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Abstract - The rapid expansion of the Internet of Things (IoT) and Big Data (BD) has led to security challenges. Securing IoT-

BD against cyberattacks is necessary. An increasing number of applications are being implemented on BD platforms due to the 

rapid proliferation of data on the Internet. As the volume of data increases, the possibility of intrusions on the platform 

correspondingly increases. Conventional Intrusion Detection Systems (IDS) are ineffective for managing the extensive volume 

of historical data and unable to fulfil the security demands of BD platforms. This research aims to propose a novel intrusion 

detection model using Binary Sand Cat Swarm Optimization and Spatiotemporal Transformer Neural Network (BSCSO-STNN) 

model to address these issues. The CIC-IoT-23 and Bot-IoT datasets are collected and applied to train the model for evaluation. 

The developed BSCSO-STNN model is deployed in an Apache Spark (APS) framework. The datasets are initially preprocessed 

in this framework with data cleaning, oversampling, label encoding, and normalization. After preprocessing, the data is applied 

to the BSCSO for feature selection. Using the selected features, the STNN model performs binary and multiclass classification 

for both datasets. The BSCSO-STNN model attained 99.08% accuracy, 98.78% detection rate, 99.02% precision, and 98.94% 

F1-score using the CIC-IoT-23 dataset. The model attained 99.04% accuracy, 98.81% detection rate, 98.97% precision, and 

98.95% F1-score for the BoT-IoT dataset in multiclass classification. The developed model outperformed all the current models 

in this research and demonstrated its accuracy in detecting intrusions. 

Keywords - Intrusion detection, Big Data, IoT, Deep Learning, BSCSO, STNN, Apache spark.  

1. Introduction 
The cybersecurity threat has significantly accelerated in 

the era of BD, surpassing the efficiency of current solutions, 

such as conventional IDS. The significant recent advancement 

of technology capabilities facilitates cyber threats aimed at 

individuals and organizations through diverse malicious 

behaviors. Governments and economic communities 

worldwide have implemented solutions to address emerging 

BD security challenges and to prepare for potential issues by 

improving data security governance [1]. As of February 2025, 

Statista reports that short-range IoT devices, including smart 

home assistants and wearable fitness trackers, constituted the 

most prevalent devices with internet connectivity globally, 

with 17.4 billion users. Mobile phones subsequently reached 

8.65 billion connections, indicating their extensive adoption. 

Wide-area IoT devices, including linked automobiles and 

remote monitoring systems, comprised 4.93 billion 

connections. 

In the current threat landscape, conventional security 

measures such as antivirus software, firewalls, and Virtual 

Private Networks (VPNs) are often inadequate. This 

necessitates the use of effective intrusion detection 

techniques. Consequently, the implementation of an IDS with 

conventional security measures is a necessary strategy. An 

IDS is automated software employed to analyze network data 

for the detection and/or prevention of harmful attacks. It is 

categorized into two major methods: Misuse-Based IDS 

(MIDS) and Anomaly-Based IDS (AIDS). The MIDS method 

classifies the attack based on recognized patterns, referred to 

as signatures. AIDS, conversely, aims to identify anomalous 

patterns or behaviors, facing the primary issue of accurately 

differentiating between abnormal and normal patterns with 

minimal error. Various studies examine the issues affecting 

IDS, particularly in the context of the emerging BD era, which 

introduces diverse forms of harmful attacks. Consequently, 

specific tools are necessary to manage the scalability of large 

data to detect cyber risks [2]. 

Conventional data processing techniques are insufficient 

for handling large data volumes. Consequently, substantial 

volumes of datasets cannot be effectively processed using 

conventional data processing techniques. Standard database 

systems are inadequate for managing the huge volume and 
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rapid velocity of big data; the development of new or 

enhanced data processing methods is required [3]. Figure 1 

illustrates the steps of BD processing. BD exists in various 

formats and sizes and is typically not immediately suitable for 

analytics. Consequently, following data collection, BD 

undergo staging or preprocessing. Data preprocessing 

involves the creation of a functional dataset prepared for 

analysis. After preprocessing, data analysis is conducted on 

the resultant datasets. Data analysis methodologies encompass 

statistical approaches, soft computing, Deep Learning (DL), 

Machine Learning (ML), and data mining. The application 

analytics encompasses a query mechanism designed to meet 

the particular necessities of the application. The query 

interface functions as a control pane that determines the 

outcome that the user intends to generate from data. Data 

visualization is the last phase of processing. Visualization 

entails the creation of visual representations of data, 

processing outcomes, and data. 

 
Fig. 1 BD processing stages 

The IoT and big data share two primary relationships. IoT 

serves as a principal BD source, making it essential for BD 

analytics to enhance the quality of BD services. IoT data 

varies from traditional BD due to distinct characteristics such 

as large-scale operational data, heterogeneity, spatial and 

temporal correlations, and increased noise levels [4]. A 

primary concern in BD is data security, which has increased 

due to the growth in data volume following the application of 

encryption techniques. Consequently, many researchers 

implement different encryption algorithms in an effort to 

minimize data size. IDSs are strategically placed within a 

network to identify threats and monitor traffic. The IDS 

achieves this by aggregating data from various systems and 

network infrastructures and analyzing the data for potential 

threats [5]. Rapid improvements in IoT technology have 

created a comprehensive smart computing platform by 

merging smart things with sensing, communication, and 

processing functionalities [6]. The fundamental aspect of IoT 

is the intricate BD produced by several networked sources in 

real-time, which poses distinct processing and analytical 

issues. In software engineering, best practices have been 

consistently applied in IoT technologies to manage large data 

sets effectively across several domains [7]. 

1.1. Problem Statement 

A significant security challenge for IDS is addressing the 

various types of malicious software that result in network 

security vulnerabilities and critical failures [8]. Cyber-attacks 

have become increasingly complex, complicating the 

detection of unidentified malware due to the advancement of 

sophisticated evasion techniques designed to exfiltrate 

sensitive information while bypassing intrusion detection 

systems. Moreover, cybersecurity dangers exist during inter-

network connections. Consequently, novel methods and 

solutions are necessary for preventing attacks and facilitating 

the prompt detection of intrusions. Recent advancements in 

ML and DL methodologies have been implemented for IDS, 

the discovery of anomalous activities in networks, and their 

mitigation. DL methodologies outperform ML approaches 

when applied to big datasets [9]. Thus, this research proposes 

a novel hybrid DL model for intrusion detection. 

1.2. Research Objectives 

The use of Artificial Intelligence (AI) in IDS signifies a 

substantial progression in cybersecurity. This combination 

will handle the escalating complexity and prevalence of cyber 

threats. AI-driven IDSs employ ML and DL algorithms to 

analyse extensive network traffic, detect anomalies, and detect 

suspected intrusions in a BD environment [10]. The key 

contributions of this proposed work are defined in the 

following: 

 This research develops a BD-based intrusion detection 

model using a hybrid DL model for detecting and 

classifying attacks. 

 BD datasets like CIC-IoT-23 and BoT-IoT are applied to 

train and evaluate the developed model. 

 A series of data preprocessing processes is performed to 

enhance the data's suitability for model training and 

analysis. 

 The BSCSO technique is applied for selecting the optimal 

features, and the STNN algorithm is utilized to detect and 

classify the attacks. 

 The developed BSCSO-STNN model is processed using 

Apache Spark on Google Colab. 

 The research model is evaluated using performance 



S. Ravishankar & P. Kanmani / IJEEE, 12(7), 312-330, 2025 

 

314 

indicators like accuracy, detection rate, precision, and F1-

score. 

 The results of the developed BSCSO-STNN model are 

compared and validated with the current models 

discussed in this research for proper validation. 

The paper is organized into the subsequent sections. 

Section II succinctly examines the current models relevant to 

the research study. Section III encompasses the 

implementation of the developed research methodology. 

Section IV highlights the experimentation findings of the 

research methodology and a comparison with current models. 

The final section concludes the research with an overview of 

the findings and recommendations for subsequent research 

initiatives. 

2. Related Works 
This section presents a review of current works applied to 

improving big data-based intrusion detection has been 

analyzed. All the reviewed current models are critically 

analyzed and presented in Table 1. The critical analysis 

includes their advantages and limitations. The review of the 

related works is as follows: By integrating temporal and 

spatial data in IDS models, the research in [11] proposed a 

fusion model based on CNN and C-LSTM. Fusion 

incorporates improved parallelism in the training process, 

yielding superior outcomes without necessitating an 

excessively deep network. The fusion resulted in reduced 

training duration, rapid convergence, and computational 

efficiency for limited resource-constrained network 

components. The model was better suited for anomaly 

detection in the big data context of the IoT. The model 

achieved superior recall, precision, and accuracy. 

