27]. HLS techniques enable design productivity growth 

through raised abstraction levels for implementing the 

algorithm. The lossy compression solution gets deployed onto 

ARTICo3 to deliver a runtime adaptive solution, which allows 

users to select a performance level by adding more hardware 

accelerators for enhanced throughput while also managing 

power usage and fault tolerance by using accelerator grouping 

to achieve hardware redundancy [26]. A Xilinx Zynq 

UltraScale+ Field-Programmable Gate Array (FPGA)-based 

MPSoC implements the testing of the complete compression 

solution with various input images ranging from multispectral 

to ultraspectral types. The proposed implementation on 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 

images requires 36 seconds of execution time when eight 

accelerators operate at 100 MHz, since it utilizes 20% of LUTs 

and 17% of dedicated memory blocks in the target device [28]. 

The processing technique defines a 15.6× acceleration rate 

against a basic ARM Cortex-A53 processor implementation 

of the algorithm. Using lossless hyperspectral pictures reduces 

overall data size and results in lower storage and transmission 

costs.    A dynamic pipeline hardware solution for JPEG2000 

compression and decompression.    The architecture design 

was developed to operate efficiently in Field Programmable 

Gate Array (FPGA) hardware units for image processing 

applications.    Background pauses in the pipeline system 

prevent errors that occur when modifying coding parameters 

[29]. The implementation of Bit-plane coding reduced 

execution time for image coding operations, thereby speeding 

up parameter update processes.    Through shorter contextual 

information and faster decision protocols, the system reached 

a higher processing speed. JPEG2000 

compression/decompression hardware modules based on 

parallel block compression architecture produced systems 

with flexible block dimensions, along with enhanced 

compression/decompression capabilities, higher picture 

processing speed and reduced frame processing duration [30]. 

Results of verification emerged when the Zynq-7000 system-

on-chip operated JPEG 2000 compression. The method 

provided lossless compression of hyperspectral picture cubes 

for satellite processing.    The recommended design technique 

requires fewer resources while achieving better compression 

efficiency with increased clock speed than previously used 

methods. The implementation of hyperspectral image (HSI) 

classification remains the standard practice in remote sensing 

imagery analysis, where both high accuracy and quick 

processing speeds are necessary. It demonstrates that 

Convolutional Neural Network (CNN) methodologies 

presently represent the best technology for HSI classifications 

[32]. The numerous dimensions present in HSI create 

processing challenges for CNN models, so they cannot meet 

real-time response requirements when compared to SVMs and 

other traditional methods. Previous CNN implementations 

within HSI lacked design features that optimize their 

deployment on embedded FPGAs [33]. A new CNN-based 

systematic algorithm for HSI classification, which specifically 

considers efficiency implications during hardware 

implementation. The proposed algorithm obtains a customized 

architectural design that enables FPGA resource-based 

mapping to fulfill real-time onboard classification with 

minimal power demands. The accelerator implemented on a 

Xilinx Zynq 706 FPGA achieves greater throughput than 70 

times the speed of an Intel Xeon CPU and 3 times the speed 

of an NVIDIA GeForce 1080 GPU. The proposed FPGA 

accelerator delivers equivalent processing speed compared to 

existing SVM-based systems, even though it reaches higher 

classification accuracy. The present sensor systems 

development trend aims to achieve improved precision with 

better resolution through smaller devices that require less 

power. FPGAs serve as specific reprogrammable hardware 

components that enable proper exploitation to generate a 

reconfigurable sensor system. The system benefits from 

adaptation capabilities, which allow developers to implement 

complex applications through partial reconfigurable features 

with minimal power usage. FPGAs have been preferred for 

intense applications because their design flexibility leads to 

high parallel processing capabilities and on-chip memory 

architectures, together with adaptable functionality, which 

results in exceptional algorithm development performance. 

Sensor system performance has improved through FPGA 

technology, which has produced rapid growth across new 

application areas. Spanish technology projects focus on 

generating smarter sensor systems with reconfigurable design 
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capabilities at lower power levels based on FPGAs [34]. The 

document presents an overview of present-day developments, 

which includes a description of different FPGA technology 

utilization alongside projections for forthcoming studies. The 

hyperspectral image compression algorithm adopted by 

Consultative Committee for Space Data Systems (CCSDS) 

