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Abstract - This article presents an innovative monitoring and prediction system for the conditions of Hass avocado crops, aiming 

to manage resources better and achieve greater productivity. It is designed to address the technological limitations of Peruvian 

agriculture. The project focused on integrating sensors that collect a large amount of environmental data, including temperature, 

humidity, pressure, light, soil moisture, and rain/snow, which are processed in real time on an ESP32 microcontroller. A dataset 

of 900 instances was used; the system was categorized into three groups: "Requires Attention," "Optimal," and "Critical Range." 

A historical and georeferenced database was used; the Support Vector Machine (SVM) model identified temporal and spatial 

patterns, providing key perspectives for optimal irrigation schedules and the long-term effects of weather on plant health. By 

having an SVM model with a linear kernel, the system achieved an accuracy of 97.78%. The robustness of the model allows for 

identifying crop conditions, highlighting the transformative potential of machine learning in Peruvian agriculture, in addition to 

contributing to smarter agricultural practices. 
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1. Introduction  
Hass avocado (Persea americana) is currently the most 

important avocado variety worldwide, dominating nearly 80% 

of the international market due to its resistance, flavor, 

versatility, and postharvest quality [1]. According to Comisión 

de Promoción del Perú para la Exportación y el Turismo 

(Commission for the Promotion of Peru for Exports and 

Tourism), global avocado consumption is growing at a rate of 

5% annually, highlighting its high nutritional value due to its 

significant content of proteins, healthy vegetable oils, and 

antioxidant properties. However, climatic anomalies such as 

the "El Niño" phenomenon cause an average reduction of 20% 

in fruit size, which negatively impacts both the harvested 

volumes and the quantities destined for export [2]. Despite this 

adverse context, Peru's dynamism and competitive potential 

have positioned it as the second-largest avocado exporter in 

the world in 2020, only behind Mexico (which accounts for 

approximately 50% of global exports), with the regions of 

Lima, La Libertad, and Ica leading the country's exports [1]. 

In 2023, exports reached 570,000 metric tons, reflecting a 3% 

growth compared to 2022. However, this growth did not reach 

the initially projected 12.5%, which was later revised to 8% 

[2]. While expansion into new cultivation areas in the 

highlands aims to mitigate these risks, progress has been slow, 

and significant structural limitations persist in the agricultural 

innovation system. According to [3], the Comisión Técnica 

Regional de Innovación Agraria (Regional Technical 

Commission for Agricultural Innovation) identifies producers' 

low level of technological adoption as the main obstacle. 

Among the causes cited are the sector's high socioeconomic 

vulnerability, weak institutional coordination, limitations in 

research and development, reduced technology transfer, poor 

digitalization, and the lack of a clear identification of 

agricultural demands. Therefore, one of its priorities is to 

develop strategies for efficient crop management. Projections 

for 2024 showed a lower fruit yield per tree, with final quality 

and size still largely depending on climatic factors [2]. 

Nevertheless, the increase in exportable supply should not be 

based solely on the expansion of planted areas, but rather on 

continuous improvement in yield per hectare through the 

optimization of technical management of this crop and the 

analysis of production seasonality, so that opportunities 

arising when other countries, such as Mexico, reduce their 

supply can be exploited to cover counter-seasonal market 

niches. The integration of technologies such as machine 

learning significantly drives agricultural management, 

optimizing resource utilization. Likewise, Peru is not the only 

country seeking technological innovations for the agricultural 

sector. Data shows that agriculture represents between 65% 

and 70% of India’s economy, therefore, studies [4, 5] have 

been conducted, which highlight those annual losses in 

agricultural production can reach up to 19% due to factors 

such as climate and the weak implementation of adequate 

technologies such as the use of Internet of Things (IoT) and 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Antero Castro et al. / IJEEE, 12(8), 1-10, 2025 

 

2 

machine learning. For this reason, it is important to analyze 

studies that address this type of implementation. In [6], the 

Random Forest algorithm achieved 99% accuracy in 

predicting suitable crops for specific terrains, while YOLO 

techniques have reached 34.83% accuracy in detecting the 

ripeness of cocoa pods [7]. These innovations align with the 

sustainable development goals by minimizing waste and 

maximizing productivity [8, 9]. 

