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Abstract - Kidney stones are a prevalent and painful urological condition affecting up to 10% of the global population, 

particularly men aged 30 to 60. Early detection is essential to prevent complications such as nephrolithiasis and chronic kidney 

disease. This study presents an integrated system that combines chemical and imaging-based urine analysis to detect and classify 

urine crystals while measuring pH and turbidity. The system utilizes a pH sensor (PH-4502C) and a turbidity sensor (SENO189), 

whose outputs are interpreted through logistic regression. Imaging is conducted using a Raspberry Pi High-Quality Camera 

mounted on a microscope, and crystal classification is performed using the YOLOv8 object detection model trained on labeled 

datasets of calcium oxalate and triple phosphate crystals. All modules are operated through a Raspberry Pi 4 Model B. Validation 

with 30 clinical urine samples demonstrated high concordance with standard laboratory results. The system achieved an R² 

value of 0.983 for pH detection, 96.67% accuracy in turbidity classification, and an R² of 0.976 with a mean absolute error of 

0.733 for crystal counting. Overall risk assessment achieved 96.67% accuracy, 100% precision, 88.89% recall, and an F1 score 

of 94.12%. These results confirm the system’s accuracy, reliability, and suitability for practical use. It offers a low-cost, 

noninvasive, and real-time solution for early kidney stone detection, with strong potential for application in point-of-care 

diagnostic settings. 

Keywords - Kidney stones, Urine crystals, pH sensor, Turbidity analysis, YOLOv8, Raspberry Pi.

1. Introduction 
Renal calculi, often referred to as kidney stones, are a 

common and painful condition in urology, frequently leading 

to complications such as nephrolithiasis and urolithiasis [1]. 

These conditions pose a substantial global health burden, 

affecting an estimated 12% to 15% of the population [2]. The 

rising prevalence of kidney stones, which disproportionately 

impacts men between the ages of 30 and 60, is a growing 

public health concern [3]. Studies have shown that kidney 

stones are three times more common in men than women [4], 

with a male-to-female ratio of approximately 3:1 [5]. 

Urolithiasis remains one of the most frequent urological 

diseases globally, accounting for about 40% of urinary 

disorders [3]. The global incidence of kidney stones continues 

to rise, especially in developed countries, where cases occur 

at a rate of eight per 1,000 individuals annually [6]. In Asia, 

urolithiasis prevalence ranges from 1% to 19.1%, with 

calcium oxalate as the primary stone component [7, 8]. This 

increase is largely attributed to lifestyle factors such as high-

fat and high-sugar diets [8]. Kidney stones have been linked 

to higher risks of Chronic Kidney Disease (CKD), 

cardiovascular issues, and metabolic syndrome [7]. In the 

Philippines, CKD accounts for 3.5% of deaths, with Davao 

City ranking third for kidney diseases since 2017 [9]. 

Given the risks associated with kidney stones, early 

detection is vital for effective treatment and prevention. While 

previous studies have employed either urine parameter 

monitoring or image-based classification using deep learning, 

these approaches have been explored separately. Sensor-based 

systems have demonstrated the ability to assess urine quality 

by measuring pH, turbidity, or ion concentrations, but they 

lack microscopic analysis capabilities. Conversely, image-

based models have successfully detected and classified urine 

crystals, yet do not incorporate supporting chemical data. This 

separation limits the diagnostic potential of each method when 

used independently, especially in detecting early indicators 

such as crystalluria. 

This study addresses this gap by proposing a compact, 

noninvasive system that integrates sensor-based urine analysis 

and YOLOv8-powered crystal detection. Combining pH and 

turbidity measurements with real-time image classification of 

calcium oxalate and triple phosphate crystals offers a more 

holistic approach to early kidney stone risk assessment. Unlike 

earlier efforts that focused solely on either chemical or image 

data, this work introduces a dual-modality solution that 

enhances diagnostic precision and supports point-of-care 

applicability in resource-constrained environments. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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2. Related Study 
2.1. Kidney Stone Prevalence and Detection Gaps  

Kidney stone disease is an increasingly prevalent medical 

issue affecting patients and healthcare systems [10]. Its 

prevalence has reached over 10% in countries with reliable 

health records [5], with notable increases in regions such as 

Congo, Eswatini, Gabon, and across the Caribbean and Africa 

[11]. Early detection remains essential due to the high cost and 

complexity of treating advanced kidney disease and its 

complications [12]. Despite existing diagnostic practices, the 

fragmented use of either chemical or imaging-based analysis 

in isolation limits early detection effectiveness. The study 

responds to the identified limitation by combining both 

techniques for a more comprehensive diagnostic profile. 