A decentralized methodology employing a fog computing 

layer integrated with a reptile group intelligence technique 

was proposed in [12]. The model minimized network traffic 

volume and analyzed in the cloud layer utilizing APS 

architecture. Essential network traffic characteristics were 

identified by a chameleon optimizer technique and a principal 

component reduction technique. Multi-layered artificial 

neural networks were utilized for traffic analysis within the 

fog layer. Experiments utilizing the NSL-KDD dataset 

demonstrated that the model attained superior accuracy in 

detecting intrusions. 

An IDS model that employed big data analytics and a 

modified LSTM algorithm was proposed in [13]. This model 

was developed to overcome the limits of misuse and anomaly 

detection. Depending on distributed and parallel techniques, 

the model employed a BD analytics platform. The model 

detected anomalous behaviors within a network to identify 

harmful or unauthorized actions and facilitated a response 

during a breach of confidentiality. The distributed and parallel 

platforms enhanced both accuracy and training duration. The 

model exhibited a 96.11% accuracy. The study in [14] 

addressed the issue of decision-making based on multicriteria 

in the identification of anomalies in IoT. The study 

concentrated on the feature of BD analytics pertaining to data 

stream processing. To achieve this, the Event Strength 

Function (ESF) was implemented. An approach for 

multicriteria analysis was introduced, considering the 

dynamic characteristics of the Pareto set using data stream 

processing. Based on temporal graphs and multicriteria 

anomaly detection, an approach was proposed for detecting 

network anomalies. The outcomes have been demonstrated to 

be effective for IoT anomaly detection. 

The research in [15] examined the newly developed 

UWF-ZeekData22 dataset, which analyzed data from Zeek's 

Connection Logs. The data were gathered via the network 

security monitor called Security Onion 2 and annotated 

utilizing the MITRE ATT&CK system. Spark was employed 

within the big data framework to execute classifiers like Naïve 

Bayes (NB), Random Forest (RF), Decision Tree (DT), 

support vector classifier, Gradient Boosted Trees (GBT), and 

Logistic Regression (LR) for the classification of 

reconnaissance and discovery tactics from this dataset. The 

findings demonstrated that DT, GBT, and RF have superior 

efficacy in intrusion detection. 

A distributed combined DL-IDS model for the Internet of 

Vehicles utilizing the APS framework was proposed in [16]. 

The model integrated a CNN with an LSTM network to extract 

features and data for the detection of vehicle network 

intrusions from extensive vehicular network traffic and the 

identification of anomalous behavior. Experimental validation 

on the NSL-KDD and UNSW-NB15 datasets demonstrated 

that the CNN-LSTM model utilizing the Spark framework 

was effective. 

An enhanced IDS model for IoT security was proposed in 

[17] through the integration of multimodal BD representation 

and transfer learning. PCAP files were analyzed to identify 

pertinent attack and data bytes. Spark-based methodologies 

for optimizing BD were employed to handle extensive 

volumes of data. The transfer learning was employed to 

provide semantically enhanced trained features. The 

classification of diverse cyberattacks was conducted by 

integrating multimodal features utilizing CNN-Gated 

Recurrent Unit (GRU), CNN-Recurrent Neural Network 

(RNN), and CNN-LSTM architectures. The findings indicated 

that the CNN-LSTM model had superior performance. The 

research in [18] improved the accuracy of network IDS 

models by removing duplicate and nonessential features. To 

address accuracy concerns arising from extraneous features, a 

model called Las Vegas Wrapper enhanced with Multiple 

Evaluation Criteria (LVW-MECO) has been developed. The 

LVW algorithm employed various evaluation criteria to detect 

relevant features from IoT network data and enhanced the 

accuracy of intrusion detection. The model improved intrusion 
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detection efficacy and secured IoT data integrity for a more 

secure IoT ecosystem. A Privacy-Preserve Statistically 

Learning method with an Optimizer Approach for Higher-

Dimensional BD Environments (PPSLOA-HDBDE) was 

proposed in [19]. A Linear Scaling Normalization (LSN) was 

employed to normalize the given data. The SCSO was utilized 

for selecting features. For intrusion classification, an 

ensembled model of a Temporal Convolution Network 

(TCN), Multi-Layered Autoencoders (MAE), and Extreme 

Gradients Boosting (XGB) approaches were employed. The 

hyperparameter optimization of these approaches was 

achieved through the application of an Improved Marine 

Predators Approach (IMPA). The model demonstrated 

enhanced accuracy in identifying intrusions. Two ML 

methodologies, Random Forest (RF) and Multi-Layer 

Perceptron (MLP), were implemented in [20] by employing 

the Scikit and the Spark ML library for the identification of 

Denial of Service (DoS) attacks. Following the identification 

of DoS assaults, the models' performance was enhanced by 

reducing the prediction time. The study attained a comparable 

mean accuracy across the employed models. In terms of 

testing and training duration, the BD method surpassed the 

non-big data method since Spark executes computation 

processes in a distributed memory. 

A secure anomaly detection methodology for BD 

platforms with quantum optimization clustering was proposed 

in [21]. A BD platform anomaly detection framework was 

constructed using a distributed software based on Spark and 

Hadoop. The model effectively detected anomalies in 

networks by acquiring and analyzing server records from BD 

platforms. A quantum ant colony optimizer clustering 

technique for offline anomaly identification was developed to 

identify diverse anomalies.  

To enhance the precision of the optimal paths search 

within the ant colonies, quantum bits encoding was utilized for 

the positioning of the ants. The findings demonstrated that the 

model efficiently accomplished anomaly clustering 

identification in large datasets. A classification-based network 

attack detection model utilizing BD network traffic data was 

developed in [22]. The model employed a hybrid DL network, 

integrating CNN and LSTM for enhanced intrusion detection. 

Furthermore, data imbalance mitigation employing the 

Synthetic Minority Oversampling Techniques (SMOTE) and 

Tomek's s-Link Sampling Techniques (STL) was utilized to 

alleviate the impact of data inconsistency on system 

efficiency. The study utilized PySpark within the Google 

Colab environment, where the CNN-LSTM yielded superior 

accuracy compared to the LSTM-CNN approach. An IDS 

methodology utilizing BD analytics tools to integrate diverse 

data sources and identify intrusions was developed in [23]. 

The study employed the decision tree method, Semantically 

Similar Data Miner (SSDM) and the Bayesian network 

algorithm K2 to assess the integrated data. The study 

demonstrated the efficacy of data fusion utilizing the Hadoop 

ecosystem (MapReduce) and the Neo4j database for managing 

and processing large datasets. Experimental results 

demonstrated that, in both instances, data fusion significantly 

enhanced outcomes. 

A BD technique framework was developed in [24] 

utilizing Hadoop–Spark to train and evaluate multi-class and 

binary classification. The framework was performed through 

a one-vs-rest method for intrusion detection using the BoT-

IoT dataset. All the algorithms present in Hadoop Spark were 

tested regarding accuracy and processing duration. Due to the 

significant imbalance in the BoT-IoT dataset, the accuracy of 

minority class detection was enhanced by generating 

additional data samples with a Conditional Tabular Generative 

Adversarial Network (CTGAN). The model employed the RF 

method from Spark's multi-class algorithms for training. With 

its high accuracy, an analysis of each class revealed that 

minority groups were adversely impacted. A real-time IDS 

model designed to identify IoT threats via multiclass 

classification models using the PySpark framework was 

proposed in [25]. Diverse ML methods like DT, RF, LR, and 

Extreme Gradient Boosting (XGB) were utilized employing 

the One Vs Rest (OVR) methodology. The model used the 

IoT-23 dataset, and SMOTE was utilized for dataset 

preparation. Furthermore, SelectKBest features selection was 

utilized to select the best significant feature for classification. 

The findings demonstrated that XGB attained superior 

accuracy among the assessed algorithms. 

