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Abstract - Using Internet of Things, predictive analysis, and a new dynamic scheduling algorithm for smart mobility, this 

research offers a comprehensive end-to-end solution for dynamic transportation scheduling. The novel approach utilizes real-

time data inputs from mobility patterns, weather reports, and traffic sensors to dynamically manage transport operations, 

effectively addressing the limitations of traditional static methods. The framework includes two major modules: (1) Crowd 

Mobilization Prediction, which integrates a hybrid model combining CNN for spatial feature extraction, GRU for forecasting 

temporal prediction, k-NN for classification, and DBSCAN for clustering unsupervised movement patterns; and (2) Dynamic 

Scheduling, where the proposed adaptive Algorithm dynamically allocates transportation resources in response to predicted 

demand, traffic levels, and Environmental conditions. Testing the model with actual real-world urban mobile signal datasets 

highlights the model's ability to reduce waiting times, enhance vehicle dispatch effectiveness, and adapt responsiveness in a 

range of traffic and demand scenarios. A comparison with conventional scheduling techniques reveals that the suggested 

approach is more responsive, scalable, and operationally efficient. According to the experimental findings, the proposed 

framework performs better than traditional methods in terms of prediction accuracy, with an R2 score of 0.98, MAE of 0.120, 

and MSE of 0.020. The model optimized vehicle usage and reduced passenger waiting times under dynamic situations. The result 

demonstrates how AI and IoT-based technologies can completely transform urban mobility by improving transportation systems' 

responsiveness, cost-effectiveness, and resilience to unforeseen shocks. This model provides a foundation for smart infrastructure 

mobility and has additional resonance with the smart sustainable urban transport vision. 

Keywords - Scheduling, Crowd dynamics, Smart transportation, Mobility management, Clustering. 

1. Introduction  
Urban transportation systems deal with various issues, 

including unpredictable variations in population densities, 

dynamic traffic congestion, and changing climatic conditions. 

Static scheduling of routes and fixed time schedules, upon 

which conventional scheduling practices usually lead to race 

into providing real-time demand during peak hours, causes 

inefficiencies such as delays, congestion, and inefficient use 

of resources [1]. These traditional systems are reactive and 

lack the flexibility to respond to dynamic urban needs. Over 

the last few years, AI and IoT have emerged as revolutionary 

technologies in the transportation field, with real-time data 

collection and intelligent decision-making capabilities. Static 

scheduling is the major limitation in the current transportation 

system, which is incapable of real-time changes in crowd 

intensities and traffic. This inflexibility leads to an increase in 

waiting times and poor service to passengers during peak 

demand periods. A significant research gap exists in 

combining real-time crowd mobilization prediction with 

dynamic transportation scheduling within an integrated AI-

IoT Framework. To address this gap, this study suggests a 

novel AI-based system that combines intelligent decision-

making algorithms with real-time data from IoT sources in a 

highly integrated manner to enhance transportation 

operations. Forecasting crowd mobilization and dynamically 

scheduling transportation according to present and future 

demands are features of the system. Its design has two primary 

stages: First, real-time adaptive transit scheduling is 

implemented once crowd mobilization is predicted using a 

revolutionary methodology dubbed the Dynamic Scheduling 

technique, which combines deep learning and clustering. 

Notwithstanding recent advancements in intelligent transport 

systems, most of the current models either use static 

scheduling methods or execute minimal reactive responses 

against changing urban conditions. These systems fail to 

include predictive mechanisms for crowd rushes and do not 

apply integrated AI-IoT platforms with real-time scheduling 

capabilities. Consequently, inefficiencies exist, such as 

delayed resource allocation, unused transit capacity, and 

lengthened commuter wait times. Thus, an integrated 

framework combining crowd predictions and dynamic 

scheduling is needed to serve the real-time requirements of 
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urban transportation. In the first step, mobile phone signal data 

processed by a hybrid mix of DBSCAN, CNN, k-NN, and 

GRU is used to identify and forecast crowd clustering. It 

recognizes patterns of human mobilizations in both space and 

time. Based on data on an unknown number of clusters, a 

DBSCAN-based algorithm is used to discover and cluster 

heavily inhabited areas. This makes it possible for the 

Algorithm to identify dynamic peak locations where crowd 

gathering is already taking place. 

At the second level, decision-making for real-time 

transport operations is driven by a proposed dynamic 

scheduling algorithm. Unlike conventional scheduling 

systems that rely on predetermined routes and fixed 

timetables, the proposed Algorithm functions as a dynamic 

control mechanism. It continuously ingests real-time data 

from IoT-enabled traffic sensors, GPS signals and weather 

updates. Using this information, it intelligently reallocates 

transportation assets such as buses, shuttles and other public 

vehicles based on evolving mobility patterns and predicted 

crowd mobilization within the city. 

 Upon detecting heightened commuter activity in each 

area, the Dynamic Scheduling Algorithm promptly increases 

vehicle deployment, reroutes services in real time, and 

allocates resources where demand peaks. These modifications 

occur in real time, reducing wait times, relieving congestion, 

and facilitating more equitable traffic distribution. The 

incorporation of universal clustering, unsupervised deep 

learning, and artificial intelligence is found within the 

synchronized scheme of an Internet of Things ecosystem, 

which can dynamically resolve real-time responsiveness 

mobility patterns. Unlike traditional reactive systems, this 

model is predictive and foresightful in response to crowd and 

pedestrian behaviors, thereby enhancing a more intelligent 

and effective urban and metro transit system.  

2. Literature Review  
Rapid urbanization, rising population densities and 

unpredictable mobility trends are placing mounting pressure 

on transportation systems. The traditional scheduled transport 

model is found wanting in managing and adapting crowd 

dynamics and live transportation updates. The integration of 

AI, IoT, and dynamic scheduling algorithms into next-

generation transport optimization models has therefore gained 

increased attention to improve responsiveness, scalability, and 

efficiency. Deep learning algorithms, particularly CNNs, have 

successfully processed spatial data derived from mobile 

signals and sensor feeds [3]. Congestion patterns and 

population density aggregates across geographic regions may 

be found using CNNs and traffic data as picture inputs. For 

instance, a CNN-based model has been constructed to forecast 

citywide traffic speeds with high spatial resolution and 

accuracy by analysing traffic as visual patterns [4]. However, 

spatial analysis is incapable of reflecting the dynamic nature 

of urban crowds. Therefore, hybrid models comprising GRUs 

and CNNs are suggested to handle both spatial and temporal 

signals effectively. These models allow forecasting future 

patterns of crowd mobilization based on historical geolocation 

and timestamp data [5]. 