2.2. Traditional Methods and Limitations 

Standard diagnostic approaches for kidney stones include 

reviews of medical history, physical exams, and laboratory 

tests like blood and urine analysis [13, 14]. Blood tests 

evaluate factors such as calcium and uric acid levels to assess 

kidney function [15]. On the other hand, 24-hour urine 

collection can detect infections, abnormal pH, or elevated 

mineral concentrations [16]. These tests provide initial 

insights into metabolic conditions that promote stone 

formation. Conversely, imaging methods such as X-rays, CT 

scans, and ultrasound are typically used to visualize stone 

presence [13, 16]. CT scans are both highly sensitive and 

specific but carry cost and radiation concerns [14]. 

Ultrasound, on the other hand, offers a safer and more 

affordable option but is less reliable for small or obstructed 

stones [17-19]. Advancements in detection tools have aimed 

to overcome these pressing limitations. Techniques like gas 

chromatography-mass spectrometry and Generative 

Adversarial Networks (GANs) demonstrate potential in 

metabolic profiling and enhanced image analysis [20]. 

However, many of these innovations remain in the exploration 

stage or lack point-of-care adaptability. 

2.3. Urine Parameters and Their Diagnostic Value 

Among urine indicators, pH and turbidity are closely tied 

to stone formation. Urinary pH influences the type of stones 

that form; acidic urine promotes uric acid stones, while 

alkaline urine favors calcium carbonate stones [21]. 

Measuring pH and oxalate levels, especially in children, can 

aid in early screening [22]. However, diurnal variations and 

sample acidification may affect readings [23]. Turbidity, 

reflecting the concentration and behavior of solutes, also plays 

a role. It marks crystal formation phases that include 

nucleation, growth, and aggregation [24]. Advanced imaging 

and spectrophotometry techniques now use turbidity and 

Hounsfield units to estimate crystal types and sizes [25]. 

Crystalluria, or the presence of crystals in urine, is another key 

indicator. Calcium oxalate monohydrate crystals are 

particularly common and are tied to low urine volume, high 

concentration, and oxidative stress, all of which contribute to 

stone formation [26]. These crystals damage renal cells and 

facilitate stone growth [27]. Research into their crystallization 

process and inhibitors continues to be a major focus [28]. 

 
Fig. 1 Calcium Oxalate crystals [29] 

Triple phosphate (struvite) crystals, associated with 

infections by urease-producing bacteria, form in alkaline urine 

and have distinctive shapes [30]. Their presence typically 

indicates infection and requires further evaluation. 

 
Fig. 2 Triple Phosphate crystals [31] 

2.4. Existing Sensor-Based and Imaging-Based Approaches 

Recent advances in kidney stone detection have explored 

both sensor-based and imaging-based systems to improve 

diagnostic accuracy and clinical utility. On the sensor side, 

Chung et al. [32] developed a portable system that measured 

pH, calcium ion concentration, uric acid, and conductivity 

using a combination of microcontrollers and logistic 

regression. While this system provided reliable risk 

assessment, it did not include microscopic imaging, which 

remains essential in urinalysis, particularly for detecting 

crystalluria. Similarly, Yudhana et al. [33] designed a system 

that utilized commercially available sensors to measure pH, 

turbidity, and ammonia in urine samples. Although this study 

achieved high accuracy in detecting urine parameters, it was 

not specifically designed to evaluate kidney stone risks. It did 

not incorporate any form of visual or image-based analysis. In 

contrast, image analysis approaches have demonstrated 

promising results in the classification of urine crystals. Balbin 

et al. [34] implemented a system using Haar features, 

Adaptive Boosting, and Support Vector Machine classifiers to 

detect calcium oxalate and triple phosphate crystals from urine 

sediment images, reporting over 90% accuracy. Building on 

this direction, Akhtar et al. [35] introduced an image detection 

model based on YOLO version 8 to identify visible urine 

sediment components quickly and accurately. While these 

image-based methods effectively detect and classify crystals, 
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they do not incorporate chemical parameters such as pH or 

turbidity, which are equally essential to contextualize the 

presence and detected type of crystals. Both sensor and 

imaging-based systems have shown individual effectiveness, 

but they function in isolation and fail to provide a holistic 

approach. There remains a clear need for an integrated system 

that draws from the strengths of both techniques to enhance 

early and reliable detection of kidney stone risks. 