Table 1. Critical analysis of analyzed related works 

Ref Models Datasets Application Advantages Disadvantages 

[11] 
CNN + C-LSTM 

Fusion 
KDDCup99 

Anomaly detection in 

IoT using spatial-

temporal data 

Improved parallelism, 

faster convergence, 

efficient training on 

limited resources 

May underperform on 

deeply hierarchical 

attack patterns 

[12] 

Fog computing + 

Chameleon 

Optimizer + ANN 

NSL-KDD 

Decentralized 

intrusion detection 

with Spark 

Reduces network 

traffic, enhances 

scalability, and 

provides real-time 

analysis 

Complexity in 

deployment and 

integration 

[13] 
Modified LSTM 

with BD analytics 
NSL-KDD 

Distributed anomaly 

detection 

High accuracy 

(96.11%), reduced 

Limited to temporal 

anomaly patterns 
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training time via 

parallelism 

[14] 

Event Strength 

Function (ESF) + 

Multicriteria 

Analysis 

Real-time Data 

Stream processing-

based anomaly 

detection in IoT 

Dynamic anomaly 

detection with temporal 

graphs 

High implementation 

complexity 

[15] 

DT, RF, GBT 

classifiers with 

Spark on UWF-

ZeekData22 

UWF-

ZeekData22 

Reconnaissance and 

discovery tactic 

detection 

High detection 

accuracy with DT, RF, 

GBT 

Limited 

generalization due to 

dataset specificity 

[16] 
CNN + LSTM with 

APS 

NSL-KDD and 

UNSW-NB15 

Internet of Vehicles 

(IoV) intrusion 

detection 

Effective feature 

extraction, scalable 

processing 

Needs high 

computational 

resources 

[17] 

CNN-GRU, CNN-

RNN, CNN-LSTM 

+ Transfer Learning 

CIC-IoT 2022, 

Edge-IIoT, and 

CIC-IoT 2023 

IoT attack 

classification using 

multimodal data 

Semantic enrichment, 

efficient BD handling 

Complex multimodal 

integration and tuning 

[18] 
LVW-MECO 

feature selection 
IoT-23 

IoT anomaly 

detection with 

essential feature 

refinement 

Improved accuracy and 

data integrity 

Not suitable for real-

time detection 

[19] 

PPSLOA-HDBDE 

(TCN + MAE + 

XGBoost + IMPA) 

BoT-IoT 
High-dimensional 

intrusion detection 

Strong accuracy, 

efficient feature 

selection via SCSO 

High computational 

cost due to the 

ensemble 

[20] 
RF, MLP using 

Spark ML 
DDoS dataset DoS attack detection 

Reduced prediction 

time, scalable with 

Spark 

Focused only on DoS; 

lacks broader attack 

coverage 

[21] 
Quantum Ant 

Colony Clustering 
KDDCup99 

BD anomaly detection 

in networks 

Enhanced clustering 

precision via quantum 

encoding 

The offline method is 

unsuitable for real-

time detection 

[22] 
CNN-LSTM with 

STL & SMOTE 
CIDDS-001 

Multiclass BD-based 

intrusion detection 

Improved accuracy 

with imbalance 

handling 

Requires tuning for 

balance optimization 

[23] 
SSDM + K2 with 

Hadoop & Neo4j 

KDD99 and 

DARPA99 

Integrated intrusion 

detection via data 

fusion 

Improved insights from 

multi-source fusion 

Complex deployment 

of Neo4j-Hadoop-

Spark 

[24] 
CTGAN + RF on 

Spark 
BoT-IoT 

Intrusion detection 

using BoT-IoT dataset 

Enhanced minority 

class detection, high 

accuracy 

CTGAN adds 

processing overhead 

[25] 

PySpark + OVR 

with XGB, RF, DT, 

LR 

IoT-23 

Real-time IoT 

multiclass intrusion 

detection 

High accuracy with 

XGB, feature selection 

via SelectKBest 

The OVR approach 

may struggle with 

overlapping classes 
 

2.1. Research Gap Analysis 

It is clear that all these analyzed models utilized the BD 

framework to detect intrusions. The research gaps are 

identified by analyzing the reviewed current models in this 

research. Most of the models utilized the BD frameworks with 

the DL and ML algorithms. Many models have integrated 

optimization techniques for optimizing classification and 

feature selection. However, the limitations arise in the aspects 

of computational complexity, lack of generalization, and 

utilization of imbalanced datasets. Few studies used the 

feature selection process combined with the DL models, 

which are optimized for BD-based intrusion detection. These 

research gaps are addressed by developing a novel BSCSO-

STNN model within an APS framework. This proposed IDS 

model will be scalable, effective, and accurate in detecting 

intrusions on both binary and multiclass classifications. 

3. Materials and Methods 
This research proposed an intrusion detection and 

classification model based on the BD framework using a 

metaheuristic and DL algorithm model. The model is 

developed and deployed on the APS-BD platform for 

processing and classification. This APS engine will be helpful 

in handling BD datasets like CIC-IoT-23 and BoT-IoT and 

processing them. Figure 2 depicts the workflow of the 

developed intrusion detection model. Both the CIC-IoT-23 
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and BoT-IoT datasets are applied for this research to train and 

evaluate the developed IDS model. The developed intrusion 

detection model has three primary stages of processing: data 

preprocessing, feature selection, and classification. Initially, 

the BoT-IoT dataset is collected and applied to the research. 

The collected datasets are processed in the preprocessing stage 

with various preprocessing methods like data cleaning, 

oversampling, label encoding, and normalization. After 

preprocessing, the datasets are split into an 80:20 ratio for 

training and evaluating the model. The preprocessed training 

set of the data is then processed to select the optimal features 

from the data sets individually using the BSCSO technique.  

The selected optimal features are helpful in improving the 

classification performance. The STNN model performs attack 

detection and classification based on the selected optimal 

features. The STNN model effectively captures both network 

features based on spatial dependencies and temporal patterns. 

This capability is important to accurately detect attacks in a 

BD framework. The STNN’s attention mechanism helps the 

model to focus on data segments, which results in better 

classification. Finally, the performance of the BSCSO-STNN 

model is evaluated based on performance indicators like 

accuracy, detection rate, precision, and F1-score. The results 

will be evaluated and compared with the current models for 

validation. The results highlight that this developed BSCSO-

STNN model is highly accurate and effective in detecting 

intrusions on both binary and multiclass classifications. 

3.1. Dataset Details 

The CIC-IoT 2023 data set comprises a range of recent 

IoT attacks. This collection contains communications from 

105 authentic IoT devices and includes 33 distinct attack 

methods. To enhance classification performance, these attacks 

were categorized into seven distinct categories: DoS, DDoS, 

Spoofing, Brute Force, Recon, Mirai, and Web-based. This 

CIC-IoT-2023 dataset comprises 46 features. 

Table 2. Data distribution of CIC-IoT-23 dataset 

Attack Classes No. of Records Distribution % 

Benign/Normal 1098195 2.35 

Spoofing 486504 1.04 

Reconnaissance 354565 0.76 

Bruteforce 13064 0.03 

WebBased 24829 0.05 

DoS 8090738 17.33 

Mirai 2634124 5.64 

DDoS 33984560 72.79 

 

As shown in Table 2, the attack category with the largest 

number of records is referred to as DDoS. The DDoS causes 

overflows in networks or devices with an overwhelming 

volume of traffic. This results in disruptions and renders 

services inaccessible. The next dominant class is DoS, which 

resembles DDoS but generally originates from a single source 

and similarly seeks to impair service availability. Brute Force 

seeks to obtain unauthorized access by systematically testing 

many password combinations.  

Spoofing leads devices by disguising themselves as 

authentic entities, resulting in data exfiltration or virus 

distribution. Reconnaissance attacks collect network data to 

find vulnerabilities. Web-based attacks leverage 

vulnerabilities in web applications to gain unauthorised access 

unauthorized. The Mirai attack exploits IoT and converts 

devices into bots for extensive attacks like DDoS. This dataset 

offers a thorough analysis of the prevailing IoT attacks. The 

DDoS category contains a large number of instances, followed 

by DoS and Mirai. Remaining classes, like Recon, Spoofing, 

Brute Force, and Web-based, exhibit significantly limited 

samples [26]. 

Table 3. Data distribution of BoT-IoT dataset 

Attack Classes No. of Records Category 

Benign 9543 Normal 

Data Theft 118 
Information Theft 

Keylogging 1469 

DoS-HTTP 29706 

DoS DoS-TCP 12315997 

DoS-UDP 20659491 

DDoS-HTTP 19771 

DDoS DDoS-UDP 18965106 

DDoS-TCP 19547603 

OS Fingerprinting 358275 
Information Gathering 

Service Scanning 1463364 

The Bot-IoT data set was developed by the Cyber Range 

Laboratory at UNSW Canberra within an actual network 

setting. This dataset comprised data collected from diverse 

smart home equipment, including refrigerators, lighting 

systems, thermostats, garage doors, and weather monitoring 

devices. This network architecture comprises a combination 

of botnet and benign traffic covering 73 million records. The 

Bot-IoT data set comprises 43 network traffic attributes and 
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three classifications of labels. Nevertheless, only 37 of the 43 

features were considered significant for detecting botnet 

attacks in IoT networks. Table 3 presents the BoT-IoT data set 

details. 

The two categories of attacks, specifically keylogging and 

data theft, have insufficient data samples. It can adversely 

affect the classification outcomes. Consequently, these two 

attack classes are excluded from the experiment [27]. 

 
Fig. 2 Proposed BSCSO-STNN intrusion detection model 

3.2. Apache Spark 

In a big data environment, processing and storage of 

information are essential, where false alerts from benign 

attacks can impede operations. To mitigate these risks, it is 

imperative to use robust encryption mechanisms to secure 

critical data, deploy IDS to monitor and identify suspicious 

activity, and utilize DL to identify abnormalities and potential 

security concerns. The proposed research aims to develop an 

IDS model utilizing APS's big-data processing capabilities. 