Clustering methods serve a complementary purpose in 

movement analysis and crowd allocation. Without knowing 

the number of clusters beforehand, DBSCAN has been widely 

used to identify crowd clusters of any shape. DBSCAN is 

suitable for noisy urban data since it can detect outliers. 

DBSCAN's outlier detection makes it suitable for noisy urban 

data. A variant of DBSCAN, tailored for GPS signal 

clustering, has been suggested to examine driving destinations 

and determine urban traffic behaviour [6]. Moreover, 

developments in DBSCAN algorithms have enhanced cluster 

detection in non-homogeneous densities, greatly enhancing 

the validity of crowd hotspot identification [7]. While much 

less complex to implement, static schedules cannot routinely 

perform in peak periods. The Smart Mobility Dynamic 

Scheduling Algorithm gets around these limitations by 

leveraging real-time feedback from IoT systems to 

continuously update on-demand Allocation or fleet vehicles. 

Unlike conventional methods, the Dynamic Scheduling 

Algorithm for Smart Mobility provides decisions on the fly 

transport schedule by taking into account site-specific 

demand, anticipated population surges, and traffic flow. A 

time- and task-threshold–based transportation model was 

proposed recently to enhance the unpredictability and 

effectiveness of task performance in dynamic transportation 

systems [8]. 

In dynamic transportation optimization, IoT integration is 

an essential facilitator. Real-time environmental sensing, 

processing, and response are made possible by IoT networks, 

which gather data from integrated sensors, GPS chips, and 

cellular network signals. A smart transport framework based 

on IoT was put forward to enable real-time tracking and 

dynamic dispatch of vehicles, significantly decreasing waiting 

times and improving commuter satisfaction [9]. Also, cloud-

based IoT platforms have been engineered to improve 

transport and logistics service quality through real-time task 

allocation and vehicle-to-infrastructure communication [10]. 

Though this has come a long way, there is a lot yet to be 

addressed. Integrating data from diverse sources requires high 

levels of interoperability and strong pre-processing 

capabilities. Data protection and anonymization of data 

continue to be major issues in managing crowd forecasting 

using mobile signal data. AI models need to be 

computationally efficient to fit onto edge IoT devices without 

sacrificing accuracy. Resolving these challenges is the key to 

the widespread use of dynamic, intelligent transport systems 

[11]. A powerful paradigm for dynamic transport optimization 

is created by combining real-time scheduling algorithms like 

the Dynamic Scheduling Algorithm for Smart Mobility, AI-

driven crowd forecasting models, and IoT-based data 

collection.  
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This kind of paradigm allows effective transportation 

services, reduces congestion, and enhances system 

responsiveness. Urban population movement forecasts have 

benefited greatly from deep learning models, particularly 

when dealing with erratic and fluctuating density models that 

have effectively captured long-term dependencies from 

sequential data such as time-stamped geolocation logs [12]. 

GRU - CNN models provide a two-tiered approach that can 

recognize both shifting temporal trends in travel and 

geographic crowd patterns when paired with CNNs for spatial 

identification. Studies have shown that, especially in 

extremely dynamic transportation circumstances, these hybrid 

models outperform traditional linear predictive algorithms in 

terms of accuracy and responsiveness. 

Other powerful but simpler algorithms like k-NN and 

DBSCAN are just as crucial for interpreting micro-level 

crowd behaviour as deep learning models. While k-NN 

facilitates local pattern matching by categorizing population 

behaviour based on comparable historical occurrences, GRU 

and CNN handle large-scale pattern identification. This helps 

in the identification of location-based crowd rush context-

based information [13]. DBSCAN, on the other hand, is still 

crucial for unsupervised crowd density clustering. Its ability 

to isolate noisy or outlier data points and form useful crowd 

clusters without prior knowledge of the number of clusters is 

suitable for real-world mobile signal data, which is usually 

uneven and contains anomalies [14]. 

The incorporation of AI models into IoT infrastructure 

still confronts several operational and technical obstacles, 

despite the astounding advancements in technology. Data 

heterogeneity is a central issue here, with input signals derived 

from various sources like mobile towers, GPS feeds, traffic 

cameras, and road sensors embedded in roads abiding by 

various standards and formats [15]. Building preparation 

pipelines and interoperable frameworks that can successfully 

fuse data from several sources is necessary for this. Further, 

real-time performance bottlenecks require AI models to be 

computationally light to be deployed across edge devices and 

still ensure accuracy [16].  

Traditional scheduling techniques based on fixed 

intervals have produced limitations in addressing peak time 

urgency and emergency rerouting requirements [17]. AI-

driven dynamic scheduling algorithms have emerged to 

address this challenge, enabling real-time analysis and 

response to shift transportation demands. For instance, 

systems using reinforcement learning and heuristic 

optimization have shown potential in adjusting transport 

allocation dynamically based on feedback from crowd 

forecasts and environmental signals [18]. This is expanded 

upon by the suggested Dynamic Scheduling Algorithm for 

Smart Mobility, which considers IoT-enabled signals, 

location-specific demand, and real-time crowd mobilization 

forecasts. Unlike static models, it dynamically adjusts bus or 

shuttle schedules and routing paths, ensuring better crowd 

dispersion and minimum vehicle idle time [19]. AI-based 

transportation infrastructures are now being tested in several 

urban settings. For instance, intelligent city programs in 

Singapore and South Korea have achieved success by 

implementing predictive mobility algorithms with IoT-based 

fleet management infrastructures, leading to diminished 

congestion and improved commuter satisfaction [20]. 

However, crowd prediction and dynamic real-time scheduling 

are not fully integrated in most current systems. This 

highlights how crucial it is to keep researching and creating 

integrated frameworks that use both historical and real-time 

mobility data to plan, forecast, and respond simultaneously. 

The proposed model here seeks to close this gap by 

synchronising AI-driven predictions with IoT-based adaptive 

scheduling mechanisms under a single architecture [21, 22]. 

In Summary, although many research works have 

investigated crowd prediction through CNN-GRU models and 

scheduling through heuristic approaches or reinforcement 

learning, fewer have combined both in a unified real-time 

framework. Existing approaches tend to lack either temporal 

adaptability, scalability over edge IoT devices, or seamless 

integration of prediction and scheduling. Our suggested 

method uniquely integrates DBSCAN for crowd clustering, 

CNN and GRU for spatio-temporal feature learning, and k-NN 

for local behaviour classification, all into a real-time Dynamic 

Scheduling Algorithm. This holistic framework provides 

proactive vehicle assignment and minimizes wait times and 

idle capacity, a marked improvement from current transport 

optimization methods. It bridges the gap between prediction 

accuracy and scheduling efficiency, enabling cities to respond 

faster to fluctuating mobility patterns. The system’s modular 

design also allows easy deployment across varying urban 

environments with minimal reconfiguration. 