causes significant feedback-loop latency and sophisticated 

computational complexity when operating in Band Sequential 

(BSQ) and Band Interleaved by Line (BIL). A forward 

prediction method using Xilinx Inc.'s xc7k325tffg9000 field 

programmable gate array chip will short the feedback loop 

time delay by modifying the CCSDS algorithm computation 

sequence. Real-time data processing and dynamic image 

parameter configuration occurred after implementing full-

pipeline construction on FPGA boards [35]. The optimized 

algorithm succeeds in reproducing original algorithm 

operations with minimal hardware demands at the speed-

insensitive path, and the proposed method reaches 103MHz 

frequency speed with 1.237Gbps throughput when processing 

12-bit input hyperspectral data. The advancement of 

hyperspectral sensors created an enlarged potential to gather 

better-quality data. Such data expansion necessitates the 

creation of innovative methods to advance the storage and 

transmission of large datasets to ground stations. Massive 

information processing requires the emerging approach of 

compressive sensing that obtains compressed signals directly 

instead of working with entire datasets. The technique lowers 

the quantity of data that needs to be recorded before 

transmission and storage. A hardware-testing combination 

using System-on-Chip (SoC) Field-Programmable Gate Array 

(FPGA) for compressive sensing implementation. An airborne 

visible/infrared imaging spectrometer sensor image with 512 

lines, 614 samples and 224 bands operates the compressive 

sensing algorithm at a unitary compression rate in 0.35 

seconds [36]. The proposed system achieves a runtime 

performance comparable to 49× faster than the embedded 

256-core GPU of the Jetson TX2 board and 216× faster than 

the SoC FPGA ARM. The proposed system needs energy 

consumption 100 times lower than alternative solutions. The 

development of lossy compression methods has increased 

throughout the past decades because new-generation 

hyperspectral sensors generate a rapid increase in data rate; yet 

linear compression methods preserve unneeded data about 

unimportant areas of interest while lacking sufficient 

information about regions of investigation. The added runtime 

adaptive distortion to HyperLCA enables multiple 

compression ratios within the same operation. The solution 

maintains its FPGA-friendly characteristics because it adopts 

the same deployment methods found in its previous version, 

which simplifies hardware implementation on Field 

Programmable Gate Arrays [37]. The modified compressor 

completes processing of 1024 × 1024 hyperspectral images 

together with 180 spectral bands, 377.5 MB within 0.935 

seconds at 1.145 W power consumption. The experimental 

findings demonstrate superior M Samples/s performance as 

well as MB/s/W energy-efficiency levels from the 

architecture, which exceeds the best available state-of-the-art 

measures by factors of 10× and 6× respectively. Different 

remote sensing applications require hyperspectral imaging 

technology, which proves to be expensive in terms of 

computational resources.  The size of hyperspectral data 

creates challenges for its computational requirements and 

storage needs, which become more pronounced because of 

modern sensor advancements.  The process of moving 

airborne satellite data to ground processing facilities 

encounters bandwidth problems alongside data transfer.  Data 

processing capabilities become crucial for platforms that have 

limited power supply capacity, limited weight, and storage 

resources.  Preserving hyperspectral picture information can 

be achieved through onboard data compression methods to 

address these issues.  An extensive analysis of hyperspectral 

image compression techniques through hardware acceleration 

for remote sensing purposes.  From 2000 to 2021, it examined 

101 articles [38].  It analyzed how synthesized results measure 

their power usage together with their throughput capability 

and compression ratio capabilities.  Among the most efficient 

methods, it ranks them, followed by an analysis that reveals 

essential elements controlling the performance of 

compression utilizing hardware acceleration. Remote sensing 

depends on the important technique known as hyperspectral 

imaging, with its capability to achieve high spectral 

resolution. Hyperspectral remote sensing missions, along with 

improved temporal resolution, lead to rising availability and 

increasing dimensions of hyperspectral data [39]. The 

efficient compression and interpretation of hyperspectral data 

through automated processing methods are needed for space-

based imaging platforms because this reduces satellite-to-

Earth connection demands and optimizes hyperspectral 

analysis operations across numerous usage domains. Field 

Programmable Gate Arrays (FPGAs) have emerged as the 

primary choice for remote sensing onboard processing during 

the previous year, owing to their diminished real estate 

requirements and power consumption that exceeds traditional 

high-performance computing systems and because FPGAs 

became more resilient to spaceborne ionizing radiation 

exposure [40]. The extensive literature base about FPGAs in 

remote sensing does not include a dedicated work discussing 

how this flexible technology applies to modern hyperspectral 

remote sensing processes. It begins this series of 

developments by delivering a substantial review that evaluates 

present and prospective FPGA and reconfigurable hardware 

applications in hyperspectral remote sensing missions. 

The literature reviewed constitutes valuable knowledge 

on the topic of hyperspectral image compression, yet fails to 

offer a centralized discourse that can tie available solutions to 

the environment of the proposed system. The majority of 

works applied either to static-rate compression, transform-

based approaches or deep learning technologies implemented 

on GPUs, skipping hardware-efficient real-time applications. 

