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Abstract - The rapid development of Internet of Things (IoT) networks has significantly increased their vulnerability to 

cyberattacks, so it is essential to develop effective Intrusion Detection Systems (IDS). Traditional algorithms often struggle with 

a high false positive rate and scalability issues in dynamic IoT environments. For addressing these challenges, this article 

proposed Optimized Cascading Long Short-Term Memory with Latin Sampling Satin Bowerbird Optimization (OCLSTM-LSBO) 

algorithm to effectively identify intrusions. The deep cascading LSTM framework captures the deep temporal dependencies in 

network traffic and improves the identification of difficult intrusion patterns in IoT networks. Then, employed the LSBO algorithm 

to fine-tune the hyperparameters of the LSTM model, which improves classification accuracy and enhances the generalization 

ability of the model. In the pre-processing phase, the Min-Max normalization technique is used to normalise the features in a 

uniform range. The OCLSTM-LSBO algorithm obtained the highest accuracy of 98.97% using the CICIoT2023 dataset and 

95.62% using ToNIoT dataset for multiclass classification when compared to existing algorithms like Federated Multi Layered 

Deep-Learning (Fed-MLDL). 

Keywords - Internet of Things, Intrusion Detection System, Latin sampling satin bowerbird optimization, Multiclass 

classification, Optimized Cascading Long Short-Term Memory model. 

1. Introduction 
The development of the Internet of Things (IoT) has 

significantly transformed various sectors by offering 

unprecedented connectivity and convenience [1, 2]. 

Additionally, to these technological growths, IoT has brought 

new security problems and vulnerabilities [3]. The growing 

number of interconnected devices involves smart home 

gadgets and industrial sensors, which have a highly increased 

vulnerability to potential invasions [4, 5]. To safeguard these 

interconnected environments from malicious activities and 

unauthorised access, robust intrusion detection algorithms are 

required [6]. Furthermore, Intrusion Detection Systems (IDS) 

have historically been based on signature-enabled algorithms 

that access incoming network information against known 

patterns of malicious behavior [7]. Though these algorithms 

are successful in countering familiar threats, they require 

support in identifying new or growing attacks that expose IoT 

systems to increasing hazards [8]. With the widespread 

utilization of IoT devices across different industries like 

industrial automation, healthcare and smart homes, security 

vulnerabilities in IoT environments have become a major 

concern [9]. Different parameters of IoT, like restricted 

resources, ever-changing network architectures and different 

communication protocols, offer substantial challenges for 

traditional IDS architectures [10]. The determination to secure 

IoT networks is understood by recent cyberattacks that target 

essential infrastructure and consumer systems. The large-scale 

Mirai botnet variant exploits unsecured IoT cameras and 

routers for launching Distributed Denial-of-Service (DDoS) 

attacks against European telecom providers and disrupts 

services to millions of users [11]. The ransomware attacks on 

smart healthcare systems in the U.S disabled access for 

interconnected medical systems and delayed emergency 

services. Moreover, botnet-based infiltration of smart city 

traffic sensors in Asia causes manipulated traffic congestion 

and data [12]. These determine that modern IoT attacks are 

highly dynamic and resourceful, making conventional 

signature-based IDS inadequate. This shows the urgent 

requirement for scalable, intelligent and adaptive IDS models. 

Traditional Machine Learning (ML)-based algorithms have 

been employed for tasks like authentication and risk 

assessment, aiming to obtain high accuracy in identifying 
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potential threats [13]. However, conventional IDS techniques 

struggle with the dynamic and heterogeneous nature of IoT 

environments, which often causes high False Positive Rates 

(FPR) and complexity in identifying threats [14-17]. 

Moreover, researchers have introduced Deep Learning (DL)-

based approaches for improving detection rate and minimizing 

false positives [18]. Though these algorithms generally impact 

computational resources and processing time [14]. One of the 

main challenges for the solution of IDS techniques is its 

scalability. Particularly in difficult network environments, the 

equally huge size is mandatory for a method to identify and 

overcome the ever-evolving intrusions [19]. Traditional 

solutions generally involved large methods that demand 

substantial executional resources, making it impractical for 

deployment in resource-constrained environments like IoT 

devices [20]. However, these approaches become increasingly 

ineffective against rapidly evolving and sophisticated 

intrusions [21], which necessitate updated detection methods 

to address the limitations of existing systems. The primary 

objective of this manuscript is to develop a lightweight, 

scalable and precise IDS especially tailored to IoT 

environments. To obtain this, developed an optimized DL 

algorithm that integrated a Cascading Long Short-Term 

Memory (CLSTM) model with Latin Sampling – Satin 

Bowerbird Optimization (LSBO) algorithm. This integration 

enables the model to efficiently learns temporal attack patterns 

when reducing false alarms, minimizing computational 

overhead and improving detection accuracy in binary and 

multiclass intrusion detection systems. 

1.1. Research Gap 

There is a need for a lightweight, highly accurate IDS that 

handles the different and dynamic nature of IoT networks 

while maintaining a lower false alarm rate and high 

generalization. Many existing researches fail to capture deep 

temporal dependencies in sequential network traffic data and 

doesn’t sufficiently optimize model hyperparameters, which 

limits their detection performance. 