2.5. Research Gap Analysis  

Despite the usefulness of existing systems, there is a 

distinct limitation in relying on either physical or visual urine 

analysis alone. Dedicated sensor-based systems are limited in 

that they cannot confirm the presence, type, or count of urinary 

crystals, while imaging systems are unable to interpret the 

chemical environment that promotes crystal formation. 

Parameters such as pH and turbidity play a critical role in 

determining the conditions that lead to crystallization [21, 24, 

26], yet these are often excluded from image-based diagnostic 

tools. Developing an integrated system for urine crystal 

detection and classification that combines sensor data and 

imaging offers a promising approach to improve diagnostic 

accuracy in urinalysis, which is vital in monitoring renal and 

systemic health [36]. YOLO-based deep learning models have 

demonstrated adequate performance in detecting urine 

particles like red and white blood cells, epithelial cells, and 

crystals [36-38].  

More so, optimized YOLOv8 versions achieve high 

precision and mAP scores, effectively dealing with variations 

in microscopic images [36-38]. However, dedicated imaging 

systems may struggle in cases of poor image quality or elusive 

visual cues. Combining sensor data with imaging improves 

interpretation by providing an added context. Parameters like 

pH, conductivity, and turbidity can indicate abnormalities 

prior to visible crystal formation. Hence, the combined setup 

helps the system identify hidden risks to prompt further 

analysis when sensor readings raise concerns [39, 40]. 

Merging YOLOv8’s detection capability with sensor input can 

therefore create a more reliable tool for early detection and 

reduce false negatives due to human error [36, 40]. The system 

also follows ensemble principles, using logical operations to 

enhance decision-making reliability, as demonstrated in 

related studies [41]. Traditional urinalysis, which depends on 

manual microscopic assessment, can also vary with technician 

expertise [42]. Thus, the proposed multi-modal approach in 

the system attempts to solve the limitations of earlier methods, 

leading to a more consistent, early identification of kidney 

stone risks. 

3. Materials and Methods 
This study employed a structured engineering approach 

to design and develop an automated urine crystal detection and 

classification system. The system combines chemical sensor 

measurements with deep-learning-based image analysis to 

identify early indicators of kidney stone formation. 

3.1. System Block Diagram and Flowchart 

 The overall system block diagram, as illustrated in Figure 

3, presents the combined framework of the urine crystal 

detection and classification system. It outlines the processes 

beginning with urine sample acquisition, which is followed by 

sensor data collection and image capturing.  

 
Fig. 3 Overall system block diagram 

These inputs are processed in the microcontroller and later 

subjected to logistic regression. To further illustrate the 

operational logic of the system, a flowchart is presented that 

outlines the step-by-step representation of its internal 

processes. It details how the process takes place from urine 

sample collection and handling to data acquisition via sensors 

and imaging. This is followed by analysis through logistic 

regression and YOLOv8 detection.  

Finally, the results from these two streams are then 

combined using a logical AND operation to arrive at a 

conclusive kidney stone risk assessment.  

Urine 

Sample 

Sensors:  

pH & Turbidity 

Camera Module 

Raspberry Pi 4 with Logistic 

Regression, Object Detection 

Algorithm (YOLOV8), and 

Data Fusion (Logical AND 

operation) 

LCD and Website 

(Measurements and Risk 

Assessment) 
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Fig. 4 System flowchart 

This flowchart serves as a guide to understand the overall 

decision process of the system.  

3.2. Sample Preparation 

The entire process begins with the acquisition of quality 

samples. For this study, urine samples were collected from 

volunteer patients at Life Care Medical and Diagnostic Center 

in Davao City and placed in sterile containers. To ensure 

reliability, sensor measurements were performed within one 

hour of collection. Moreover, samples for imaging were 

centrifuged, and the sediment was transferred to a microscope 

slide for visual analysis.  

3.3. System Architecture 

The system architecture is structured into three main 

functional parts: the input, processing and output modules. 

