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Abstract - The complexity of voltage control and reactive power support has risen due to the increasing integration of renewable 

energy sources in Virtual Power Plants (VPPs). Therefore, effective management is vital for grid stability and energy 

optimization. To improve voltage control and reactive power management in VPPs, this research introduces a new method that 

uses the SA-STO algorithm. The proposed Self-Adaptive Siberian Tiger Optimization (SA-STO) algorithm continuously modifies 

its search parameters according to the power grid's operating circumstances to achieve adaptive and efficient optimization. The 

approach increases the stability of voltage profiles, speeds up convergence, and prevents local optima by using the self-adaptive 

mechanism. Many constraints are considered to optimize for both efficient energy use and grid dependability, such as reactive 

power compensation, voltage deviation reduction, and power flow balancing. Key results include a reduction in average voltage 

deviation by ~35%, a decrease in power loss from 12 kW to 1–2 kW, and convergence within ~100 iterations—outperforming PI, 

PID, and static FOPID controllers. Compared to traditional optimization approaches, the SA-STO algorithm achieves better 

simulation results for voltage regulation accuracy, computational resilience, and reactive power support efficiency. The results 

show that it might be an effective optimization tool for making current VPPs more efficient, leading to a more stable and 

renewable energy grid. 
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1. Introduction 
Virtual Power Plants (VPPs) are in increasing demand in 

today's complex and decentralized power industry because of 

their ability to combine renewable energy resources and 

stabilize the grid. VPPs also play a significant role in bringing 

together Distributed Energy Resources (DERs), like 

producing Renewable Energy Sources (RES), storing energy, 

and shifting electricity usage depending on the grid's 

condition. The control of Voltage and Reactive Power (VRP) 

is responsible for characteristics in the supply of electricity, 

such as its quality of supply, dependence on resources, and 

stability (Goia et al.,2012). VPPs aid in enhancing the resilient 

nature of grids, making them more flexible and, at the same 

time, aid in balancing the demand for resources and the supply 

of the same. Virtual Power Plants (VPPs) combine different 

types of distributed energy resources, such as solar PV, wind 

turbines, energy storage (BESS), electric vehicles, and 

flexible loads, into one controllable unit that can take part in 

energy markets and offer extra services like voltage and 

reactive power control. This grouping allows power and 

information to flow in both directions, which makes VPPs 

more flexible but also harder to manage than traditional 

generation systems. Some of the main problems with 

controlling reactive power and voltage in VPPs are: A mixed-

integer optimization problem, since VPPs coordinate discrete 

devices (like OLTC and capacitor banks) with continuous 

resources (like inverters). High penetration of inverter-based 

DERs causes reverse power flows and voltage instability, 

which traditional controllers like STATCOM or SVC have a 

hard time fixing on the fly. The reactive power capability of 

an inverter can change a lot based on the real power output 

and available capacity. This means that adaptive coordination 

is needed instead of static scheduling. These problems show 

how limited traditional Volt-VAR methods are and make it 

clear that we need real-time, self-adaptive optimization 

methods. For example, the proposed SA-STO algorithm 

adjusts search behavior on the fly to control reactive power 

and voltage in VPP environments with a lot of DERs. Reactive 

Power Support and Voltage Control (RPS & VC) management 

in the power supply, importantly in VPPs, is significant for 

maintaining the flow of voltage in the entire grid and 

decreasing the effects of fluctuations in the output of RES 

(Enokido et al., 2011). Strong VM can help decrease the losses 

occurring in the system and enhance the transmission of power 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
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and its efficiency in distribution; RP is crucial for regulating 

voltage (Stanelyte Radziukynas2020). VRP is an important 

and essential process for managing the inclusion of RES like 

wind and solar power for better efficiency of its operation and 

for being stabilized in nature (Ristono& Budi, 2025). The 

aspects mentioned above directly impact how the operations 

in the grid perform, how efficient they are, and their 

dependence on other resources; therefore, it is of utmost 

importance to perform optimization with a framework like 

VPPs (Callaway &Hiskens, 2011). Stabilized voltage graphs 

and a balance of RP will require an advanced VPP operation 

as the RES becomes more generalized. 

The VPPs are constantly shifting and becoming more 

complex. Hence, the traditional optimization solutions for 

RPS and VC are less efficient. Yet another reason for their 

inefficiency is the characteristics of the grid-like, showcasing 

a behavior that is not linear and having a production of 

Renewable Energy (RE) that is unpredictable (Suresh & 

Lenine, (2024)). Because of the above-mentioned reasons, it 

is essential to have advanced optimization techniques that 

cater to real-world needs (Kadhim et al., 2024). 

One advanced technique proposed for RPS & VC is the 

Self-Adaptive Siberian Tiger Optimization (SA-STO) 

algorithm. Compared to the optimization techniques used 

traditionally, this algorithm shows adaptivity towards varying 

situations of systems and more substantial outcomes and 

quickens convergence (Niknam et al., 2013). In accordance 

with the increased quality of the decisions made in systems 

like power grids with high complexity, this approach is an idea 

obtained from Siberian tigers that used an adaptive method of 

hunting. Because of its adaptive quality, the SA-STO is 

dynamic and can alter how it performs according to the 

changes in the condition of the system, making it suitable for 

the unpredictable and constantly changing market of RE. 

Researchers have recently used meta-heuristic algorithms like 

PSO, GA, and hybrid FOPID-based controllers to improve 

voltage and reactive power control in VPPs. However, many 

studies have not looked at how these algorithms can change 

on the fly to deal with the quickly changing operating 

conditions that are common in VPP environments, like 

changing load, renewable energy injection, and grid problems. 

Because of this, traditional methods often take a long time to 

converge and run the risk of getting stuck in local optima. To 

improve both the speed of convergence and the quality of the 

solutions for reactive power dispatch and voltage control in 

VPPs, this study suggests the Self-Adaptive Siberian Tiger 

Optimization (SA-STO) algorithm. This algorithm changes its 

search parameters in real time based on grid conditions. 

2. Literature Review 
Many recent studies have explored different ways to 

control voltage in power and electric systems, more 

importantly, during the integration of RE. VC is significant for 

maintaining the stabilization of systems and enhancing how 

they perform. A study by Fusco et al. (2021) described a 

mechanism as a decentralized approach for VC in newer grids 

with RESs. This mechanism uses classical control strategies, 

like transformer tap changers, and advanced methods, such as 

Battery Energy Storage Systems (BESS), which help stabilize 

the real-time voltage. Managing voltage in VPPs is more 

difficult because they integrate DERs like wind energy, solar 

energy, and systems for storage (Rajput et al., 2024). The 

details on how VC can be optimized using VPPs using a 

versatile approach called Dynamic Voltage Regulation (DVR) 

using information like the grid condition, generation profile, 

and load were researched (Huang & Zhang, 2025). This 

approach works by adjusting the regulating actions of the 

DERs through a communication system. 

RP stabilizes voltage and ensures that the power flow in 

grids is efficient. Traditional techniques used in the RP 

compensation process, like the (Static VAR Compensators 

STATCOM) and Static VAR Compensators (SVC), are still 

available. However, they are not very adaptive and require 

change according to the condition of the systems. Recent 

research by Dawn et al. (2024) talked about the need for 

compensation systems for RP with high adaptability and 

intelligence, especially during the integration of RES, which 

has power outputs. 