1.2. Problem Statement 

The development of Internet of Things (IoT) devices 

presents significant security challenges due to their dynamic, 

heterogeneous, and resource-constrained nature. Traditional 

IDS, especially based on signature and conventional ML-

based algorithms, is inefficient in identifying unknown cyber-

attacks, resulting in high False Positive (FP) and poor 

scalability. Existing Deep Learning (DL) algorithms failed to 

generalise well in real-time IoT scenarios. Hence, there is a 

requirement for optimized, precise and lightweight IDS to 

efficiently identify known and unknown intrusions across 

complex IoT. 

1.3. Objective 

The main aim of this article is to develop an effective and 

scalable IDS for IoT environments. This research developed 

Optimized Cascading Long Short-Term Memory model with 

Latin Sampling Satin Bowerbird Optimization (OCLSTM-

LSBO), which precisely identifies binary and multiclass 

intrusions. The algorithm minimizes the false alarms, 

improves detection accuracy and processes effectively in 

resource-constrained environments by advanced pre-

processing and hyperparameter optimization algorithms. 

1.4. Contributions 

The paper's significant contributions are described as 

follows. 

 The proposed multi-layered Cascading LSTM method 

can capture deep temporal dependencies in network 

traffic, improving the identification of complex and 

evolving intrusion patterns in IoT networks. 

 Employed the LSBO algorithm for fine-tuning key 

hyperparameters of the LSTM model, enhancing 

classification accuracy and minimises model loss, and 

helping improve the model’s generalization ability. 

 The performance of the traditional SBO algorithm is 

improved using Latin Sampling (LS), which enhances 

diversity and coverage in optimization process to ensure 

better exploration of the parameter space and avoid local 

optimum. 

The balance section of the article is arranged as follows: 

Section 2 analyses existing algorithms with their advantages 

and limitations. Section 3 provides the details of the proposed 

algorithm. Section 4 analyses and validates the performance 

of the proposed algorithm. The conclusion of this research is 

given in Section 5. 

2. Literature Review 
Chandnani et al. [22] developed the Federated Multi 

Layered Deep-Learning (Fed-MLDL), which employed 

physics-enabled Hyper Parameter Optimization (HPO). 

Moreover, FedRIME was used in a distributed federated 

learning for intrusion detection, which ensures better 

generalization for all clients’ data through fine-tuning the 

hyperparameters in accordance with every client. The 

developed Fed-MLDL with Fed-RIME have defined essential 

enhancements in convergence speed, stability and client-

specified customization in federated learning. The developed 

method had high false positive rates, which minimised 

classification reliability and precision. 

Abdelaziz et al. [23] presented the Convolutional 

Kolmogorov-Arnold Network (CKAN) for IDS in an IoT 

environment. Multi-Layer Perceptron (MLPs) layers replaced 

CKAN method with KAN in the traditional Convolutional 

Neural Network (CNN) framework. KAN provided high 

performance compared to MLP layers with fewer parameters. 

The presented algorithm has less scalability, which minimises 

scalability and overall performance in resource-constrained 

IoT environments. 
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Aburasain [24] suggested an Enhanced Black Widow 

Optimization with Hybrid Deep Learning enabled Intrusion 

Detection (EBWO-HDLID) algorithm in an IoT-enabled 

Smart Farming environment. The EBWO-HDLID algorithm 

captures difficult patterns and identifies intrusions, ensuring 

security and reliability in smart farming. In the EBWO-

HDLID algorithm, the Bald Eagle Search (BES) algorithm 

utilized for the feature selection process. The HDL model 

utilized for the classification process, and hyperparameters 

were tuned by the EBWO algorithm. The suggested method 

struggles to capture complex temporal patterns and fails to 

detect sophisticated attack behaviors. 

Abbas et al. [25] introduced an algorithm for using 

federated learning for identifying huge attacks on IoT devices. 

The introduced algorithm utilised a Deep Neural Network 

(DNN) for obtaining accurate classification. Before method 

training, the data was pre-processed by different algorithms 

for developing trustworthiness for classification. The 

introduced algorithm included feature normalization, data 

balancing and prediction of the model by federated learning. 

The manual and ineffective hyperparameter tuning minimises 

the adaptability over datasets. 

Chen et al. [26] implemented the Synaptic Intelligent 

Convolutional Neural Network (SICNN) for intrusion 

detection in IoT dynamic environments. Confirmed with real-

time modifying intrusion data, several IDS are needed for a 

continuous combination of training data to retrain and refine 

the parameters. The storage demanded through continuous 

input data streams and the time consumed through repetition 

training pose challenges for IoT intrusion detection. SICNN 

method uses Synaptic Intelligence (SI) for optimizing the 

synaptic architecture of CNN, effectively mitigating CNN’s 

forgetfulness for past identification and simplifying model 

training. However, the algorithm has inconsistent feature 

ranges in heterogeneous data, minimises training stability and 

generalization ability over multiple IoT datasets. 

The literature review includes a broader range of recent 

and relevant work related to intrusion detection in IoT 

environments. Here, discuss the algorithms, including Fed-

MLDL, optimisation-augmented models EBWO-HDLID, 

hybrid CNN models and memory-efficient neural networks 

SICNN. The drawbacks of these models are clearly described, 

which provides strong motivation for the growth of the 

proposed OCLSTM-LSBO model. 