3.3.1. Input Module 

The input module is composed of the PH-4502C pH 

sensor, the SENO189 turbidity sensor, and the Raspberry Pi 

High-Quality Camera. These components gather both 

chemical and visual data from the collected urine samples. The 

chemical analysis is handled by the PH-4502C pH sensor, 

which was used to measure the acidity or alkalinity of urine.  

 
Fig. 5 PH-4502C pH sensor 
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This sensor operates within the standard pH scale of 0 to 

14, where values below 4.6 are considered highly acidic and 

those above 8 are considered basic, both conditions being 

relevant to kidney stone formation.  

On the other hand, the SENO189 turbidity sensor was 

employed to assess urine clarity. This sensor detects the 

degree of light scattering caused by suspended particles in the 

liquid, offering insights into the presence of crystals or 

sediments. Such measurements may indicate early stages of 

stone development.  

 
Fig. 6 SENO189 turbidity Sensor 

The system employed a Raspberry Pi High-Quality 

Camera with a 12.3-megapixel sensor for image-based 

analysis. This is connected via the Camera Serial Interface to 

the Raspberry Pi 4 model B microcontroller.  

 
Fig. 7 Raspberry Pi High-quality camera 

The said camera is paired with a microscopic eyepiece 

adapter. This enables the capture of high-resolution images of 

urine sediments necessary for crystal detection and 

classification. All together, these components provided the 

multi-modal input required for the integrated diagnostic 

approach. 

3.3.2. Processing Module 

The inputs gathered are processed in the processing 

module. Sensor data is interpreted using logistic regression, 

while the captured images undergo object detection and 

classification using the YOLOv8 deep learning model.  

The processing section was mainly anchored on the 

Raspberry Pi 4 model B. This compact and high-performance 

microcontroller served as the central unit for managing data 

flow and executing the analysis algorithms.  

 
Fig. 8 Raspberry Pi 4 model B 

Sensor readings for pH and turbidity were processed 

using logistic regression. Logistic regression is a statistical 

method that predicts a binary outcome based on one or more 

input parameters. In this context, the logistic model interpreted 

whether the measured values indicated a potential risk 

associated with kidney stone formation.  

The system also analyzed images using You Only Look 

Once version 8 (YOLOv8), a deep learning model highly 

regarded for its fast and accurate object detection. YOLOv8 

analyzed images captured from urine sediment samples to 

detect and classify the presence of calcium oxalate and triple 

phosphate crystals, using bounding boxes to isolate and count 

crystal types. A logical AND operation was implemented to 

fuse the preliminary outputs from both the sensor and imaging 

modules to arrive at a final diagnostic decision. This operation 

ensured that a positive risk assessment was only concluded 

when both chemical indicators and crystal presence were 

aligned, enhancing diagnostic accuracy through multi-layered 

data validation. 

3.3.3. Output Module 

Finally, the output module presents the analysis results 

either on an integrated LCD screen or through a locally hosted 

web interface, providing accessible and real-time diagnostic 

feedback to users. All components were controlled via a 

Raspberry Pi 4 Model B—the Arduino Nano pre-processed 

sensor signals before sending data to the Raspberry Pi for 

analysis. 

 
Fig. 9 Implemented pH and turbidity device 

 
Fig. 10 Implemented crystal assessment device 
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The output of the system integrates with a locally hosted 

web interface that works alongside the LCD screen to display 

real-time measurement data and risk assessments. The LCD 

screen shows the pH and turbidity values immediately, while 

the web interface provides a centralized platform for data 

logging and patient record management. Connected to the 

Raspberry Pi through a local network, the system 

automatically posts results from both the sensor and imaging 

modules to the website’s homepage.  

After entering patient details, the information is stored on 

the data logging dashboard. The web interface includes a 

secure login, a results display page, and a dashboard for record 

tracking, allowing health workers to access and manage 

patient assessments easily. 

 
Fig. 11 Website Dashboard 

The system architecture demonstrates a well-coordinated 

integration of sensor measurements, image processing, and 

data fusion, enabling a comprehensive and reliable approach 

to early kidney stone risk assessment. 

3.4. Sensor Calibration and Data Acquisition 

Sensor calibration was performed using buffer solutions 

and known turbidity samples. Readings were collected, 

logged, and interpreted using logistic regression to determine 

abnormal values. 