The master node, equipped with software for drivers that 

invokes an application’s primary program, constitutes the 

essential component of APS. The driver application, whether 

custom code or the operating system itself, is responsible for 

initializing the Spark environment in a dynamic shell 

environment. The Spark context serves as the gateway to all 

APS functionalities. It works with the cluster manager, which 

supervises the administration of several tasks. In a cluster, the 

application of the driver and Spark environment functions in 

combination to execute the operation. Resource allocation is 

initially managed by the cluster management. Then, the tasks 

are divided and allocated to either the slave or worker nodes. 

Subordinate nodes are responsible for fulfilling the tasks 

specified by the cluster manager. The Spark environment is 

then reinstated for these tasks. The executor is responsible for 

performing the tasks. The executors and Spark have a similar 

lifespan. It is vital to augment the total count of worker nodes 

to enhance the logical segmentation of tasks. Figure 3 

illustrates the APS working architecture [28]. 
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Fig. 3 Architecture of APS module 

This research employs the CIC-IoT-23 and BoT-IoT 

datasets. The first processing of the big dataset 'InBD' is 

conducted utilizing the Spark framework, employing slave 

and master nodes for data processing. The Spark architecture 

typically yields exceptional processing capabilities due to the 

ability of worker node servers to operate in parallel. The 

partitioning of transformed data is performed, and the 

segmented information is distributed to many worker nodes. 

Additionally, worker nodes are utilized to execute processing 

and select features. The transformed data is divided into 

various subsets, as seen in Equation (1). 

𝐼𝑛𝐵𝐷 = 𝑈𝐵𝐷;  (1 ≤ 𝐵𝐷 ≤ 𝑏𝑑) (1) 

Here, 𝑈𝐵𝐷  Denotes segmented information, while 𝑏𝑑 

represents the entirety of segmented information derived from 

𝐼𝑛𝐵𝐷 . The complete segmented data corresponds to the total 

number of slave nodes. Every data segment is allocated to the 

slave node designated for preprocessing and selection of 

features. Consequently, the input of the 𝑠𝑡ℎ The slave node is 

represented as indicated in Equation (2). 

𝑈𝐵𝐷 = {𝑀𝑠,𝑞};   (1 ≤ 𝑠 ≤ 𝑆); (1 ≤ 𝑟 ≤ 𝑅) (2) 

Here, 𝑀𝑠,𝑞 denotes the 𝐵𝐷𝑡ℎ segmented data within the 

𝑠𝑡ℎ element of the 𝑟𝑡ℎ dataset. Each partitioned dataset is 

allocated to slave nodes for preprocessing and selection of 

features. Consequently, slave nodes execute preprocessing 

and feature selection tasks. The classification model gains 

access to the chosen features to identify intrusions within the 

system. Subsequently, the average of the outcomes from the 

STNN pertaining to the identification of intrusions will be 

computed. The proposed approach involves creating an 

architecture for an IDS designed for big data to identify 

intrusions within large datasets. The architecture of APS 

comprises a master node that is subdivided into multiple slave 

nodes. The data provided involves preprocessing through a 

min-max normalization technique. After the preprocessing 

phase, the most optimal features are identified. This 

methodology is employed for preprocessing and selecting 

features within each subordinate node. The features are 

extracted and input into the STNN model. A novel IDS model 

is developed by integrating the BSCSA-STNN. Finally, the 

intrusion detections are identified from the outputs.  

3.3. Preprocessing and Normalization 

Data preparation serves as a phase that prepares 

unprocessed data for subsequent processing. The data can 

often be incomplete, inconsistent, and filled with errors. Data 

preparation is a technique employed to address such issues. 

Data cleaning involves finding and rectifying inaccuracies, 

inconsistencies, and errors within a dataset to maintain its 

reliability and integrity for analysis. Multiple strategies were 

employed to identify and rectify diverse errors, including 

missing data, duplicate entries, outliers, and anomalies in 

labeling or formatting. 

SMOTE, as indicated by its terminology, is an over-

sampling approach. This approach generates synthetic data by 

oversampling the minority class. SMOTE mitigates the 

overfitting issue associated with random oversampling 

techniques by producing synthetic data. SMOTE operates by 

choosing occurrences adjacent to the space of the feature. A 

sample at random is chosen from the minority class, and this 

occurrence has two nearest neighbors. Upon randomly 

selecting one of the nearest neighbors, the variation among the 

two sample features is multiplied by a factor ranging from 0 

to 1 and then added to the chosen sample value. Based on the 

extent of over-sampling needed, neighbours from the k-NN 

are selected at random. SMOTE samples are combinations of 

two linear comparable patterns (𝑠, 𝑠𝑅) from the minimal class 

and are delineated as in the following Equation (3). 

𝑛 = 𝑠 + 𝑑 ∙ (𝑠𝑅 − 𝑠), 0 ≤ 𝑑 ≤ 1 (3) 

Here, 𝑠𝑅 Represents the randomly chosen sample of 𝑠 
based on the nearest neighborhood number, while 𝑑 signifies 

the variation between the two samples [29]. 
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In this work, prior to the implementation of the dataset to 

the classification algorithms, categorical variables were 

converted to numerical values using the Label Encoding 

procedure, followed by the normalization process as indicated 

in Equation (4). Therefore, the normalizing process 

transformed every numerical value in the dataset to a range of 

zero to one. 

𝑥′ =
𝑥−𝜇

𝜎
 (4) 

Here, 𝑥 represents the actual value, 𝑥′ Denotes the 

normalized value, and 𝜎 and 𝜇 signify the standard deviation 

and mean values, respectively [30]. The datasets are divided 

into training and test sets, with 80% assigned for training and 

20% assigned to testing. 

3.4. Binary SCSO-based Feature Selection 

A metaheuristic technique known as SCSO is inspired by 

the natural behavior of sand cats (SCs). The SC possesses a 

unique hunting and foraging behavior. The capability of these 

creatures to detect prey underground or on the surface 

supports their extraordinary ability to locate prey. 

Consequently, they could quickly locate their prey. The SCSO 

mimicked this characteristic to identify the most efficient 

solution. The SCSO algorithm operates based on a unique 

basis. Following initialization, a search for prey is conducted 

to identify the optimal solution. The SC's capacity for lower-

frequency noise generation was utilized. Every search agent 

(SA) possesses a predetermined range of sensitivity that 

begins at 2kHz [31]. In the SCSO technique, the �⃗� 𝐺 The 

variable minimizes linearly from two to zero using Equation 

(5).  

𝑟 𝐺 = 𝑆𝑀 − (
𝑆𝑀×𝑖𝑡𝑒𝑟𝑐

𝑖𝑡𝑒𝑟𝑀𝑎𝑥
) (5) 

In this context, 𝑆𝑀 is presumed to be 2, 𝑖𝑡𝑒𝑟𝑐 denotes the 

present iteration count, and 𝑖𝑡𝑒𝑟𝑀𝑎𝑥 Represents the maximal 

count of iterations. Initially, the SC moves rapidly, but after 

50% of the iterations, its movements get more deliberate. 

Similar to various metaheuristics techniques, the balance 

among exploitation and exploration stages is significant; thus, 

the SCSO employs a �⃗�  Parameter.  

�⃗� = 2 × 𝑟 𝐺 × 𝑟𝑎𝑛𝑑(0,1) − 𝑟 𝐺 (6) 

According to Equation (6), the transition between the two 

stages is equilibrated. Moreover, Equation (7) is formulated to 

prevent entrapment in local optima. The 𝑟  The option defines 

the level of sensitivity range for every SA. 

𝑟 = 𝑟 𝐺 × 𝑟𝑎𝑛𝑑(0,1) (7) 

The primary stage of the SCSO involves updating the 

location for every SA. According to Equation (8), the location 

update for every SA in every iteration relies on the optimal 

candidate positioning and its present position in conjunction 

with the level of sensitivity range.  

𝑃𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗(𝑡 + 1) = 𝑟 ∙ (𝑃𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗
𝑏𝑐(𝑡) − 𝑟𝑎𝑛𝑑(0,1) ∙ 𝑃𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗

𝑐(𝑡)) 

 (8) 

In Equation (8), 𝑃𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗
𝑏𝑐, 𝑃𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗

𝑐, and 𝑟  Denote the optimal 

candidate position, present position, and range of sensitivity, 

respectively. Following the exploration stage of the prey 

search, the next stage in the SCSO is the exploitation stage, 

which involves attacking the prey.  

𝑃𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗
𝑟𝑛𝑑 = |𝑟𝑎𝑛𝑑(0,1) ∙ 𝑃𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗

𝑏(𝑡) − 𝑃𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗
𝑐(𝑡)|

𝑃𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗(𝑡 + 1) = 𝑃𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗
𝑏(𝑡) − 𝑟 ∙ 𝑃𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗

𝑟𝑛𝑑 ∙ cos(𝜃)
 (9) 

The distance across the optimal and present locations of 

all the SAs in the respective iterations is computed utilizing 

Equation (9). The acute sensitivity of SC is employed to 

capture their prey. The level of sensitivity was presumed to be 

in a circular shape; hence, in all the movements, the directions 

will be based on an 𝜃 angle randomly derived from the roulette 

wheel selection in the SCSO. The random 𝜃 angle within 0 

and 360 yields a cosine value ranging from -1 to 1.  