3. Proposed section 
In this manuscript, the DL-based IDS method is 

developed to detect intrusions in IoT environments. The 

datasets, such as CICIoT2023 and ToNIoT, are used in this 

article to detect intrusions. In the pre-processing phase, the 

features are normalized and scaled to a uniform range. At last, 

classified by using a developed CLSTM and the 

hyperparameters of LSTM are optimized by using the LSBO 

algorithm. Figure 1 represents the process of intrusion 

detection in an IoT environment. 

 
Fig. 1 Process of intrusion detection in an IoT environment 

3.1. Dataset 

The datasets such as CICIoT2023 [27] and ToNIoT [28] 

are used in this article to effectively detect intrusions in the 

IoT environment. These datasets are described in detail. 

3.1.1. CICIoT 2023 

CICIoT2023 is a dataset that supports the growth and 

evaluation of intrusion detection systems. This dataset is 

detailed and offers a broad and practical testbed to assess the 

efficacy of security solutions for a different range of IoT-

specific cyber threats. This hosts the network behavior from 

105 IoT devices across attacks, captures variability and 

complexity of conditions with 46 different attributes, 

including 33 various attack types, and these are divided into 7 

classes like Spoofing, Brute Force, DoS, DDoS, Web-based 

and Reconnaissance. Table 1 represents the distribution of the 

CICIoT2023 dataset. 
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Table 1. Dataset description of the CICIoT2023 dataset 

Parameters Value 

Number of classes 
34 (1 benign class and 33 attack 

classes) 

Number of 

instances 
46,686,579 

Number of 

attributes 
46 

 

3.1.2. ToNIoT 

This dataset is a broadcast set of data focused on privacy 

and security challenges in the IoT domain. This dataset is 

developed primarily to analyse the impact of heterogeneity on 

IoT network intrusion datasets and highlights the requirement 

to standardize features and attack classifications. This dataset 

includes 4 different sub-datasets, each targeting a particular 

domain like smart cities, grids, factories and homes. Every 

sub-dataset defines a diverse group of data types, including 

system logs, sensor readings, network traffic logs, and 

metadata. The kind of attacks ranges from malware infections 

to DoS attacks and unauthorized access. 

Table 2. Dataset description of the ToNIoT dataset 

Parameters Value 

Number of 

classes 

6 (Infiltration, Scan, DDoS, Botnet, 

Normal, PortScan) 

Number of 

instances 
17,168,894 

Number of 

attributes 
121 

 

3.2. Pre-Processing using Min-Max normalization 

The dimensionality of every feature in intrusion detection 

uses different attributes, the actual data directly used for 

detection analysis, and its results have high numerical levels, 

occupying a high weight in detection analysis. For effective 

model training, much significant stage, performed in data pre-

processing, is normalization of data, which limits the feature 

values in a certain range for providing precise data detection 

[29, 30]. Here, Min-max normalization is considered to 

normalize the value of every feature in a range of 0 to 2. The 

mathematical expression for min-max normalisation is given 

as Equation (1). 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 (1) 

In the above Equation (1), 𝑥 represents the present value 

of data features, 𝑥𝑚𝑖𝑛 represents the minimum value of data 

features and 𝑥𝑚𝑎𝑥  represents the maximum value of data 

features. 

3.3. Classification using Cascading LSTM 

The IDS method assigns an LSTM network to efficiently 

identify the intrusions. The ability of LSTM to preserve and 

adjust data over lengthy sequences provides the exceptional 

capability to identify attacks. The cascading LSTM is a neural 

network that involves a layering of several LSTM modules, 

one on top of the other. Developed method utilises a cascading 

LSTM that includes three LSTM layers. This makes it suitable 

for applications like IDS. The process of LSTM includes 

input, output and forget gates. The core of the LSTM 

mechanism is the input gate, which determines how much new 

data is incorporated into the memory cell at each time step. 

Validating the significance of the present input data enables 

LSTM to selectively strengthen its memory when retaining 

significant data. The process of the input gate 𝐼𝑡 is measured 

by the present state 𝑋𝑡 and past hidden state ℎ𝑡−1 in each time 

step 𝑡, its mathematical expression is given as Equations (2). 

𝐼𝑡 = 𝑆𝑖𝑔(𝑊𝑖[ℎ𝑡−1⨂𝑋𝑡] + 𝑏𝑖) (2) 

Candidate value in the input gate is calculated by 

Equation (3). 

�̌�𝑡 = tanh(𝑊𝑐[ℎ𝑡−1⨂𝑋𝑡] + 𝑏𝑐) (3) 

In the above Equations (2) and (3), the 𝑊𝑖 and 𝑊𝑐 

represents the weight factors, the 𝑏𝑖 and 𝑏𝑐 represents the bias 

of the input cell. After integrating weighted inputs and bias, 

the sigmoid activation function converts values in the range 

[0,1]. As the outcome, assigning the tanh function introduced 

the data that exhibits values in the range [0,1]. Forget gate 

stores the important information in the LSTM network, as that 

represents the degree to which past stored data is retrieved 

from the memory cell. This is an essential process for LSTM 

to obtain and capture patterns in data over long time intervals. 

In every time step, LSTM uses the present input data 𝑥𝑡 and 

past hidden state ℎ𝑡−1 and forget gate is calculated by 

Equation (4). 