3. Methodologies  
This study endorses a two-stage methodological approach 

that integrates real-time transit scheduling with crowd 

mobilization prediction. Using a hybrid deep learning model, 

the first stage deals with crowd mobilization prediction 

behaviour. Using a demand-sensitive scheduling algorithm, 

the second stage provides an intelligent adaptive 

transportation response system by allocating transport 

resources based on the predicted crowd density. Within an 

IoT-enabled infrastructure, the suggested framework is made 

to be scalable, adaptable, and deployable in real time. In 

Figure 1, the general layout of the suggested two-stage 

framework for crowd mobilization prediction and transport 

scheduling is displayed, illustrating the overall system 

architecture of the devised technique. The first step is to 

collect mobile signal data with temporal (timestamp and 

signal intensity) and geographical (longitude and latitude) 

characteristics. Before being utilized in the next activities, this 

raw data is first treated by a preprocessor module, which 

cleans, normalizes, and formats the input.  
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Fig. 1 Crowd mobilization prediction and transport scheduling workflow 

The DBSCAN clustering technique is used to evaluate 

geographic locations and identify regions with strong 

population activity. The spatial and temporal data are then 

classified using k-NN, which predicts crowd patterns of 

behaviour based on similarity. GRU analyses temporal 

variations in signal intensity to anticipate crowd dynamics 

dynamically over time.  

CNN derives high-level spatial properties from these 

clusters to show crowd density and document dispersion 

patterns. The combined model, utilizing DBSCAN, k-NN, 

GRU, and CNN, accurately predicts crowd mobilization 

patterns [23]. Based on these predictions, the proposed 

dynamic Scheduling Algorithm is utilized to manage 

transportation needs in real-time [24].  

3.1. Crowd Mobilization Prediction 

A major focus of this study is predicting how the crowd 

moves over time, which directly supports smarter decisions in 

transportation planning. This relies on analysing mobile signal 

data to uncover both location and time-based movements. The 

approach introduced here combines several modern machine 

learning and deep learning techniques to estimate where 

crowd buildup is likely to occur over time. The workflow 

includes stages like data collecting, cleaning and 

preprocessing, feature extraction, development of a hybrid 

model, and performance assessment. Specifically, DBSCAN 

groups nearby points with similar behaviour, k-NN helps 

classify time-based changes, CNN picks out location-related 

patterns, and GRU learns how movements change over time 

[25]. 
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3.1.1. Data Pre-Processing 

This study used OpenCelliD, an open dataset that records 

cell tower positions and signal attributes, providing the mobile 

signal data utilized. The dataset consists of 4,996 entries and 

includes key features such as Latitude, longitude, timestamp, 

and signal strength (dBm). These attributes formed the 

foundation for an examination of a framework for both 

temporal and spatial patterns related to crowd movement. The 

geographic coordinates, such as Latitude and longitude, were 

checked to confirm that they fell within valid global 

coordinate ranges. The timestamp field was in UNIX epoch 

format and was then converted to standard human-readable 

datetime format [26]. Min-Max Normalization was applied to 

the Latitude, longitude, and signal strength attributes to 

maintain numerical uniformity across input features. This 

guarantees uniform input for magnitude-sensitive models, 

such as CNN and GRU, to receive equal input. Signal intensity 

outliers that could compromise the accuracy of clustering and 

prediction performance were identified using standard 

statistical techniques and corrected or eliminated. 

The dataset underwent a cleaning process followed by 

transformation steps to enable effective geospatial analysis 

[27]. To facilitate effective clustering with DBSCAN, the 

Latitude and longitude values were mapped onto a two-

dimensional coordinate system. A unified feature matrix was 

then created using the normalized values of Latitude, 

longitude, and signal strength to enable detection of dense 

crowd clusters based on proximity and signal characteristics 

[28]. Signal strength values within each detected cluster were 

aggregated hourly to support time-based analysis. To maintain 

continuity in the time series, missing hours were estimated 

using linear interpolation. The sequential data were segmented 

into overlapping windows to improve the ability of the GRU 

model to learn temporal dependencies. The CNN layers 

captured spatial features, while the GRU learned temporal 

dependencies for a combined feature vector. These outputs 

were then input into the k-NN classifier device, which uses 

both temporal and spatial signals for reliable identification of 

behaviors or patterns. This novel approach in the 

preprocessing pipeline contributed directly to the reliability 

and accuracy of predictions related to crowd mobilization 

[29]. 

3.2. Clustering with DBSCAN 

DBSCAN was used to identify high-density areas within 

the mobile phone signal data, since DBSCAN is more robust 

in handling unusual and complex spatial distributions. 

DBSCAN also has the advantage of not having a 

predetermined number of clusters, as is the case with 

clustering algorithms such as k-means [30]; it can be more 

flexible to a variety of common, diverse and dynamic spatial 

patterns. This flexibility is advantageous in urban conditions 

where crowd population densities often distribute in an 

irregular and unpredictable manner. Furthermore, DBSCAN's 

ability to locate clusters of arbitrary shapes while filtering out 

noise makes it superior for analyzing geographical datasets in 

general, with potential applications in studies of transportation 

systems, along with crowd mobility. DBSCAN relies on two 

key parameters: epsilon (ε) and min_samples. The ε parameter 

defines the maximum allowable distance between data points 

so that they can be considered neighbors, while min_samples 

defines the number of points that must be in a neighborhood 

to be classified as dense. A core point is one that has at least 

min_samples neighbors in the ε radius neighborhood. Points 

within the neighborhood of a core point but lacking enough 

neighbors to be core points themselves are labeled as border 

points. Any point that is neither a core nor a border point is 

categorized as noise or an outlier. Using these classifications, 

DBSCAN effectively separates dense clusters from isolated 

data points. 

This approach retrieved Latitude and longitude 

coordinates from mobile signal records collected from the 

OpenCelliD dataset using DBSCAN. To ensure accurate 

results, the dataset was normalized before clustering so that all 

the values are on the same scale. Through experimentation, the 

optimal eps and min_samples values were found to create a 

high-quality cluster. Three dominating clusters were 

successfully detected by DBSCAN after tuning: Cluster 0 

(4,772 points) denoted the highest activity density, Cluster 1 

(212 points) denoted a comparatively dense region, and 

Cluster 2 (12 points) denoted a low-density or restricted 

region. Two hundred twenty-four points were deemed noise 

and removed from the study, enhancing the caliber of the 

following processing. Figure 2 displays a scatter plot of the 

normalized geographic data that illustrates the DBSCAN 

clustering findings. 