In [10], the usefulness of IoT devices in collecting data on 

pH, humidity, and nutrients has been demonstrated, enabling 

informed decision-making to optimize nutrient absorption and 

reduce environmental impact. Monitoring soil fertility and 

water quality is essential for healthy crop growth. Machine 

learning algorithms such as SVM have proven particularly 

effective, achieving 99% accuracy in predicting the most 

suitable crops to plant [11]. On the other hand, techniques such 

as K-Nearest Neighbors (KNN) have shown 98.3% accuracy 

in predicting irrigation needs, optimizing water usage [12]. 

Similarly, drip irrigation systems have increased crop yield by 

up to 157% while reducing water consumption by 13.89% in 

avocado plantations [13]. Additionally, the implementation of 

automatic weather stations run by ESP32 microcontrollers, 

through continuous monitoring of environmental variables 

such as temperature and humidity, has achieved a 98% 

acceptance rate in cloud data transmission, which promotes 

sustainability through better decision-making [14-18]. 

The use of techniques such as KNN has proven to be 

economically viable in precision agriculture, optimizing water 

use and improving yield through recommendations on the type 

of crop according to the soil. For their part, SVM models have 

achieved an accuracy of up to 98.34% in disease detection, 

which suggests their potential in monitoring Hass avocado to 

improve plant health and profitability. Although CNNs can 

offer similar performance, they usually require more 

resources; in contrast, SVMs represent an efficient and 

practical alternative [19-22]. In [23], the implementation of 

SVM is reviewed, which has proven to be highly effective, 

achieving accuracy rates of up to 98.01% in the identification 

of crop diseases. Likewise, it is estimated that these diseases 

could cause yield losses of around 13%. Monitoring 

parameters such as temperature, humidity, and pH in 

hydroponic systems allows resource optimization and proper 

plant growth [24]. In addition, implementing low-cost 

automatic weather stations proves to be effective in real-time 

atmospheric data collection, supporting better decision-

making in crop management [25]. Traditional methods lack 

precision and efficiency, which is why machine learning 

systems allow real-time monitoring, providing accurate 

recommendations for fertilization and crop management [5, 

16]. These technologies promote the transition toward more 

sustainable agriculture, facilitating the efficient control of 

variables such as soil moisture, temperature, and nutrient 

levels [10]. Deep Learning (DL) and Machine Learning (ML) 

provide solutions by processing large volumes of data, 

allowing precise classification and prediction. Among these, 

SVMs stand out in binary and multiclass classification [26]. 

Despite these advances, establishing smart technologies 

introduces challenges in practices that protect digital data 

against unauthorized access, loss, corruption, or theft. As more 

IoT devices integrate into agricultural systems, ensuring data 

security becomes essential [24]. In [25], the use of the SD bus 

in 4-bit mode resulted in higher transfer rates and significantly 

lower power consumption, which translated into lower battery 

drain during write operations, despite the higher current flow. 

Likewise, the temperature monitoring system developed in 

[26] demonstrated that ESP technology with a 20,000 mAh 

battery makes it possible to operate for approximately one 

month with the deep sleep function between data transmission 

intervals. 

Low-cost machine learning technologies have 

transformed traditional agricultural environments into semi-

controlled systems. In [27], DHT22 sensors were used to 

measure temperature and humidity, and industrial-grade 

instruments were used for actuator management with the 

objective of preserving an adequate environment for the crop 

under study using control logic governed by the ESP32. 

Although projections suggest a decrease in the yield of 

agricultural production, the integration of advanced 

technologies such as machine learning is presented as a 

promising solution, since it not only optimizes resource use 

but also enables precise monitoring of critical parameters such 

as temperature and humidity, which are essential for avocado 

growth. 