An example is that JPEG2000 and CCSDS formats provide 

good compression, but they are unsuitable in real-time UAV 
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missions since they are quite slow [41]. On the same note, 

CNN-based compression methods have higher accuracy than 

non-CNN-based methods, though they consume a lot of 

computation and will be unfeasible to implement in low-

power devices. Adaptive frameworks are discussed in very 

few studies, and FPGAs are used in even fewer studies to 

achieve dynamic rate control. Such a lack of hardware-

oriented adaptive compression, especially in real-time 

background, gives emphasis to the proposed solution. It 

extends into the foundation set by these previous methods with 

the flexibility of software connected to the efficiency of the 

FPGA. The proposed new method is unique in that it uses both 

hardware and software co-design approaches combined with 

hard-coded adaptive quantization and entropy coding, making 

it real-time, which has never been applied to hyperspectral 

image compression before, with hard constraints on the power 

and latency requirements. It contrasts with the previous 

efforts, which covered either fixed-rate compression or 

GPU/CPU-based systems that required excessive amounts of 

energy to execute. Unlike them, the given framework can 

dynamically adjust the level of compression depending on the 

bandwidth and image properties in real-time [26]. The 

comparative assessment with modern methods in 2022-2024 

years of JPEG2000, hybrid transform coding, and deep 

learning-based CNN models has shown a higher by 3050%bit 

rate reduction, and PSNR improvement of 24 dB and SSIM 

enhancement of up to 0.07. These outcomes confirm the 

exclusivity and success of the solution towards realising 

scalable, efficient and adaptive compression that can be 

applied to next generations of satellite and UAV imaging 

platforms. 

3. Proposed Work 
3.1. Dynamic Hyperspectral Image Compression: An 

Adaptive Rate-Controlled FPGA Framework 

3.1.1. Intelligent Compression Framework for Hyperspectral 

Imaging 

Real-time applications require spectral and spatial 

information compression due to the high amount of data 

contained in hyperspectral images. The framework stimulates 

a compression method that uses dynamic rate-controlled 

procedures to meet different image quality requirements and 

bandwidth and storage specifications. The system delivers 

dynamic compression parameter adjustment in real-time 

because it differs from fixed-rate conventional methods. 

Adaptive control Feature of FPGA to address the drawbacks 

of other hyperspectral image compression systems utilizing 

CPUs and GPUs. The current methods rely on software-

intensive architectures that consume too much power and 

cannot be readily responsive to real-time requirements in edge 

applications like satellites and UAVs. These systems usually 

fail to adapt parameters of compression to differentiated 

bandwidth and data limitations and end up in either inefficient 

data and image transmission or poor quality of the images. The 

proposed system contributes to advancing adaptive 

quantization and entropy coding into an open-source, 

lightweight FPGA framework, being highly efficient in terms 

of power consumption and speed as well as adaptability. The 

dynamic rate control achieved in this real-time compression 

ability holds high PSNR and SSIM values without 

overloading the hardware. Accordingly, the suggested 

framework addresses the gap that conventional systems could 

not manage and preconditions the scalable, low-power, high-

performance hyperspectral image compression. The 

representation of a hyperspectral image appears as follows in 

Equation (1), 

𝐼 ∈ 𝑅𝑀×𝑁×𝐵 (1) 

The image consists of 𝑀 and 𝑁 spatial dimensions along 

with 𝐵 spectral bands. The compression process follows in 

Equation (2), 

𝐶 = 𝐸(𝑄(𝑇(𝐼)) (2) 

The system applies a transformation function 𝑇(⋅) using 

Discrete Wavelet Transform (DWT) together with Principal 

Component Analysis (PCA), while 𝑄(⋅) performs adaptive 

quantization followed by entropy coding through 𝐸(⋅), which 

ultimately creates 𝐶 as output. 

3.1.2. Adaptive Quantization for Efficient Compression 

The framework achieves its main innovation through 

adaptive quantization because it dynamically modifies 

quantization steps based on specific rate-distortion properties. 

The optimal quantization step 𝑄 finds its calculated through 

Equation (3), 

𝑄 =
𝜎𝐵

𝑅𝑡 𝑎𝑟𝑔 𝑒𝑡
 (3) 

The algorithm performs the calculation based on the 

standard deviation value of band B while considering the 

target bit rate 𝑅𝑡𝑎𝑟𝑔𝑒𝑡. The system provides an automatic 

adjustment capability that optimizes compression 

performance and image quality according to data changes. 

3.1.3. FPGA-Optimized Hardware-Software Co-Design 

The compression system has been implemented on Zynq-

7000 SoC FPGA devices to attain real-time processing 

capabilities through parallel computation and hardware 

speedup. The FPGA-based architecture provides low power 

usage at less than 5W operation and enables minimal latency 

at about 40ms, along with processing speeds of 25+ FPS, 

surpassing CPU and GPU implementations. The coupling of 

adaptive rate control technology with an FPGA acceleration 

system creates an effective method for power-efficient 

hyperspectral image compression, which caters to remote 

sensing requirements alongside UAVs and satellite-based 

systems, as shown in Figure 1. The Predictor-Based Adaptive 

Compression System is essential because it optimizes 

hyperspectral image compression through real-time bit-plane 
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prediction functions that wipe out redundancies and enhance 

transmission quality. The adaptive rate control module 

evaluates incoming hyperspectral images to determine their 

most essential spectral data. The system implements error 

detection through computational error methods to track 

variations between predicted and actual bit-planes and execute 

dynamic quantification changes. The quantization step 

adaptation element of the system regulates compression ratio 

performance through bandwidth availability and quality 

constraint feedback mechanisms. A reduced bitstream 

emerges from an entropy code process that reduces storage 

costs as well as transmission expenses. The system delivers 

superior spectral retention during compression processes 

when the compression ratio reaches between 10:1 and 50:1. 

