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Abstract - Deep learning models have demonstrated a strong performance in various classifications of varied amounts of data. 

As these models are prone to various attacks, even the smallest change can generate errors and lead to the classification of data. 

Adversarial attacks, which can significantly impact the model’s performance, pose a threat to these models. In this work, the 

vulnerability of deep learning models in clinical contextual text classification using adversarial perturbations is demonstrated. 

By applying the Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD), evaluating the model robustness 

and data sensitivity, and were able to demonstrate the attacks with a decrease in accuracy drop of 23%. With white box attacks, 

trained a DistilBERT model and optimized the model accordingly to sustain the attacks. Our results demonstrate significant 

prediction shifts from minor input perturbations and suggest a new metric for calculating the susceptibility of the underlying text 

that generates a susceptible score. Further, the adversarially trained model can withstand FGSM and PGD attacks significantly. 
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1. Introduction  
Recent advances in Artificial Intelligence (AI) have led to 

the utilization of Deep Learning in sensitive and critical 

domains such as healthcare. Despite high predictive accuracy, 

these models are prone to adversarial attacks, where subtle 

input perturbations cause incorrect predictions. As the 

healthcare domain incorporates Artificial Intelligence 

systems, the records fetched from a database stored 

electronically can contain critical and sensitive data. As in the 

world of Natural language processing, each text record has a 

semantic and syntactical meaning. The context of the text is 

sometimes ignored. Hidden context behind the sentences can 

reveal a lot about a patient, it could be leading to various 

diseases and are susceptible in nature, like records indicating 

the influence of drugs, depression symptoms. Such susceptible 

data points need to be identified. This study aims to explore 

and address such vulnerabilities through a structured 

framework, where classification of textual data, depending on 

the susceptible data that can be vulnerable, is classified using 

the Binary Encoder Representations (BERT) model. Machine 

learning and deep learning algorithms have gained huge 

popularity for efficiently classifying and predicting on trained 

data [1]. Incorporating such models into real-world 

applications like disease prediction and medical imaging using 

MRI in medical systems has presented its role in healthcare as 

a prominent future for medical and healthcare domains. 

Identification of critical data points in such a model can lead 

us to susceptible data that can be insecure and prone to various 

attacks. It becomes difficult to detect if there are minute 

changes in input data, causing a major hazardous effect on the 

misuse of information, incorrect medical treatments, and 

classification of wrong data and hence wrong disease 

predictions. Such events can mislead the medical practitioner 

into giving away missed or incorrect information to patients. 

Relying on AI completely, the dependent trained model 

should not be vulnerable to attacks. One such attack is well 

defined by Goodfellow [2], which outlines the AI models’ 

vulnerability to black box and white box attacks with various 

adversarial examples. Model vulnerabilities are often 

overlooked in critical systems. Since the healthcare domain 

includes various sub-domains, clinical text records are 

considered in this study to assess susceptible parameters. To 

develop a robust model that caters to textual data, which can 

be well-trained with adversarial attacks. White box attacks can 

be employed to target data to detect susceptible models. Fast 

Gradient Sign Method (FGSM) and Projected Gradient 

Descent (PGD) white box adversarial examples are 

implemented. These attacks misclassify the word embeddings 

in clinical text with a variation in confidence drop as compared 

to the original confidence. Finally, to mitigate such attacks, a 

defensive adversarial trained neural network model is in place 

to sustain such attacks. Unlike prior work focused on image or 

general NLP tasks, the tasks were examined for adversarial 

susceptibility in clinical free-text classification, where data is 
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sensitive, context-heavy, and error-prone. This identifies the 

Gap between the shift of work from image-based data to 

textual data. 

The key Contributions of this study are: 

 Identification of Vulnerable Data: Utilizing deep learning 

models to detect data points susceptible to adversarial 

attacks, which are crucial in domains like healthcare, 

where data integrity is needed. 

 Enhancement of Model Robustness: Implementing 

strategies such as adversarial training to fortify models 

against potential threats, ensuring reliability in real-world 

applications. 