 
Fig. 2 DBSCAN clustering 

The concentration of mobile signal activity across 

geographic regions is obviously shown by the distinct colours 

assigned to each cluster. Minor areas of activity are 

highlighted by the smaller clusters, but Cluster 0, which is the 

most noticeable, represents a huge zone of crowd presence. 

The dispersed or inconsistent data points represented by the 
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noise points, which are shown in grey or black, are not part of 

the final analysis. This visual clarity supports the 

identification of hotspots crucial for transport scheduling. By 

applying DBSCAN, the spatial distribution of crowd activity 

was effectively identified and categorized. These clusters 

served as the spatial basis for subsequent analysis with 

temporal and classification models [31].  

The hybrid model, which includes k-NN for 

classification, GRU for temporal analysis, and CNN for 

spatial feature extraction, was then fed the data. Thus, this 

clustering stage links raw geographic data with sophisticated 

AI-based scheduling, enabling the transportation system to 

adjust to spatial relevance, behavioural patterns, and data 

volume. 

The application of DBSCAN helped in the identification 

of prominent clusters from the location information to mark 

crowded areas with a higher number of individuals. After 

eliminating the outlier and focusing on clusters with the right 

form, the Algorithm displayed a more accurate image of the 

population distribution. The next transportation and schedule 

planning processes are well-founded on these findings. 

3.3. Hybrid Model Implementation 

A hybrid model combining CNN, GRU, and k-NN was 

developed to enable dynamic scheduling and precise crowd 

mobilisation predictions. CNN learns high-level spatial 

features from clustered data, GRU detects time-based trends 

and dependencies, and k-NN handles early categorization in 

terms of temporal and signal similarity.  

Each of the three components of the model addresses a 

distinct element of the data. This multi-layered approach 

allows the system to analyze and learn from both temporal 

sequences and geographic spread, providing solid and 

accurate predictions of crowd movements that directly 

influence the scheduling logic [32]. 

 
Fig. 3 k-NN classification accuracy with varying K values 

3.3.1. Classification with K-NN 

Following the clustering procedure, the k-NN technique 

was utilized to enhance the model's capacity to handle 

dynamic data and offer accurate predictions of crowd 

mobilization tendencies. After DBSCAN divides the 

geographical data into meaningful Latitude and longitude 

clusters, k-NN plays a crucial role in assigning any newly 

discovered, unclassified, or incoming signal recordings to one 

of these clusters. As a result, the system remains flexible and 

ready to classify data in real time as it becomes available. 

Every data point in feature space is predicted by the k-NN 

algorithm based on the majority vote of its "k" nearest 

neighbours. In this research, spatial features (Latitude and 

longitude) as well as temporal fluctuations (timestamp) and 

signal strength were employed as input features [33].  
 

Fig. 4 The confusion matrix generated for k-NN classification 
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All input characteristics were normalized before 

classification to calculate distance. Cross-validation methods 

were used to determine the optimal number for 'k'. Figure 3 

illustrates the findings, which showed that k = 18 offered the 

greatest accuracy (~34.1%). A confusion matrix in Figure 4 

was then used to validate the k-NN model's performance. 

The matrix demonstrated how successfully the classifier 

categorized different crowd density zones differently by 

comparing the predicted cluster labels with the actual labels 

from DBSCAN. While there was considerable overlap with 

medium and low-density regions (Clusters 1 and 2), the model 

did well in high-density areas (Cluster 0), indicating potential 

for further development. The robust and the lightweight 

classification layer provided by k-NN guarantees consistency 

in the dynamic spatial-temporal dataset. 

3.3.2 Temporal Predictions with GRU 

GRUs were used in this work to analyse and forecast 

sequential crowd movement patterns based on the intensity of 

mobile signals across time. GRU is a recurrent neural network 

type that is ideal for time-series forecasting because it 

maintains long-term dependencies at a minimal computational 

cost. Recurring crowd changes were identified by training the 

model at several time intervals, such as hourly, day-of-the-

week, and month [34]. The signal intensity inside each cluster 

found by DBSCAN was condensed into an hourly time series 

to prepare the data for temporal modelling, for the GRU to 

learn from past patterns and predict future signal strength 

values that suggest potential crowd density changes. These 

sequences were organized in terms of sliding windows. To 

allow the model to learn temporal periodicity in human 

motion, the timestamps were transformed into cyclical 

characteristics like hour, day, and month.  

The design comprised sequence input layers, hidden cells, 

and a fully linked dense layer that produced output [36]. Adam 

was utilized for optimization, and ReLU served as the 

activation function. The loss function that was used to reduce 

prediction error was Mean Squared Error. Effective learning 

with little overfitting was confirmed by the steady decline in 

both training and validation losses, as shown in Figure 5 of the 

original reference. The model's ability to replicate crowd 

mobilization over time was confirmed by comparing the 

projected and actual signal strengths, which showed 

significant overlap [37]. 

 
Fig. 5 GRU performance: training loss and signal predictions 

3.3.3. Spatial Feature Extraction with CNN 

CNNs were utilized to convert geolocated mobile signal 

data in order to see spatial trends in crowd density. The 

module's input features were Latitude, longitude, and signal 

intensity measurements in clusters using DBSCAN. These 

coordinates were plotted onto a two-dimensional grid, with the 

intensity of each cell representing the normalized signal 

strength and each cell representing a tiny geographic region. 

This conversion turned spatial inputs into image-like matrices 

so that the CNN could be run in a format appropriate for 

convolution operations. Two ReLU-activated convolutional 

layers and max-pooling layers made up CNN's architecture, 

which retrieved discriminative spatial features and decreased 

dimensionality. The resulting feature maps were flattened and 

forwarded to a dense layer to give a dense spatial 

representation of the input area [38]. The architecture enabled 

the model to identify areas of high density, eliminate spatial 

noise, and understand crowd accumulation patterns within a 

local context. The hybrid system can now discuss both the 

spatial and temporal domains thanks to the combination of the 

CNN's spatial properties and the GRU model's temporal 

output. The feature blending enhanced the model's ability to 

accurately anticipate crowd mobilisation, which also provided 

a detailed picture of how crowd density varies with time and 
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place [39]. The accuracy of the final scheduling decisions was 

significantly influenced by the CNN's spatial grouping and 

regional detection capabilities. As shown in Figure 6, a 

heatmap was generated to depict the spatial representation that 

allowed the CNN to identify hotspot regions and signal 

density gradients, which are essential for correctly predicting 

crowd flows and localized density changes [40]. 

