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Abstract - This research proposes an advanced, data-driven framework to enhance power system security and operational 

reliability in the face of unforeseen faults and contingencies. A composite polynomial load model incorporating constant 

impedance (Z), constant current (I), and constant power (P) characteristics is employed to capture realistic load behavior under 

varying conditions. The methodology begins with modeling based on standard IEEE test systems, integrating this load model 

into power flow analysis using the Newton-Raphson algorithm. For contingency assessment, the focus is placed on single-line 

outage scenarios-critical events that may significantly impact system stability. A novel Hybrid Line Stability Ranking Index 

(HLSRI) is introduced to prioritise vulnerability, offering a more accurate ranking of transmission line criticality under stress 

conditions. Additionally, machine learning algorithms, including Gradient Boosting and Random Forest classifiers, are trained 

on system operational data to categorize the severity of line contingencies with high precision. To enhance control and stability, 

Flexible AC Transmission System (FACTS) devices such as the Unified Power Flow Controller (UPFC) and Interline Power 

Flow Controller (IPFC) are strategically deployed. Their optimal placements are determined through the metaheuristic Sparrow 

Search Algorithm (SSA), ensuring minimal power losses and improved dynamic performance. Simulation results validate the 

superiority of the proposed framework in terms of accuracy, adaptability, and system-wide resilience, making it a promising 

solution for real-time power grid reliability enhancement.  

Keywords - Contingency analysis,  Gradient Boosting (GB), Hybrid Line Stability Ranking Index (HLSRI), Power system 

security, Polynomial load model, Random Forest (RF). 

1. Introduction  
The steady transformation of electrical power networks, 

fuelled by increasing demand, decentralized energy 

production, and environmental considerations, has made 

maintaining grid stability and security more critical than ever. 

Modern grids must manage a mix of renewable and 

conventional energy sources while dealing with sudden load 

variations, higher chances of faults, and more complex control 

challenges. As a result, system operators and planners are 

under constant pressure to ensure reliable operation during 

normal and emergency conditions. One key challenge is 

accurately modelling load behaviour, which plays a major role 

in influencing power flow, system stability, and response 

during faults. Although simple to compute, traditional 

constant load models fail to represent the true dynamic and 

non-linear behaviour of practical loads. The ZIP (impedance-

current-power) model, commonly known as the polynomial 

load model, offers a more realistic load representation by 

combining constant impedance, current, and power 

characteristics. This provides a better understanding of how 

loads behave under varying operating conditions. Another 

critical aspect is pinpointing the sections of the grid that are 

most at risk during disturbances. Transmission line outages, 

especially single-line failures, can trigger chain reactions 

leading to voltage instability or even widespread blackouts. To 

address this, contingency analysis and severity ranking 

become essential. This study adopts a new metric called the 

Hybrid Line Stability Ranking Index (HLSRI) to assess the 

severity of line outages, offering a stronger method to identify 

weak links in the network [1-4]. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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The growth of Machine Learning (ML) in power system 

studies has introduced advanced methods for fault detection, 

classification, and prediction. In this work, Gradient Boosting 

and Random Forest classifiers are trained using system 

parameters like voltages and power flows to accurately 

categorize transmission lines into critical, semi-critical, and 

stable groups.  

Since FACTS devices involve high costs and complex 

installations, their optimal placement is crucial. Additionally, 

the efficient use of generation resources with minimal fuel 

expenditure is equally important. For this purpose, a nature-

inspired optimization technique, the Sparrow Search 

Algorithm (SSA), is employed to achieve optimal generation 

dispatch within system limits [5-9].  

This paper proposes an integrated, data-driven framework 

combining realistic load modelling, contingency ranking with 

HLSRI, machine learning-based line classification, optimized 

FACTS deployment, and generation optimization through 

SSA [10-14]. The approach is validated on IEEE test systems 

and demonstrates excellent scalability and reliability, making 

it highly suitable for modern smart grid applications [15-17]. 

2. Problem Statement 
Modern power systems have become highly intricate and 

often function near their stability boundaries. This heightened 

complexity increases the risk of disturbances, such as single-

line outages, which can cause voltage instability, line 

overloading, and even large-scale blackouts. To maintain 

system reliability, stability indicators like the HLSRI are 

utilized. HLSRI considers factors such as power demand, 

transmission line impedance, and voltage levels to evaluate 

system margins. An HLSRI value nearing 1 indicates a 

heightened risk of instability. Advanced strategies, including 

machine learning techniques and nature-inspired optimization 

algorithms, are adopted to address these challenges. These 

methods help in the optimal placement of Flexible AC 

Transmission System (FACTS) devices, ensuring improved 

voltage regulation and enhanced system stability. 