The implementation of machine learning models, such as 

SVM and KNN, has demonstrated their effectiveness in 

disease detection and irrigation optimization, offering a path 

toward more sustainable and productive agriculture. 

Therefore, it is necessary to apply solutions that improve the 

resilience of Hass avocado production against adverse 

climatic conditions, while promoting more efficient and 

sustainable agriculture. Conventional methods, which rely 

primarily on manual observations and data recording, are 

imprecise and cannot provide real-time information. In 

addition, they lack the capacity to process large volumes of 

data from various sources, such as climate conditions, 

humidity, temperature, and soil parameters. Therefore, they 

are insufficient to address the growing challenges posed by 

climatic anomalies, increase the risk of errors, and reduce 

decision-making effectiveness. In this context, there is limited 

literature on real field implementations. Nevertheless, the 

developed project allows the generation of historical data 

records, which are analyzed to optimize real-time decision 

making, anticipate future conditions and improve agronomic 

planning. 

2. Methodology 
An agile development strategy was adopted to integrate 

SVM into an embedded system for monitoring Hass avocado 
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crop conditions. This strategy promotes constant iteration and 

the presentation of concrete results at each stage of 

development. Sensors were carefully selected and calibrated 

for precise measurements, and electronic circuits were 

designed for data collection and analysis. A software system 

was also developed to gather data and execute optimization 

algorithms. 

The previously mentioned methodology addresses the 

complexity of sustainable and technological agriculture in a 

practical and flexible way, which allows continuous 

development that adapts to changing needs, achieving 

effective results gradually. Based on the above, the 

development of a monitoring solution to contribute to 

agricultural development is described. Data acquisition and 

subsequent processing allow for the creation of models, 

describing these processes in the research and construction of 

the prototype based on the ESP32 microcontroller. Finally, 

results related to weather prediction and crop 

recommendations are described. 

2.1. Hardware  

2.1.1. Sensor Selection and Evaluation 

At this stage, sensors adapted for environmental 

monitoring in agricultural fields are used. Due to the need to 

capture information on heat and humidity perception, a 

DHT22 sensor is used, allowing efficient integration with the 

ESP32 microcontroller. Furthermore, it is necessary to acquire 

information on the existing light in the fields where, according 

to the literature review, the BH1750 digital sensor is widely 

used. This parameter is relevant because it allows inferring 

events related to crop photosynthesis. Furthermore, the 

BMP180 sensor complements the previous ones due to the 

need to perform validations on atmospheric pressure 

measurements. 

 
Fig. 1 Electronic circuit of the system 

Additionally, a sensor for rain/snow detects precipitation, 

allowing for real-time adjustments in irrigation strategies. The 

soil moisture sensor ensures adequate irrigation, preventing 

issues such as waterlogging or drought, which could 

compromise root health. Finally, as a complement, an 

Ultraviolet (UV) sensor is integrated to evaluate radiation 

exposure. The ESP32 microcontroller serves as the central 

unit for managing data acquisition from all sensors. Figure 1 

shows the electrical schematic of the environmental 

monitoring and data logging system. The system integrates 

analog and digital sensors that communicate via I2C and 

GPIO protocols to enable real-time data acquisition in 

agricultural environments. 

2.1.2. Sensor Calibration 

The reliability of environmental monitoring systems 

depends on sensor calibration using reference patterns suitable 

for agronomical applications. For the DHT22 temperature 

sensor, readings were adjusted using a thermocouple 

measured with a digital multimeter to provide a temperature 

reference. The sensor readings were compared with those 

obtained from the thermocouple under controlled conditions, 

and a correction factor was derived to adjust the sensor output. 

In the case of humidity, the gravimetric method was employed 

to adjust the DHT22 humidity sensor readings.  