2. Related Work  
In [3], the author performed attacks with the Fast Gradient 

Sign method, the Projected Gradient Descent method, and the 

Carlini and Wagner attack to change the input images and 

observed the model’s accuracy change for the perturbation 

test. In the growing age of AI, healthcare systems consist of 

critical and sensitive data that can be altered by an attacker. 

Manipulate using Fast Gradient Sign Method (FGSM) for 

medical images. The smallest changes to MRI and X-ray 

images can lead to error-prone identification and 

misclassification of illness or produce erroneous treatments 

for patients; this could be a huge disaster if not prevented. In 

[4], the authors demonstrated that an FGSM adversarial attack 

misclassified the images, which caused the model’s accuracy 

to drop to 11% compared to the original accuracy of 88%. 

When it comes to numerical data in healthcare, the breast 

cancer dataset was utilized by authors [5, 6], who 

demonstrated the use of FGSM, which reduced the accuracy 

of the model from 98% to 53%.  

Author [7] proposed a defense mechanism for adversarial 

attacks using adversarial training and Gaussian data noise 

augmentation to recover the model’s accuracy to 92%. FGSM 

and PGD attacks were performed on the ECG dataset, and 

demonstrated that white and black box attacks together can be 

applied to achieve a defense mechanism against the threats to 

the ECG signal. The attackers can generate the input 

perturbations easily just by adding adversarial examples with 

different generating methods [8, 9]. G. Chang et.al [10] used 

the black box technique to generate adversarial text with input 

shift with 0.2 epsilon values. J. Xu and Q. Du [11] proposed a 

white box technique with publicly available databases, which 

notably shows improved performance as compared to the 

black box technique. Distil Bidirectional Encoder 

Representations from Transformers (BERT) [12] was 

implemented to design a faster and smaller model with fewer 

computations to yield faster results of the trained model. W. 

Wang [13] compared the target value obtained from word-

level perturbation with the output achieved. They were able to 

set the number of words to less than 5, not more than 5 words 

at a time, which could severely fail the defense model 

demonstrated. X. Han, et.al [14], provided a list of taxonomy, 

issues related to security and various types of attacks 

pertaining to testing the vulnerability of models. Authors M. 

Behjati [15] were able to provide the perturbations to the word 

input by bringing down the accuracy from 93% to 50%. Which 

is quite impressive, but they do not represent the defense 

model.  Multilabel classification becomes again a challenging 

part, where the move from binary labels to multilabel and then 

having adversarial training on those texts [16]. M. Qaraei and 

R. Babbar were able to target multilabel but only one target at 

a time, which can be extended to more targeted labels. In [17], 

a synonym word was related to getting the same semantics and 

to unchanged the meaning of the sentences. The accuracy 

dropped from 95% to 86%, which is only a partial change that 

can be further improved by adding more perturbations to the 

model. Similar work was observed in [18-19], where authors 

have used a clinical document that consists of unstructured 

texts with a CNN model. X. Li, et.al [20] have used a CNN 

and an LSTM model to expose vulnerability while examining 

the test on text perturbations. 

Finlayson et al. [21] showed that imperceptible pixel-

level perturbations could cause deep learning models to 

misclassify dermatology images, potentially leading to 

incorrect skin cancer diagnoses. In another case, Paschali et 

al. [22] demonstrated that adversarial noise could substantially 

reduce segmentation accuracy in medical imaging systems, 

risking misidentification of tumor boundaries. From the 

literature studied, one can realize the importance of robustness 

of models in clinical settings to avoid major misinterpretations 

of results from machine learning or deep learning models. 

Concern over the security and resilience of neural 

network models to hostile examples is on the rise. Many 

scholars have tackled this problem from various perspectives, 

putting forward methods and algorithms to produce negative 

examples and create efficient defenses. Analysis of the work 

that has stood out in this field in our examination of related 

works and score them based on how innovative and relevant 

our suggestion is. All the referred papers provide us with the 

need to identify a sustainable model framework that applies to 

text as well. Most of the work elaborates on the use of trained 

models for images. Very few articles discuss and demonstrate 

the use of contextual data for adversarial attacks. Most of the 

work discussed demonstrates the failure of deep learning 

models and their defensive mode. However, a model is 

proposed that identifies the susceptible text. A defensive 

model that can be very well trained for clinical texts that are 

sensitive and can be vulnerable is demonstrated. 