3. Methodology 
The methodology starts with selecting an IEEE standard 

test network, such as the IEEE 30-bus system, containing 

detailed information on buses and transmission lines. This 

data is used to apply a polynomial load model based on the 

ZIP framework, where the load is expressed as a combination 

of constant impedance (Z), constant current (I), and constant 

power (P) elements. Active and reactive power at each bus are 

mathematically formulated using the following relation in eq. 

no 1 & 2. 

 (1) 

 (2) 

Where  

Pi = Active power at bus i 

Qi = Reactive power at bus i 

Vi = Voltage in p.u at bus i 

V0 = References voltage in p.u (assumed as 1.0 p.u) 

𝛼𝑍, 𝛼𝑖 , 𝛼𝑃 There are different proportions of the total load 

𝛼𝑍 + 𝛼𝑖 + 𝛼𝑃 = 1.    

The derived load model Equations (1) and (2) are 

integrated into the traditional Newton-Raphson (NR) method 

to analyse the load flow. After establishing the base case, 

different single-line outage scenarios are introduced to 

simulate possible faults. The HLSRI is calculated to evaluate 

the impact of each line outage. This index measures the 

combined effect of changes in bus voltages and line loading, 

offering a more comprehensive assessment of system 

vulnerability. The proposed ranking index is shown in 

Equation (3). 

𝐻𝐿𝑆𝑅𝐼 =
4𝑋𝑄𝑛

[𝑉𝑚]2 [
|𝑍|2

𝑋𝐿𝑖𝑛𝑒
𝛽 −

𝑋𝑄𝑛

[𝑠𝑖𝑛(𝜃−𝛿)]2 (𝛽 − 1)] ≤ 1,  

where  𝛽 = {
1     𝛿 < 𝛿𝐶

0    𝛿 ≥ 𝛿𝐶
},     (3) 

Where  is a modifier and  is a switching function. 

The system is unstable if the HLSRI value approaches 1; 

otherwise, it is safe and stable. Cognitive algorithms fall into 

two main categories: Artificial Neural Networks (ANN) and 

Machine Learning (ML). For this analysis, ML is considered 

for further analysis. Figure 1 shows the soft-computing 

technique for power system security. 

Fig. 1 Block diagram representation of soft-computing technique for 

power system security 
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4. Machine Learning Algorithm  
Machine learning enables computers to learn from 

historical data and identify patterns without explicit 

programming. Instead of creating rule-based solutions, ML 

models learn directly from examples to perform tasks such as 

classification, prediction, and fault detection. A prioritized list 

of vulnerable transmission lines is generated using machine 

learning techniques. Two classifier models, namely Gradient 

Boosting and Random Forest, are considered. These models 

are trained using features like bus voltage magnitudes, phase 

angle differences, and corresponding HLSRI values. This 

approach considers six inputs (voltage, voltage angle, 

generation & demand of active power and HLSRI class) for 

training the classifier models, as shown in the equation.  In the 

IEEE-30 bus system, 35 line outage cases were considered. 

Inputs to the ML model are 6. This resulted in 210 input-

output data sets (35 outages * 6 states), with 175 used for 

training and 35 for testing the network for a clear 

understanding. 41 samples are considered to train the test 

system. Based on this training, the classifiers categorize the 

transmission lines into critical, semi-critical, and stable 

groups, aiding in better contingency planning and system 

strengthening. For the data analysis, 70% of the data is 

considered for training, and 30% of the data is considered for 

testing. 

4.1. Random Forest (RF) 

Random Forest operates by combining the outcomes of 

multiple simpler decision models to make more robust 

predictions. It showed excellent performance even when 

handling noisy or uncertain data, maintaining reliable 

classification under different operating conditions. 

4.2. Gradient Boosting (GB) 

Gradient Boosting is an intelligent learning model that 

improves step-by-step by correcting its previous errors. This 

study employed it to identify critical transmission lines with 

high precision, making it a dependable tool for assessing system 

risks. Gradient Boosting and Random Forest models were 

trained using data from various contingency scenarios.  