𝐹𝑡 = 𝑆𝑖𝑔(𝑊𝑓[ℎ𝑡−1⨂𝑋𝑡] + 𝑏𝑓 (4) 

In the above Equation (4), the 𝑏𝑓 and 𝑊𝑓 represent bias 

value and weight dynamics of the forget gate. Forget gate 

activates by processing element-wise multiplication on every 

component of the previous memory cell state 𝐶𝑡−1. This 

process determines which segments of memory are retained 

and which are discarded. The last configuration of updating 

the memory cell state 𝐶𝑡 is designed through a dynamic 

relationship between a memory cell update, candidate cell 

state and input gate. Output 𝑂𝑡 regulated transmission of data 

from a memory cell, the outcome or the following hidden 

state. This gate plays the essential role in determining the 

information as the last LSTM result in every step, and the 

mathematical expression is given as Equation (5). 

𝑂𝑡 = 𝑆𝑖𝑔(𝑊𝑜[ℎ𝑡−1⨂𝑋𝑡] + 𝑏𝑜) (5) 

In the above Equation (5), the 𝑊𝑜 represents the weight 

parameter and the 𝑏𝑜 represents a bias vector. Modified hidden 
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state ℎ𝑡 acts as an origin point on the LSTM result in the 

present time step 𝑡 or passed on following network layer on 

additional improvement, and is a mathematical formula given 

as Equation (6). 

ℎ𝑡 = 𝑂𝑡tanh ⨂(𝐶𝑡) (6) 

By dynamic modulation of input gate activation, LSTM 

captures essential patterns and interconnections in data. In the 

cascading LSTM structure, the considered dropout layer is 

employed among LSTM layers to protect against overfitting 

through randomly eliminating feature subsets in training. This 

model, integrated with feedback recycling to an LSTM layer, 

provides a robust method generalization. Hyperparameters 

include a 0.5 dropout rate, and the stopping criteria are 

optimized to improve IDS performance, obtaining essential 

accuracies on CICIoT2023 and ToNIoT datasets. Through a 

complete forward pass, input data are exposed to the process 

in LSTM layers, resulting in prediction formation. Every 

LSTM unit in the network handles its inherent state, facilitates 

a capability for comprehension and retains significant patterns 

in sequential data. Efficacy of a method’s prediction is 

evaluated by Mean Squared Error (MSE), and its 

mathematical expression is given in Equation (7). 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑥𝑖 − �̌�)2𝑛

𝑖=1   (7) 

In the above Equation (7), the �̌� represents LSTM 

prediction, and 𝑥 represents the original value in a dataset. By 

squaring values in a calculation of RMSE, huge errors receive 

more importance than fewer errors. RMSE is defined by 

Equation (8), 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑛

𝑖=1 𝑥𝑖 − �̌�)2 (8) 

After measuring loss, LSTM initialises the 

backpropagation for measuring the gradient for loss related to 

weights and biases in every discrete time step. By processing 

backpropagation, the network gains the capability to learn 

from the errors and improve its prediction abilities across time. 

Parameters are optimized for minimising model loss. Using 

cascading LSTM for intrusion detection with CICIoT2023 and 

ToNIoT datasets has the potential to improve accuracy and 

resilience in identifying network intrusions and differences, 

thereby strengthening the overall security of network systems. 

3.3.1. Hyperparameter using Satin Bowerbird Optimization 

(SBO) Algorithm 

At last, tuning of the hyperparameter of C-LSTM is 

accomplished through the utilization of the SBO algorithm. 

SBO algorithm initially generates a uniform population that 

comprises a set of bower places. SBO algorithm has 

characteristics such as global optimization, feasible to 

implement, fewer number of parameters, robust and highly 

effective. Every position (𝑝𝑜𝑝(𝑖), 𝑃𝑜𝑠) is determined by 

variables which are assumed, and its mathematical expression 

is given as Equation (9), 

𝑝𝑜𝑝(𝑖). 𝑃𝑜𝑠 = 𝑟𝑎𝑛𝑑(1, 𝑛𝑣𝑎𝑟) ∙ (𝑉𝑎𝑟𝑀𝑎𝑥 − 𝑉𝑎𝑟𝑀𝑖𝑛) +
𝑉𝑎𝑟𝑀𝑖𝑛 ,    ∀𝑖∈ 𝑛𝑃𝑜𝑝 (9) 

It shows that the initial population value relies on the 

current minimal and maximal limits of the improvement 

parameter.  

Latin Sampling (LS) 

LS is a much precise sampling method that is effective for 

acquiring sample points. The algorithm has its essential 

strength, space-filling effect and convergence attributes, 

which are compared to random or stratified sampling 

algorithms. In this research, a new sample size produced 

through the LS algorithm provides high stability and wide 

implementation in SBO adjustment. LS is represented by 𝑛 ×
𝑑 matrix. Each column, 𝐿 includes an integer permutation 

from 1 to n, where every row of 𝐿 is described as a sample 

point and its mathematical formula is given as Equation (10), 

𝐿𝑆 = [

𝑥1

⋮
𝑥𝑛

] = [(

𝑥11 ⋯ 𝑥1𝑝

⋮ ⋱ ⋮
𝑥𝑁1 ⋯ 𝑥1

)] (10) 

In the above Equation (10), the 𝑥𝑖 represents 𝑗𝑡ℎ sample 

position, when samples are organised by random classification 

in terms of 𝑥, produced vector elements.  