3.5. Image Capture and Model Training 

The camera, mounted on a microscope using an eyepiece 

adapter, captured 12.3 MP images of urine sediments. Image 

data was annotated and preprocessed using Roboflow. To 

maintain real-time classification speed, the system did not 

employ image preprocessing during actual operation; 

nevertheless, the results were carefully validated against 

actual clinical findings to ensure reliability and accuracy. 

The YOLOv8 model was trained on a dataset of 1,800 

labeled images, with a 70:30 training-validation split. The 

model outputs included crystal counts and type classifications. 

 
Fig. 12 Testing of the crystal assessment device 

The figure shows the actual images captured during the 

testing phase of the implemented crystal assessment device, 

illustrating the system's ability to detect and classify urinary 

crystals in real urine samples. 

3.6. System Validation 

The system was validated using 30 clinical samples. 

Sensor readings and YOLOv8 outputs were compared with 

clinical urinalysis and manual microscopic examination. 

Performance metrics such as R², accuracy, MAE, MSE, and 

RMSE were used for evaluation. 

 

 
Fig. 13 Comparison of developed system results and clinical results 
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4. Results and Discussion 
This section evaluates the system's performance in terms 

of pH measurement, turbidity classification, and crystal 

detection using urine samples. A total of 30 urine samples 

were examined and compared to clinical standard results. 

4.1. pH Measurement Accuracy 

The readings of the pH sensor were compared against 

standard pH strip results. The comparison demonstrated a high 

correlation, with a coefficient of determination R² = 0.983.  

Table 1. Comparison of pH and turbidity measurements 

Sample 

No. 

Clinical 

Measurement 

System 

Measurement 

pH 

Turbidity 

(Clear or 

Hazy) 

pH 

Turbidity 

(0-1 NTU = 

Clear, 

>1 NTU = 

Hazy) 

1 6.0 Clear 6.1 Clear 

2 5.0 Hazy 5.3 Hazy 

3 6.5 Hazy 6.7 Hazy 

4 6.0 Clear 6.1 Clear 

5 6.0 Clear 6.0 Clear 

6 6.0 Clear 6.0 Clear 

7 6.0 Hazy 6.1 Hazy 

8 6.0 Hazy 6.0 Hazy 

9 6.0 Hazy 6.0 Hazy 

10 5.0 Clear 5.2 Clear 

11 7.0 Clear 7.0 Clear 

12 6.0 Clear 6.0 Clear 

13 6.0 Hazy 6.0 Hazy 

14 6.0 Clear 6.2 Clear 

15 3.5 Hazy 3.6 Hazy 

16 9.0 Hazy 8.7 Hazy 

17 4.0 Hazy 3.8 Hazy 

18 8.0 Hazy 7.7 Hazy 

19 8.0 Hazy 7.9 Hazy 

20 9.0 Hazy 8.7 Hazy 

21 4.5 Hazy 4.7 Hazy 

22 5.0 Hazy 4.9 Hazy 

23 5.0 Hazy 4.8 Hazy 

24 6.0 Clear 6.0 Clear 

25 6.5 Clear 6.2 Clear 

26 6.0 Slightly Hazy 6.2 Clear 

27 6.0 Clear 6.0 Clear 

28 5.0 Clear 5.1 Clear 

29 6.0 Hazy 6.3 Hazy 

30 5.0 Clear 5.2 Clear 

 

The results indicate a strong agreement between the two 

measurement methods, closely following the pattern of the 

clinical reference measurements. The coefficient of 

determination is calculated using the formula: 

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
  (1) 

RSS is the residual sum of squares, showing the total 

squared differences between predicted and actual values, 

while TSS is the total sum of squares. This validates the 

reliability of the PH-4502C sensor within the system. 

4.2. Turbidity Classification Performance 

Turbidity was assessed using the SENO189 sensor and 

classified as either “Clear” or “Hazy” based on a threshold of 

1 NTU. Compared to clinical and visual assessments, the 

system achieved an overall accuracy of 96.67%, confirming 

its suitability for detecting suspended particulates related to 

crystalluria. The accuracy was computed using the formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑜.𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
  (2) 

This high accuracy indicates that the sensor’s 

classification capability aligns well with clinical evaluations. 

4.3. Crystal Counting Evaluation 

The system’s ability to count crystals was also assessed. 