3. Methodology  
Data is pre-processed by cleaning the data, removing 

punctuation, and stop words to get plain text data. Each of the 

sentences is then tokenized and converted to vector format. 

Pre-trained Glove Embeddings are used to feed to the model. 

About 45437 unique tokens are extracted. A total of 400001 

https://onlinelibrary.wiley.com/authored-by/Han/Xu
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word vectors are generated. Each text is first tokenized using 

a tokenizer using Distil BERT. It is then fed to the Classifier 

for text classification of susceptible data points. Further, clean 

accuracy is calculated from the classified data. Then, FGSM 

and PGD attacks are implemented on the input data. Then the 

model is trained for adversarial training. A susceptible score 

is generated for both attacks. About 206926 sentences are 

used, out of which 80% are used for training and the rest for 

testing, with an accuracy of 90% approx. This set is used with 

the Distil BERT model with an accuracy of approximately 

91%. The dataset was collected from an online platform 

(Kaggle website). The architecture of DistilBERT consists of 

6 Transformer encoder layers, each containing a self-attention 

mechanism and a position-wise feed-forward network, and the 

model uses 12 attention heads. Despite being smaller, 

DistilBERT preserves the original BERT’s key features. In 

this study, DistilBERT was used for clinical text 

classification. The model was initialized with pretrained 

weights with language patterns. Clinical text samples were 

first tokenized into units using DistilBERT’s tokenizer, 

converted to token IDs, and truncated to a fixed sequence 

length. These token sequences were then fed into the 

DistilBERT encoder, which generated contextualized 

embeddings for each token. The input sequence was passed 

through a fully connected classification with a softmax 

activation to produce class probabilities. Fine-tuning was 

performed end-to-end, updating both the pretrained 

DistilBERT weights and the classification parameters.

 
 Fig. 1 Methodology  

3.1. Algorithm  

 Data is preprocessed for text summaries. Each text is 

tokenized to get word embeddings. 

 With BERT classification, texts are classified, and 

accuracy is calculated. 

 Clean accuracy is generated from a trained model. 

 With Adversarial attacks, various epsilon values are used 

to demonstrate the attacks on text embeddings.  

 Two white box attacks, namely FGSM and PGD, are 

performed on the trained model to check the robustness 

of the model after the attack. 

 The susceptibility score is calculated based on the 

confidence drop. 

 The values generated determine the strength of the 

trained model, even with good accuracy. 

 The next step is to create a robust model that sustains 

such attacks. 

 The model is again trained with adversarial examples. 

 Accuracy after adversarial training is generated. 

 Susceptibility scores are generated for both attacks, and 

a comparative analysis is done. 

3.2. Attack Method 

Fast Gradient Sign Method (FGSM) is a method to 

perturb input embeddings (text) or feature vectors (tabular). 

FGSM is a single-step, white-box adversarial attack 

introduced by Goodfellow et al. in 2015. It perturbs the input 

data in the direction that increases the model’s loss the most, 

aiming to cause misclassification. 

o=x+Ɛ×sign (∇𝑥 J (θ, x,y)) (1) 

o: Our output adversarial data 

x: The original input embeddings 

y: The ground-truth label of the input data 

Ɛ: Small value is multiplied by the signed gradients to 

ensure the perturbations are small enough that the 

human eye cannot detect them, but large enough that 

they fool the neural network 

θ: Our neural network model 

J: The loss function 

The gradient is calculated with respect to the inputs of the 

model in order to maximize the loss. Higher values of epsilon, 
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starting with 0.01 to 0.2, yield larger perturbations, while 

lower values are more subtle. FGSM is mostly used to 

demonstrate the vulnerability of deep learning models to 

adversarial attacks. Projected Gradient Descent (PGD) is an 

iterative, white-box adversarial attack considered one of the 

most potent first-order attacks. It extends FGSM by applying 

it multiple times with small step sizes, projecting the perturbed 

input back onto the valid data domain after each step. To 

minimize the loss function, this algorithm fine-tunes the 

model parameters. The equation is, 

𝜃𝑡+1 = 𝜃𝑡 − 𝛼 × ∇𝐽(𝜃𝑡) (2) 

Where θₜ represents the parameters used at iteration t, 

α is the learning rate, and ∇ J(θₜ) is the gradient of the loss 

function. 