The FPGA-based architecture allows real-time processing 

through this system, which produces faster data transmission 

and lower latency and is suitable for satellite imaging and 

UAVs, and remote sensing applications. 

 
Fig. 1 Predictor-based adaptive compression system 

3.2. Smart Feedback-Controlled Compression: A Dynamic 

Rate Optimization Approach 

3.2.1. Intelligent Real-Time Compression with Adaptive 

Feedback 

To achieve efficient hyperspectral image compression, it 

is necessary to implement dynamic rate control for 

maintaining quality alongside improved efficiency. The non-

alterable rate-setting methods from the past fail to find the best 

bandwidth settings, resulting in both data reduction and 

unnecessary resource consumption. The real-time control 

mechanism of the proposed rate adjustment continuously 

supervises compression elements to deliver optimal 

performance. The system performs rate-distortion 

optimization through a mathematical model that chooses 

optimal compression rates by solving Rate-Distortion 

Optimization (RDO) problems in Equation (4), 

𝑚𝑖𝑛  𝑅 ⥂ 𝑠. 𝑡. 𝐷(𝑅) ≤ 𝐷𝑚𝑎𝑥𝑚𝑎𝑥  (4) 

The relationship between image distortions D(R) follows 

the bit rate 𝑅𝑚𝑎𝑥 while the system bandwidth restrictions limit 

the maximum bit rate R to 𝐷𝑚𝑎𝑥 . 

3.2.2. Feedback Loop for Dynamic Compression Adjustment 

These are the three steps that the adaptive compression 

mechanism follows. 

1. Monitor: The system uses PSNR and SSIM metrics to 

monitor the key variables 𝑅, 𝐶𝑅, along with 𝑄𝐼  for 

continuous measurement. 

2. Adjust: The system will increase the quantization step 

size (𝑄) dynamically when it detects 𝑅 > 𝑅𝑚𝑎𝑥 to lower 

the data size. 

3. Validate: The reconstruction process should maintain 

high-quality imagery that meets established limits for 

PSNR and SSIM values. 

3.2.3. FPGA-Accelerated Real-Time Processing 

Also, to maintain top resolution during transmission by 

monitoring and adjusting bandwidth usage with monitoring 

and adjustment from this system. The hardware 

implementation on an FPGA provides instant compression 

capabilities, which optimizes performance for applications 

that use satellite and UAV imaging systems. In Figure 2, the 

real-time processing and transmission system exists to create 

high-speed hyperspectral image compression techniques and 
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control data transfer methods. The FPGA-accelerated 

processing unit executes real-time compression tasks without 

consuming more than 5W of power as it performs instant 

compression at 25+ FPS. The camera system records 

unprocessed spectral information that gets processed by a 

combination of transform compression techniques 

(DWT/PCA) combined with adaptive quantization, followed 

by entropy coding methods. The adaptive data transmission 

module adjusts transmission rates and follows network 

conditions to handle bandwidth constraints when it distributes 

the compressed bitstream. The received compressed data at 

the ground station or remote processing unit enables the 

reconstruction of hyperspectral images with high fidelity at 

35–45 dB PSNR and 0.92–0.98 SSIM.  

The data handling system with this design achieves 

efficient hyperspectral data management while keeping image 

quality high at reduced bandwidth levels, which makes it 

optimal for satellite, UAV, and airborne imaging needs.

 
Fig. 2 Real-Time processing and transmission system 

3.3. Hybrid FPGA-CPU Acceleration: A Hardware-

Software Co-Design for Real-Time Hyperspectral 

Compression 

3.3.1. FPGA-Driven High-Speed Compression with Dynamic 

Adaptation 

Real-time hyperspectral image compression requires fast 

performance and adjustable control mechanisms that CPU and 

GPU processing technologies cannot handle effectively 

together. The hardware-software collaborative design uses an 

FPGA-accelerated architecture to execute computations 

directly and an embedded processor for dynamic regulation 

tasks. The Latency Optimization for Real-Time Performance 

of total processing time referred to as (T) in Equation (5), 

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑚𝑎𝑥( 𝑇𝑐𝑜𝑚𝑝, 𝑇𝑡𝑟𝑎𝑛𝑠) (5) 

The total processing time consists of both compression 

computation time 𝑇𝑐𝑜𝑚𝑝 and data transmission time  𝑇𝑡𝑟𝑎𝑛𝑠. 

The system aims at reducing 𝑇𝑡𝑜𝑡𝑎𝑙  by using FPGA hardware 

to fasten computation while maintaining real-time operation 

capabilities. 

3.3.2. FPGA-Accelerated Compression Workflow 

The system runs on Xilinx Zynq-7000 SoC FPGA 

hardware.  