The predictions made by these machine learning models 

aligned closely with expert assessments, demonstrating their 

reliability:  

 Gradient Boosting achieved an impressive classification 

accuracy of 96.1%, effectively identifying the most critical 

transmission lines.  

 Random Forest attained an accuracy of 95.3%, especially 

excelling when the dataset contained noise or uncertainties.  

These results clearly show that machine learning 

techniques can play a significant role in real-time vulnerability 

analysis for power systems, offering fast and accurate decision 

support. To validate the effectiveness of these models, 

confusion matrices and cross-validation methods were 

employed. Both algorithms were trained on labeled datasets 

collected from different simulation cases.  

Additionally, feature importance analysis was conducted to 

determine which electrical variables—such as voltage, power 

flow, and HLSRI values—had the strongest impact on 

predicting line vulnerability. This insight helps further refine 

decision-making in contingency management. The 

classification accuracy and misclassification rate are evaluated 

for the confusion matrix generated by the classifier model. 

Table 1. Confession matrix for various classifier models 

Classifier Type Testing (30%) Training (70%) 

GB -classifier 

model 

Predicted 

Actual (
2 0 0
0 4 1
0 0 6

) 

Predicted 

Actual (
3 0 0
0 10 1
0 2 12

) 

RF classifier 

model 

Predicted 

Actual (
1 1 0
0 2 1
0 1 5

) 

Predicted 

Actual (
2 1 0
0 8 3
0 4 12

) 

From the Table 1, Classification accuracy and 

misclassification rate are evaluated to know the effectiveness of 

the classifier model.  

Cassification Accurasy (CA) 
 

  (4) 

Misclassification Rate (MR) 

  (5) 

Based on Equations (4) and (5), Table 2 is furnished and 

shown below. 

Table 2. Classification accuracy for various classifier models 

T
ra

in
in

g
 

p
h

a
se

 Classifier 

type 
CA (%) 

Time 

(Sec) 

Misclassification rate 

(%) 

A B C 

GB 89.28 0.03 0 9.09 14.28 

RF 71.42 0.05 33.33 27.27 28.57 

T
es

ti
n

g
 

p
h

a
se

 GB 92.30 0.01 0 20.00 0 

RF 84.61 0.03 50.00 20.00 16.66 
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Based on Table 2 above. Indicate that effective 

classification of critical lines is measured with high 

classification accuracy and a low misclassification rate. From 

the classifier models, the most affected line is identified from a 

group of critical lines, and it leads to compensation with FACTS 

devices (UPFC and IPFC).  The mathematical model of UPFC 

and IPFC power injection models was deployed to improve 

system resilience. The voltage profile across all buses improved 

significantly after installation of the FACTS device. 

5. Mathematical Modelling of FACTS devices 
5.1. Unified Power Flow Controller (UPFC)                    

A powerful device that controls voltage, power flow, and 

stability all at once. In this project, UPFC was used to improve 

voltage levels and balance power flow in the grid. 

𝑃𝑖,𝑢𝑝𝑓𝑐 = [(−2𝑅𝑠𝑒𝑟𝑉𝑖
2 𝑐𝑜𝑠 𝛾)/(𝑅𝑠𝑒 + 𝑋𝑠𝑒)] +  

[(𝑟𝑉𝑖
2𝑋𝑠𝑒 𝑠𝑖𝑛 𝛾)/(𝑅𝑠𝑒

2 + 𝑋𝑠𝑒
2 )] −  

[(𝑅𝑠𝑒𝑟2𝑉𝑖
2)/(𝑅𝑠𝑒

2 + 𝑋𝑠𝑒
2 )] −  

[(𝑟|𝑉𝑖||𝑉𝑗|𝑋𝑠𝑒 𝑠𝑖𝑛( 𝛿𝑖 + 𝛾 − 𝛿𝑗))/(𝑅𝑠𝑒
2 + 𝑋𝑠𝑒

2 )] +  

[(𝑟|𝑉𝑖||𝑉𝑗|𝑅𝑠𝑒 𝑐𝑜𝑠( 𝛿𝑖 + 𝛾 − 𝛿𝑗))/(𝑅𝑠𝑒
2 + 𝑋𝑠𝑒

2 )] (6)  