The PGD method is a multi-step variant of the FGSM that 

generates adversary examples that are difficult to detect.  

The PGD algorithm is as follows: 

 Hyperparameters are epsilon, alpha, and the number of 

iterations. 

 The input embeddings of the text and input IDs are 

considered. The number of iterations is set to 10. 

 The gradient of the loss function for the input considered 

is calculated. 

 Gradient with alpha parameters is tuned. 

3.3. Metrics parameters used  

Table 1 describes the parameters used for the 

implementation of the model.  

Table 1. Parameters used for text classification 

Category Parameter Value / Description 

Model Model architecture DistilBERT (6-layer Transformer, 768 hidden units, 12 attention heads) 

Training Optimizer AdamW 

 Batch size 32 

 Epochs 10 

 Loss function Cross-entropy loss 

Data Processing Max sequence length 128 tokens 

 Padding Dynamic padding per batch 

 Truncation Applied to sequences >128 tokens 

Adversarial Setup Attack methods FGSM, PGD 

 FGSM epsilon values [0.05, 0.1, 0.15, 0.2] 

 PGD step size 0.01 

 PGD iterations 10 

 Adversarial training FGSM-based augmentation with ε = 0.1 

Environment Python version 3.11.13 

 PyTorch version 2.7.0 

 Transformers version 4.36.2 

 GPU NVIDIA Tesla T4 (16 GB) 

Accuracy: It measures the fraction of text classified by the 

model from the test set. 

Accuracy = Number of output predictions/Total number 

of predictions 

Susceptibility score is given as: 

susceptibility=clean_confidence - perturbed_confidence 

Clean confidence is generated by training models without 

adversarial training.  

Perturbed confidence is given by the dropped confidence 

after a change in input text embeddings. 

 

FGSM attack function: 

perturbed_embeddings = embeddings + epsilon × 

grad_sign 

Here, embeddings are calculated by adding the smallest 

input perturbations with epsilon values ranging from 0.01 to 

0.2. For each value, the FGSM values are observed. 

PGD attack function: 

delta = (delta + alpha × grad_sign) × (Ɛ, epsilon) 

where delta are the input embeddings, the gradient sign 

can be negative or positive, alpha 0.05, and epsilon varies 

from 0.01 to 2.0. This function is fed the number of iterations 

given as input by users. Figure 2 explains the detailed flow 

chart for adversarial attacks. 



Jaya A. Zalte & Harshal Shah / IJEEE, 12(8), 112-119, 2025 

116 

 
Fig. 2 Processing steps for adversarial attack

4. Results and Discussions 
In this section, a comparison of adversarial attacks is 

made to the input data word embeddings with a demonstration 

of different experiments. With adversarial examples, each 

attack is performed independently to assess the vulnerability 

of the trained model. The input data consists of text records 

and is labelled as 0 as non-sensitive and 1 as sensitive. The 

BERT model is already trained to classify text with attention 

to contextual meaning, tagging the input text as sensitive or 

nonsensitive. The vulnerable input data points are generated 

before giving them to adversarial example attacks. Here, the 

susceptibility data and the model are demonstrated. In Figure 

3, input text is used; there is a significant confidence drop with 

every row of text given as input to the attack functions. Each 

label is further misclassified with a change of adversarial 

predictions. Making it more vulnerable and generating wrong 

predictions. 

 
Fig. 3 Sample text data after each input text, displaying confidence drop and susceptibility score
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In Table 2, the comparative results for both attacks 

pertaining to different epsilon values are shown. The accuracy 

generated on the clean model is approximately. 91%.  