In cases where RES like wind and solar are integrated, the 

RPS in VPPs ensures grid stability and reliability. In 2024, 

(Sikorski et al. 2020) researched how DERs in VPPs can 

independently lend a hand to RPS by controlling the local 

inverters. This study found that a decentralized approach to 

RP management can improve the grid's performance at 

minimal costs of operation and minimal losses. 

With an increase in decentralized VPPs, the deniability of 

VPPs has become more popular. In 2023, Researchers Wang 

et al. established a framework for optimization that is hybrid, 

meaning that it combines operational and market-based 

approaches. This approach facilitates the integration of RP 

control and enhances the system's efficiency. This framework 

utilizes optimized algorithms, instantaneous forecasting, and 

price signals to efficiently dispatch energy resources and 

maintain RPS and VC. One major challenge in VPPs while 

managing RP and controlling voltage is coordinating different 

resources. A study by Marinescu et al. (2022) focused on 

developing an approach for VPPs that performs optimization 

on both the dispatch of energy and the compensation of RP 

simultaneously. To reduce the loss of power and increase the 

stability of the system, this approach used an algorithm for 

optimization. 

The SA-STO algorithm implements a technique for 

optimization, which was inspired by the Siberian Tigers Hunt. 

This algorithm works in a way that adjusts its parameters for 

searching based on the context of the problem, thus enhancing 

the rate of convergence and providing a better trade-off 
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between exploitation and exploration. In a study in 2023 by 

Iqbal et al. (2024), a hybrid algorithm was introduced, which 

involves different techniques like GA techniques d PSO with 

the SA-STO for enhanced performance. This form of an 

algorithm provides optimal solutions, more efficient 

convergence, and less computational time. However, another 

evolving area of research is the integration of technologies that 

use smart grids with VPPs. A study in 2024 by Michael et al. 

(2022) showed that the interaction of smart grids with VPP 

provides a platform for active adjustments in RPS and voltage. 

This study ensures proper energy distribution, efficient 

optimization, and stabilization of voltage levels. 

Table 1. Related works of the proposed model 

S.no Authors (Year) Methodology Key Contributions Identified Gaps 

1 

 

T. Vafa, M. H. 

Ershadi & B. 

Arandian (2025) 

AC-OPF reactive and 

active dispatch in VPP 

considering smart inverter 

services 

Integrated reactive power dispatch 

with ancillary services; <0.015 pu 

voltage regulation in IEEE test 

systems 

Focused on deterministic 

OPF; lacks online/adaptive 

metaheuristic tuning 

capability 

 

2 

 

B. Goia, T. 

Cioară& I. 

Anghel (2022) 

Narrative review of VPP 

optimization techniques 

and services 

Categorized VPP methods across 

markets, control, and DER 

coordination 

Descriptive, not quantitative; 

lacks detailed discussion on 

algorithmic adaptability 

3 

Mohammed et el 

(2024) (Energy 

Informatics) 

Literature review of 

reactive power planning 

strategies in microgrids 

Synthesized 20 recent studies; 

highlighted voltage stability 

improvements from strategic RPP 

Focus is on planning, less on 

real-time control or 

algorithm comparison 

4 

M. Almomani, 

A. Alkhonain& 

V. Ajjarapu 

(2025) 

Sensitivity-aware reactive 

dispatch using smart 

inverters in VPPs 

Achieved dynamic VPP voltage 

control via smart inverter modes; 

performance validated on IEEE-13 

and 123 systems 

Emphasizes sensitivity-based 

dispatch; not employing 

autonomous metaheuristic 

adaptation 

5 
Esfahani et al. 

(2023) 

Dynamic Volt-VAR 

scheduling in microgrids 

using chance-constrained 

optimization 

Proposed robust prosumer 

co-optimization under uncertainty; 

scalable VPP scheduling 

No reactive power control 

algorithm comparison; static 

scheduling rather than 

adaptive control 

Table 1 demonstrates the related works done by various 

authors. Vafa et al. (2025) show how smart inverter 

coordination in VPPs can effectively regulate voltage, but 

their approach is predicated on deterministic AC-OPF 

optimization. While reviewing various VPP optimization 

techniques, Goia et al. (2022) point out the need for more 

flexible algorithmic solutions. Reactive-power planning 

techniques without online control mechanisms are highlighted 

by Mohammed et el (2024). Despite not having runtime 

parameter self-tuning, Almomani et al. (2025) offer a 

sophisticated sensitivity-based dispatch for smart inverters. 

Using prosumer co-optimization without adaptive reactive-

power controllers, Esfahani et al. (2023)tackle scheduling 

under uncertainty. These studies collectively highlight the 

need that SA-STO addresses by providing real-time adaptive 

optimization for reactive-power and voltage control in 

dynamic VPP environments. 

To reduce voltage deviations and reactive power losses, 

the majority of previous studies on Volt-VAR control in VPPs 

employ metaheuristic algorithms such as PSO, GA, and ABC 

(Stanelyte&Radziukynas, 2020; Bakare et al., 2007; Mourtzis 

et al., 2023; Nezamabadi et al., 2016). However, under 

variable renewable conditions, these approaches often rely on 

fixed tuning parameters, which limit their adaptability and 

may result in slow convergence or becoming trapped in local 

optima (Eghbal et al., 2008). While recent Deep 

Reinforcement Learning (DRL) techniques like DQN, DDPG, 

SAC, and MACSAC provide greater real-time flexibility, they 

must be trained on large datasets and are primarily tested on 

static feeders rather than fully dynamic VPPs (Zhang et al., 

2020; Gao et al., 2020; Esfahani et al., 2023). But the proposed 

Self-Adaptive Siberian Tiger Optimization (SA-STO) does 

not require offline training or manual parameter tuning, 

instead, it modifies its search parameters online in response to 

real-time grid feedback. In dynamic, renewable-rich VPP 

environments, this self-adaptive mechanism provides faster 

convergence, improved escape from local optima, and 

increased robustness, providing definite advantages over both 

static metaheuristics and data-intensive DRL techniques. 

2.1. Proposed Model  
This study uses a new algorithm called the Self-Adaptive 

Siberian Tiger Optimization (SA-STO) to optimize voltage 

management and reactive power support in VPPs, illustrated 

in Figure 1. Energy storage devices, variable loads, and 

renewable power sources like solar and wind are all parts of 

the Distributed Energy Resources (DERs) that VPPs combine. 

Stable voltage levels, minimal reactive power losses, and 

maximum usage of renewable energy sources are all goals of 

these systems, which need effective optimization 

methodologies. The proposed method uses the SA-STO 

algorithm's adaptive features based on how Siberian tigers 

hunt. The optimization process is managed by this algorithm 

in a balanced way, with an exhaustive search for optimum 

solutions and a refinement of the search around desirable areas 



Srinivasa Rao.Sureddy & Nageswara Rao.Pulivarthi / IJEEE, 12(8), 99-111, 2025 

 

102 

in the solution space. By analyzing the VPP's real-time data, 

the algorithm makes adjustments to the reactive power output 

and voltage setpoints in real-time to keep the system stable. 

The approach offers a solid foundation for enhancing the 

stability and efficiency of energy distribution in VPPs by 

integrating power flow analysis with sophisticated 

optimization methods. Several case studies show that the 

method works well with variable renewable energy output, 

load demand, and operating circumstances, validating its 

efficacy in improving system performance. 