The soil moisture was determined based on the mass loss 

of a previously weighed sample after being subjected to a 

controlled drying process. Subsequently, the results obtained 

were compared with the readings provided by the sensor, and 

the discrepancy between both values allowed for calibration 

adjustment. The BMP180 readings were adjusted by 

comparing their values with data from a local weather station. 

The atmospheric pressure values recorded by the BMP180 

were contrasted with the reference data, and an adjustment 

factor was applied to minimize discrepancies, with the 

objective of aligning the pressure measurements with 

recognized atmospheric information. 

For the light intensity measurements, the readings from 

the BH1750 were adjusted using a reference based on lux 

measures. Meanwhile, the humidity sensor readings were 

adjusted using a hygrometer, which had been previously 

calibrated through the salt saturation method. This procedure 

employed a saline solution in equilibrium with a known 

relative humidity level (75% RH using sodium chloride) to 

establish a stable humidity environment. 

2.2. Firmware 

 The control algorithm, written in C language for the 

ESP32, manages the real-time acquisition, visualization, and 

storage of data from multiple environmental sensors. The 

system utilizes sensors to measure air temperature and 

humidity (DHT22), atmospheric pressure (BMP180), light 

intensity (BH1750), soil moisture (capacitive sensor and 

hygrometer), UV radiation (GY-ML8511), and rain/snow 
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presence (FC-37). Together with the signal conditioning, 

processing, storage, and machine learning modules, these 

sensors are organized within a modular embedded 

architecture, as Figure 2 illustrates the end-to-end flow from 

data acquisition to intelligent prediction. Code execution 

begins with pin configuration and the initialization of 

communication interfaces (I2C and SPI). Data acquisition is 

performed at 1-second intervals, while structured logging to a 

microSD card in CSV format occurs every 15 minutes. 

Simultaneously, sensor values are alternately displayed on the 

OLED screen every 5 seconds and transmitted through the 

serial port to enable real-time monitoring. Data flow is 

managed using non-blocking timers to maintain system 

responsiveness. Multiple validation routines ensure proper 

initialization of all sensors and the microSD card. Moreover, 

error-handling mechanisms are embedded to detect 

disconnections or malfunctions, triggering automatic 

reconnection attempts when necessary. The system also 

allows safe microSD card ejection and reinsertion via serial 

monitor interaction, without interrupting program execution. 

 
Fig. 2 Block diagram of the control algorithm 

2.3. Machine Learning 

This section describes the methodological process 

followed for the development of the prediction system based 

on SVMs. It covers sensor data processing, including data 

loading, filtering, and normalization. Subsequently, the SVM 

model training process is explained, detailing the parameter 

configuration and the data partitioning strategy for validation.  

 
Fig. 3 Workflow of avocado crop monitoring and prediction system 
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The procedure for exporting the trained model into 

ESP32-compatible code and its integration into the 

microcontroller for real-time classification of monitored 

conditions is presented.  

The complete process, from environmental data 

acquisition to predictive analytics using machine learning, is 

outlined in the workflow shown in Figure 3. 

2.3.1. Data Acquisition 

A UV radiation index between 3 and 6 is ideal, ensuring 

sufficient illumination for efficient photosynthesis.  

However, indices above 7 are harmful, as they cause leaf 

and fruit burns. Wind conditions also play a significant role; 

while light winds promote proper ventilation, strong winds 

can lead to physical damage to trees, including fruit fall and 

structural damage.  

Another critical factor is the chloride concentration, 

which must be kept below 4 meq/L to prevent toxicity.  

Electrical Conductivity (EC) should also be maintained 

between 1.0 and 2.0 dS/m, as levels exceeding 2.5 dS/m hinder 

nutrient absorption due to excess soil salinity [28].