Images of urine sediment were captured using the Raspberry 

Pi High-Quality Camera and analyzed using the YOLOv8 

model. The system’s crystal counts were compared with those 

obtained through manual counting by laboratory 

professionals. 

Table 2. Comparison of crystal counts 

Sample 

No. 

Clinical 

Measurement 

System 

Measurement 

Clinical Analysis 

(Descriptions: 

Normal = Rare or 

Moderate, Abnormal 

= Many) 

Clinical Analysis 

(Descriptions: 

Normal = Less than 

or equal to 15 crystals 

Abnormal = Greater 

than 15) 

 
No. of 

Crystals 
Description 

No. of 

Crystals 
Description 

1 0 - 0 - 

2 0 - 0 - 

3 0 - 0 - 

4 0 - 0 - 

5 0 - 0 - 

6 0 - 0 - 

7 0 - 0 - 

8 0 - 0 - 

9 0 - 0 - 

10 0 - 0 - 

11 0 - 0 - 

12 0 - 0 - 

13 0 - 0 - 

14 1 
Normal 

(Rare) 
1 Normal 
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15 15 
Abnormal 

(Many) 
6 Normal 

16 28 
Abnormal 

(Many) 
25 Abnormal 

17 18 
Abnormal 

(Many) 
16 Abnormal 

18 20 
Abnormal 

(Many) 
20 Abnormal 

19 20 
Abnormal 

(Many) 
18 Abnormal 

20 38 
Abnormal 

(Many) 
36 Abnormal 

21 15 
Abnormal 

(Many) 
16 Abnormal 

22 20 
Abnormal 

(Many) 
19 Abnormal 

23 24 
Abnormal 

(Many) 
23 Abnormal 

24 0 - 0 - 

25 0 - 0 - 

26 1 
Normal 

(Rare) 
1 Normal 

27 0 - 0 - 

28 0 - 0 - 

29 4 
Normal 

(Rare) 
3 Normal 

30 0 - 0 - 

 

The resulting R2 value of 0.976 indicates a high 

correlation between the system’s crystal count output and 

those obtained from clinical analysis, signifying that the 

system effectively mirrors clinical measurements. To further 

evaluate the accuracy of the crystal counting function, three 

statistical error metrics were calculated. First is the Mean 

Absolute Error (MAE), which was found to be 0.733 crystals. 

The value indicates that the average absolute difference 

between predicted and actual counts was less than one crystal. 

The formula used for the MAE computation is: 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑥𝑖|𝑁

𝑖=1  (3) 

On the other hand, the Mean Squared Error (MSE) was 

computed to be 3.533, using the formula: 

𝑀𝑆𝐸 = ∑
(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖−𝐴𝑐𝑡𝑢𝑎𝑙𝑖)2

𝑁

𝑁
𝑖=1   (4) 

Meanwhile, the Root Mean Squared Error (RMSE) was 

calculated at 1.879, based on the formula: 

𝑅𝑀𝑆𝐸 = √∑
(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖−𝐴𝑐𝑡𝑢𝑎𝑙𝑖)2

𝑁

𝑁
𝑖=1    (5) 

These results show that most measurements were close to 

the actual standard values. However, a few outlier cases were 

identified. For instance, one sample had very small crystals 

that the system failed to detect. This led to a noticeable 

increase in the error metrics. Despite this, the overall deviation 

was still minimal, supporting the reliability of the system for 

general classification tasks. 

4.4. Crystal Classification Accuracy 

The YOLOv8 model successfully distinguished calcium 

oxalate and triple phosphate crystals, achieving a 100% 

accuracy on the test dataset. Each labeled image was 

accurately classified, demonstrating the capability of the 

YOLOv8 model when trained on a well-annotated dataset. 

Overall, the system showed excellent performance in 

detecting and classifying key parameters of urine samples. 

The pH and turbidity sensors delivered highly accurate 

readings compared to standard clinical methods. Meanwhile, 

the imaging and classification system, powered by YOLOv8, 

successfully counted and identified crystal types with minimal 

error and high consistency. 

4.5. Crystal Classification Accuracy 

The YOLOv8 model successfully distinguished between 

calcium oxalate and triple phosphate crystals, achieving a 

100% classification accuracy on the test dataset. Each labeled 

image was accurately classified, demonstrating the capability 

of the YOLOv8 model when trained using a well-annotated 

dataset. 