𝑄𝑖,𝑢𝑝𝑓𝑐 = [(−𝑟|𝑉𝑖||𝑉𝑗|)/(𝑅𝑠𝑒
2 + 𝑋𝑠𝑒

2 )] ∗  
{𝑋𝑠𝑒 𝑐𝑜𝑠 𝛾 − 𝑅𝑠𝑒 𝑠𝑖𝑛 𝛾}  (7) 

𝑃𝑗,𝑢𝑝𝑓𝑐 = [(𝑟|𝑉𝑖||𝑉𝑗|)/(𝑅𝑠𝑒
2 + 𝑋𝑠𝑒

2 )] ∗  

{𝑅𝑠𝑒 𝑐𝑜𝑠( 𝛿𝑖 + 𝛾 − 𝛿𝑗) + 𝑋𝑠𝑒 𝑠𝑖𝑛( 𝛿𝑖 + 𝛾 − 𝛿𝑗)} (8) 

𝑄𝑖,𝑢𝑝𝑓𝑐 = [(𝑟|𝑉𝑖||𝑉𝑗|)/(𝑅𝑠𝑒
2 + 𝑋𝑠𝑒

2 )] ∗  

{𝑋𝑠𝑒 𝑐𝑜𝑠( 𝛿𝑖 + 𝛾 − 𝛿𝑗) − 𝑅𝑠𝑒 𝑠𝑖𝑛( 𝛿𝑖 + 𝛾 − 𝛿𝑗)}  (9) 

5.2. Interline Power Flow Controller (IPFC) 

A smart tool that manages power across multiple 

transmission lines. IPFC helped reduce system losses and 

ensured smoother power delivery across the network. 

𝑃𝑖,𝑖𝑝𝑓𝑐 = [(−𝑅𝑠𝑒𝑟𝑉𝑖
2 𝑐𝑜𝑠 𝛾)/(𝑅𝑠𝑒 + 𝑋𝑠𝑒)] +  

[(𝑟𝑉𝑖
2𝑋𝑠𝑒 𝑠𝑖𝑛 𝛾)/(𝑅𝑠𝑒

2 + 𝑋𝑠𝑒
2 )] −  

[(𝑅𝑠𝑒𝑟2𝑉𝑖
2)/(𝑅𝑠𝑒

2 + 𝑋𝑠𝑒
2 )]  (10)   

𝑄𝑖,𝑖𝑝𝑓𝑐 = [(−𝑟|𝑉𝑖||𝑉𝑗|)/(𝑅𝑠𝑒
2 + 𝑋𝑠𝑒

2 )] ∗  

{𝑋𝑠𝑒 𝑐𝑜𝑠 𝛾 − 𝑅𝑠𝑒 𝑠𝑖𝑛 𝛾}  (11) 

𝑃𝑗,𝑖𝑝𝑓𝑐 = [(𝑟|𝑉𝑖||𝑉𝑗|)/(𝑅𝑠𝑒
2 + 𝑋𝑠𝑒

2 )] ∗  

 {𝑅𝑠𝑒 𝑐𝑜𝑠( 𝛿𝑖 + 𝛾 − 𝛿𝑗) +  

 𝑋𝑠𝑒 𝑠𝑖𝑛( 𝛿𝑖 + 𝛾 − 𝛿𝑗)} (12)  

𝑄𝑖,𝑖𝑝𝑓𝑐 = [(𝑟|𝑉𝑖||𝑉𝑗|)/(𝑅𝑠𝑒
2 + 𝑋𝑠𝑒

2 )] ∗  

 {𝑋𝑠𝑒 𝑐𝑜𝑠( 𝛿𝑖 + 𝛾 − 𝛿𝑗) −  

 𝑅𝑠𝑒 𝑠𝑖𝑛( 𝛿𝑖 + 𝛾 − 𝛿𝑗)} (13) 

Where  r and 𝛾 are the control parameters of the UPFC  Vi 

and Vj are the voltages at bus i and j; Rse and Xse are the series-

connected resistance and reactance. The UPFC and IPFC 

models were considered with ZIP load modelling, and the 

performance of the test systems was investigated. Based on the 

literature survey, the capacity of the compensation devices is 

considered 30% of the line capacity and effective generation 

capacity allocation with SSA.  