 
Fig. 6 Spatial feature heatmap 

3.4. Integration and Crowd Prediction 

After completing the temporal and spatial analysis of 

each, the last stage is to combine them into a single feature set 

for prediction. A spatio-temporal representation is produced 

by combining the temporal patterns from GRU and the spatial 

information from CNN. The fusion allows the system not only 

to know where individuals are but also how they change 

movement over time [41]. 

After merging the features, a k-NN classifier is shown.  

The model categorises the new instance into one of three 

groups, such as low, medium, or high crowd mobilization, 

after comparing it to established patterns. These categories 

make it easier to identify which locations are less active and 

which are probably going to see more foot traffic. 

This step's output is the anticipated crowd levels and the 

location and time corresponding to them. The following step, 

transport scheduling, depends on these projections. The 

method can aid in improved planning and the Allocation of 

transportation resources by predicting the location and time of 

a crowd's gathering. 

3.5. Scheduling using the Dynamic Scheduling Algorithm 

for Smart Mobility  
The last part of the suggested system, the dynamic 

scheduling algorithm for smart mobility, schedules in real 

time based on expected crowd mobilization levels. The crowd 

mobilization prediction output, which is labelled with spatial 

coordinates, timestamps, and intensity levels, is the output of 

the integrated hybrid model that the scheduler receives as 

input. These outputs are categorized into low, medium, and 

high crowd demand levels based on spatio-temporal analysis. 

Values representing the predicted number of people expected 

to be present in each cluster during a specific period are 

provided by the prediction stage of crowd mobilization. The 

values are the outcome of combining k-NN classification, 

CNN-based spatial features, and GRU-based temporal 

patterns. The normalized demand D for each cluster is 

estimated using the prediction's output, which is calculated as 

follows: 

D=
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝑟𝑜𝑤𝑑 𝐶𝑜𝑢𝑛𝑡

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑅𝑒𝑔𝑖𝑜𝑛
 (1)  

The expected number of people might vary from a 

handful in rural or less-active places to hundreds in 

metropolitan or hotspot areas. The region is divided into high, 

medium, and low demand areas based on a comparison of this 

normalized demand value with predetermined criteria. After 

computing the normalized demand (D), the Scheduling 

Algorithm applies a tiered, rule-based decision-making 

process. The logic follows this structured approach: 

 If D > 0.8, then allocate 30 vehicles: High Demand 

 If 0.4 < D ≤ 0.8, then allocate 15 vehicles: Medium 

Demand 

 If D ≤ 0.4, then allocate 5 vehicles: Low Demand 

Depending on how frequently predictions are updated 

from the hybrid model, this logic is run every few seconds or 

minutes (adjustable). The system prevents resource waste and 

passenger overload by ensuring that the supply and demand 

for transportation are continually balanced. The dynamic 

transport scheduling module relies on continuous information 

from prediction modules and is intended for real-time 

execution. Live data streams and IoT-connected devices 

enable the dynamic scheduling algorithm to be flexible and 

adapt appropriately. Such IoT equipment comprises mobile 

signal sensors, vehicle GPS tracking devices, and end-user 

applications that provide a consolidated view of real-time 

crowd activities and vehicle mobility [43]. 

With lightweight protocols such as MQTT or REST APIs, 

IoT device data can be streamed into cloud environments or 

local edge servers [44]. Dynamic scheduling can be deployed 

as a microservice on platforms such as AWS Lambda or 

Google Cloud Functions to make automatic scheduling 

decisions without relying on a dedicated physical 

infrastructure. Even in high-load urban settings, its 

architecture offers the scalability and fault tolerance required. 

Vehicles can provide real-time data to the dynamic scheduling 

system, including position, delay status, and current load. As 

a result, the system can make more contextually sensitive and 
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intelligent scheduling decisions. These real-time updates 

enhance the system's ability to swiftly adjust to unforeseen 

crowd surges, traffic jams, or special events. For today's smart 

cities, integrating a dynamic scheduling algorithm with IoT 

infrastructure offers a transport management system that is 

completely responsive and intelligent. 

The predicted crowd density, the result of a hybrid model 

from spatiotemporal patterns that utilizes DBSCAN, CNN, 

GRU, and k-NN, is where the flow commences. The first leg 

of the flow is a Dynamic Scheduling Algorithm for Smart 

Mobility that evaluates the current level of crowd density in 

each geographic clustering using the predicted crowd density 

values as the input level. The number of transport vehicles will 

be assigned based on the predicted crowd density rating: High, 

Medium or Low. For example, thirty vehicles need to be put 

out for a high demand, fifteen for medium demand, and five 

for low demand. The right number of vehicles is sent to the 

target region when this decision logic is executed, ensuring 

maximum resource allocation in accordance with existing and 

projected demands. The central purpose of dynamic 

scheduling in adjusting to shifting transport demands in smart 

city settings can be demonstrated clearly by this rule-based 

reasoning. 

 
Fig. 7 Dynamic scheduling flow diagram 

 

3.5.1. Pseudocode Design of Dynamic Scheduling Algorithm 

for Smart Mobility 

This Section describes a pseudocode implementation of 

the proposed Dynamic Scheduling Algorithm, which is led by 

the logic of a set of rules based on contemporaneous crowd 

mobilization predictions. The Algorithm uses normalized 

signal strength to identify commuter density in an area to 

properly deploy the number of vehicles required to fulfil 

demand. It dynamically adjusts and leads resource allocation 

based on various demand density levels to enhance 

transportation flow and service efficiency. 

Input: Predicted crowd count (C), Time duration (T), 

Interval (I) 

Output: Vehicles allocated at each time step 

1. Initialize an empty list real_time_data 

 

2. For each time step t in total duration T, every Interval I: 

 a. Obtain predicted crowd count C_t (from model or 

simulation) 

 b. Calculate signal strength S = C_t / Max_Capacity 

 c. If S > 0.8: Allocate 30 vehicles 

 Else if S > 0.4: Allocate 15 vehicles 

 Else: Allocate 5 vehicles 

 d. Save (timestamp, C_t, S, vehicles_allocated) to 

real_time_data 

 

3. Return real_time_data 

The following code demonstrates real-time 

implementation of the proposed Algorithm. It simulates crowd 

level, calculates signal strength and allocates vehicles based 

on crowd level. 