 The FPGA carries out its computations using 

VHDL/Verilog to run binning and quantification (𝑇 and 

𝑄) at high speed through parallel processing. 

 A processor running ARM Cortex-A9 handles the 

operations of entropy coding (𝐸) in combination with 

adaptive rate control. 

3.3.3. Performance Gains over CPU/GPU Methods 

This hybrid approach achieves: 

 5× faster processing than CPU-based implementations. 

 50% lower power consumption compared to GPU-based 

methods. 

 Real-time operation at 25+ FPS with <5W power 

consumption. 

The fusion of FPGA operational speed with 

programmable software base enables a power-efficient real-

time hyperspectral image compression system, which satisfies 
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the needs of satellite and UAV platforms. In Figure 3, the 

hyperspectral compression workflow end-to-end that 

consisted of configurable modules running on FPGAs, 

adaptive quantization, and an entropy coder. It demonstrates 

concurrent processing, dynamic compression, and quality 

assessment, which makes it lightweight and low-latency 

transmission that is applicable to UAV, satellite, and remote 

sensing systems. 

 
Fig. 3 Compression flowchart for hyperspectral image processing 

3.4. Performance Evaluation: Dataset, Experimental Setup, 

and Implementation 

3.4.1. Hyperspectral Datasets for Evaluation 

The validation process of the proposed adaptive rate-

controlled hyperspectral image compression method uses two 

established datasets. 

1. Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS): 

 224 spectral bands. 

 10 nm spectral resolution per band. 

 AVIRIS serves as a regular tool for both remote 

sensing operations and environmental monitoring 

purposes. 

2. HYDICE (Hyperspectral Digital Imagery Collection 

Experiment): 

 210 spectral bands covering 0.4–2.5 µm 

wavelengths. 
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 High-resolution spectral data for diverse 

applications. 

Performance evaluation remains thorough because the 

data is separated into training sets that represent 80% and 

testing sets that constitute 20% of the total information. The 

choice of these datasets was justified by their richness in 

spectra and availability in remote sensing applications. All 

mentioned performance measures: compression ratio, PSNR, 

and SSIM were based on an 80-20 ratio of training and testing 

data, which led to consistent benchmarking in comparative 

analysis and representational diversity in evaluations in the 

real world. 

3.4.2. Performance Metrics for Compression Efficiency 

The measurement approach to evaluate the compression 

framework includes: 

 Compression Ratio (CR): 

𝐶𝑅 =
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙⥂⥂𝑆𝑖𝑧𝑒

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑆𝑖𝑧𝑒
 (6) 

A higher Compression Ratio represents superior 

efficiency of compression in Equation (6). 

 Image Quality (PSNR & SSIM): The decompressed 

signal's fidelity is evaluated through Peak Signal-to-Noise 

Ratio (PSNR). SSIM provides a measurement method for 

visual image quality assessment. 

 Processing Speed (FPS): Data acquisition happens 

through Frames Per Second (FPS) to monitor real-time 

processing speed. 

3.4.3. Experimental Setup and FPGA Implementation 

The real-time adaptive hyperspectral image compression 

system integrates simulation tools running through software 

with FPGA hardware implementation to achieve high 

performance and scalability. The complete development 

sequence includes these main stages, starting with data 

preprocessing and ending with hardware implementation. To 

make it reproducible, it used Xilinx Zynq-7000 SoC and the 

Vivado-HLS to synthesize the hardware and also MATLAB 

to preprocess. Module descriptions with details, such as the 

clock constraints, utilization of resources and optimizations 

related to the number of bits, are described to guide the 

replication on similar FPGAs and make sure that applications 

meet the needs of real-time requirements. 

1. Data Preprocessing and Simulation (MATLAB) 

 Both AVIRIS and HYDICE hyperspectral image datasets 

receive preprocessing treatment within MATLAB before 

spectral bands become accessible. 

 I(n) the input hyperspectral image first experiences 

dimensionality reduction via PCA or DWT 

transformation for feature extraction. 

 The compression process is simulated through the 

combination of adaptive quantization and entropy coding 

techniques. 

 All compression algorithm tests measure performance 

outcomes through Compression Ratio (CR), PSNR, 

SSIM, and bit rate reduction computation methods. 

2. Hardware Implementation on FPGA (Vivado HLS) 

 The compression algorithm passes through a process of 

conversion from VHDL/Verilog to Vivado High-Level 

Synthesis (HLS) code. 

 The FPGA hardware speedup executes the DWT 

transformation simultaneously with quantization and 

entropy encoding in a parallel fashion. 

 The Xilinx Zynq-7000 SoC FPGA runs real-time 

processing of incoming hyperspectral images through its 

programming design for quick response times. 

3. Real-Time Processing and Transmission 

 The compressed data is sent through the adaptive data 

transmission module (RF Transceiver). 

 The Processing Server at the ground station operates to 

receive compressed bitstreams, after which it decodes the 

information while performing inversion transformations 

to bring back the hyperspectral image. 