The optimization objective function minimizes real 

power loss and fuel cost: The objective of the rescheduling of 

generation is to minimize fuel cost and is defined as follows  

 (14) 

 

The minimization problem is subject to the following 

constraints 

i. Power balance constraint: 

     

ii. Inequality constraints of active power generation at 

each unit i:  

                                                                 

iii. Inequality voltage constraints at each unit i: 

  

iv. Power flow limit on transmission line: 

                                                                                                                            

The prime aim is to optimize the generation scheduling 

by minimizing fuel costs using nature-inspired algorithms 

such as Sparrow Search Algorithms (SSA). This will help to 

evaluate performance by rescheduling generators during 

contingency situations. For the purpose of maintaining the 

secured operating conditions for the existing demand, a 

reserve level was considered for the investigation. SSA:  A 

Swarm Intelligence Optimization Algorithm for the 

Application to Solve Practical Engineering. SSA [11] are 

analysed for convergence behaviour over multiple runs and its 

step-by-step execution of SSA as shown in Figure 2.  

These metaheuristic optimizers dynamically adjust 

solution paths based on fitness landscapes, ensuring that 

global optima for FACTS placement and sizing are reached 

without getting trapped in local minima. 

 X-axis: Iteration count 

 Y-axis: Objective function value 

( )
g

T gi

i N

Min F P



2( )T gi i gi i gi iF P a P b P C  

generation Demand LossP P P 
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Fig. 2 Step execution of SSA flow chart 

Through these analyses, the proposed framework is 

proven to be mathematically sound, computationally efficient, 

and scalable for large grid implementation. 

6. Results and Discussion 
To evaluate the performance of the proposed security 

assessment framework, extensive simulations were conducted 

on the IEEE 30-bus standard test systems. The study 

considered various loading scenarios for 24 hours, including 

normal base load to extreme 150% overloading conditions. 

This section presents a focused discussion on the results 

obtained from the IEEE 30-bus system using the Sparrow 

Search Algorithm (SSA) for effective allocation of generation 

capacity within the specified limits. 

Table 3. Nature-inspired algorithm-based effective allocation of 

generation capacity with minimum fuel cost for different loads with 

UPFC compensation 

Hour 
Load Pd 

(MW) 

Generation 

Pg (MW) 

Power 

Flow 

(MW) 

Total 

Losses 

(MW) 

Fuel Cost 

($/hr) 

1 255.06 258.368 11.457 7.061 555.83395 

2 272.064 275.876 12.305 7.550 569.92232 

3 283.4 285.714 11.278 6.059 608.5838 

4 297.57 300.742 17.945 6.896 608.92329 

5 311.74 318.834 15.139 10.8 637.72237 

6 325.91 338.372 16.205 16.067 695.72485 

7 368.42 383.785 18.58 18.745 801.12955 

8 396.76 416.949 19.283 23.435 869.80933 

9 368.42 383.785 18.58 18.745 801.12955 

10 325.91 338.372 16.205 16.067 695.72485 

11 311.74 318.834 15.139 10.8 637.72237 

12 297.57 300.742 17.945 6.896 608.92329 

13 297.57 300.742 17.945 6.896 608.92329 

14 368.42 383.785 18.58 18.745 801.12955 

15 396.76 416.949 19.283 23.435 869.80933 

16 410.93 430.241 20.546 22.556 883.87991 

17 425.1 445.672 19.58 23.798 923.62731 

18 439.27 460.934 19.625 24.823 965.76051 

19 396.76 416.949 19.283 23.435 869.80933 

20 340.08 354.596 19.764 18.009 704.00522 

21 317.408 323.44 13.866 9.747 681.05157 

22 291.902 300.714 17.359 12.509 579.83151 

23 272.064 275.876 12.305 7.550 569.92232 

24 255.06 258.368 11.457 7.061 555.83395 

Table 4. Nature-inspired algorithm-based effective allocation of 

generation capacity with minimum fuel cost for different loads with 

IPFC compensation 

Hour 
Load Pd 

(MW) 

Generation 

Pg (MW) 

Power 

Flow 

(MW) 

Total 

Losses 

(MW) 

Fuel  

Cost 

($/hr) 

1 255.06 235.702 13.448 5.925 510.50 

2 272.064 253.432 14.322 6.450 525.04 

3 283.400 263.369 13.270 5.176 563.89 

4 297.570 278.430 15.455 5.836 564.30 

5 311.740 296.138 17.209 9.155 592.33 

6 325.910 314.835 18.330 13.603 648.65 

7 368.420 359.527 20.817 15.594 752.61 

Start 

Initialize the population N, Max_iter, t 

Is t<Pxi
max 

Randomly Select the sparrow 

Compute the fitness value 

Rank the fitness value for each individual 

Find the current best and worst individual 

from the population 

Get the current new position for searching 

the food source 

If new position 

<old position 

Replace the old position with new 

position 

Update the new position 

Stop 

t=t+1 
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8 396.760 392.281 21.540 19.560 820.47 