 

# Step 1: Import required libraries 

import pandas as pd 

import numpy as np 

import time 

from datetime import datetime 

 

# Step 2: Simulate real-time crowd data (can be replaced 

with IoT input) 

def get_real_time_crowd (): 

 return np. Random. randint (50, 500) 

 

# Step 3: Normalize crowd data to compute signal strength 

def get_real_time_signal(predicted_crowd): 

 max_crowd_capacity = 500 

 return min (1, predicted_crowd / max_crowd_capacity) 

 

# Step 4: Allocate vehicles based on demand level 

def allocate_transport(signal_strength): 

 if signal_strength > 0.8: 

 return 30 

 elif signal_strength > 0.4: 

Predicted Crowd Levels 

Dynamic Scheduling Algorithm for 

Smart Mobility 

Crowd 

Level? 

Assign 30 

Vehicles 
Assign 15 

Vehicles 
Assign 5 

Vehicles 

High Low 

Deploy Transport Vehicles 

Medium 
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 return 15 

 Else: 

 return 5 

 

# Step 5: Real-time Dynamic Scheduler 

def dsas_real_time_scheduler (duration=60, interval=5): 

 real_time_data = [] 

 start_time = datetime.now () 

 While (datetime.now () - start_time). Seconds < duration: 

 predicted_crowd = get_real_time_crowd () 

 signal_strength = get_real_time_signal(predicted_crowd) 

 vehicles_allocated = allocate_transport(signal_strength) 

 timestamp = datetime.now (). strftime ("%Y-%m-%d %H: 

%M: %S") 

 real_time_data. Append ([timestamp, predicted_crowd, 

signal_strength, vehicles_allocated]) 

 print (f"Time: {timestamp} | Crowd: {predicted_crowd} | 

Signal: {signal_strength:.2f} | Vehicles: 

{vehicles_allocated}") 

 time. Sleep(interval) 

 return real_time_data 

 

4. Results and Evaluation 
This Section includes an in-depth examination of the 

performance of the proposed hybrid to use the Dynamic 

Scheduling Algorithm for Smart Mobility to dynamically plan 

transportation resources and predict crowd mobilization.  

The evaluation is divided into two main components: (i) 

predicting accuracy of the Crowd Mobilization Module based 

on DBSCAN, CNN, GRU, and k-NN; and (ii) effectiveness of 

the Dynamic scheduler for real-time deployment of vehicles 

under forecasted levels of demand. Quantitative measures like 

MSE, Mean Absolute Error (MAE, R² Score, accuracy for 

classification, and F1-score were utilized.  

Confusion matrices, loss curves, heatmaps, and real-time 

scheduling graphs were among the visualizations used to 

verify and analyse the performance. The hybrid approach was 

validated on a set of 4,996 mobile signal records that were 

obtained from the OpenCellID dataset.  

The GRU, CNN, and k-NN models were trained and 

tested using the data after it had been clustered using 

DBSCAN and feature normalization. 

4.1. Evaluation Metrics and Performance 

To classify sites based on anticipated levels of crowd 

mobilization, the k-NN model's classification accuracy was 

examined first in the performance evaluation. Accuracy, 

precision, recall, and F1-score were among the performance 

metrics that were computed using labeled cluster results.  

Table 1 presents the results and shows how well the 

model categorizes the population density zone. Low (Cluster 

2), Medium (Cluster 1), and High (Cluster 0) are the three 

density groups in which the confusion matrix with correctly 

and incorrectly categorized predictions is shown in Figure 4.  

Several assessment measures, such as accuracy, 

precision, recall, F1-score, Mean Absolute Error, Mean 

Squared Error, and R2 Score, were used to assess the 

prediction model's performance. 

Table 1. Crowd prediction evaluation metrics (k-NN classification) 

Metric Value 

Accuracy 34.1% 

Precision 0.68 

Recall 0.73 

F1-Score 0.71 

R² Score 0.44 

 

These findings demonstrate moderate classification 

performance, especially because of class imbalance between 

clusters. Cluster 0 (high density) was accurately predicted, 

while there was overlap between medium and low-density 

clusters. 

4.2. GRU-Based Temporal Analysis 

The GRU model, which has been specifically chosen to 

find sequence patterns in mobile signal strength records in 

various crowd density zones, was used to evaluate the 

suggested framework's time series prediction capability.  

Temporal inputs were utilized for this calculation by 

adding up the hourly mobile signal strengths, with data being 

categorized under cluster identifiers resulting from DBSCAN. 

Every time series was the average variation in signal strength 

in each spatial cluster, thus reflecting the temporal dynamic 

behavior of the crowd. 

The signal strength value sequences were used to train the 

GRU model, which further provided information on potential 

crowd mobilization in designated zones by forecasting future 

patterns in signal fluctuations.  

The model was effectively learning the temporal patterns 

of crowd movements without overfitting, as evidenced by the 

continuous reduction of both the training loss and validation 

loss during the training period.  

The training loss curves in Figure 5 graphically illustrate 

this trend, demonstrating the model's ability to lower error 

over successive epochs. The GRU model's ability to 

accurately represent the temporal process of crowd 

mobilization is further supported by the excellent agreement 

between the anticipated and real signal intensity values. The 

three most important metrics, MAE, MSE, and R2 Score, were 

used to construct the GRU model statistically. To compare the 
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accuracy and sensitivity of the model under various density 

situations, these statistics were computed independently for 

each geographical cluster. 

Table 2. GRU Performance metrics by cluster 

Cluster ID MAE MSE R² Score 

Cluster 0 0.00011 1.98e-08 0.42 

Cluster 1 0.00008 1.00e-08 0.45 

Cluster 2 0.00015 2.68e-08 0.39 

 

With the greatest R2 value of 0.45, Cluster 1, which had 

zones with a medium population density, suggests that the 

signal intensity exhibits more regular and persistent temporal 

patterns, enabling the model to provide predictions more in 

line with reality. On the other hand, Cluster 2, which had low-

density regions, showed somewhat larger prediction errors 

and a lower R2 value because of the more irregular and non-

uniform variations in signal strength within those regions.  

Finally, Cluster 0, which included most of the data points 

and is referred to as a high-density region, demonstrated 

consistent performance with relatively lower error values, 

suggesting that the GRU model is appropriate for high-density 

areas where signal strength changes are often more 

predictable. 

The hybrid model's overall success depends on the GRU's 

capacity to recognize and anticipate temporal trends, which 

enables prompt and proactive transport scheduling. Given 

anticipated crowd mobilization patterns over time, the system 

may optimize transport resources to guarantee effective and 

responsive operations by anticipating spikes or decreases in 

crowd movement. 

4.3. CNN-Based Spatial Feature Visualization 

A CNN that processed the geo-tagged signal strength data 

in the form of a 2D grid was used to investigate the spatio-

characteristics of crowd mobilization. Each geographic 

location had its own cell, and signal strength was used to 

report crowd density. The CNN used convolutional and 

pooling layers to capture hierarchical spatiotemporal crowd 

dispersion patterns by accessing the data as though it were an 

image matrix. 