 The output image undergoes assessment regarding its 

quality indicators (PSNR and SSIM), then undergoes 

comparison against the initial dataset to validate both data 

preservation and compression effectiveness. 

 The co-designed hardware-software system delivers real-

time performance at 25+ FPS together with low power 

usage of under 5W through efficient hyperspectral data 

compression, which makes it suitable for satellite and 

UAV systems. 

3.5. Real-Time Hyperspectral Image Compression: 

Simulation and Performance Benchmarking 

3.5.1. End-to-End Real-Time Simulation Framework 

A multi-stage simulation process with software and 

hardware tools exists to guarantee real-time operation while 

achieving optimal efficiency when working with adaptive 

rate-controlled hyperspectral image compression systems. 

The analytical method enables it to understand how the 

compression algorithm handles changes in conditions before 

it optimizes its hardware setup for instant use. 

1. Network Performance Simulation (OMNeT++) 

OMNeT++ serves as a platform to study network 

transmission environments for hyperspectral image 

compression while considering different network bandwidth 

conditions.  

The system achieves a bit rate efficiency of 30% to 50% 

which functions effectively for adaptive rate control at 

different transmission scenarios.  
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2. Real-Time Compression and Transmission Modeling 

(MATLAB Simulink) 

MATLAB Simulink evaluates real-time compression by 

performing DWT/PCA transformation together with adaptive 

quantization, followed by entropy coding. The evaluation 

process includes testing the compression ratio and PSNR from 

35 to 45 dB, together with SSIM measurements between 0.92 

and 0.98 to ensure excellent image quality during 

decompression. 

3. Hardware Implementation (Vivado HLS for FPGA 

Optimization) 

The hardware acceleration through FPGA depends on 

Vivado HLS, which transforms software algorithms into 

optimized code using VHDL/Verilog programming language. 

The Xilinx Zynq-7000 SoC FPGA executes parallel data 

processing to achieve more than 25 frames per second with 

frame response under 40 milliseconds. This combined 

simulation environment enables real-time hyperspectral image 

compression operations to work seamlessly, building a system 

that functions effectively across various real-world 

applications. Real-Time Processing Rate Estimation requires 

the system’s real-time capability to be measured through the 

processing rate Equation (7), 

𝑅𝑝𝑟𝑜𝑐 =
𝑁𝑓𝑟𝑎𝑚𝑒𝑠

𝑇𝑡𝑜𝑡𝑎𝑙
 (7) 

The expression defines the system approach using 

𝑁𝑓𝑟𝑎𝑚𝑒𝑠  and 𝑇𝑡𝑜𝑡𝑎𝑙  as the comprehensive execution span (both 

compression and transmission work), the FPGA 

implementation delivers more than 25 frames per second, 

which surpasses CPU-based compression techniques. 

3.5.2. Performance Gains Over Conventional Methods 

The proposed compression system using FPGA adaptive 

technology produces better bandwidth performance as well as 

enhances both processing speeds and image clarity in 

comparison to traditional approaches. 

 The system achieves bandwidth savings of 30% to 50% 

through its compression ratio dynamic mechanism (10:1 

to 50:1), which operates according to real-time 

conditions. 

 FPGA acceleration boosts processing time by 2–3 times, 

reaching a speed of 25+ FPS, which doubles and triples 

the speed reached by CPU-based operations at 3-5 FPS. 

A real-time compression function, which is necessary for 

satellite and UAV-based imaging applications, is 

guaranteed. 

 Spectral information analysis quality remains high due to 

a PSNR value greater than 35 dB combined with an SSIM 

score ranging from 0.92 to 0.98. 

The system stands ready for real-time hyperspectral 

imaging operations as well as remote sensing through its 

performance enhancements. The system was compared to 

deep learning-based CNNs using transform-based and fixed-

rate approaches, in addition to the ones that used it. Although 

CNNs offered some degree of flexibility, they were not real-

time and also took a lot more power, confirming the 

superiority of using the FPGA technique in edge and 

embedded applications again. 

3.5.3. Real-World Impact and Scalability 

The FPGA-based adaptive compression framework 

provides effective real-time hyperspectral imaging capacity 

that enables its usage in remote sensing operations and UAV-

based imaging, as well as satellite deployment. The system 

functions at high speeds and with low energy consumption, 

making it suitable for various environments that need fast data 

processing. 

 Remote Sensing Applications: The transmission system 

achieves data rate improvements up to 50% with reduced 

bit rate, which results in superior image quality at PSNR 

scores between 35-45 dB and an SSIM of 0.92-0.98. The 

system provides genuine time processing capabilities 

exceeding 25 frames per second, which is fundamental for 

environmental surveillance and emergency response 

operations and land sector analysis. 

 UAV-Based Imaging: The less than 5W power 

consumption of the FPGA device makes it an ideal fit for 

hyperspectral cameras installed on UAV platforms, 

extending their operational flight durations. The data 

storage requirements decrease through onboard 

processing, which leads to real-time decision-making 

capabilities. 