𝑋 (𝑡 + 1) =

{
 
 

 
 𝑃𝑜𝑠
⃗⃗⃗⃗⃗⃗  ⃗

𝑏(𝑡) − 𝑃𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗
𝑟𝑛𝑑 ∙ cos(𝜃) ∙ 𝑟                 

|𝑅| ≤ 1; 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛

𝑟 ∙ (𝑃𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗
𝑏𝑐(𝑡) − 𝑟𝑎𝑛𝑑(0,1) ∙ 𝑃𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗

𝑐(𝑡))  

|𝑅| > 1; 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛

 (10) 

The updation of SA's position is performed using 

Equation (10). A circular motion is thus accomplished. Here, 

𝑃𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗
𝑏 denotes the optimal position (optimal solution), while 

𝑃𝑜𝑠⃗⃗⃗⃗⃗⃗  ⃗
𝑟𝑛𝑑 Signifies a random position.  

Optimization issues in a binary space are critical. 

Consequently, it is essential to use binary variants of 

metaheuristic techniques. In this method, the search space 

often encompasses 1 or 0 along with the movement of SAs 

within the binary region. The search space was organized into 

rows that define the solutions, which consist of an assortment 

of binary value for all the rows. The primary difference 

between the binary (discrete) and continuous versions of every 

metaheuristic technique is in the movements of the particle, 

wherein 0 transforms into 1 and vice versa. The SCSO 

technique utilizes a search space comprised of both real and 

continuous numbers, making it inapplicable for binary 

optimization problems. Hence, this research utilized the 

Binary SCSO (BSCSO) approach to address this issue. On 

updating the position of every SA, a V-shaped Transfer 

Function (TF) was employed to convert the acquired values 

into a range from zero to one. The solution to the issue is 

positioning every SA within a binary vector of 0s and 1s. 
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Every SC in the BSCSO approach identified sounds 

below 2 kHz, comparable to the SCSO algorithm. This 

approach adhered to the SCSO algorithm, although the SA 

performed within the interval [0, 1]. Employing Equation (11), 

every SA can modify its position. The V-shaped TF finally 

converted the output to either one or zero. The BSCSO 

approach employed the V-shaped TF as its primary rule. The 

search was carried out in a full search space of either one or 

zero. The upper and lower limits were one and zero. Following 

initialization, the positions of the SAs must be updated. 

Consequently, the SCSO algorithm facilitated the SC's 

foraging and hunting phases through its distinctive hearing 

capability. In every iteration, every SA acquired a position for 

updating, utilizing the V-shaped TF to convert the result to a 

range between one and zero. 

𝑉(𝑥𝑖
𝑛(𝑡)) =

2

𝜋
arctan (

𝜋

2
𝑥𝑖
𝑛(𝑡)) (11) 

𝑥𝑖
𝑛(𝑡 + 1) = {

(𝑥𝑖
𝑛)−1   𝑖𝑓 𝑟𝑎𝑛𝑑 < 𝑉(𝑥𝑖

𝑛(𝑡))

(𝑥𝑖
𝑛)                          𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (12) 

Four V-shaped TFs and a positional update rule were 

executed to attain the objective. Here, 𝑥𝑖
𝑛(𝑡) Denotes the 

position of the ith SA in the nth dimension at iteration 𝑡. The 

random number (𝑟𝑎𝑛𝑑) was a uniformly distributed random 

number between zero and one. Equation (12) is applied to 

update the position of SA opposite to the acquired position or 

similar to the acquired position. Figure 4 depicts the flowchart 

of the implemented BSCSO technique for feature selection. 

The SA position was established through selecting or 

removing features, represented by binary vectors where ‘1’ 

indicates the selection of a feature related to the SA position, 

and ‘0’ indicates non-selection. Feature selection procedures 

aim to optimize classification accuracy while reducing the 

total count of features. The BSCSO method considered these 

two aims throughout its dynamic search to identify the best 

suitable conjunction of features for the applications. The 

binary SCSO employed a Fitness Function (FF) to determine 

the agent’s positions using Equation (13): 

𝐹𝐹 = 𝛼 ∗ 𝐸𝑅 + 𝛽
|𝑆|

|𝐶|
     (13) 

The error rate, 𝐸𝑅 has been defined as the proportion of 

incorrectly classified instances to the total count of 

occurrences. 𝑆 represented the size of the feature subset, 𝐶 

denoted the overall count of features, and 𝛽 indicated the 

count of samples that were misclassified. The variables 𝛼 and 

𝛽 were the vectors of weights for assessing the significance of 

the accuracy of classification and size of features [32]. 

A total of 15 optimal features have been selected from the 

CIC-IoT-2023 dataset using the BSCSO approach. The 

features selected are Duration, flow_duration, Protocol_Type, 

Header_Length, Srate, fin_count, urg_count, syn_count, 

HTTPS, rst_count, Min, IAT, Tot size, Weight, and 

Covariance. From the BoT-IoT dataset, a total of 13 features 

have been selected using the BSCSO technique. The selected 

features are Stime, saddr, daddr, ltime, dbytes, Rate, Srate, 

Drate, TnP_PerProto, AR_P_Proto_p_SrcIP, 

AR_P_Proto_p_DstIP, AR_P_Proto_p_Sport, and 

AR_P_Proto_p_Dport. 

 
Fig. 4 Flowchart of BSCSO 

3.5. STNN Attack Classification Model 

This research implements the STNN model to detect and 

classify intrusions [33]. The STNN model focuses on 

effectively addressing the non-linear input data transformation 

using Equation (14). By analyzing the transformer, the model 
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specifically constructs 𝛷 = [𝛷1, 𝛷2, …𝛷𝐿]
′, which serves as a 

smooth diffeomorphism mapping. 

[
 
 
 
 
 
 
 
 
𝛷 (

𝑥1
1

𝑥2
1

⋮
𝑥𝐷
1

)𝛷(

𝑥1
2

𝑥2
2

⋮
𝑥𝐷
2

)…

𝛷(

𝑥1
𝑀

𝑥2
𝑀

⋮
𝑥𝐷
𝑀

)

]
 
 
 
 
 
 
 
 

=

[
 
 
 
𝑦1

𝑦2

⋮
𝑦𝐿

𝑦2

𝑦3

⋮
𝑦𝐿+1

⋯
⋯
⋱
⋯

𝑦𝑀

𝑦𝑀+1

⋮
𝑦𝑀+𝐿−1]

 
 
 
  (14) 

Here, 𝐷 denotes the variable dimensions, 𝐿 signifies the 

embedding dimensions, and 𝑀 indicates the observed data 

steps. 

𝛷(𝑋𝑡 , �̅�𝑡) = 𝐷𝑒𝑐(𝐸𝑛𝑐(𝑋𝑡), �̅�𝑡) = �̂�𝑡 (15) 

The STNN model utilizes the data transformation 

equation alongside two distinct transformer units to provide 

multi-step-ahead prediction. According to the description 

given in Equation (15), one unit is the encoder, which 

simultaneously accepts the variables of 𝐷 dimensions at 𝑡(𝑋𝑡) 
time as input. Subsequently, the encoder derives pertinent 

spatial data from the input data. The pertinent spatial data is 

thereafter transmitted to the decoder. The decoder receives an 

𝐿 − 1 length data from the objective variable 𝑌(�̅�𝑡). Then, the 

decoder retrieves the temporal data of the objective variable. 

The decoder forecasts the eventual values of the objective 

variable (�̂�𝑡) by integrating the spatial data of the input data 

(𝑋𝑡) with the temporal data of the objective variable (�̅�𝑡). 
Observe that 𝑦 in 𝑌 constitutes a single variable within the 

observed variables 𝑋. The variable 𝛷 in Equation (15) differs 

from that in Equation (14) because of �̅�𝑡; nonetheless, 𝛷 can 

be represented in a comparable manner by a suitable 

mathematical formulation. The encoder-decoder pair 

effectively resolves the nonlinear spatial data transformation 

𝛷. �̅�𝑡 = (0, 𝑦𝑡 , 𝑦𝑡+1, … , 𝑦𝑡+𝐿−2) constitutes an L-dimensional 

time series, created by substituting the initial dimensions of 

𝑌𝑡−1 = (𝑦𝑡−1, 𝑦𝑡 , … , 𝑦𝑡+𝐿−2)′ With 0. Hence, the link 

between the variables of the prediction is preserved.  