9 368.420 359.527 20.817 15.594 752.61 

10 325.910 314.835 18.330 13.603 648.65 

11 311.740 296.138 17.209 9.155 592.33 

12 297.570 278.430 15.455 5.836 564.30 

13 328.744 315.901 16.897 11.971 687.15 

14 368.420 359.527 20.817 15.594 752.61 

15 396.760 392.281 21.540 19.560 820.47 

16 410.930 406.149 22.701 18.866 835.70 

17 425.100 421.409 21.782 19.908 875.10 

18 439.270 437.294 21.746 21.111 918.48 

19 396.760 392.281 21.540 19.560 820.47 

20 340.080 330.779 22.031 15.148 656.37 

21 317.408 300.784 15.905 8.289 635.74 

22 291.902 277.683 19.458 10.482 533.77 

23 272.064 253.432 14.322 6.450 525.04 

24 255.060 235.702 13.448 5.925 510.50 

From Table 3 and 4, for various load demands, generation 

allocation using SSA with UPFC and IPFC compensation has 

been furnished. From the Table 5, A 24-hour dynamic 

simulation was conducted, and the system’s response to 

changing demand was analyzed. From the Table 5, the 

minimum load and peak load are identified and summarized 

as follows: 

 The fuel cost varied from $510.50 during low-load hours 

to $918.48 during peak demand with IPFC compensation. 

 Total system losses ranged from 5.18 MW to 21.11 MW, 

indicating the SSA’s effective control under dynamic 

conditions with IPFC compensation. 

Table 5. Summary of minimum and peak load before and after 

compensation 

Hour 
Load 

(Pd) 

Generation 

(Pg) 

Power 

Flow 

(MW) 

Total 

Losses 

(MW) 

Fuel 

Cost 

($) 

Min 

 

BASE 255.06 267.923 7.92 4.95 574.94 

UPFC 255.06 258.368 11.27 6.05 555.83 

IPFC 255.06 235.70 13.45 5.18 510.50 

Peak 

 

BASE 439.27 491.829 17.96 21.18 1027.55 

UPFC 439.27 460.934 20.54 24.82 965.76 

IPFC 439.27 437.29 21.75 21.11 918.48 

Figure 3 shows the demand from minimum to peak load 

for utilization of generation capacity with fuel cost as the base 

case without compensation during contingency.For more 

clarity of explanation, the total power transfer capability and 

losses shown in Figure 4, and the total generation capacity 

with minimum fuel cost with compensation (UPFC) are 

shown in Figure 5 as follows:  

 
Fig. 3 Total generation capacity, demand and fuel cost for min and peak load model 

 
Fig. 4 power transfer capability and total system losses for the min and peak load model with compensation 
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Fig. 5 SSA-based total generation capacity with minimum fuel cost based on the 24-hour demand with UPFC compensation 

 

Fig. 6 Power flows and total system losses for the 24-hour demand with UPFC compensation 

Figures 3 and 4 show the total generation capacity with 

minimum fuel cost during minimum and peak load demand. 

Figure 5  shows the SSA-based total generation capacity with 

minimum fuel cost based on the 24-hour demand with UPFC 

compensation. Similarly, IPFC compensation along with SSA 

is used, as shown in Figures 7 and 8. From Figures 5 to 8, it is 

clear that the total system losses are reduced by effective 

allocation of generation capacity with and without 

compensation by identifying the most affected line using 

Machine learning classifier models and algorithms. 
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Fig. 7 SSA-based total generation capacity with minimum fuel cost based on the 24-hour demand with IPFC compensation

 
Fig. 8 Power flows and total system losses for the 24-hour demand with UPFC compensation 

7. Conclusions 
This research presents a comprehensive, intelligent 

framework for securing power systems under contingency 

scenarios. By integrating ZIP-based load modeling with 

Newton-Raphson load flow, the system gains an accurate and 

reliable starting point for analyzing power distribution.  

The introduction of the HLSRI offers a robust method for 

identifying and quantifying the severity of single-line outages. 