Figure 6 shows a heatmap of the extracted spatial 

characteristics, with low-density areas being darker and high-

density areas being lighter. This was useful to determine the 

hotspots of crowds and their geographic range. The predictive 

power was enhanced by integrating these spatial elements with 

the temporal outputs of the GRU model to achieve a spatio-

temporal rendering. Identifying areas of aggregate crowd and 

assigning transportation resources to the higher demand areas 

were vital functions for CNN. By using geographic and 

temporal facts in conjunction, the technology improved the 

scheduling of transport and the Allocation of resources 

through a more integrated understanding of pressures to 

organize crowds in a loop. 

4.4. Integrated Spatio-Temporal Prediction Impact 

A dependable spatiotemporal system vastly improved 

crowd mobilization predictions by combining CNN-based 

spatial feature extraction with GRU-based temporal 

processing. The hybrid model was able to predict short-term 

fluctuations and long-term trend predictions through temporal 

dynamics and geographic distribution of crowd density versus 

time (degree of variation increased from time and/or 

geographic relocation). 

The combined system provided greater stability in the 

measurement of error and generally superior generalization 

compared to separate models. Most importantly, the ability to 

consider geographic and temporal aspects decreased 

prediction errors and improved the use of the downstream 

scheduling system's responsiveness along the way. 

The integrated model's output was a direct input for the 

Smart mobility Dynamic routing Algorithm, allowing routing 

of transport on a real-time basis based on predicted demand 

hotspots. Reduced resource waste, better routing design, and 

more precise vehicle allocation were made possible by the 

increased forecasting accuracy.  

In densely populated urban regions, where demand surges 

might be sudden and short-lived, such a combined approach 

would be extremely advantageous. The system might react to 

population movements dynamically by combining 

geographical and temporal intelligence, delivering 

transportation services effectively during peak or unforeseen 

events. 

Table 3. Performance comparison of hybrid framework and baseline models 

Model MSE MAE R² Score 

LSTM 0.015 0.025 0.96 

Random Forest 0.025 0.035 0.93 

GRU Standalone 0.030 0.130 0.95 

Linear Regression 0.030 0.130 0.18 

Hybrid Framework 0.020 0.120 0.98 
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4.4.1. Performance Comparison of Hybrid Framework and 

Baseline Models 

The usefulness of several models in predicting crowd 

mobilization was assessed using performance metrics, 

including MSE, MAE, and R2 Score, which were displayed 

in Table 3. This included the suggested Hybrid Framework. 

The Hybrid Framework outperforms the GRU Standalone and 

Linear Regression models in MSE, although returning a 

slightly worse R2 score than the LSTM and GRU standalone 

models. This demonstrates how well the Hybrid Framework 

can recognize significant trends and extrapolate across many 

data scenarios. Even if interpretability is not as crucial, the 

model's relatively low MAE suggests that it provides steady 

and reliable prediction performance, making it a strong 

contender for applications where accuracy and dependability 

are crucial. 

4.5. Real-Time Evaluation for Dynamic Scheduling 

Algorithm for Smart Mobility  

Employing crowd intensity estimates from the hybrid 

DBSCAN, CNN, GRU, and k-NN model, the Dynamic 

Scheduling Algorithm for Smart Mobility was validated to 

assess the operational effectiveness of the system proposed. 

Each of the predicted crowd intensities was provided to the 

dynamic scheduling system, which determined the best, real-

time vehicle deployment strategies. Using the predicted crowd 

intensities as an input, the dynamic scheduling system was 

able to determine the best, real-time vehicle deployment 

strategies. The real-time responsiveness of the suggested 

Dynamic Scheduling Algorithm when allocating 

transportation resources is illustrated in Figure 8. Based on 

anticipated changes in users’ demand, the simulation 

illustrates that the number of vehicles assigned is constantly in 

flux. The Algorithm's fundamental principles of 

responsiveness, scalability, and feasibility under near-real 

operating circumstances are validated by its dynamic nature. 

Based on the anticipated size of crowds, the normalized 

demand D, derived from the expected size of Crowds, 

proportionate to vehicle deployment adjustments, is also 

depicted in this figure. As may be observed, vehicle 

deployment increases during high demand and decreases 

during low demand. This relative adjustment highlights how 

well the Dynamic Scheduling Algorithm uses transportation 

resources, ensuring that vehicle deployment reflects the 

population's actual mobility needs. At a simulated peak of 

high passenger demand (in terms of 10:50 AM), when the 

system dynamically deployed up to 50 vehicles, the 

estimated passenger demand was 400 (normalized to D = 

1.30). In contrast, the system only deployed two vehicles 

during low demand, e.g. 10:30 AM, when only 60 passengers 

were projected (normalized to D=0.20). These differences 

demonstrate the Algorithm's ability to adaptively adjust 

operations in concurrent operation in real time to meet 

demand to avoid both under- and over-provisioning. The 

Dynamic Scheduling Algorithm increases environmental 

sustainability and economic efficiency in urban mobility 

networks by reducing vehicle deployment to specific times 

of actual demand. This demand-responsive approach does 

not solely improve resource use; it significantly mitigates 

fuel use, emissions, and maintenance costs, achieving both 

economic and ecological purposes at once. The Dynamic 

Scheduling Algorithm provides a solid conceptual basis for 

intelligent urban mobility systems in a way that harmonizes 

intelligent transportation networks with operational and 

environmental sustainability goals. 

c 

Fig. 8 Real time transport scheduling 
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Fig. 9 Crowd-Based dynamic scheduling 

The introduced dynamic scheduling algorithm facilitates 

real-time, demand-responsive vehicle allocation, based on 

real-time demand, thus enhancing both sustainability and 

economic opportunity in urban transportation systems. 

Dynamic scheduling aligns fleet deployment with real-time 

demands, promoting optimal utilization of resource 

deployment, and minimizes fuel consumption, emissions and 

maintenance costs. Serving economic and environmental 

priorities in one go is a rare benefit. Consequently, the 

Algorithm represents a strong basis for the development of 

smart urban mobility solutions within the larger objectives 

of sustainability in transport and resilient urban 

infrastructure. The demand-response relationship is 

visualized in Figure 9, where the proportional nature of the 

dynamic scheduling model is apparent in the deviations of 

the real-time crowd. The graph depicts the relationship 

between the normalized (or expected) crowd demand and the 

real-time vehicle allocation, demonstrating the proportional 

control behavior of the model. The red curve represents the 

expected crowd, while the blue line represents the real-time 

vehicle allocation. The model is dynamically responsive to 

changes in the crowd using a mathematical mapping function 

to portion the vehicle deployment because of the variations 

in the crowd, not only to ensure reliability of service but also 

to maximize the effective use of its fleet. This adaptive 

mechanism is governed by a mathematical mapping function 

that translates normalized demand into precise vehicle 

allocation. 