 
Fig. 1 Implementation flow of the proposed model 

3. Model Description 
A customized IEEE-33-bus distribution test system, as 

referenced in Stanelyte & Radziukynas (2020), is used to 

model the VPP environment. To simulate a real-world DER 

deployment, the VPP incorporates five DER units throughout 

the network: two 500 kW solar PV arrays, one 1 MW wind 

turbine, and two 200 kWh battery storage systems connected 

at strategic buses. Synthetic Weibull-distributed wind-speed 

models and half-hourly solar irradiation data were used to 

create profiles of renewable generation. Based on regional 

utility data, load demand profiles show the total amount of 

residential, commercial, and industrial usage over a 24-hour 

period. Every simulation was carried out using MATLAB 

Simulink (R2022a) with EVAT network modelling on a 

Windows 10 Pro computer (Intel Core i3 @ 3.60 GHz, 8 GB 

RAM). To support reproducibility, the supplementary 

materials include input-profile files, DER specifications, and 

detailed system parameters. 

3.1. Hybrid PI-FOPID Controller 

The main aim of having this controller design that has 

been proposed is to check the response of the frequency of the 

hybrid microgrid in situations where disruptions in load take 

place and when there are variations in Renewable Energy 

Sources (RES). This controller is proposed to decrease the 

power variations in the tie-line and reduce the frequency 

deviations. A control in the frequency is acquired because of 

the hybrid controller, which has both a PI controller and an 

FOPID controller. When a high percentage of resources have 

renewables, a decrease in power fluctuation in the tie-line and 

a deviation in frequency will prove to be significant. In this 

controller, the output obtained from the PI is taken as a set 

point by the FOPID controller. The hybrid controller is more 

productive than the single-loop controller because the system's 

performance is more efficient as it aids in decreasing the 

disturbances on secondary variables, which can affect the 

primary output process. It also decreases the impact of 

variations on the performance of the system. In the proposed 

control system's architecture, two controllers are present, and 

the output of one of the controllers handles the set point of 

another controller. The controller that regulates a set point is 

called the outside controller, or the significant or master 

controller. The controller where the set point is received is 

called the secondary controller, also called the inner or slave 

controller. Figure 2 shows the structure of the hybrid PI-

FOPID controller. 

 
Fig. 2 Architecture of hybrid PI-FOPID 

 

3.1.1. PI Controller 

The signal indication R(s) refers to the input. The control 

system would either have this power output as the target it 

wants to reach, or this could be the optimal frequency it would 

want for a VPP system. The system will attempt to see if the 

input reference matches the actual output denoted as Y(s) 

because the RESs are often subjected to changes. The equation 

E(s) = R(s)-Y(s) is used to denote the difference in the actual 

output of the system from the input reference. The controller 

functions in such a way that it reduces errors and gets an 

output from the system that is close to the value that is 

supposed to be gained. The initial part of the control block has 

PI. It exercises E(s), an error signal, to generate a control 

signal immediately. The reason why PI is popular is that it is 

easy to use and also because of its ability to handle steady-

state errors. The (𝐾𝑝), which is a proportional term, helps 
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enhance the overshoots and response of the rise time, whereas 

the (𝐾𝑖), which is an integral term that helps greatly reduce 

steady-state errors. A high proportional gain value is required 

to have a good control effect, especially when the speed error 

is huge. Also, a significant value of integral gain is required to 

reduce steady-state errors when the speed error is less. 

Equations (1) and (2) depict the PI's output, the torque 

component used as a reference by the motor, and the transfer 

equation, respectively. 

𝐶𝑃𝐼(𝑡) = 𝐾𝑝(𝑡)𝑒(𝑡) + 𝐾𝐼(𝑡) (1) 

𝑈𝑃𝐼(𝑆) = 𝐾𝑝1𝐸(𝑠) −
𝐾𝐼1

𝑠
𝐸(𝑠) (2) 

Here, the proportional gain is denoted as 𝐾𝑝(𝑡), the 

integral gain is denoted as 𝐾𝑖(𝑡), and also 𝑒(𝑡) = 𝑤𝑟
∗(𝑡) −

𝑤𝑟(𝑡). Improvements depend on e(t), which is the speed error. 

In Equation (3), the 𝐾𝑝(𝑡) is denoted as the speed error 

function. 

𝐾𝑝(𝑡) = 𝐾𝑝(𝑚𝑎𝑥) − (𝐾𝑝(𝑚𝑎𝑥) − 𝐾𝑝(𝑚𝑖𝑛))𝑒
−[𝑘𝑒(𝑡)]  (3) 

The k is used as a constant to determine the rate of 

difference of 𝐾𝑝(𝑡) between the proportional gain's minimum 

value and maximum value. To get a fast transient response 

while having a high et(t), which is speed error,𝐾𝑝(𝑚𝑎𝑥), which 

is a proportional gain of high value, is employed, and 

whenever e(t) is considerably less, to eliminate overshoots and 

also oscillations, the 𝐾𝑝(𝑚𝑖𝑛), which is a proportional gain of 

low value, is used. Equation (4) shows the relation between 

e(t) and integral gain, which is denoted as  

𝐾𝑖(𝑡) =  𝐾𝑖(max)𝑒
−[𝑘𝑒(𝑡)] (4) 

An integral gain of high value is included when e(t) in 

steady-state conditions is considerably small to compensate 

for errors that are in steady-state. Whenever the error is large, 

an integral gain of a small value is brought into action to 

eliminate oscillations that are not required and unwanted 

overshoots. A huge control signal is utilized in transient 

conditions to accelerate or decelerate a motor within a short 

duration to a pre-referenced value. During this process, 𝐾𝑝(𝑡) 

tends to reach a higher value, and 𝐾𝑖(𝑡) tends to remain at a 

low value. 𝐾𝑖(𝑡) reaches its maximum level during steady-

state operation. 

3.1.2. FOPID Controller 

Fractional Order PID, also known as the FOPID 

controller, is more advanced than the traditionally used PID 

controller, constituting the second block of controllers. The 

flexibility and regulation of complex functions of the system 

are carried out by including a fractional calculus in the 

processing part of this controller. A non-integer order is 

utilized for proportional components, derivatives, and 

integrals used in FOPID, making it a more expanded and 

complex version of the traditionally used PI. The ability of this 

controller to govern complex systems and modify systems that 

include factors like dynamics that have an ordering of non-

integers, are non-linear and have time delays increases its 

degrees of freedom. The non-local dynamics are seen in 

FOPID compared to its counterparts with integer order, 

indicating that it is also important to analyze the history of 

error signals when determining the proper action to be taken. 

FOPID has become more popular because of its resilient 

nature and enhanced performance. Equations (5) and (6) show 

how the calculation of a controller gain, along with the 

transient equation, is performed. 

𝐶𝐹𝑂𝑃𝐼𝐷(𝑡) =  𝐾𝑃 + 𝐾𝐼
1

𝑠𝛌 + 𝐾𝐷𝑠μ  (5) 

𝑈𝐹𝑂𝑃𝐼𝐷(𝑆) = 𝐾𝑃2𝐸(𝑠) + 𝐾𝐼
1

𝑠𝛌 𝐸(𝑠) + 𝐾𝐷2𝑠
μ (6) 

Here, the output of the controller is denoted as Y(s), the 

input of the controller as U(s), and the controller's transfer 

function is 𝐺𝑐. 𝐾𝐼  is used to represent fractional parts of 

integral controllers, and 𝐾𝐷 is used to represent derivative 

controllers along with their gains. They are denoted as λas well 

as μ, respectively. 𝐾𝑃 is also known as proportional gain. U(s) 

is used to indicate the error between actual values and desired 

values. The role of PI is to reduce the increased errors that 

occur initially, after which FOPID uses advanced dynamics, 

which are of the fractional-order type, to refine the output. 