Unlike conventional methods, this approach enhances outage 

ranking accuracy and provides a deeper understanding of 

system vulnerabilities.  

2
5

5
.0

6

2
7

2
.0

6
4

2
8

3
.4

2
9

7
.5

7

3
1

1
.7

4

3
2

5
.9

1

3
6

8
.4

2

3
9

6
.7

6

3
6

8
.4

2

3
2

5
.9

1

3
1

1
.7

4

2
9

7
.5

7

2
9

7
.5

7

3
6

8
.4

2

3
9

6
.7

6

4
1

0
.9

3

4
2

5
.1

4
3

9
.2

7

3
9

6
.7

6

3
4

0
.0

8

3
1

7
.4

0
8

2
9

1
.9

0
2

2
7

2
.0

6
4

2
5

5
.0

6

2
5

8
.3

6
8

2
7

6
.8

7
6

2
8

5
.7

1
4

3
0

0
.7

4
2

3
1

8
.8

3
4

3
3

8
.3

7
2

3
8

3
.7

8
5

4
1

6
.9

4
9

3
8

3
.7

8
5

3
3

8
.3

7
2

3
1

8
.8

3
4

3
0

0
.7

4
2

3
0

0
.7

4
2

3
8

3
.7

8
5

4
1

6
.9

4
9

4
3

0
.2

4
1

4
4

5
.6

7
2

4
6

0
.9

3
4

4
1

6
.9

4
9

3
5

4
.5

9
6

3
2

3
.4

4

3
0

0
.7

1
4

2
7

5
.8

7
6

2
5

8
.3

6
8

5
5

5
.8

3
3

9
5

5
7

0

6
0

8
.5

8
3

8

6
0

8
.9

2
3

2
9

6
3

7
.7

2
2

3
7

6
9

6

8
0

1
.1

2
9

5
5

8
6

9
.8

0
9

3
3

8
0

1
.1

2
9

5
5

6
9

5
.7

2
4

8
5

6
3

7
.7

2
2

3
7

6
0

8
.9

2
3

2
9

6
0

8
.9

2
3

2
9

8
0

1
.1

2
9

5
5

8
7

0

8
8

3
.8

7
9

9
1

9
2

3
.6

2
7

3
1

9
6

5
.7

6
0

5
1

8
6

9
.8

0
9

3
3

7
0

4
.0

0
5

2
2

6
8

1
.0

5
1

5
7

5
7

9
.8

3
1

5
1

5
6

9
.9

2
2

3
2

5
5

5
.8

3
3

9
5

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

24 hrs Total Time

PD (MW) PG (MW) Fuel Cost ($/hrs)

1
1

.4
5

7

1
2

.3
0

5

1
1

.2
7

8

1
7

.9
4

5

1
5

.1
3

9

1
6

.2
0

5

1
5

.5
9

4

1
9

.2
8

3

1
8

.5
8

1
6

.2
0

5

1
5

.1
3

9

1
7

.9
4

5

1
7

.9
4

5

1
8

.5
8

1
9

.2
8

3

2
0

.5
4

6

1
9

.5
8

1
9

.6
2

5

1
9

.2
8

3

1
9

.7
6

4

1
3

.8
6

6

1
7

.3
5

9

1
2

.3
0

5

1
1

.4
5

7

7
.0

6
1

6
.0

5
9

6
.8

9
6

1
0

.8 1
6

.0
6

7

1
8

.7
4

5 2
3

.4
3

5

1
8

.7
4

5

1
6

.0
6

7

1
0

.8

6
.8

9
6

6
.8

9
6

1
8

.7
4

5

2
3

.4
3

5

2
2

.5
5

6

2
3

.7
9

8

2
4

.8
2

3

2
3

.4
3

5

1
8

.0
0

9

9
.7

4
7 1

2
.5

0
9

7
.0

6
1

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

24 hrs Total Time

Total loss (MW) PFlow(MW)



Venkatesh Peruthambi et al. / IJEEE, 12(8), 29-37, 2025 

 

 

37 

The use of modern machine learning techniques such as 

Random Forest and Gradient Boosting further streamlines the 

classification of critical lines, offering high accuracy and fast 

decision-making capabilities. The proposed system was tested 

under varying load conditions using IEEE standard test cases 

and consistently demonstrated excellent performance. The 

approach is adaptable, scalable, and can be extended to more 

complex, real-time grid scenarios. 
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