The table describes the adversarial accuracy for each 

epsilon value on FGSM and PGD attacks. From the observed 

values, one can see that, for the FGSM attack, the values 

remain the same after adversarial training. Meanwhile, PGD 

accuracy drops to 0.7181 from 0.9195 and sustains the attack 

for the successive epsilon values, maintaining its strength 

against PGD attack. Accuracy on clean test data generated is 

0.9195  

Table 2. Comparison of the accuracy score for both attacks 

Epsilon 
Adversarial 

Accuracy- FGSM 

Adversarial 

Accuracy-PGD 

0.00 0.9195 0.9195 

0.01 0.9195 0.7181 

0.05 0.9195 0.7181 

0.10 0.9195 0.7181 

0.15 0.9195 0.7181 

0.20 0.9195 0.7181 

 

Figure 4 shows that the accuracy remains unchanged with 

a susceptible value of 0.017 for the FGSM attack, with input 

perturbations. Models’ accuracy remains unchanged because 

it can withstand a single-step white box FGSM attack. Figure 

5 shows the robustness of the trained model, where with an 

epsilon of 0.01, accuracy remains the same, whereas it falls to 

0.71 after 0.5 epsilon value and withstands further 

vulnerability, achieving the same constant accuracy till 0.2 

epsilon value.  From Table 3. As shown, the input data with 

clean accuracy is 91%.  

After performing the attacks, FGSM and PGD, the 

susceptible scores are 0.651 and 0.2332, respectively. This 

indicates that, with FGSM, 6% drop in accuracy was 

generated. The 23% drop in the original accuracy with PGD 

attacks shows a significant drop in attacks where the model 

showed us vulnerability.  

Figure 6 shows the overall susceptibility score before 

training and after training with FGSM and PGD attacks. The 

graph shows that it is highly sensitive to PGD attack, which is 

a stronger attack than FGSM, which is a single-step attack. An 

attack after training the model with an adversarial attack can 

withstand the FGSM attack with a 0.0017 score with input 

perturbations. As opposed to the PGD attack, it can sustain an 

attack with a 16% accuracy drop, and it further does not 

decrease the score. 

 
Fig. 4 Model robustness to FGSM attacks with accuracy and different epsilon values 

Table 3. Comparison of susceptibility scores for both attacks 

Data Before Attack 
Susceptibility score with 

attack 

Susceptibility score after 

adversarial training 

Clinical Text with word 

embeddings 

Clean Accuracy-

91% 

FGSM Susceptibility Score: 

0.0651 
 

PGD Susceptibility Score: 

0.2332 

FGSM Susceptibility Score: 0.0017 

PGD Susceptibility Score: 0.1681 
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Fig. 5 Model robustness to PGD attacks with accuracy and different epsilon values 

 
Fig. 6 Susceptibility score before and after training with adversarial examples with FGSM and PGD attacks 

5. Conclusion  
The model was evaluated for robustness against 

adversarial perturbations using FGSM and PGD attacks by 

computing susceptibility scores, defined as the average 

confidence drop between clean and adversarial inputs. Prior to 

adversarial training, the model exhibited susceptibility scores 

of 0.0651 and 0.2332 for FGSM and PGD attacks, 

respectively, indicating moderate vulnerability. After 

incorporating FGSM-based adversarial training, the 

susceptibility scores significantly decreased to 0.0017 for 

FGSM and 0.1681 for PGD attacks. This demonstrates the 

effectiveness of adversarial training in reducing model 

vulnerability, especially against single-step FGSM attacks.  

While PGD susceptibility was also reduced, the model 

remains partially vulnerable to stronger iterative 

perturbations, suggesting that future work could explore PGD-

based adversarial training for enhanced defense. Although 

FGSM-based adversarial training significantly improved 

robustness against single-step perturbations, the model 
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remained partially vulnerable to stronger iterative attacks such 

as PGD. This suggests that the defense mechanism is not fully 

generalizable across different attack strategies. This study 

explores only textual data; further, it could be merged with 

multi-level records with text and image data. 
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