 Satellite-Based Hyperspectral Imaging: High-resolution 

spectral data processed by the FPGA-optimized system 

achieves efficient data management, which leads to cost 

reduction during transmission. A rate control system 

operational within the framework supports efficient 

bandwidth utilization independent of changing space 

communication conditions. 

The integrated hardware compression system creates 

conditions for high-speed hyperspectral imaging that operates 

efficiently and scales up for future generations of remote 

sensing systems. 

4. Result and Discussion 

A framework built with FPGA technology enables 

adaptive hyperspectral image compression that improves all 

three metrics, including compression efficiency, processing 

speed, and power usage, in Table 1. The compression system 

works with ratios starting at 10:1, then moving to 50:1, while 

its range automatically changes depending on bandwidth 

capacity and data-specific characteristics. The system's 

adaptive mode maintains an optimal relationship between data 

compression efficiency and the visual quality of images. The 
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PSNR value between 35 and 45 dB demonstrates superior 

reconstruction quality, which maintains essential spectral 

content.The compressed images achieve an SSIM score 

between 0.92 and 0.98, maintaining perceptions consistent 

with the original data, which enables suitable remote sensing 

and scientific analysis. Real-time processing speed above 25 

FPS allows the system to operate effectively with satellite 

imaging and UAV-based hyperspectral sensing and 

environmental monitoring requirements. The method 

enhances transmission efficiency through optimized 

bandwidth utilization and reaches bandwidth reductions 

between 30% and 50% compared to fixed-rate compression 

systems that do not achieve optimization. Because of its 

FPGA-optimized design, the system operates using under 5W 

power, which exceeds the efficiency of CPU and GPU-based 

solutions. The processing system performs instantaneous data 

processing because it achieves ≤ 40 ms latency in each frame, 

which makes it suitable for resource-limited platforms, 

including drones and satellites.  

The hardware-accelerated adaptive compression method 

demonstrates successful effectiveness through tests, which 

produce high-quality data with low-latency performance at 

efficient energy levels for current industrial applications. 

Table 1. Performance metrics of the proposed hyperspectral image compression approach 

Metric Proposed Method (FPGA-Based Adaptive Compression) 

Compression Ratio (CR) 10:1 – 50:1 (Adaptive) 

Peak Signal-to-Noise Ratio (PSNR) (dB) 35 – 45 dB 

Structural Similarity Index (SSIM) 0.92 – 0.98 

Processing Speed (FPS) 25+ FPS (Real-Time Capable) 

Bit Rate Reduction (%) 30 – 50% (Compared to Fixed-Rate Compression) 

Power Consumption (W) 30 – 50% (Compared to Fixed-Rate Compression) 

Latency (ms/frame) ≤ 40 ms 

The speed-related characteristics of hyperspectral image 

compression stand as a decisive component because they 

influence whether real-time operations become possible, as 

shown in Table 2. The FPGA-based system provides faster 

compression times than both centralized CPU computation 

modes and GPU implementations, reaching performance rates 

of ≤ 40 ms per frame, while GPU-based systems operate at 

120–180 ms, and CPU implementations work at 200–300 ms. 

By operating at 25+ FPS speed on FPGA platforms, 

hyperspectral image compression becomes real-time possible 

and demonstrates 5× better performance over CPU solutions 

and 2–3× faster than GPU implementations. Real-time 

applications, including aerial surveillance operations and 

satellite-based imaging, highly benefit from this important 

improvement in processing speed. The FPGA-based approach 

demonstrates superior power efficiency as its main benefit. 

The FPGA solution requires only 4.5W to operate, even 

though GPUs need 250W and high-end CPUs require 150W, 

meaning it fulfills low-power, high-performance applications' 

requirements. Power efficiency proves necessary for both 

spaceborne and airborne imaging systems since energy 

constraints determine their design requirements. These 

findings prove that FPGA-accelerated hyperspectral image 

compression emerges as the perfect solution for future 

hyperspectral imaging needs through its real-time capabilities, 

along with reduced power demands and minimal delays.

Table 2. Computational performance on FPGA vs. CPU vs. GPU 

Platform Compression Time (ms/frame) Power Consumption (W) Processing Speed (FPS) 

FPGA (Proposed) ≤ 40 ms 4.5W 25+ FPS (Real-Time) 

GPU (NVIDIA RTX 3090) 120 – 180 ms 250W 5 – 10 FPS 

CPU (Intel i9-13900K) 200 – 300 ms 150W 3 – 5 FPS 

Evaluations of various hyperspectral image compression 

algorithms in a variety of dimensions, including PSNR, SSIM, 

and Frame Rate (FPS), reduction in bit rate, adaptivity, and 

device deployment. In Table 3. The algorithms under review 

are classic JPEG2000-driven compression, a combination of 

transforms, deep learning-driven CNN compression, and the 

given FPGA-based adaptive extreme compression scheme.  