3.5.1. Encoder 

The encoder consists of two layers. One component is a 

Fully Connected (FC) layer, while another is a Continuous 

Spatially Self-Attention (CSSA) layer. This CSSA layer was 

utilized for obtaining pertinent spatial data from the highly 

dimensional variable inputs. 𝑋𝑡. The FC layer is utilized to 

derive an effective representation by normalizing the highly 

dimensional input variables. 𝑋𝑡 And mitigating noise, 

constituting a forward propagating network defined by 

Equation (16). 

𝑋𝐹𝐹𝑁𝑁
𝑡 = 𝑅𝑒𝐿𝑈(𝑊𝐹𝐹𝑁𝑁𝑋

𝑡 + 𝑏𝐹𝐹𝑁𝑁) (16) 

In this context, FFFN denotes a feedforward neural 

network, 𝑊𝐹𝐹𝑁𝑁  represents the coefficient matrix, 𝑏𝐹𝐹𝑁𝑁 

signifies the bias, and ReLU refers to the function of 

activation. The continuous spatially self-attention layer 

utilizes 𝑋𝐹𝐹𝑁𝑁
𝑡  As its input, the self-attention layer 

simultaneously processes high-dimensional variables, 

enabling the encoder to obtain spatial data from the input. To 

acquire efficient spatial data (𝑆�́�𝐴𝑡)A Continuous Attention 

Mechanism (CAM) was utilized for the Spatial Self-Attention 

(SSA) layer, in contrast to the traditional discrete probability-

based attention method. Initially, three training weight matrix 

structures, such as 𝑊𝐸
𝑄

, 𝑊𝐸
𝐾 , and 𝑊𝐸

𝑉  These were generated 

for the continuous SSA layer in the CAM. Equation (17) 

calculates the query matrix (𝑄𝐸
𝑡 ), key matrix (𝐾𝐸

𝑡), and value 

matrix (𝑉𝐸
𝑡) for the continuous SSA layer through the 

multiplication of the output 𝑋𝐹𝐹𝑁𝑁
𝑡  of the FC layer by all three 

of the previous weight matrices at each time step 𝑡. 

{

𝑄𝐸
𝑡 = 𝑋𝐹𝐹𝑁𝑁

𝑡 𝑊𝐸
𝑄

𝐾𝐸
𝑡 = 𝑋𝐹𝐹𝑁𝑁

𝑡 𝑊𝐸
𝐾

𝑉𝐸
𝑡 = 𝑋𝐹𝐹𝑁𝑁

𝑡 𝑊𝐸
𝑉

 (17) 

Equation (18) performs the matrix dot product to derive 

an equation for efficient spatial data. (𝑆�́�𝐴𝑡) for the given 

input variables 𝑋𝑡. 

𝑆�́�𝐴𝑡 = exp (
1

√𝑑𝐸
∙ 𝑄𝐸

𝑡 ∙ 𝐾𝐸
𝑡′) ∙ 𝑉𝐸

𝑡 (18) 

Here, 𝑑𝐸 denotes the dimension of the 𝑄𝐸
𝑡 , 𝐾𝐸

𝑡 , and 𝑉𝐸
𝑡. 

The CAM ensures a seamless transfer of data for the encoder. 

The normalized representation of actual spatial data (𝑆𝑆𝐴𝑡) 
was calculated utilizing residual connection and layer 

normalization (Equation (19)), which mitigates gradient 

vanishing and enhances model speed of convergence. 

𝑆𝑆𝐴𝑡 = 𝑁𝑜𝑟𝑚(𝑋𝐹𝐹𝑁𝑁
𝑡 + 𝑆�́�𝐴𝑡)  (19) 

3.5.2. Decoder 

The decoder integrates efficient temporal and spatial 

evolution data and comprises dual FC layers: Continuous 

Temporal Self-Attention (CTSA) and Transformation 

Attention (TA) layers. The derivation of the efficient 

expression (�̅�𝐹𝐹𝑁𝑁
𝑡 ) is obtained subsequent to the noise 

filtration of the input data (�̅�𝑡) via an FC layer. Subsequently, 

the output (�̅�𝐹𝐹𝑁𝑁
𝑡 ) is transmitted to the CTSA layer. The 

CTSA layer concentrates on the previous temporal evolution 

data across several time steps of the target variable (�̅�𝑡). The 

irreversible impact on time necessitates that the present 

condition of the time series be determined utilizing previous 

data rather than next data. The CTSA layer employs a masked 

attention method to exclude future data. The comprehensive 

technique is outlined as follows. 



S. Ravishankar & P. Kanmani / IJEEE, 12(7), 312-330, 2025 

 

323 

Initially, three training weight matrices: 𝑊𝐷
𝑄

, 𝑊𝐷
𝐾 , and 

𝑊𝐷
𝑉 They were created for the Temporally Spatial Self-

Attention (TSSA) layer. In addition, Equation (20) calculates 

the query matrix (𝑄𝐷
𝑡 ), key matrix (𝐾𝐷

𝑡 ), and value matrix (𝑉𝐸
𝑡) 

for the TSSA layer.  

{

𝑄𝐷
𝑡 = �̅�𝐹𝐹𝑁𝑁

𝑡 𝑊𝐷
𝑄

𝐾𝐷
𝑡 = �̅�𝐹𝐹𝑁𝑁

𝑡 𝑊𝐷
𝐾

𝑉𝐷
𝑡 = �̅�𝐹𝐹𝑁𝑁

𝑡 𝑊𝐷
𝑉

 (20) 

Furthermore, Equation (21) performs the matrix dot 

product to derive the equation for the temporal data (𝑇�́�𝐴𝑡) 
concerning the variable of input (�̅�𝑡). 

𝑇�́�𝐴𝑡 = exp (
1

√𝑑𝐷
∙ 𝑄𝐷

𝑡 ∙ 𝐾𝐷
𝑡 ′ ∙ 𝑀𝑎𝑠𝑘) ∙ 𝑉𝐷

𝑡   (21) 

Here, 𝑑𝐷 denotes the size of the 𝑄𝐷
𝑡 , 𝐾𝐷

𝑡 , and 𝑉𝐸
𝑡 Inside the 

TSSA layer. Furthermore, Equation (22) was utilized to 

characterize the mask matrix with a 𝑑𝑀 Dimension. 

𝑀𝑎𝑠𝑘 =

[
 
 
 
 
1 0 0 ⋯ 0
1 1 0 ⋯ 0
1 1 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ 0
1 1 ⋯ 1 1]

 
 
 
 

 (22) 

In Equation (22), assigning 0 in the mask matrix 

prevented every position from attending to subsequent 

positions, preserving the past temporal evolution data 

associated with the objective variable. The normalized 

representation of the Temporal Evolution Information (𝑇𝑆𝐴𝑡) 
in Equation (23) was calculated utilizing normalization and 

residual connection layer. 

𝑇𝑆𝐴𝑡 = 𝑁𝑜𝑟𝑚(𝑌𝐹𝐹𝑁𝑁
𝑡 + 𝑇�́�𝐴𝑡)  (23) 

Additionally, the CTSA layer integrates the efficient 

spatial data (𝑆𝑆𝐴𝑡) and the Temporal Evolution Data (𝑇𝑆𝐴𝑡) 
to forecast the future values of the objective variable (�́�𝐴𝑡) as 

delineated in Equation (24). The variable 𝑑𝑆𝑆𝐴𝑡  denotes the 

size of 𝑆𝑆𝐴𝑡. 

�́�𝐴𝑡 =
1

√𝑑𝑆𝑆𝐴𝑡

𝑇𝑆𝐴𝑡 ∙ 𝑆𝑆𝐴𝑡′ ∙ 𝑆𝑆𝐴𝑡  (24) 

Finally, the 𝑇𝐴𝑡 is incorporated into the residual 

connection, applied the normalization layer, and arranged an 

FC layer appropriately to calculate the L-dimensional 

predictive result �̂�𝑡. 

{
𝑇𝐴𝑡 = 𝑁𝑜𝑟𝑚(𝑇𝑆𝐴𝑡 + �́�𝐴𝑡)

�̂�𝑡 = 𝑅𝑒𝐿𝑈(𝑊 ∙ 𝑇𝐴𝑡 + 𝑏)
  (25) 

Here in Equation (25), 𝑊 represents the coefficient 

matrix and 𝑏 denotes the bias. The STNN model establishes 

the objective function in Equation (26) to reduce the loss. 

min 𝜀 = ∑ ‖�̂�𝑡 − 𝑌𝑡‖
2

2
+ 𝜆‖𝑊‖2

2𝑀−𝐿+1
𝑡=1   (26) 

Here, 𝑀 denotes the time-series steps observed, 𝐿 

signifies the predetermined window size, and �̂�𝑡 and 𝑌𝑡 
Indicate the anticipated and actual values of a target variable 

accordingly. ‖∙‖2
2 Denotes the Frobenius norm, 𝜆 regulates the 

significance of the penalty, and 𝑊 represents the STNN’s 

parameter space [34]. The pseudocode of the developed IDS 

model is presented below. 