Compared to PI, the FOPID is more robust because of the 

availability of fractional parts in the controller. High 

versatility is achieved with the use of controllers that have 

terms of fractional order, like 𝑠μ as well as sλ in comparison 

with controllers that have integer order. Therefore, dynamic 

and complex systems with RESs like the VPPs use FOPID. 

Specifically, FOPID can take care of non-linearities as well as 

uncertainties during the process of producing renewable 

energy. In Equation (7), U(s), the output from the hybrid 

controller, is the signal acquired from FOPID and PI. This 

output signal is fed into the VPP system to see how it behaves 

and generate an actual outcome called Y(s), the reference 

input in the close margin with R(s). 

𝑈(𝑠) = 𝑈𝑃𝐼(𝑆) + 𝑈𝐹𝑂𝑃𝐼𝐷(𝑠) (7) 

The optimization of parameters like μ, λ, 𝐾𝑝1, 𝐾𝑝2, 𝐾𝐼1, 

𝐾𝐼2, and 𝐾𝐷 will help in ensuring a performance that is optimal 

for the required tasks. An algorithm called the Self Adaptive 

Siberian Tiger Optimization (SA-STO) is implemented to 

obtain values that are ideal for the above parameters. The aim 

of bringing in SA-STO is to use it to decrease the loss 

occurring in VPP by tuning the FOPID parameters. To add to 

that, it also makes sure that the RESs are used efficiently, and 

at the same time, it makes sure there is proper stabilization in 

the system. This impacts electric power deviations in tie-lines, 

ultimately decreasing the loss of power. The reduction in loss 

of power is described as follows in Equation (8): 
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min 𝑃𝑙𝑜𝑠𝑠 = 𝑓(𝐾𝑃,𝐾𝐼 ,𝐾𝐷 , λ,μ) (8) 

Here the 

𝐾𝑃
𝑚𝑖𝑛 ≤ 𝐾𝑃 ≤ 𝐾𝑃

𝑚𝑎𝑥 

𝐾𝐼
𝑚𝑖𝑛 ≤ 𝐾𝐼  ≤ 𝐾𝐼

𝑚𝑎𝑥 

𝐾𝐷
𝑚𝑖𝑛 ≤ 𝐾𝐷 ≤ 𝐾𝐷

𝑚𝑎𝑥 

0 ≤ λ≤ 20 ≤ μ≤ 2 

The SA-STO performs its task by adjusting 

parametersμ, λ, 𝐾𝑃,𝐾𝐷, and 𝐾𝐼 , increasing optimization and 

decreasing power loss. The PI and FOPID controller 

parameters, namely the gains 𝐾𝑃,𝐾𝐼 ,𝐾𝐷 and the fractional 

orders λ and μ are optimally tuned using the SA‑STO 

algorithm. The inner FOPID controller in the hybrid 

architecture uses fractional dynamics to refine the transient 

response, while the outer PI controller corrects steady-state 

errors. In order to minimize power loss and voltage deviation, 

SA-STO dynamically modifies these parameters in real time 

based on grid feedback. Under a variety of operating 

conditions, this structured control scheme guarantees 

robustness and quick convergence. 

3.2. Self-Adaptive Siberian Tiger Optimization (SA-STO) 

The algorithm SA-STO is a metaheuristic approach to 

optimzing parameters involved in hybrid PI-FOPID. The idea 

for this approach was adapted from survival techniques and 

natural hunting methods implemented by Siberian tigers, and 

it uses the phases called bear combat and prey hunting. The 

tigers determine the best possible solutions when optimization 

takes place, allowing them to decide on a position and adjust 

to it with respect to the values of the objective function. The 

process of determining positions and adjusting to them has 

two stages, and these are based on the animal's natural hunting 

activity. 

3.2.1. Initialization  

The STO's repetitive process, which utilizes the 

population's search ability, can provide an effective and 

feasible solution to the problem. The Siberian tigers, which are 

a part of the population of STO, have the habit of roaming 

around a search space to obtain efficient solutions. All 

Siberian tigers are a part of the population, so they can provide 

a potential solution. By assigning matrices to the population 

and vectors to every individual, a mathematical model 

exclusively for Siberian tigers can be formed, as depicted in 

Equation (9). The values assigned to the variables of the 

problem are indicated by the location within the area it 

searches. 

𝑆𝑇 =

[
 
 
 
 
𝑆𝑇1 

⋮
𝑆𝑇𝑖

⋮
𝑆𝑇𝑁]

 
 
 
 

𝑁×𝑚

=

[
 
 
 
 
𝑠𝑡1,1 … 𝑠𝑡1,𝑗 … 𝑠𝑡1,𝑚

⋮ ⋱ ⋮ ⋰ ⋮
𝑠𝑡𝑖,1 … 𝑠𝑡𝑖,𝑗 … 𝑠𝑡𝑖,𝑚
⋮ ⋰ ⋮ ⋱ ⋮

𝑠𝑡𝑁,1 … 𝑠𝑡𝑁,𝑗 … 𝑠𝑡1,1 ]
 
 
 
 

𝑁×𝑚

 (9) 

The population matrix of the locations of Siberian tigers 

is denoted as ST, the 𝑖𝑡ℎ tiger is denoted as 𝑆𝑇𝑖 , which will 

provide a feasible solution, and the total number of tigers is 

denoted as N. The random spots where the Siberian tigers are 

placed initially in the search area after the application of STO 

are determined by Equation (10). 

𝑆𝑇𝑖,𝑗 = 𝐿𝐵𝑗 + 𝑟𝑖,𝑗 . (𝑈𝐵𝑗 − 𝐿𝐵𝑗),    𝑖 = 1,2, … , 𝑁; 𝑗 =

1,2, … . . , 𝑚 (10) 

Here, the values that are arbitrary within the interval of 

[0;1] are denoted as 𝑟𝑖,𝑗, the 𝐿𝐵𝑗  and𝑈𝐵𝑗 are the lower bound 

and upper bound of the 𝑗𝑡ℎ problem variable,𝑆𝑇𝑖,𝑗 denotes 

𝑆𝑇𝑖’s 𝑗𝑡ℎ dimension in the search area, which is the problem 

variable, and the count of issue variables is denoted as m. The 

location of the Siberian tiger in the search area is determined 

with the help of the problem variable's values. Hence, for all 

Siberian tigers, a particular value for the objective function of 

the problem can be determined. For the objective function, a 

group of values that are determined can be denoted with the 

help of a vector, also known as an objective function vector, 

which is depicted in Equation (11). 

𝐹 =

[
 
 
 
 
𝐹1 

⋮
𝐹𝑖

⋮
𝐹𝑁]

 
 
 
 

𝑁×1

= 

[
 
 
 
 
𝐹(𝑆𝑇1 )

⋮
𝐹(𝑆𝑇𝑖)

⋮
𝐹(𝑆𝑇𝑁)]

 
 
 
 

𝑁×1

 (11) 

Here, the obtained value of the objective function for the 

𝑖𝑡ℎ tiger is 𝐹𝑖, and F is the vector of the values of the objective 

function. 