Table 1. Hass Avocado: productive range, dangerous ranges, and solutions

Parameter Optimal Range Critical Range Solution 

Temperature 
20°C to 25°C during the 

day, 10°C at night 

Less than -1.1°C and greater 

than 35°C 
 

Humidity 80% to 85% 
Less than 40% and above 85% 

continuously 

Irrigation and ventilation control, proper 

drainage 

pH 5.6 to 6.5 
Below 5: acidic 

Above 7: basic - alkaline 

Use agricultural lime (cal). Balanced 

fertilization 

Radiation UV index of 3 to 6 
Values above 7 

(High UV index) 

Paint the main branches and trunk with 

lime and agricultural Latex 

2.3.2. Data Reading and Storage 

The values collected by the embedded system are 

recorded and stored in a database using a microSD module. 

This module generates a “.csv” (Comma-Separated Values) 

file, selected for its simplicity and wide compatibility, 

ensuring the data remains accessible and easy to process. A 

database comprising 900 records was developed, with each 

entry representing sensor readings captured and stored at 15-

minute intervals, facilitating the monitoring and subsequent 

analysis of environmental conditions based on the reference 

values outlined in Table 1. Additionally, the system was 

planned to include timestamps in each record, which allows 

the temporal tracking of the recorded variables and contributes 

to data analysis techniques, such as trend identification and 

predictive modeling. 

2.3.3. Normalization and Standardization 

Due to the variability of the data ranges generated by the 

sensors used in the system, a normalization process is 

necessary. For example, temperature sensors vary by tens of 

degrees Celsius (from -20°C to 45°C), atmospheric pressures 

range from 900 to 1100 hPa, and humidity values range from 

35% to 100%. In the development of the models in this paper, 

the normalization process is applied to obtain data at the same 

scales, which is ideal for the training and prediction processes 

of the models, avoiding errors. 

2.3.4. Model Training and Validation 

The training process was performed using libraries and 

functions available in Python through the Scikit-learn 

libraries. In this case, when using a Support Vector Machine 

(SVM)-based algorithm, the training process used 

hyperparameters configured with values of C = 10 and gamma 

= 0.0001. Additionally, according to evaluations, the linear 

kernel was used, which was the most efficient for this dataset. 

The dataset was split for training and testing with cross-

validation, considering 80% for training and 20% for 

validation using the train_Test_split() function. A console 

interface was developed to enter values and obtain predictions 

as part of the evaluation process. In the Python console, the 

tabulated data was displayed according to the classification of 

the output variable. The successful processing of the database 

was evident, reflecting how the model correctly categorized 

instances based on the established criteria. An example 

prediction using live sensor input is shown in Figure 4, where 

the entered environmental conditions were classified as 

“Optimal”. 

 
Fig. 4 Model validation in Python 
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The model learned to generate an optimal decision 

boundary based on the input data during optimisation. 

However, since performance on the training data does not 

guarantee generalization, the next stage involves evaluation 

and analysis of the model’s performance.  

The integration of Support Vector Machines (SVM) with 

MicroMLGen was selected for deployment on the ESP32, 

addressing the need for predictive analysis on resource-

constrained hardware. SVMs are particularly well-suited for 

tasks requiring high classification accuracy, outperforming 

faster but slightly less precise methods such as k-NN or Naive 

Bayes [29]. 

2.3.5. Model Conversion and Adaptation 

To execute the predictive system on the ESP32, it is 

essential to transform the trained model into a format 

compatible with the microcontroller. Due to the memory and 

processing limitations of the ESP32, machine learning models 

in their original format can be unsuitable, as they require 

external libraries and floating-point calculations that increase 

computational load. For this reason, the C language 

representation is used, allowing the model to be integrated 

autonomously and efficiently into the embedded system. 

To perform the model conversion, it is necessary to 

transform the Python model into a format compatible with the 

ESP32 hardware using the micromlgen library. The model is 

exported to a file with a .h extension for import into the main 

program. The conversion result uses only native C++ 

functions, so there's no need to use external libraries.  

Furthermore, considering RAM and FLASH constraints, 

the library optimizes the generated code to adapt its operation 

to the microcontroller. Code optimization considers elements 

such as floating-point numbers, transforming them to integers, 

and optimizing computation time on the device. 