Iteration Adjustment by LS 

The initial population of 30 individuals is selected 

randomly by LS. This algorithm is utilized for testing the 

complete design space with a smaller number of instances. AS 

the random nature of LS didn’t provide optimum space-filling 

sampling, it iteratively produced 100 LS and sampling with 

the highest distance criterion among sample positions are 

chosen. The feature set value (30 populations and 100 

maximum iterations) is updated for controlling optimization 

process.  

The possibility of bower is evaluated by using Equations 

(11) and (12). 

𝑃𝑟𝑜𝑏𝑖 =
𝑐𝑜𝑠𝑡𝑖

∑ 𝑐𝑜𝑠𝑡𝑖
𝑛𝑃𝑜𝑝
𝑘=1

, ∀𝑖∈ 𝑛𝑃𝑜𝑝             (11) 

𝑐𝑜𝑠𝑡𝑖 = {

1

1+𝑓(𝑥)
,     𝑓(𝑥𝑖) ≥ 0

1 + |𝑓(𝑥𝑖)|,   𝑓(𝑥𝑖) < 0
 (12) 

Like other evolutionary-based optimizer, elitism is 

exploited for storing the optimum solution in each generation. 

In mating, males like each bird use their drives for decorating 

and developing a bower. The experienced and older males 
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attract much attention to the bower. These bowers have more 

fitness than other bowers. In the process of SBO, the position 

of the optimum bower produced by a bird is assessed as elite 

of 𝑘𝑡ℎ iteration (𝑥𝑒𝑙𝑖𝑡𝑒,𝑘) through the highest fitness and is 

capable to impact of impacting are measured based on 

Equation (13). 

𝑋𝑖𝑘
𝑛𝑒𝑤 = 𝑋𝑖,𝑘

𝑜𝑙𝑑 + 𝛽𝑘 [(
𝑥𝑗𝑘+𝑥𝑒𝑙𝑖𝑡𝑒,𝑘

2
) − 𝑋𝑖,𝑘

𝑜𝑙𝑑] (13) 

The roulette wheel selective method is exploited to select 

a better one with a good probability. In the SBO algorithm, 

variable 𝛽𝑘 defines a step count, chooses the target bower, and 

its mathematical formula is given as Equation (14). 

𝛽𝑘 =
𝛼

1+𝑃𝑟𝑜𝑝𝑖
 (14) 

An arbitrary modification is introduced to 𝑥𝑖𝑘 with some 

probability, the normal distribution is exploited through 

variance 𝜎 and the average of 𝑥𝑖,𝑘
𝑜𝑙𝑑, its mathematical 

expression is given as Equations (15) and (16). 

𝑋𝑖𝑘
𝑛𝑒𝑤~𝑋𝑖𝑘

𝑜𝑙𝑑 + 𝜎 ∙ 𝑁(0, 1) (15) 

𝜎 = 𝑍 ∙ (𝑉𝑎𝑟𝑀𝑎𝑥 − 𝑉𝑎𝑟𝑚𝑖𝑛) (16) 

At last, every cycle is an old population, and the 

populations acquired are sorted, combined, assessed, and a 

novel population is produced. The SBO algorithm derived the 

fitness function to improve the classifier’s result.  

It defined positive values to signify the effective 

performance of the candidate solution. In this research, 

minimized error rate is considered as a fitness function and its 

mathematical formula is given as Equation (17). 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 (𝑥𝑖) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 100 (17) 

Algorithm 1- OCLSTM-LSBO algorithm-based intrusion 

detection in IoT for reproducability 

Input - Initialize parameters for CLSTM, population size and 

maximum iteration 

Output - Classified labels 

Pre-processing 

Normalize all feature values to [0,1] using Min-Max 

Normalization 

𝑥𝑛𝑜𝑟𝑚 = (𝑥 − min(𝑥))/max (𝑛) − min (𝑛)) 

Split 𝐷 into training set and test set 

Define CLSTM model 

 

 Define 3-layer LSTM with dropout between layers 

 Output layer=softmax for multiclass / sigmoid for 

binary 

 Initialize model with hyperparameters 𝐻 =
{𝑑𝑟𝑜𝑝𝑜𝑢𝑡, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒, ℎ𝑖𝑑𝑑𝑒𝑛 𝑢𝑛𝑖𝑡𝑠} 
Optimize Hyperparameters using Latin Sampling SBO 

 Generate initial population of solutions using Latin 

Sampling 

 For 𝑖 = 1 𝑡𝑜 𝑃 

  Generate 𝐻𝑖 ∈ 𝐻𝑠𝑝𝑎𝑐𝑒  𝑣𝑖𝑎 𝑙𝑎𝑡𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 

Evaluate fitness of every solution 

 For every 𝐻𝑖  

  Train CLSTM using 𝐻𝑖  on training set 

  Evaluate accuray 1 −
𝑒𝑟𝑟𝑜𝑟 𝑜𝑛 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡 → 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐻𝑖) 

For 𝑡 = 1 to Max Iteration: 

 Choose elite solution 𝐻𝑏𝑒𝑠𝑡 with highest fitness 

 Employ SBO to update positions 

 Choose target bower based on roulette selection 

  Update candidate positions using SBO 

  𝐻𝑛𝑒𝑤 = 𝐻𝑜𝑙𝑑 + 𝛼 × 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎) 

Evalute new population 

Keep solution for next generation 

Return 𝐻𝑏𝑒𝑠𝑡  with highest fitness as optimized 

hyperparameters 

Final Model Traininga nd Evaluation 

 Train final CLSTM model using 𝐻𝑏𝑒𝑠𝑡 

 Predict on test data 

Return Trained OCLSTM-LSBO model and classification 

results. 