3.2.2. First Phase: Chaotic Prey Hunting 

Siberian tigers are pretty strong predators as they can 

attack diverse prey species. So, the members of STO get 

updates by copying the hunting techniques used by Siberian 

tigers. The steps involved in this technique include fixing a 

target, going for the attack, and going after it until it is taken 

down or killed. Hence, the phase of hunting a prey has two 

segments. Stage one involves updating the position of the 

population depending on the selection and attack planned on 

the prey.  

This stage will have important and sudden shifts in the 

positions of the members of STO, which will tune the capacity 

of the algorithm, making it ready for global exploration, 

searching, and scanning the search space in a precise manner. 

All Siberian tigers in the STO model will suggest locations of 

prey chosen from the population's members who have an 

objective function larger than that of an individual. Equation 

(12) displays the suggested positions of the prey. 

𝑃𝑃𝑟𝑒𝑦𝑖 = {𝑆𝑇𝑘|𝑘 ∈ {1,2, … , 𝑁}⋀𝐹𝑘 < 𝐹𝑖}∪ {𝑆𝑇𝑏𝑒𝑠𝑡}
 (12) 
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Here, the best candidate solution is denoted as 𝑆𝑇𝑏𝑒𝑠𝑡, and 

the 𝑖𝑡ℎ a member of the population, which is 𝑖𝑡ℎ tiger, picks 

any one member in a random manner in the set denoted as 

𝑃𝑃𝑟𝑒𝑦𝑖  for the attack, the simulation of the attack, and the 

calculation of the current location of the prey. 

𝑆𝑇𝑖,𝑗
𝑃1𝑆1 = 𝑆𝑇𝑖,𝑗 + 𝑟𝑖,𝑗 . (𝑇𝑃𝑖,𝑗 − 𝐼𝑖,𝑗. 𝑆𝑇𝑖,𝑗) *𝑍𝑖+1 (13) 

𝑍𝑖+1 = cos (𝑤 ∗ 𝑐𝑜𝑠−1𝑧𝑖)   −1 ≤𝑧𝑖 ≤ 1; 𝑤∈ [2,6]  (14)                                    

Here, the set has random numbers denoted as 𝐼𝑖,𝑗, and 

Chebyshev chaotic map is denoted in Equation (14) as 

{1,2}.𝑍𝑖+1. This map is to introduce an attack simulation that 

is unpredictable and random. It enables the algorithm to search 

various parts of the area and does not let it linger in an 

optimum local to the members. Based on the first phase and 

stage of STO, the 𝑖𝑡ℎ member’s location is denoted as 𝑆𝑇𝑖
𝑃1𝑆1, 

and its 𝑗𝑡ℎ dimension is denoted as 𝑆𝑇𝑖,𝑗
𝑃1𝑆1 in Equation (14). 

 If there is an increase in the objective function's value 

when the new position is calculated, then it will be accepted 

during the procedure of updating STO members. This process 

is denoted in Equation (15). 

𝑆𝑇𝑖 = {
𝑆𝑇𝑖

𝑃1𝑆1,   𝐹𝑖
𝑃1𝑆1 < 𝐹𝑖

𝑆𝑇𝑖 ,                 𝑒𝑙𝑠𝑒
  (15) 

Here, the 𝑖𝑡ℎ member is 𝐹𝑖
𝑃1𝑆1, and the value of the 

objective function is 𝑆𝑇𝑖
𝑃1𝑆1. As indicated in the protocol, the 

position of members in the population is updated in the second 

phase. In this phase, the tiger alters its position in the space 

where the prey is being attacked. This procedure helps 

enhance the algorithm's ability to predict better solutions in 

local exploitation and search.  

The new location of the tiger, which is close to the site 

where the attack took place, is determined by Equation (16), 

which is determined so that it can be used for the upcoming 

chase or attack. After that, if there is an increase in the 

objective function's value, then the previous position of the 

member is replaced by the location, which is computed anew, 

as depicted in Equation (17). 

𝑆𝑇𝑖
𝑃1𝑆2 = 𝑆𝑇𝑖,𝑗 +

𝑟𝑖,𝑗.( 𝑈𝐵𝑗−𝐿𝐵𝑗)

𝑡
  ; t=1,2…., T  (16) 

𝑆𝑇𝑖 = {
𝑆𝑇𝑖

𝑃1𝑆2,   𝐹𝑖
𝑃1𝑆2 < 𝐹𝑖

𝑆𝑇𝑖 ,                 𝑒𝑙𝑠𝑒
 (17) 

Here, between intervals [0;1], there are random integers 

denoted as 𝑟𝑖,𝑗. The algorithm's iteration counter is denoted as 

t. The objective function's value is depicted as 𝐹𝑖
𝑃1𝑆2. The 𝑖𝑡ℎ 

tiger’s new location is denoted as 𝑆𝑇𝑖,𝑗
𝑃1𝑆2, and the 𝑗𝑡ℎ 

dimension is 𝑆𝑇𝑖
𝑃1𝑆2 based on stage two in phase one. Figure 

3 shows the SA-STO's flow chart. 
 

Fig. 3 SA-STO’s flow diagram 

Start 

Input parameters 

Create and evaluate the initial 

population 

Update prey location using Equation (29) 

Calculate the new location of STO for attack with a chaotic 

map via Equation (30) 

Update ST Position for an attack using 

Equation (32) 

Calculate and update the new location of 

STO for case via Equations (33) and (34) 
via Equation (30) 

 

Calculate the new location of STO in 

fighting with the bear via Equation (35) 

Update ST position using Equation (36) 

Calculate the new location of STO for the 
conflict phase via Equations (37) and (38) 

 

i<n 

Save the best solution 

i<t 

 

End  

i=i+1 

i=1 

t=t+1 



Srinivasa Rao.Sureddy & Nageswara Rao.Pulivarthi / IJEEE, 12(8), 99-111, 2025 

 

106 

3.2.3. Second Phase: Combat with a Bear 

It is observed that, to resolve food conflicts and have their 

territory defended, Siberian tigers combat brown bears and 

black bears within their environment. In phase two, STO 

members are upgraded to develop the techniques used by the 

tigers during bear combat. The bear is ambushed in the fight 

before it gets struck by the tiger. This battle between the tiger 

and the bear does not cease until the tiger goes for the kill. 

Hence, the simulation of the attack in 2 phases and the 

simulation of the battle approach take place. 

In stage one, the rest of the individuals in the community 

are considered as a bear set, and it creates a condition for an 

attack on a bear by 𝑖𝑡ℎ tiger. 'k' is used to denote the random 

position of the bear that has been assaulted, which is picked 

from a set of bears having the potential. This particular stage 

significantly impacts the STO members' positions, which 

change abruptly, enhancing the whole strategy by attaining 

global exploration ability. Therefore, Equation (18) is 

implemented to determine a new location for STO's 𝑖𝑡ℎ 

member to imitate previously used ideas. 