4.6. Performance Metrics 

The performance of the system was also assessed by 

calculating the accuracy, precision, recall, and F1 score 

values. These metrics can determine how well the system 

identifies individuals at risk for kidney stones. The confusion 

matrix is presented below and generated based on the actual 

validation of the device referenced against the corresponding 

laboratory results. 

Table 3. Confusion matrix 
 System Assessment 

C
li

n
ic

al
 

A
ss

es
sm

en
t 

 
Predicted (No 

Risk) 

Predicted (At 

Risk) 

Actual  

(No 

Risk) 

21 0 

Actual  

(At Risk) 
1 8 

 

The computed performance metrics reflect how closely 

the system’s assessments align with standard clinical findings. 

The system achieved an overall accuracy of 96.67%, 

indicating that it can provide correct assessments in most 

cases. Only one case, identified as patient number 15, was 

misclassified. Although this patient had crystals, they were too 

small for the system to detect, leading to a “No Risk” result 

despite clinical findings indicating otherwise. Conversely, the 
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system achieved a precision of 100%, indicating it did not 

incorrectly label any individual as “At Risk.” This is attributed 

to the logical operation implemented in the system, which only 

triggers when all measured parameters exceed critical 

thresholds, preventing false alarms. The recall, on the other 

hand, was calculated at 88.89%, showing that most patients 

who were truly at risk were correctly identified by the system. 

The one misclassification spells out a limitation in detecting 

very small crystals through imaging. Furthermore, the F1 

score was computed at 94.12%. This reflects a strong balance 

between identifying true positives and minimizing incorrect 

classifications. These results confirm that the system can offer 

reliable and timely kidney stone risk assessments in alignment 

with laboratory standards. Finally, the training and validation 

results of the object detection model used in the crystal 

assessment device are also presented in the figure below. 

 
Fig. 14 Object detection model training and validation 

 During model training and validation, both datasets' loss 

values consistently decreased. The trend indicates that the 

model effectively learned from the training samples and 

generalized well to unseen data. Along with this, 

improvements in precision, recall, and mean average precision 

metrics confirmed that the model’s performance became 

increasingly accurate and stable over time. Moreover, the 

actual testing of the camera and detection model further 

validated the success of the training process and the model’s 

suitability for practical deployment. 

5. Conclusion 
The study was centered around developing a compact and 

integrated system for early detection of kidney stone risk by 

combining biochemical sensing and image analysis. Using pH 

and turbidity sensors, along with a YOLOv8 object detection 

model, the system captured both chemical and visual 

information from urine samples. Validation was performed 

with 30 clinical samples, which demonstrated strong 

alignment with standard laboratory results. Calculated results 

include an R-squared value of 0.983 for pH detection and 

96.67% turbidity classification accuracy. Moreover, an R-

squared value of 0.976 was computed with a mean absolute 

error of 0.733 for crystal counting and 100% accuracy in 

crystal classification. These results outline the system’s 

reliability in detecting and classifying common urinary 

crystals such as calcium oxalate and triple phosphate. 

The system offers improvements over previously reported 

techniques by integrating two diagnostic modalities, chemical 

sensing and microscopic imaging. Prior sensor-based systems 

lacked the capability to visually confirm the presence or type 

of urinary crystals, while image-based systems did not 

consider the chemical conditions promoting crystallization.  

This hybrid approach strengthens diagnostic accuracy by 

allowing each method to complement the limitations of the 

other, with the logical AND operation serving as the fusion 

mechanism to deliver conclusive assessments. While the 

system achieved excellent performance in terms of accuracy 

and integration, the study recognizes that the computation of 

inference time or processing latency has not yet been 

determined. Such measurements are essential for fully 

validating the system’s real-time capability and 

responsiveness in clinical workflows. Future implementations 

should include timing analysis to support real-time 

functionality claims and assess system behavior under more 

intensive or scaled use cases. Further research is encouraged 

to expand the types of crystals detectable by the system, 

integrate additional biomarkers such as protein or specific 

gravity, and enhance usability features such as wireless 

connectivity and interface improvements. Multi-centre 

clinical validation across diverse populations and settings is 

also recommended to strengthen generalizability and assess 

effectiveness in rural or resource-constrained environments. 
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