4. Experimental Analysis 
In this section, the performance of the OCLSTM-LSBO 

algorithm is simulated on a Python 3.12 environment 

equipped with an i5 processor, 8GB RAM and Windows 10 

(64-bit). Also, presents the experimental outcomes for the 

OCLSTM-SBO algorithm with evaluation metrics and 

acquired outcomes with discussion. 

Table 3 represents the performance comparison of T-

LSBO with different DL-based algorithms like RNN, LSTM, 

GRU and CLSTM across two datasets, such as CICIoT2023 

and ToNIoT.  

Every method is evaluated on both binary and multi-class 

classification tasks, and metrics involve training time (s), 

Memory Usage (MB), loss and accuracy.  

From the experimental outcomes, OCLSTM-LSBO 

outperforms traditional algorithms in terms of accuracy and 

loss, demonstrating its efficacy in capturing spatial and 

temporal features for intrusion detection.  

While training time and memory usage are higher due to 

the complexity of the model, results effectively enhanced the 

detection performance.
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Table 3. Performance evaluation of DL models on CICIoT2023 and ToNIoT datasets for intrusion detection 

Methods Tasks Training time (s) Memory Usage (MB) Loss Accuracy (%) 

CICIoT2023 dataset 

RNN 
Binary 68 190 0.0935 95.31 

Multi 84 230 0.1127 91.25 

LSTM 
Binary 72 205 0.0753 96.78 

Multi 88 256 0.1022 93.45 

GRU 
Binary 70 200 0.0692 97.11 

Multi 86 245 0.0967 94.10 

CLSTM 
Binary 85 240 0.0456 98.42 

Multi 102 310 0.0784 96.31 

Proposed OCLSTM - LSBO 
Binary 132 295 0.0167 99.45 

Multi 150 478 0.0241 98.97 

ToNIoT dataset 

RNN 
Binary 50 180 0.0813 96.12 

Multi 68 225 0.1075 90.56 

LSTM 
Binary 58 195 0.0689 97.02 

Multi 75 243 0.0914 92.78 

GRU 
Binary 56 190 0.0603 97.45 

Multi 72 238 0.0881 93.87 

CLSTM 
Binary 69 230 0.0417 98.85 

Multi 83 298 0.0678 94.55 

Proposed OCLSTM - LSBO 
Binary 76 275 0.0231 99.97 

Multi 95 450 0.0347 95.62 
 

Table 4 represents the classification performance of 

various DL models like RNN, LSTM, GRU and CLSTM with 

OCLSTM-LSBO on binary and multiclass intrusion detection 

using the CICIoT2023 dataset.  

For both classification tasks, the OCLSTM-LSBO 

algorithm outperforms the baseline method across all 

evaluation measures. In binary classification, the OCLSTM-

LSBO obtains the highest accuracy of 99.45%, showing 

robust detection capabilities. Same as in multiclass 

classification, it provides strong performance with the highest 

accuracy of 98.97%. These outcomes represent the efficacy of 

OCLSTM-LSBO to learn temporal and spatial features, 

making it suitable for precise and reliable intrusion detection 

in complex IoT environments. 

Table 4. Performance of OCLSTM-LSBO with different DL models using the CICIoT2023 dataset on binary and multiclass classification 

Methods Accuracy (%) Precision (%) Recall (%) F1-score (%) AUC (%) 

Binary Classification 

RNN 98.05 97.82 97.53 97.67 97.03 

LSTM 98.24 98.07 97.85 97.95 97.41 

GRU 98.72 98.51 98.32 98.41 97.84 

CLSTM 99.16 98.83 98.55 98.68 98.32 

Proposed OCLSTM - LSBO 99.45 99.37 99.21 99.28 98.65 

Multiclass Classification 

RNN 96.82 96.64 96.43 96.53 95.87 

LSTM 97.25 97.19 96.89 97.03 96.21 

GRU 97.73 97.45 97.17 97.30 96.58 

CLSTM 98.32 98.04 97.92 97.97 96.89 

Proposed OCLSTM - LSBO 98.97 98.85 98.78 98.81 97.43 

Table 5 represents the classification performance of 

various DL models like RNN, LSTM, GRU and CLSTM with 

OCLSTM-LSBO on binary and multiclass intrusion detection 

using the ToNIoT dataset. The OCLSTM-LSBO method 

demonstrates high performance across both classification 

types. In binary classification, it obtains an accuracy of 

99.95% on key metrics, effectively outperforming traditional 

models like RNN, LSTM, GRU and CLSTM. In multiclass 

classification, the OCLSTM-LSBO method obtains 95.62% 

accuracy and the highest AUC of 96.57%. These outcomes 

represent the superior ability of OCLSTM-LSBO in precisely 

detecting and classifying intrusions over complex IoT network 

environments. 
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Table 5. Performance of OCLSTM-LSBO with different DL models using ToNIoT dataset on binary and multiclass classification 

Methods Accuracy (%) Precision (%) Recall (%) F1-score (%) AUC (%) 