𝑆𝑇𝑖,𝑗
𝑃2𝑆1 = {

𝑆𝑇𝑖,𝑗 + 𝑟𝑖,𝑗 . (𝑆𝑇𝑘,𝑗 − 𝐼𝑖,𝑗 . 𝑆𝑇𝑖,𝑗), 𝐹𝑘 < 𝐹𝑖

  𝑆𝑇𝑖,𝑗 + 𝑟𝑖,𝑗 . (𝑆𝑇𝑖,𝑗 − 𝐼𝑖,𝑗 . 𝑆𝑇𝑘,𝑗), 𝑒𝑙𝑠𝑒
 (18) 

Here, from the set {1,2, …., 𝑖 − 1, 𝑖 + 1, …, 𝑁}, k is 

randomly selected; bear site’s 𝑗𝑡ℎ dimension is denoted as 

𝑆𝑇𝑘,𝑗, concerning phase two in stage one, the new location of 

𝑖𝑡ℎ member is depicted as 𝑗 = 1, 2..., m.𝑆𝑇𝑖,𝑗
𝑃2𝑆1. 𝑗𝑡ℎ dimension 

is 𝑆𝑇𝑖,𝑗
𝑃2𝑆1. 𝑟𝑖,𝑗  are random numbers between [0;1]. Set {1,2} 

has random numbers represented as 𝐼𝑖,𝑗. Equation (19) 

interprets the information of the replacement of the location 

used previously by a member with a position that is freshly 

computed when the value of the objective function is 

increased. 

𝑆𝑇𝑖 = {
𝑆𝑇𝑖

𝑃2𝑆1,   𝐹𝑖
𝑃2𝑆1 < 𝐹𝑖

𝑆𝑇𝑖 ,                 𝑒𝑙𝑠𝑒
  (19) 

Here, 𝑆𝑇𝑖
𝑃2𝑆1'the objective function value is denoted as 

𝐹𝑖
𝑃2𝑆1, and the bear's objective function value is denoted as 𝐹𝑘, 

which is STO's 𝑘𝑡ℎ member. Through modeling the battles that 

take place, the location of the population is updated in step 

two. Because of this, the positions of the population members 

vary, making the STO's capability of exploration and local 

search stronger. To carry out this process, a random placement 

near the combat site is first figured out with the help of 

Equation (20). 

𝑆𝑇𝑖,𝑗
𝑃2𝑆2 = 𝑆𝑇𝑖,𝑗 +

𝑟𝑖,𝑗.( 𝑈𝐵𝑗−𝐿𝐵𝑗)

𝑡
  (20) 

Where the iteration counter of the algorithm is denoted by 

t,𝑆𝑇𝑖,𝑗
𝑃2𝑆2is the new location of the tiger and its 𝑗𝑡ℎ dimension 

based on phase two and stage two of STO. According to 

Equation (21), for the process of updating, the value of the 

objective function must be increased because of the new 

position. 

𝑆𝑇𝑖 = {
𝑆𝑇𝑖

𝑃2𝑆2,   𝐹𝑖
𝑃2𝑆2 < 𝐹𝑖

𝑆𝑇𝑖 ,                 𝑒𝑙𝑠𝑒
 (21) 

Here, 𝐹𝑖
𝑃2𝑆2 is the value of an objective function of 

𝑆𝑇𝑖
𝑃2𝑆2. 

 

Algorithm 1: Proposed Algorithm 

# Parameters have to be initialized: 

1. The size of the population has to be initialized by the 

variable N 

2. The maximum count of iterations has to be set as maxiter 

3. Exploitation rate (β) and exploration rate (α) must be 

defined.  

4. Reactive Power’s solution bound should be set as Qminand 

Qmax, and for Voltage, it should be set as Vminand Vmax. 

5. The population of potential solutions has to be initialized 

as X (values of Reactive Power (RP) and Voltage(V)). 

# Evaluate the Initial population's fitness 

6. A function for fitness has to be defined, i.e. F(solution): 

- F(solution) = Σ (Vi − Vset)  
2+ Σ (Qj − Qset)

2 

 In which: 

  - voltage at the ith  bus is denoted as Vi 

  - optimal setpoint for voltage is denoted as Vset 

  - reactive power at jth  bus is denoted as Oj 

  - optimal setpoint for reactive power is denoted as Oset 

7. For every potential solution by individuals belonging to 

Population X: 

 a. Fitness function has to be used for evaluating the fitness 

F(Solution) 

# Main optimization loop: 

8. For iteration from t=1 till maxiter: 

  a. **Exploration Phase**: 

 - For every potential solution by individuals belonging to 

Population X: 

i. The solution (RP and V) has to be adjusted randomly on 

the basis of the rate of exploration  

ii. A re-evaluation of fitness F(solution) has to be done 

iii. Newly obtained values have to be updated in the solution 

in case F(solution) is more accurate than the previous time  

b. **Exploitation Phase**: 

      - For every potential solution by individuals belonging to 

Population X: 

i. Exploitation rate β must be used for refining solutions by 

making adjustments  

            in solutions that are the best 

         ii. A re-evaluation of fitness F(solution) has to be done 

         iii. Newly obtained values have to be updated in the 

solution in case F(solution)  

              It is more accurate than the previous time. 
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c. **Selection**: 

      - For the formation of the next generation, values having 

the lowest fitness have to be selected from population X, as 

they are the solutions that are best 

      - Low optimal solutions have to be replaced by those that 

perform the best. 

 d. **Crossover**: 

      On the parent solution set, a recombination technique, 

also known as crossover, has to be applied to combine the 

parents' features to obtain solutions for offspring. 

  e. **Mutation**: 

      Mutation has to be applied by randomly altering 

offspring so that population diversity remains intact.    

 f. **Update Population**: 

      The population has to be updated periodically by 

replacing old solutions with new ones developed by mutation 

and crossover. 

g. **Adaptive Parameters**: 

     - For the balance of local refinement and global search, 

the rate of exploitation β and the rate of exploration α have to 

be adjusted.  

9. **Convergence Check**: 

   - If the value of best fitness does not improve in the 

previous iterations or if the iterations have reached their 

maximum point, the algorithm must be stopped. 

10. **Return Optimal Solution**: 

   - The best solution amongst the many should be returned 

(VP setpoints and RP dispatch values) as optimized system 

settings. 

 End of Optimization. 
 

3.3. Reactive Voltage Control Auxiliary Service Model for 

Virtual Power Plants (VPPs) 

While dealing with issues regarding Reactive Voltage 

Control (RVC) in VPPs, the availability of devices that are 

adjustable in both discrete and continuous form suggests that 

RVC is a mixed-integer non-linear problem. Table 1 depicts 

the reactive devices that are adjustable and their features in a 

network of active distribution having many VPPs. The 

description of constraints and the objective function is given 

below. The proposed model is explained in Algorithm 1.  

3.3.1. Objective Function 

The system's reliability on an overall scale would be hard 

to ensure by simply using the active power optimization 

scheduling to pursue the hike in economic benefits. Hence, to 

optimize Reactive Power (RP) and maintain the quality of 

power, it is important to control and regulate the reactive 

devices that are adjustable in the distribution network inside 

VPPs. A significant indicator of the quality of power is the 

degree of deviation of voltage when measuring the quality of 

power. Therefore, the aim is to reduce the deviation in voltage 

on an overall scale in a network of active distribution with 

many VPPs, which develops the objective function depicted 

in Equation (22). 

𝑚𝑖𝑛 ∑ [∑ (𝑉𝑖,𝑡 − 1)
2
+ ∑ ∑ (𝑉𝑔,𝑡 − 1)

2

𝑔⋲𝑁𝑗
𝑀

𝑛
𝑗=1𝑖⋲𝑁𝐷 ]  𝑇

𝑡=1

 (22) 

In the above equation, the magnitude of voltage per unit 

at the nodes at time t is denoted as 𝑉𝐼,𝐽, distribution network 

nodes as 𝑁𝐷, the number of VPPs as n, and the group of nodes 

for VPPs j is as 𝑁𝑗
𝑀, the total number of control periods in a 

day is denoted as T. 