Vehicles Allocated = α⋅D+β (2) 

Where: 

 D = Normalized demand based on the anticipated number 

of people 

 α = Demand responsiveness factor (scaling coefficient) 

 β= Allocation of minimum basic vehicles (to ensure 

availability even at low demand) 

During the process of simulation adjustments, the values 

of α and β were adjusted experimentally to fit the reality of 

fleet size and other limits. This tuning allowed the simulation 

to respond appropriately to abrupt and gradual changes in 

crowd density. In this way, the transportation resources were 

used to optimise the use of transportation assets and improve 

commuter experience as a freer and faster flow of transport 

was assured (with less delay and less crowded routes). 

4.6. Performance Evaluation and Comparative Analysis  

To evaluate the effectiveness of the proposed Dynamic 

Scheduling Algorithm for Smart Mobility, a performance 

assessment was completed based on a comparison of the 

proposed dynamic scheduling algorithm against the 

conventional static scheduling system. Therefore, the 

aforementioned system kept the same crowd projections 

produced by the hybrid DBSCAN–CNN– GRU–k-NN 

framework under the same simulated conditions. The 

experimental results are included in Table 4, which indicate 

that the proposed dynamic scheduling algorithm outperformed 

the static scheduling representations in all of the performance 

metrics evaluated. The proposed dynamic scheduling 

algorithm has reduced fuel consumption by 25%, a 45% 

reduction in total average waiting times of passengers, and 

overall fleet utilization improved by 30% compared to 

conventional static representations of methods. In the case of 

comparing against more dynamic scheduling alternatives, the 

proposed model provides greater operational flexibility and 

faster response times, resulting in a potential reduction in 

service cost and improved operational efficiencies. The 

proposed study was superior to existing scheduling techniques 

across all assessed performance metrics. The Algorithm 
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outlined in this study offers a sustainable and economically 

feasible approach to addressing current urban mobility needs. 

The system improves reliability, reduces congestion, and 

improves the passenger mobility experience through the 

demands of travel because it is flexible to changing demand. 

This sets an example and benchmark for Intelligent 

Scheduling systems in smart city paradigms. Significantly, the 

Algorithm contributes towards better mobility opportunities 

by transforming urban transport in a smarter way by 

increasing efficiency of services, lowering costs, and reducing 

the negative environmental impacts of ridesharing. By 

integrating real-time flexibility with predictive reviews, the 

Algorithm provides a viable solution moving forward that 

enables us to build smarter, more sustainable and more 

efficient public transport systems. Figure 10 begins with a 

comparative analysis of average deployments of a vehicle with 

all the approaches in study, including the Fixed Scheduling, 

Long Short-Term Memory (LSTM), Reinforcement Learning 

(RL), Demand Responsive Transport (DRT) and algorithmic 

Dynamic Scheduling Algorithm for Smart Mobility provided 

as part of this study. In general, the results highlight the 

superior adaptability of the proposed infrastructure and 

resource development allocation in understanding the demand 

crowd under different conditions. 

 
Fig. 10 Comparison between different algorithms 

Table 4. Performance metrics comparison 

Metric 
Static Scheduling 

Algorithms 

Proposed Dynamic Scheduling 

Algorithm for Smart Mobility 

Other Dynamic 

Scheduling 

Algorithms 

Improvement 

(%) 

Fleet Utilization 

Rate 
62% 81% 74% +30.6% 

Average Passenger 

Wait Time 
9.2 minutes 5.1 minutes 6.4 minutes -44.6% 

Responsiveness 

Index 
5.0 minutes 1.8 minutes 3.0 minutes +64.0% 

Fuel/Energy 

Efficiency 
Baseline +25% +18% +25.0% 

Operational Cost 100% (Reference) 76% 82% -24.0% 
 

Conventional tactics like fixed Scheduling and RL assign 

fewer vehicles, which is indicative of their lack of 

responsiveness to real-time scenarios. LSTM and DRT fall in 

between these two, displaying moderate responsiveness. 

The Proposed Algorithm can continuously update vehicle 

assignments as real-time crowd mobilization forecasts are 

updated. Not to mention this Algorithm has the potential to 

completely alter urban mobility, improving efficiency, 

reducing operating costs, and encouraging sustainability. It 

represents a leap forward in transportation optimization. Its 

real-time dynamic tuning and advanced predictive algorithms 

offer the best opportunity for an urbans transport evolution, 

enabling smarter, cleaner, and cost-efficient transport systems. 
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5. Conclusion and Future Work 
The proposed Dynamic Scheduling Algorithm exhibited 

distinct performance advantages over standard static and 

alternative dynamic methods. Specifically, it revealed 30.6 % 

improvement in fleet utilization, passenger waiting times by 

44.6% and a lowered fuel usage by 25%. These results imply 

that the Algorithm can vary the demand in real time, providing 

better resource distribution and overall commuter satisfaction. 

In addition to increasing operational efficiency, the proposed 

method contributes to environmental sustainability through 

reduced fuel use and cost savings. The method's concurrent 

agility and optimal performance make it a game changer for 

the future of urban mobility. By incorporating real-time 

scheduling with predictive crowd behavior, the model sets a 

new standard for smart, sustainable and intelligent transport 

management in modern cities. 

While the findings suggest considerable promise, there is 

an ongoing requirement for improvement, particularly to 

address the scalability to larger, more complex urban 

networks. To fully assess the scalability of the dynamic 

scheduling algorithm proposed in this research, it needs to be 

tested in highly complex, real-world, large-scale urban 

environments with complex transport networks and diverse 

mobility patterns. This will allow us to evaluate how well the 

model performs in real-world settings and whether it is robust, 

adaptable, and reliable under peak demand conditions. 

Future investigations should focus on testing this model 

in an urban context with pilot studies to verify the model for 

implementation in the real world. For example, enhancing the 

Algorithm with IoT sensor data, GPS, or vehicle tracking data 

will significantly improve its responsiveness. Also, applying 

other advanced machine learning technologies with the 

addition of reinforcement learning may improve predictive 

accuracy and adaptability of the model. Linking the schedule 

system to the larger intelligent city systems, such as multi-

modal transport systems and autonomous vehicle systems can 

change the landscape of urban mobility. Future creativity and 

structured research will be important when fully realizing this 

model in advancing us toward more intelligent, efficient and 

sustainable transportation systems.
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