Input: Raw IoT datasets (CIC-IoT-2023, BoT-IoT) 

Output: Intrusion classification 

Initialization 

   Load CIC-IoT-2023 and BoT-IoT datasets into Spark 

DataFrames. 

   Merge and clean datasets. 

   Apply Label Encoding to categorical features. 

   Normalize numerical features using Normalization. 

   Apply SMOTE to balance the dataset for class imbalance. 

   Initialize population of sand cats with binary feature vectors. 

   For each iteration: 

       Evaluate fitness function. 

       Update positions using BSCSO position update rules. 

       Apply binary thresholding to get a feature selection mask. 

   Select the optimal feature subset with the highest fitness. 

   Split the selected feature dataset into training and testing 

sets. 

   Initialize the STNN model with encoder-decoder attention 

blocks. 

   Feed training data (features with temporal ordering 

preserved). 

   Train using backpropagation and optimization (e.g., Adam). 

   Validate the model on test data. 

   Predict test labels using the trained STNN. 

End 

Table 4. Hyperparameter Tuning of the Model 

Model Hyperparameter Value 

BSCSO 

Population Size 30 

Maximum Iterations 50 

Sand Movement Coefficient (α) 1.5 

Threshold for Binary Conversion 0.5 

STNN 

Input Sequence Length 50 

Embedding Dimension 128 

Number of Attention Heads 4 

Number of Transformer Blocks 3 

Learning Rate 0.001 

Dropout Rate 0.2 

Epochs 50 

Batch Size 64 

Optimizer Adam 
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Table 4 shows the hyperparameter values set for the 

developed research model. The hyperparameter tuning 

ensures effective learning and model convergence while 

minimizing overfitting and optimizing computational 

efficiency for BD in Spark-based environments. 

4. Experimentation Analysis 
4.1. Experiment Setup 

This section highlights the experiments conducted on the 

extensive CIC-IoT-2023 and BoT-IoT datasets. The study 

employed the PySpark tool, which facilitates programming 

with Python on the Apache Spark BD platform within the 

Google Colab environment. The proposed system is 

implemented using PySpark. It is a library that connects 

Python with Apache Spark. All testing was conducted on 

Windows 10 64-bit, utilizing a Core i7 processor operating at 

2.70GHz, 16 GB of RAM, and the programming language, 

Python. The dataset is divided into testing and training halves 

of 20% and 80%, respectively. 

4.2. Result Metrics 

The research assessed the efficiency of the BSCSO-

STNN model developed for binary and multiclass 

classifications. Accuracy, Precision, Detection Rate, and F1-

score parameters were computed to assess performance. The 

following are the formulas of these parameters presented in 

Equations (27) to (30). In these equations, TP-True Positive is 

the count of properly classified samples that are positive. TN-

True Negative is the count of properly classified samples that 

were negative. FP-False Positive is the count of erroneously 

identified samples that were negative as positive. And FN-

False Negative is the count of erroneously classified samples 

that were positive as negative. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (27) 

Accuracy evaluates the model's entire capacity to 

categorize outcomes, accurately providing a comprehensive 

performance assessment. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (28) 

Precision assesses the dependability of positive prediction 

and aims to reduce the FPs. This metric is especially critical 

in IDS to prevent redundant false alarms, which could degrade 

the effectiveness of the system. 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (29) 

The detection rate, or recall, evaluates the BSCSO-

STNN's ability to detect true intrusions. The DR with higher 

recall values is necessary to minimize missed detections and 

provide a resilient system efficient at thoroughly detecting 

attacks. 

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (30) 

The F1-score is a harmonic average of recall and 

precision. It represents a balanced assessment of the 

classifier’s total efficacy, which focuses on its capacity to 

uphold efficiency and accuracy. A high F1-score signifies the 

model's efficiency in attaining an ideal balance between recall 

and precision [11-25]. 

4.3. Performance Evaluation 

This performance evaluation section discusses the results 

of the developed BSCSO-STNN model. The results are 

computed for both binary and multiclass classification on 

CIC-IDS-2023 and BoT-IoT datasets. The results are 

computed and discussed individually for both datasets in the 

following. 

Table 5. Binary classification results on the CIC-IoT dataset 

Metric (%) Training Testing 

Accuracy 99.78 99.46 

Detection Rate 99.62 99.38 

Precision 99.75 99.41 

F1-score 99.60 99.37 

 

 
Fig. 5 Graphical illustration of BSCSO-STNN model’s binary classification on CIC-IoT-23 dataset 
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Table 5 presents the results of the BSCSO-STNN model 

in classifying attacks from the CIC-IoT dataset based on 

binary classification. Using the selected optimal features using 

the BSCSO technique, the STNN model performed the 

classification with the best results. The developed model 

attained 99.78% accuracy in training and 99.46% in test data. 

The difference between the training and test accuracy is 

0.32%. The BSCSO-STNN model achieved a 99.62% 

detection rate in training and 99.38% in testing. The difference 

between the training and test detection rate is 0.24%.  

The precision score of the developed model is 99.75% in 

training and 99.41% in testing. The difference between the 

training and test precision score is 0.34%. The F1-score of the 

research model is 99.60% in training and 99.37% in testing. 

The difference between the training and test F1-score is 

0.23%. Based on these obtained results, the BSCSO model 

demonstrated an effective and accurate performance in 

detecting attacks from the CIC-IoT-23 dataset based on binary 

classification. Figure 5 illustrates the graphical chart of the 

developed BSCSO-STNN model’s binary classification 

results evaluated using the CIC-IoT-23 dataset. Table 6 

presents the results of the BSCSO-STNN model in classifying 

attacks from the BoT-IoT dataset based on the binary 

classification. Upon selecting the best thirteen optimal 

features from the dataset using BSCSO, the STNN model 

classified the data based on whether the attack was present or 

not. The developed model attained 99.83% accuracy in 

training and 99.52% in test data. The difference between the 

training and test accuracy is 0.31%. The BSCSO-STNN 

model achieved a 99.75% detection rate in training and 

99.39% in testing. The difference between the training and test 

detection rate is 0.36%. The precision score of the developed 

model is 99.80% in training and 99.48% in testing. The 

difference between the training and test precision score is 

0.32%. The F1-score of the research model is 99.68% in 

training and 99.46% in testing. The difference between the 

training and test F1-score is 0.22%. The BSCSO-STNN model 

has performed consistently on all the parameters. According 

to these attained results, the BSCSO model demonstrated an 

effective and accurate performance in detecting attacks from 

the BoT-IoT dataset based on binary classification. Figure 6 

depicts the graphical chart of the proposed BSCSO-STNN 

model’s binary classification results evaluated using the BoT-

IoT dataset. 

Table 6. Binary classification results on the BoT-IoT dataset 

Metric (%) Training Testing 

Accuracy 99.83 99.52 

Detection Rate 99.75 99.39 

Precision 99.80 99.48 

F1-score 99.68 99.46 

 

Fig. 6 Graphical illustration of BSCSO-STNN model’s binary classification on BoT-IoT dataset 

Table 7. Multiclass classification results on CIC-IoT-23 dataset 

Classes Accuracy DR Precision F1-score 

Benign 99.53 99.59 99.38 99.48 

DDoS 99.27 99.04 99.59 99.29 

Brute Force 98.95 98.71 98.84 98.78 

Spoofing 98.61 98.30 98.37 98.21 

DoS 99.02 98.96 99.06 98.89 

Recon 99.10 98.98 98.87 98.93 

Web-based 98.78 98.50 98.77 98.69 

Mirai 99.35 99.16 99.28 99.22 

Average 99.08 98.78 99.02 98.94 
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Table 7 presents the multiclass classification of the 

developed BSCSO-STNN when evaluating the CIC-IoT-23 

data set. This research has performed multiclass classification 

on all the attack classes present in the dataset. A total of eight 

classes are classified, which include seven attack classes and 

one benign class. The BSCSO-STNN model has attained 

higher results on the benign or normal class. The model 

achieved an accuracy in the range from 98.61% to 99.53%. 

The accuracy score of the model for classes like benign, 

DDoS, DoS, Recon, and Mirai have reached over 99%.  

The accuracy score on other classes, like brute Force, 

spoofing, and web-based, is in the range of over 98%. In this 

dataset, the DDoS, DoS, and Mirai are the dominant classes, 

where the research model has attained the best accuracy scores 

for these classes. The average accuracy is computed as 

99.08%. This highlights that the model has performed well in 

detecting attacks.  