3.3.2. Constraints 

Constraints Power Flow 

For the optimization of RP, certain constraints in power 

flow have to be followed, and they are depicted in Equation 

(23). 

𝑃𝑖
𝑔

+ ∑ 𝑃𝑚𝑖𝑚:𝑚→i = ∑ 𝑃𝑖,𝑗j:i→j + 𝑃𝑖
𝑙𝑜𝑎𝑑   

𝑄𝑖
𝑔

+ ∑ 𝑄𝑚𝑖𝑚:𝑚→i = ∑ 𝑄𝑖,𝑗j:i→j + 𝑄𝑖
𝑙𝑜𝑎𝑑  (23) 

𝑃𝑖𝑗  = 𝑉𝑖𝑉𝑗 (𝐺𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗  + 𝐵𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗) 

𝑄𝑖𝑗  = 𝑉𝑖𝑉𝑗 (𝐺𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗 - 𝐵𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗) 

In the equation above, the reactive power (RP)and active 

power (AP) are denoted as 𝑄𝑖
𝑔

 and 𝑃𝑖
𝑔

, and they are injected 

into bus i. At I, the reactive and active loads are denoted as 

𝑄𝑖
𝑙𝑜𝑎𝑑  and 𝑃𝑖

𝑙𝑜𝑎𝑑 . AP that passes in and out of iis denoted as 

∑ 𝑄𝑚𝑖𝑚:𝑚→i  and ∑ 𝑃𝑚𝑖𝑚:𝑚→i . The voltage in bus i and j is 

denoted as 𝑉𝑖and 𝑉𝑗. The RP and AP passing through itoj are 

denoted as 𝑄𝑖𝑗  and 𝑃𝑖𝑗 . The branch’s conductance is denoted 

as 𝐺𝑖𝑗 and the branch’s susceptance is denoted as 𝐵𝑖𝑗 . 

Constraints in Voltage Magnitude 

For every node, there is a constraint on the magnitude of 

voltage, and it is depicted in Equation (24). 

𝑉−𝑗 ≤ V 𝑗,𝑡̅̅̅̅ ≤ V̅𝑗,̅∀j ∈  N (24)  

In Equation (3), the upper limit and lower limit of the 

magnitude of the voltage in node j are denoted as V̅𝑗 and 𝑉−𝑗, 

respectively. 

Constraints in Photovoltaic Inverter Output 

Photovoltaics produce electricity at the highest power by 

having the reactive output adjusted, and this is so as to ensure 

financial viability. The constraints in Equation (25) below 

have to be considered by the AP.  

𝑃𝑡
𝑝𝑣

= 𝑃𝑀𝑃𝑃𝑇,𝑡
𝑝𝑣

 (25) 

Here, the AP output of the photovoltaic system, which 

operates and tracks points in the highest power, is represented 

as 𝑃𝑀𝑃𝑃𝑇,
𝑇𝑃𝑉. The photovoltaic inverter’s RP output must follow 

the constraints in power factor and capacity given in Equations 

(26) and (27), 
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|𝑄𝑡
𝑝𝑣

| ≤ √(𝑆𝑝𝑣)2 − (𝑃𝑀𝑃𝑃𝑇,𝑡
𝑝𝑣

)
2
 (26) 

0.95 ≤ cos((θ
𝑖
𝑃𝑃) ≤ 1  (27) 

Here, the photovoltaic inverter’s respective power is 

denoted as𝑆𝑝𝑣. At the connection point of the photovoltaic 

grid, the power factor is denoted as θ𝑖
𝑃𝑃

. 

Constraints in Energy Storage Inverter Output 

Equations (28) and (29) provide the constraints on the 

output of energy storage inverters, 

|𝑄𝑡
𝐷𝐸𝑆𝑆| ≤ √(𝑆𝐷𝐸𝑆𝑆)2 − (𝑃𝑡

𝐷𝐸𝑆𝑆)2  (28) 

0.95 ≤ cos(θ𝑡
𝐷𝐸𝑆𝑆) ≤ 1 (29) 

OLTC, CB, and VR's Limitations on the Number of Operations 

The various limitation is given in Equations (30) to (36) 

{

𝑁𝑡
𝑂𝐿𝑇𝐶 ≤ 𝑁𝑂𝐿𝑇𝐶

𝑁𝑡
𝐶𝐵 ≤ 𝑁𝐶𝐵

𝑁𝑡
𝑉𝑅 ≤ 𝑁𝑉𝑅

   (30) 

𝑁𝑡
𝑂𝐿𝑇𝐶 = ∑ 𝑛𝑡′

𝑂𝐿𝑇𝐶𝑡
𝑡 ′=0  (31) 

𝑛𝑡
𝑂𝐿𝑇𝐶 = {

1, 𝑖𝑓: 𝑇𝑡
𝑂𝐿𝑇𝐶 − 𝑇𝑡−1

𝑂𝐿𝑇𝐶 ≠  0                             

0, 𝑖𝑓: 𝑇𝑡
𝑂𝐿𝑇𝐶 − 𝑇𝑡−1

𝑂𝐿𝑇𝐶 =  0
(32) 

𝑁𝑡
𝐶𝐵 = ∑ 𝑛𝑡′

𝐶𝐵𝑡
𝑡 ′=0  (33) 

𝑛𝑡
𝐶𝐵 = {

1, 𝑖𝑓: 𝑇𝑡
𝐶𝐵 − 𝑇𝑡−1

𝐶𝐵 ≠  0

0, 𝑖𝑓: 𝑇𝑡
𝐶𝐵 − 𝑇𝑡−1

𝐶𝐵 =  0
  (34) 

𝑁𝑡
𝑉𝑅 = ∑ 𝑛𝑡′

𝑉𝑅𝑡
𝑡 ′=0  (35) 

𝑛𝑡
𝑉𝑅 = {

1, 𝑖𝑓: 𝑇𝑡
𝑉𝑅 − 𝑇𝑡−1

𝑉𝑅 ≠  0

0, 𝑖𝑓: 𝑇𝑡
𝑉𝑅 − 𝑇𝑡−1

𝑉𝑅 =  0
  (36) 

Here, OLTC, CB, and VR's upper limits of counts of 

action are denoted as 𝑁𝑂𝐿𝑇𝐶,𝑁𝐶𝐵 , and 𝑁𝑉𝑅, respectively.  

To check and record the changes in the position of the tap 

of OLTC at time t, is denoted as 𝑛𝑡
𝑂𝐿𝑇𝐶 .  

At t, the position of the tap of OLTC is depicted as 𝑇𝑡
𝑂𝐿𝑇𝐶 . 

If the position of CB changes at t, then it is recorded with the 

help of 𝑛𝑡
𝐶𝐵. The position of CB is depicted as 𝑇𝑡

𝐶𝐵.  

If the position of the VR changes at t, then it is recorded 

by 𝑛𝑡
𝑉𝑅,

and 𝑇𝑡
𝑉𝑅 , indicates the VR's position at t. 

3.4. Computational Complexity of SA-STO 

Time Complexity: SA-STO is a metaheuristic algorithm, 

similar in structure to well-known algorithms like PSO, GA, 

and DE. It operates on a population of candidate solutions and 

runs them over generations. Each iteration involves evaluating 

p candidates across d =5 dimensions (i.e. the tuning variables 

μ, λ, 𝐾𝑃,𝐾𝐷, and 𝐾𝐼). 

3.4.1. Space Complexity 

Since SA STO retains p candidate solutions, each 

consisting of d variables in memory, the space complexity is 

𝑂(𝑝 × 𝑑), which is consistent with typical metaheuristic 

storage requirements. 