3. Results and Discussion  
3.1. Results 

The system successfully integrated the selected sensors 

with the ESP32 microcontroller. This validates its 

functionality for the development of an environmental 

measurement prototype. In this case, temperature and 

humidity sensors validated their use in low-power applications 

for battery-powered prototypes. Furthermore, soil temperature 

and humidity measurements provided direct information on 

the crop's status, enabling irrigation management in the event 

of anomalous events. The prototype demonstrated that it is 

possible to develop a solution with open-source hardware, 

tailored to specific field monitoring needs without the use of 

proprietary solutions, and considering IP65 environmental 

protection structures, ideal for outdoor conditions. As shown 

in Figure 5, this approach demonstrates the potential for 

applying low-cost, low-power technology to smart agriculture 

solutions. 

 
Fig. 5 Prototype developed 

The dataset used contained 900 instances, with eight 

features related to environmental conditions and one target 

variable labeled as 'quality', classified into three categories: 

Requires Attention, Optimal, and Critical Range. The data was 

split into 80% for training and 20% for testing.  

The SVM model was trained using a linear kernel. Table 

2 shows the reliable performance of the system with precision, 

recall, and F1-score above 95% in all classes according to the 

test sets, and a perfect performance (100%) in the 

classification of critical cases, demonstrating a robust 

capability to differentiate between agronomic conditions. 

Table 2. Classification report 

 Precision Recall F1-Score Support 

Critical 

Range 
1 1 1 46 

Optimal 0.95 0.95 0.95 37 

Requires 

Attention 
0.98 0.98 0.98 97 

This choice was the most effective as it simplified the 

model and improved its interpretability, given that the data 

was linearly separable. Linear kernels are typically faster to 

train and less computationally intensive, particularly when 

handling large datasets. Figure 6 shows the results of the k-

fold (k=5) cross-validation performed on the model, with an 

average accuracy of 96.94% and a standard deviation of 

0.0055, indicating that the model maintains consistent 

performance across different training and testing data subsets. 
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Fig. 6 Cross validation 

The confusion matrix illustrates how predictions are 

distributed across the classification categories. The values 

along the main diagonal represent the number of correct 

predictions, while the off-diagonal values indicate 

misclassification errors. As shown in Figure 7, the confusion 

matrix for the model highlights the distribution of predictions 

across the three categories, with correct classifications along 

the diagonal and misclassifications in the off-diagonal cells. 

The results obtained from the implementation of the SVM 

machine learning model demonstrated accurate prediction of 

crop conditions. This model, in addition to predicting crop 

quality, has potential applications for optimizing irrigation 

decisions and resource management in other scenarios, 

contributing to the sustainability and productivity of 

agricultural systems. 

 
Fig. 7 Confusion matrix 

Energy consumption tests conducted on the entire system, 

including the ESP32, sensors, and SD storage, showed an 

average current consumption between 80 mA and 120 mA 

during standard operation, highlighting its efficiency. With a 

3700 mAh battery, these results demonstrate the viability of 

this approach in continuous monitoring environments, where 

autonomy and energy efficiency are crucial for the successful 

implementation of the system. Regarding the system interface, 

it was observed that it allows for reading the necessary input 

variables for the model, such as temperature, humidity, and 

solar radiation levels. Figure 8 illustrates the hardware parts of 

the prototype, highlighting the key components that enable 

parameter input and data processing. After processing these 

values with the SVM algorithm, the system generates a 

categorized output indicating that the entered conditions meet 

the established criteria for optimal growth of Hass avocado 

crops. 