Binary Classification 

RNN 97.79 97.52 97.28 97.39 96.80 

LSTM 98.28 98.02 97.72 97.86 97.31 

GRU 98.67 98.44 98.10 98.26 97.68 

CLSTM 99.31 99.05 98.76 98.90 98.03 

Proposed OCLSTM - LSBO 99.95 99.95 99.95 99.95 98.54 

Multiclass Classification 

RNN 94.31 94.08 93.54 93.80 95.21 

LSTM 94.79 94.36 93.87 94.11 95.68 

GRU 95.01 94.85 94.19 94.51 96.06 

CLSTM 95.34 95.12 94.42 94.76 96.32 

Proposed OCLSTM - LSBO 95.62 95.36 94.95 95.15 96.57 

Table 6 represents the 5-fold cross-validation accuracy 

outcomes for the OCLSTM-LSBO algorithm with different 

DL-based algorithms like RNN, LSTM, GRU and CLSTM on 

a binary task using CICIoT2023 and ToNIoT datasets. Every 

method is validated across five folds to assess its 

generalization ability and performance consistency. In both 

datasets, the OCLSTM-LSBO algorithm consistently obtained 

the highest accuracy across all folds, with a mean accuracy of 

99.42% on CICIot2023 and 99.90% on ToNIoT.This 

demonstrates its robustness in identifying the intrusion 

patterns in IoT environments. Traditional algorithms like 

RNN and LSTM show comparatively less performance, with 

mean accuracy ranging from 95.26% to 96.74% on 

CICIoT2023 and 96.12%-96.94% on ToNIoT. CLSTM and 

GRU algorithms performed better than RNN and LSTM but 

were still outperformed by the OCLST-LSBO algorithm. 

These outcomes validate the ability of OCLSTM-LSBO to 

maintain high detection accuracy across multiple data splits, 

which represents high generalization, less variance and high 

reliability for real-time intrusion detection in IoT-based 

networks.

 

Table 6. 5-fold cross-validation accuracy of OCLSTM-LSBO on CICIoT2023 and ToNIoT datasets 

K-fold values RNN LSTM GRU CLSTM OCLSTM-LSBO 

CICIoT2023 dataset 

1 95.2 96.7 97.1 98.3 99.4 

2 95.3 96.8 97.2 98.4 99.5 

3 95.1 96.6 97.0 98.2 99.3 

4 95.4 96.9 97.1 98.4 99.4 

5 95.3 96.7 97.1 98.5 99.5 

Mean 95.26 96.74 97.10 98.36 99.42 

ToNIoT dataset 

1 96.1 96.9 97.3 98.7 99.9 

2 96.0 96.8 97.2 98.8 99.9 

3 96.2 97.0 97.4 98.9 99.9 

4 96.1 96.9 97.3 98.8 99.9 

5 96.2 97.1 97.4 98.9 99.9 

Mean 96.12 96.94 97.32 98.82 99.90 
 

Table 7. Performance of statistical analysis and computational analysis of the proposed model 

Models Accuracy (%) Training time (s) Inference time (s) 
Standard 

deviation 
Confidence Interval 

RNN 95.31 68 0.42 ±0.10 [95.12, 95.40] 

LSTM 96.78 72 0.46 ±0.12 [96.56, 96.92] 

GRU 97.11 70 0.44 ±0.10 [96.96, 97.24] 

CLSTM 98.42 85 0.53 ±0.14 [98.18, 98.54] 

OCLSTM-LSBO 99.45 132 0.57 ±0.08 [99.34, 99.50] 

 
Table 7 presents the comparative analysis of various DL 

models in terms of accuracy, training time, inference time, 

standard deviation and confidence interval. The proposed 

OCLSTM-LSBO model outperformed baseline models like 

RNN, LSTM, GRU and CLSTM, obtaining the highest 

accuracy with minimal standard deviation and a confidence 
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interval that shows strong stability and generalization ability. 

When considering the slight training and inference time 

compared to existing algorithms, it is justified by its 

substantial performance improvements.  

This determined the proposed model’s effectiveness in 

accurately learning spatiotemporal patterns and their 

suitability for real-time IDS on IoT. 

4.1. Analysis of the Confusion Matrix and ROC Curve 

In this section, the confusion matrix and ROC curve for 

both binary classification and multiclass classification tasks 

are analyzed. Figures 2 and 3 represent the confusion matrix 

on the CICIoT2023 dataset for binary and multiclass 

classification, respectively. Figure 4 represents the ROC 

Curve for the CICIOT2023 dataset. Figures 5 and 6 represent 

the confusion matrix on the ToNIoT dataset for binary and 

multiclass classification, respectively. Figure 7 represents the 

ROC Curve for the CICIOT2023 dataset. 

 
Fig. 2 On binary classification using CICIoT2023     

 
Fig. 3 On multiclass classification using CICIoT2023 
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Fig. 4 ROC curve using CICIoT2023 

 
Fig. 5 On binary classification using ToNIoT    

 
Fig. 6. On multiclass classification using ToNIoT 
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Fig. 7 ROC Curve using ToNIoT

4.2. Comparative Analysis 

Table 8 compares the performance of different existing 

algorithms with OCLSTM-LSBO for binary and multiclass 

intrusion detection on CICIoT2023 and ToNIoT datasets. The 

OCLSTM-LSBO algorithm outperforms existing algorithms 

across both datasets and classification tasks. In binary 

classification, it obtains 99,45% accuracy on the CICIoT2023 

dataset and 99,95% accuracy on the ToNIoT dataset.  