The fixed-rate JPEG2000 compression, which was 

implemented by S. Bajpai et al. [37], produced a moderate 

density of the reconstruction, 28-35 dB PSNR, and 0.84-0.87 

SSIM. It is limited, however, in terms of its real-time 

applicability because processing is only 5-10 FPS, and its 

absence of adaptive rate control capability limits its use in 

transmission bandwidth optimization. Q. Zhang et al. 

presented a general hybrid transform coding most related to 

low-rank tensor factorization and deep priors. Their solution 

enhances image quality, having a PSNR of 38 dB and an SSIM 

of around 0.88. It has a better performance compared to the 

fixed-rate methods, but its real-time performance is limited to 

8-12 FPS, and it does not adapt dynamically. J. Kuester et al. 

[26] generated a deep convolutional autoencoder line that 

performs lossy compression with competitive PSNR values of 

34-42 dB and SSIM 0.90-0.91. Their model takes note of 

partial adaptivity, has a moderate processing speed of 10-15 

FPS, but retains its dependency on GPU and draws more 
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power, which is incompatible with the edge and satellite 

settings. Conversely, the FPGA-based adaptive compression 

system presents better results in all the performance measure 

criteria. It also provides the PSNR of 35-45 dB, SSIM of 0.92-

0.98, adjusting the rate of compression dynamically in real 

time based on the limitations imposed by the bandwidth. More 

importantly, it performs more than 25 FPS and with less than 

5W power, meaning that it is suitable to operate in real-time 

and with minimal power requirements in Satellite and UAV 

imaging systems. This comparison emphasizes the efficiency 

of the suggested method in the aspect of optimal compression 

efficiency, image quality, and real-time operations, as well as 

the necessity of highly adjustable, hardware-based techniques 

in the current hyperspectral imaging processes. 

Table 3. Evolution of hyperspectral image compression: advancing towards real-time adaptive efficiency 

Metric 
Compression 

Method 

PSNR 

(dB) 
SSIM 

Processing 

Speed (FPS) 

Bit Rate 

Reduction (%) 

Adaptive Rate 

Control 

Hardware 

Used 

S. Bajpai  

[37] 
Fixed-Rate JPEG2000 28 – 35 

0.84 –

0.87 
5 – 10 FPS 10 – 20% No CPU/GPU 

Q. Zhang  

[16] 

Hybrid Transform 

Coding 
32 – 38 0.88 8 – 12 FPS 20 – 30% No GPU/FPGAs 

J. Kuester 

[26] 

Deep Learning-Based 

(CNN) 
34 – 42 

0.90 – 

0.91 
10 – 15 FPS 25 – 40% Limited GPU/FPGAs 

Proposed 

Work 

FPGA-Based Adaptive 

Compression 
35 – 45 

0.92 – 

0.98 

25+ FPS (Real-

Time) 
30 – 50% Fully Adaptive 

FPGA (Zynq-

7000) 

 
Fig. 4 SSIM comparison across different methods 

 

Fig. 5 Accelerating hyperspectral compression: achieving real-time performance with FPGA optimization
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The method produces a higher SSIM 0.92-0.98 than 

fixed-rate JPEG2000 0.84- 0.87, hybrid transform 0.88, as 

well as CNN-based models 0.90- 0.91 in Figure 4, providing 

better visual quality. Figure 5 indicates that the proposed 

system runs at up to 25+ FPS compared to previous techniques 

that had a maximum performance speed of 5-15 FPS. This 

real-time support, together with an improved fidelity of 

images, proves the effectiveness of the system in areas of 

application in UAV and satellite research that need fast and 

high-quality hyperspectral image compression. 

5. Conclusion 
An FPGA-based framework performs real-time adaptive 

hyperspectral image compression to overcome issues related 

to large data volumes, insufficient bandwidth, and slow 

computation speed. An integrated system uses adaptive 

quantization together with entropy coding and a feedback-

based rate control system, which enables dynamic 

compression changes relying on transmission limits. The 

experimental outcomes show better performance when 

compared to other methods. The system enables dynamic 

image compression of 10:1 to 50:1 ratios and produces 

superior visual output quality with PSNR values reaching 35–

45 dB and SSIM scores at 0.92–0.98. The FPGA 

implementation delivers real-time processing at more than 25 

frames per second while operating 2-3 times faster than CPU-

based solutions, 3-5 FPS, and GPU-based alternatives, 5-10 

FPS, and uses less than 5W of power. The method establishes 

a 30–50% decrease in bit rates, which helps remote sensing 

and UAV-based imaging systems function more efficiently. 

Future research intends to develop adaptive compression 

using deep learning technology, where CNN algorithms will 

enhance the representation of spectral data. Additional 

research will investigate FPGA architecture designs that aim 

to decrease power usage. The integration of edge computing-

based compression technology for real-time satellite and UAV 

applications will increase operational scalability because of its 

distributed computing capabilities. The outcome delivers an 

adaptable hyperspectral imaging compression solution that 

provides high performance and consumes minimal energy 

through adaptive methods for future generation remote 

sensing technologies.
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