 
Fig. 8 Hardware parts of the prototype 

0.95

0.955

0.96

0.965

0.97

0.975

1 2 3 4 5

P
re

ci
si

o
n

Fold Number

Cross Validation

Precision per Fold Average precision



Antero Castro et al. / IJEEE, 12(8), 1-10, 2025 

 

8 

The high accuracy level (97.78%) suggests that the model 

is highly effective in identifying crop conditions based on 

sensor readings. In SVM, training does not occur in epochs; 

instead, the optimization process happens in a single step, as 

the model directly fits a hyperplane to the data. Based on the 

detected values, the low-cost embedded system predicts three 

crop condition states. 

3.2. Discussion 

Several studies have highlighted the efficiency of smart 

agriculture through machine learning, technologies that also 

form the foundation of this project. Regarding crop prediction, 

algorithms such as SVM have demonstrated 99% accuracy in 

selecting optimal crops [11], which is directly comparable to 

our approach for predicting agricultural conditions using 

resource-constrained hardware. However, the use of heavier 

frameworks such as TensorFlow on devices like the ESP32 

has proven inefficient due to its high energy consumption, 

reinforcing the decision to employ lighter and optimized 

models in this project [30]. Additionally, smart irrigation 

systems have improved crop yields by up to 157% [13], 

emphasizing the importance of accurate environmental 

variable monitoring, a key aspect of this research. Several 

technical challenges emerged during the implementation of 

the Hass avocado crop monitoring system. The connection of 

multiple sensors - including those for temperature, humidity, 

air and soil moisture, light, radiation, and pressure - caused a 

voltage drop, affecting their functionality. A voltage regulator 

powered by lithium batteries was integrated to resolve this, 

stabilizing the output at 3.3V. A further challenge associated 

with the microSD module pertained to issues with recognition, 

which were attributable to power instability when multiple 

components demanded energy concurrently. This is a critical 

challenge in low-power systems such as the ESP32. Compared 

with other studies that have utilized Support Vector Machines 

(SVMs) and random forest models on more advanced 

platforms, implementing models on low-resource hardware is 

subject to processing and energy constraints [6, 11]. 

Notwithstanding the limitations, the implementation of 

efficient algorithms and an energy-conscious design approach 

enabled the project to achieve its objectives. 

The SVM-based prediction system has facilitated precise 

forecasting of crop conditions, thereby providing early alerts 

to inform decision-making processes concerning irrigation 

and fertilization management. The device's portability and low 

power consumption make it well-suited for deployment in 

remote agricultural contexts, where optimized resource 

utilization is paramount. For system upgrades, remote 

monitoring via Bluetooth connectivity can be used. Long-term 

data analysis using big data-based processing tools can also be 

used to optimize decision-making. The literature indicates that 

electrochemical sensors, such as hydrogen potential (pH) or 

electrical conductivity, can be added in the case of sensors. 

These upgrades improve more precise control of resource use, 

resulting in sustainable agriculture if remote control steps are 

added to automated irrigation or climate control processes, 

considering the scalability of the solution. 

4. Conclusion 
The use of the ESP32 microcontroller demonstrated its 

low power consumption for this type of application when 

integrated with low-cost sensors. This validates its 

architecture for similar deployments, considering that it can be 

integrated with prediction models in the field of smart 

agriculture. Furthermore, when the SVM model was 

integrated, it was possible to predict crop status, optimising 

resource use related to irrigation or fertiliser application. 

The results showed an accuracy of 97.78% in predicting 

the condition of avocado crops, validating its efficiency with 

the hyperparameters selected during the training process. 

Furthermore, the integration of previous record history and the 

location of the readings taken allows for the identification of 

anomalous behavior and patterns of evolution in the 

monitored variables. All the information acquired contributes 

to decision-making regarding irrigation timing, predicting 

crop evolution based on long-term climate, and defining 

preventative crop interventions. The device demonstrated its 

low power consumption (using current measurements ranging 

from 80mA to 120mA), enabling its use in locations where 

conventional power is unavailable or where extended runtime 

is required. Furthermore, while integrating machine learning 

models into embedded devices requires code optimization, 

their use in environments close to the data source makes it a 

critical technique when low-latency prediction processes are 

required. 
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