In multiclass classification, it demonstrates superior 

generalization on CICIoT2023 datasets and high performance 

on the ToNIoT dataset. Compared to existing algorithms like 

Fed-MLDN with Fed-RIME [22], CKAN [23], EBWO-

HDLID [24] and SICNN [26] offers balanced and robust 

detection ability for both binary and multiclass intrusion 

detection in IoT environments. 

Table 8. Comparison of existing algorithms with OCLSTM-LSBO for intrusion detection on CICIoT2023 and ToNIoT datasets 

Methods Tasks Datasets 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

Fed-MLDN with Fed-

RIME [22] 

Binary and Multi-

classification 

CICIoT2023 99.2 NA NA NA 

ToNIoT 98.2 NA NA NA 

CKAN [23] 

Binary classification 
CICIoT2023 99.22 99.81 99.40 99.60 

ToNIoT 99.93 99.95 99.91 99.93 

Multi classification 
CICIoT2023 98.84 98.84 98.84 98.84 

ToNIoT 93.30 93.30 93.30 93.30 

EBWO-HDLID [24] Multi classification ToNIoT 98.81 90.84 78.95 79.49 

SICNN [26] Multi classification CICIoT2023 97.69 NA NA NA 

Proposed OCLSTM - 

LSBO 

Binary classification 
CICIoT2023 99.45 99.37 99.21 99.28 

ToNIoT 99.95 99.95 99.95 99.95 

Multi classification 
CICIoT2023 98.97 98.85 98.78 98.81 

ToNIoT 95.62 95.36 94.95 95.15 

 
The proposed OCLSTM-LDBO model differentiates 

itself from existing algorithms by its hybrid combination of a 

deep temporal learning model with LSBO. Unlike traditional 

models like Fed-MLDL [22] that focus on federated 

optimization or CKAN [23] that employ kernel adaptations, 

the proposed model captures deep temporal patterns while 

being resource-effective and highly adaptive. Moreover, the 

LSBO ensures robust hyperparameter tuning, minimizing 

overfitting and enhancing generalization ability across 

heterogeneous datasets. As shown in Table 8, the proposed 

model obtains superior performance in terms of accuracy, 

precision and F1-score across all datasets, determining their 

advantages over recent SOTA IDS models. 

4.3. Discussion 

The novelty of the proposed model is a hybrid 

combination of CLSTM with LSBO for intrusion detection in 

IoT environments. Unlike traditional algorithms that lack 

hyperparameter optimization and fail to capture long-term 

dependencies in sequential traffic data, the proposed approach 
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addresses both drawbacks. The CLSTM efficiently learns 

deep temporal patterns in network traffic, and LSBO ensures 

optimized hyperparameter tuning for enhanced generalization 

and minimized model loss. In Fed-MLDL with Fed-RIME 

[22], which mainly focuses on federates training and CKAN 

[23], which modified CNN layers with KAN but lacks 

scalability, the proposed model determines superior 

performance on accuracy, precision and reduction of false 

positives. Additionally, unlike EBWO-HDLID [24], which 

uses a basic DL architecture and struggles with temporal 

pattern detection and SICNN [26] that suffered from 

inconsistency across heterogeneous data, the proposed model 

obtains better consistency and adaptability across all datasets. 

The datasets considered in this manuscript are publicly 

available, anonymized and gathered under controlled 

environments with null Personally Identifiable Information 

(PII) included. These datasets are gathered for academic and 

research purposes, ensuring compliance with data protection 

principles like GSPR and ethical research standards. 

5. Conclusion 
In this manuscript, an efficient and scalable intrusion 

detection model, OCLSTM-LSBO, is proposed to address the 

security challenges in dynamic IoT environments. The model 

integrates a CLSTM network with SBO for automated 

hyperparameter tuning, enabling the capture of deep temporal 

patterns while maintaining optimal model performance. The 

deep cascading LSTM framework captures the deep temporal 

dependencies in network traffic and improves the 

identification of difficult intrusion patterns in IoT networks. 

Then, employed the LSBO algorithm to fine-tune the 

hyperparameters of the LSTM model, which improves 

classification accuracy and enhances the generalization ability 

of the model. Min-Max normalization is employed during pre-

processing to ensure uniform feature scaling, and Latin 

Sampling enhances the diversity of the optimization process. 

Experimental evaluations on benchmark datasets, 

CICIoT2023 and ToNIoT, reveal that the proposed method 

significantly outperforms traditional deep learning models, 

including RNN, LSTM, GRU, and CLSTM, in both binary 

and multiclass intrusion detection tasks. The OCLSTM-LSBO 

model achieves a remarkable accuracy of up to 99.95% in 

binary classification and demonstrates strong performance 

across all evaluation metrics. This confirms the model’s 

robustness, precision, and suitability for deployment in real-

time, resource-constrained IoT systems.  

5.1. Limitations 

The proposed OCLSTM-LSBO model needs high 

training time and computational resources because of its deep 

cascading architecture and optimization process, which limit 

its deployment in less powerful IoT devices. Moreover, 

models have not been evaluated on real-world zero-day 

attacks that affect their adaptability in high-dynamic threat 

environments. 

5.2. Future Work 

Future research focuses on improving the OCLSTM-

LSBO method for detecting zero-day attacks by integrating 

adaptive learning mechanisms. Moreover, the method is 

extended for real-time deployment by edge computing 

frameworks to support continuous intrusion detection in 

dynamic and resource-constrained environments. 
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