 
Table 2. Theoretical computational complexity of the SA-STO 

algorithm 

Complexity 

Type 
Expression Computed Value 

Time 

(per iteration) 
O(p×d) 20×5=100 

Total time O(g×p×d) 
100×20×5=10,000 fitness 

evaluations 

Space 

Complexity 
O(p×d) 

20×5=100 parameters 

stored 

Table 2 summarizing the theoretical computational 

complexity of the SA-STO algorithm based on standard 

metaheuristic analysis, along with recommended parameter 

values.  

3.4.2. Practical Considerations 

Fitness evaluations (calculating voltage deviation and 

power loss) are the main source of time burden, and they scale 

linearly with dimension d. In contrast, other overheads (like 

candidate tracking or updating) are negligible. A classic trade-

off in metaheuristic algorithms is that while increasing the 

population size p or number of iterations g can enhance 

solution quality and convergence robustness, doing so also 

lengthens runtime. 

4. Result and Discussion 
This section examines and assesses the effectiveness of 

the SA-STO approach, which is now being developed to attain 

control stability in VPPs. The MATLAB-Simulink tool has 

been used to implement the proposed framework. This 

procedure relied on MATLAB R2022a and Windows 10 Pro. 

The 8 GB of RAM is paired with the Intel ® Core (TM) i3-

6098P CPU running at 3.60 GHz. The 𝐾𝑃, 𝐾𝐼, and 

𝐾𝐷 parameters of the controllers were found to have upper 

and lower limits ranging from -1 to +1 after an extensive 

process of trial and error. The fractional parameters 𝜆 and 𝜇 

are chosen between 0 and 2. The simulations were done using 

optimization methods up to 200 iterations in order to reduce 𝐽. 
Solar, wind, and battery production, grid performance, power 

loss, and Total Harmonic Distortion (THD) are among the 

measures examined. After that, we evaluate the performance 
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of the improved PI- FOPID controller compared to classic 

FOPID, PID, and PI controllers. The convergence behavior of 

an optimization method is shown in Figure 4, where the x-axis 

represents the number of iterations, and the y-axis reflects the 

greatest fitness value achieved at this point. Initially, the 

fitness value is rather high, approximately 12×10412 \times 

10^4, but it drops down fast in the first iterations, indicating 

that the algorithm discovers much-improved solutions rather 

soon. The improvement rate decreases as iterations continue, 

signifying a shift from exploration to exploitation. The curve 

flattens out around about 100 iterations, which means the 

algorithm is getting close to finding an optimum or almost 

ideal solution. The optimal solution is fine-tuned after early 

quick convergence, characteristic of metaheuristic 

optimization approaches of Self-Adaptive Siberian Tiger 

Optimization (SA-STO). With the goal function effectively 

minimized (or maximized) and the best-found solution 

progressively improved over time, the graph's overall trend 

indicates that the optimization process is successful. 

 
Fig. 4 SA-STO’s flow diagram 

Total Harmonic Distortion (THD) is compared in Figure 

5 across several control models, such as PI, PID, FOPID, 

Phase 1, and Phase 2. According to the data, the PI controller 

has the best harmonic performance with a THD of 5.68%, 

while the PID controller comes in second with 4.62%. Further 

reduction of THD to 3.968% by the FOPID controller 

indicates improved harmonic suppression. The Phase2 model 

achieves the lowest Total Harmonic Distortion (THD) value 

of 3.63%, whereas the Phase1 model reaches a value of 3.74%, 

demonstrating better performance in reducing distortions.  

This pattern indicates that more significant harmonic 

reduction enhances system stability and efficiency as the 

control method progresses. Regarding power electronics, 

motor drives, and grid systems applications that need accurate 

harmonic mitigation, the results show how successful 

sophisticated control approaches are in enhancing system 

performance. 

Fig. 5 Performance comparison of THD 

Figure 6 shows the difference between pre- and post-

optimization power loss (kW). In contrast to the Optimized 

Loss, which drops to 1-2 kW, the Initial Loss is around 12 kW, 

which is much larger. An optimization approach that 

successfully reduces power losses, as shown by this 

significant drop, might use more sophisticated control 

algorithms, energy-efficient methods, or better system 

designs. There will be less energy wasted and better system 

performance due to the optimization process, which probably 

improves power distribution efficiency. Applications like 

power grids, renewable energy systems, and industrial 

automation are vital for these advancements since reducing 

power loss has an immediate impact on sustainability and cost 

savings. 

 
Fig. 6 Performance comparison of power loss 

In Figure 7, the plotted data show the evolution of the 

system's reaction over time, with seconds on the x-axis and 

kilowatts (kW) on the y-axis. The red dashed line shows the 
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steady-state value, while the blue curve shows the system's 

response. The system output stays far below the expected 

steady-state value, implying an undershoot rather than a usual 

overshoot. The overshoot is labelled as -26.11%. Based on this 

reaction, the system seems to have trouble reaching a steady 

state or performing slowly due to undersampling. This 

behaviour might be caused by too cautious control settings, 

too much dampening, or external limits on the system's ability 

to function. When applied to real-world scenarios, this might 

mean energy distribution is inefficient, power systems have a 

delayed dynamic reaction, or industrial control systems are 

underperforming. Developing a more responsive optimization 

technique, reducing system latency, or adjusting the control 

settings to increase performance may be required. 

 
Fig. 7 System response to step change in demand 

An optimization algorithm's convergence behaviour is 

shown in Figure 8, with the number of iterations on the x-axis 

and the best fitness value, expressed in terms of voltage 

deviation, on the y-axis. The fitness value changes as the 

iteration progresses, as the blue curve shows. A considerable 

voltage deviation is indicated by an initially relatively high 

fitness value. There is a noticeable decline in the fitness value 

within the first fifty iterations, suggesting that the optimization 

method successfully reduces the deviation as iterations pass. 

Once the algorithm reaches this stage, iterative improvements 

slow down, and the fitness value stabilizes after around 150 

iterations, indicating that an optimum or near-optimal solution 

has been found.  

The optimization strategy effectively decreases voltage 

variation, which is critical for applications like power system 

stability and voltage control, as shown in this Figure. The 

smooth convergence pattern implies efficient parameter 

tuning and resilient algorithmic performance, which reflects a 

well-behaved optimization process without notable 

oscillations. 

Fig. 8 Voltage stability optimization process using SA-STO 

5. Conclusion  
This research aimed to provide the SA-STO algorithm, 

which stands for Self-Adaptive Siberian Tiger Optimization, 

to improve VPPs' voltage management and reactive power 

supply. The proposed approach improves grid stability by 

responding to operational situations in real time with 

optimization parameters. The SA-STO algorithm 

outperformed traditional optimization techniques regarding 

computing efficiency, reactive power compensation, and 

voltage control by including self-adaptive processes. By 

reducing voltage variations and improving reactive power 

management, the SA-STO algorithm guarantees efficient and 

dependable energy distribution in VPPs, as shown in 

simulation results. It is a reliable option for modern power 

networks because of its flexibility in responding to changing 

grid circumstances. Finally, SA-STO optimizes power 

systems in a way that is scalable, efficient, and intelligent, 

which helps build energy networks that are more sustainable 

and stronger. Future work might investigate its integration 

with real-time grid monitoring systems and machine learning 

approaches to improve performance and flexibility in dynamic 

energy conditions. 
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