The BSCSO-STNN model has obtained the detection rate 

in the range from 98.30% to 99.59%. The detection rate is 

superior for classes like benign, DDoS, DoS, and Mirai, with 

99%. The detection rate for the remaining classes is in the 

range of 98%. The average detection rate is computed as 

98.78%. The precision score of the developed model is 

attained in the range from 98.37% to 99.59%. The best 

precision score is obtained for classes like benign, DDoS, 

DoS, and Mirai in the range of 99%. For other classes, the 

precision is in the range of 98%. The average precision score 

was 99.02%. The research model has achieved an F1-score in 

the range from 98.21% to 99.48% for all the classes. The best 

F1 scores are attained for classes like benign, DDoS, and 

Mirai, which range from 99%. For the remaining classes, the 

model achieved an F1-score in the 98% range. The average f1-

score of the model was 98.94%. Figure 7 depicts the graphical 

chart of the proposed BSCSO-STNN model’s multiclass 

classification results evaluated using the CIC-IoT-23 dataset. 

Table 8 presents the multiclass classification of the developed 

BSCSO-STNN model for evaluating the BoT-IoT dataset. A 

total of nine classes are classified, which includes eight attack 

classes and one benign class. The BSCSO-STNN model has 

attained higher results on the benign or normal class. The 

model achieved an accuracy in the range from 98.85% to 

99.32%. The accuracy score of the model for classes like 

benign, DoS-HTTP, DoS-TCP, DDoS-HTTP, and DDoS-

TCP have reached over 99%. The accuracy score on other 

classes is in the range of over 98%. In this dataset, the DDoS 

and DoS are the dominant classes, where the research model 

has attained the best accuracy scores for these classes. The 

average accuracy is computed as 99.04%. 

 

Fig. 7 Graphical illustration of BSCSO-STNN model’s multiclass classification on CIC-IoT-23 dataset 

Table 8. Multiclass classification results on BoT-IoT dataset 

Classes Accuracy DR Precision F1-score 

Benign 99.32 99.19 99.25 99.23 

DoS-HTTP 99.19 99.03 99.10 99.08 

DoS-TCP 99.07 99.00 99.03 98.99 

DoS-UDP 98.85 98.77 98.82 98.80 

DDoS-HTTP 99.18 99.03 99.09 99.05 

DDoS-UDP 98.89 98.80 98.87 98.81 

DDoS-TCP 99.08 98.93 98.99 99.02 

OS FP 98.85 98.71 98.78 98.79 

Service Scan 98.96 98.80 98.82 98.81 

Average 99.04 98.81 98.97 98.95 
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Fig. 8 Graphical illustration of BSCSO-STNN model’s multiclass classification on BoT-IoT dataset 

This highlights that the model has performed well in 

detecting attacks. The BSCSO-STNN model has obtained the 

detection rate in the range from 98.71% to 99.19%. The 

detection rate is superior for classes like benign, DoS-HTTP, 

DoS-TCP, and DDoS-HTTP, with 99%. The detection rate for 

the remaining classes is in the range of 98%. The average 

detection rate is computed as 98.81%. The precision score of 

the developed model is attained in the range from 98.78% to 

99.25%. The best precision score is obtained for the classes 

like benign, DoS-HTTP, DoS-TCP, and DDoS-HTTP in the 

range of 99%. For other classes, the precision is in the range 

of 98%. The average precision score was 98.97%. The 

research model has achieved an F1-score in the range from 

98.79% to 99.23% for all the classes. The best F1 scores are 

attained for classes like benign, DoS-HTTP, and DDoS-

HTTP, which range from 99%. For the remaining classes, the 

model achieved an F1-score in the 98% range. The average f1-

score of the model was 98.95%. Figure 8 depicts the graphical 

chart of the proposed BSCSO-STNN model’s multiclass 

classification results evaluated using the BoT-IoT dataset. 

Table 9. Performance comparison with current models 

Models Accuracy Detection Rate Precision F1-score 

ML-ANN [12] 98.87 98.46 98.97 98.80 

LSTM [13] 96.11 NA NA NA 

LR [15] 96.52 94.38 94.02 94.20 

NB [15] 95.85 94.21 92.11 93.15 

SVM [15] 97.36 94.02 97.08 95.53 

CNN-LSTM [16] 99.00 NA NA NA 

CNN-RNN [17] 96.10 96.30 95.80 95.80 

LVW-MECO [18] 95.10 95.32 95.98 NA 

PPSLOA-HDBDE [19] 98.89 96.64 96.43 96.53 

CNN [22] 97.81 98.00 98.00 98.00 

XGB [25] 98.89 98.12 96.70 97.41 

Proposed Model (CIC-IoT) 99.08 98.78 99.02 98.94 

Proposed Model (BoT-IoT) 99.04 98.81 98.97 98.95 

Table 9 presents the proposed BSCSO-STNN model’s 

average multiclass classification results with the current 

models discussed in the related works section. Both the 

average results of the model’s multiclass classification 

performance were applied for this comparison. The research 

model has the average scores in the CIC-IoT-23 dataset with 

99.08% accuracy, 98.78% detection rate, 99.02% precision, 

and 98.94% F1-score. For the BoT-IoT dataset, the model 

attained 99.04% accuracy, 98.81% detection rate, 98.87% 

precision, and 98.95% F1-score. The proposed model has the 

best accuracy of 99.08%, which is 0.21% to 3.98% higher than 

the compared models in this research. The CNN-LSTM model 

performs very closely to the developed model with 99% 

accuracy. Models like ML-ANN, PPSLOA-HDBDE, and 

XGB have close accuracy scores of 98.87% and 98.89%. The 

least performed model was LVW-MECO with 95.10%. The 

best detection rate of the BSCSO-STNN model was 98.81, 

which is 0.35% to 4.79%, which is an improvement over the 

current models. The models like XGB, CNN, and ML-ANN 

have achieved a detection rate in the range of 98%, which is 

closer to the proposed model’s detection rate. The least 

performed model was SVM with a 94.02% detection rate. The 
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BSCSO-STNN model has its best precision score of 99.02%, 

which is 0.15% to 6.91% higher than the current models in this 

comparison. The ML-ANN and CNN models have attained 

precision scores of 98.97% and 98%, which are closer to the 

results of the proposed model. The least performed model was 

NB with 92.11%. The best f1-score of the model was 98.95%, 

which is 0.15% to 5.8% higher than the compared models. 

The ML-ANN model has the closest range of f1-score 

with 98.80%, and the next best was CNN with 98%. The least 

performed model was NB with 93.15%. Figure 9 depicts the 

comparison of the results in a graphical chart. Overall, the 

developed BSCSO-STNN model has outperformed the other 

current models based on the obtained multiclass classification 

performance. It is highly applicable to the task of performing 

intrusion detection in BD applications. 

 
Fig. 9 Graphical illustration of results comparison 

This BSCSO-STNN model has many advantages, 

including its integration of BSCSO for selecting the best 

optimal features and implementing STNN for classification.  

The BSCSO model effectively minimizes the 

dimensionality and improves the associated feature selection. 

This efficient feature selection process results in improved 

classification performance. The STNN model’s higher 

accuracy and detection rate over multiple attack classes are 

also significant.  

The BSCSO-STNN model’s adaptability with the APS 

framework enables the model to handle large datasets and 

perform efficient processing. However, the model has its own 

limitations. The STNN has higher computational complexity 

due to the transformer architecture. Moreover, the duration of 

training is longer than that of the few current models. 

5. Conclusion 
This research developed an IDS model named BSCSO-

STNN for detecting and classifying intrusions in a BD 

framework. The model was developed by integrating the 

BSCSO technique with STNN. The model was designed to 

perform intrusion detection based on data collection, 

preprocessing, feature selection, and classification. The CIC-

IoT-23 and Bot-IoT datasets were collected and applied to this 

model for training and evaluation. The developed BSCSO-

STNN model was deployed in an APS framework. The 

datasets were initially preprocessed in this framework with 

data cleaning, oversampling, label encoding, and 

normalization. After preprocessing, the data was applied to the 

BSCSO for feature selection. Based on the BSCSO’s fitness 

values, the technique individually selected the optimal 

features from both datasets. Using the selected features, the 

STNN model performed the classification for both datasets. 

The STNN model was effective in capturing temporal and 

spatial patterns, which were helpful in this research to detect 

the network attack patterns for detecting intrusions.  

Finally, the classification’s performance on binary and 

multiclass classification was assessed using the performance 

indicators. The BSCSO-STNN model attained 99.08% 

accuracy, 98.78% detection rate, 99.02% precision, and 

98.94% F1-score using the CIC-IoT-23 dataset. The model 

attained 99.04% accuracy, 98.81% detection rate, 98.97% 

precision, and 98.95% F1-score for the BoT-IoT dataset in 

multiclass classification. The developed model outperformed 

all the current models in this research and demonstrated its 

accuracy in detecting intrusions. In future, the research will 

focus on improving the model by integrating continual 
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learning methods for handling multiple intrusions and 

unknown attacks. Additionally, the limitations of the model, 

like computational complexity and training Duration, will be 

effectively reduced by applying a lightweight transformer 

model. Furthermore, the research will be evaluated by 

applying recent datasets and real-time network traffic to 

increase the model’s generalization. 
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