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Abstract - Forecasting solar irradiance is very important for improving the effectiveness and dependability of solar energy 

systems. Predicting short-term changes in solar irradiance is crucial for different uses, such as managing energy, integrating 

with power grids, and planning operations. In this area, the suggested framework gives a new method by merging complex 

machine learning models with Temporal Attention Gated Convolutional Network or TAGC-Net design and Generative 

Adversarial Network (GAN). The proposed work integrates TAGC-Net to catch time dynamics with GAN's expertise in modeling 

difficult data distributions, giving a joint improvement that boosts forecasting accuracy and trustworthiness. In this regard, 

TAGC-Net is generally applied to model temporal dynamics and patterns of sequential solar irradiance data to ensure 

enhancement in various ways, including improved short-term forecast accuracy regarding its time-dependent feature. Besides, 

in this context, GAN is used for modeling sophisticated data distributions and generating realistic synthetic data, which would 

make the training more effective, hence enhancing robustness in general, especially when a few data points or noisy data are 

available. All these models would contribute to enhancing the accuracy and dependability of forecasting solar irradiance for 

better power administration and grid integration. The framework has a particular focus on this novel combination, which adds 

to the progress of solar irradiance prediction. It offers great potential for advancements in using renewable energy and making 

grids more stable. Analysis of the projected architecture reveals its superiority in predicting solar irradiance levels in different 

ways, owing to an MAE of 0.28 and RMSE of 0.35. Finally, as a result of comparative analysis with existing models like RNN, 

GRU, LSTM, and so on, the model excelled in all metrics, such as low errors and high R2. Overall, it is seen that the combined 

model always works better than other methods, which confirms its ability to give dependable and accurate short-term forecasts. 

Keywords - Solar radiation, Short term forecasting, Deep Learning, Renewable Energy Sources, Photovoltaic systems and 

prediction. 

1. Introduction 
rising significance of renewable energy, especially solar 

power, has increased the requirement for precise and 

dependable solar radiation prediction systems [1, 2]. 

Estimating solar radiation is crucial in managing energy 

effectively, keeping the grid stable and maximizing the output 

of solar energy systems. Nonetheless, forecasting sunlight is 

difficult because its variation is natural and it depends on 

different atmospheric and environmental elements. Usual 

methods for predicting solar radiation, such as statistical and 

physical models, are not very accurate in catching the intricate 

non-linear patterns [3, 4]. The main challenge of using solar 

energy to generate electricity is that the voltage generated by 

it is rarely steady and usually varies with time. They are 

attributed to the various concerns arising from characteristics 

of solar radiation, temperature, and atmospheric conditions 

that impact on Photovoltaic (PV) systems’ performance and 

efficiency. This is because the intensity of the sunlight is not 

fixed bearing in mind it alters due to weather, cloud or even 

the composition of the atmosphere, which determines the 
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abilities of a PV system to generate power. This causes a 

variation of the amount of astral energy reaching the PV 

panels, which causes voltage instability since there is a 

constant change in the energy received. Such fluctuations can 

cause difficulties in maintaining the uninterrupted power 

supply [5-7]. Adding renewable resources to electrical grids 

presents several other challenges due to the source's 

intrinsically variable and intermittent character, such as solar 

radiation or wind. Compared to conventional power plants [8, 

9], which can be ramped up or dialed back according to 

demand, renewable energy sources are based on natural 

phenomena that vary in time. While most countries try to 

increase the proportion of renewables in their energy mix to 

ensure a low-carbon economy and sustainability, this brings 

up the need for even more urgent management of such 

intermittent sources. 

In this respect, several precise prediction models of solar 

radiation will help conquer the variability of this energy 

source and other renewable resources. Precise forecasting of 

solar radiation helps grid operators anticipate changes in solar 

power generation and adjust accordingly other controllable 

sources of electricity [10]. A better forecast allows stability in 

the grid, assists largely in ensuring reliability of supply to the 

consumers, and brings about a lot of efficiency in the overall 

energy system [11]. Machine learning overcomes this 

limitation by automatically discovering patterns and 

relationships in the data to create models that can classify, 

regress, cluster, and more [12]. Therefore, the applications of 

machine learning are very wide-ranging across multiple 

domains.  

Machine learning models [13, 14] learn directly from 

historical data, finding patterns that may not be immediately 

evident or, in any case, be hard and sometimes impossible to 

express in some simple algorithmic form. This constitutes the 

reason machine learning models are phenomenally effective 

in big and complex data domains where traditional methods 

would serve to no avail. Consider, for instance, pattern 

recognition or, for that matter, any classification task: machine 

learning models, during the processing of large volumes of 

data, can identify trends or classify items much more 

effectively than human analysts would do, or, for that matter, 

any conventional algorithms. 

     Data mining models analyze enormous volumes of 

data to extract significant information, hidden patterns, or 

anomalies within the datasets. Further, machine learning 

models are useful for developing forecasts, mainly in the 

renewable energy sector, where forecasted production has to 

be determined by ever-changing environmental conditions 

[15]. Further, the preprocessing and preparation of data 

involved in developing accurate forecasts can also be 

effectively done with the aid of ML models. These models will 

clean and transform the raw data to such an extent that it 

improves the exactness and dependability of the forecast. 

1.1. Problem Statement and Motivation 
Solar energy is considered an accessible renewable 

resource; thus, it arguably plays a significant role in the fight 

against the depletion of fossil fuels as well as combating the 

effects of climate change [16]. Nevertheless, solar power's 

variable and unpredictable nature makes it difficult to 

incorporate into power grids. Conventional statistical methods 

are inadequate in extrapolating temporal and spatial variability 

as observed in solar radiation data. They often use 

deterministic techniques or bare-bone statistical tools that 

cannot capture the complex dependence and non-linearities in 

the weather data. To maximize the utilization of solar power, 

stabilize the power grid, and effectively manage energy, it is 

imperative to build complex models to predict solar irradiance 

over short and long-term periods [17-19]. The rationale for the 

proposed work lies in the fact that there is a greater need to 

enhance the prediction of solar radiation due to the shift in 

focus towards green energy.  

1.2. Objectives 
 To develop a hybrid TAGC-Net and GAN architecture to 

work with large volumes of data and make accurate 

estimations. 

 To support all levels of the electrical grid and related 

industries from day-ahead markets all the way to real-

time energy management and backup. 

  To deal with optimization of energy management, grid 

integration, and efficient operational functions in solar 

power systems.   

The following sections of this paper are prepared: Section 

2 investigates certain recent forecasting methodologies. 

Section 3 presents a clear and in-depth explanation of the 

proposed work, along with the flow and descriptions. Section 

4 validates the performance and comparative results of the 

proposed work with findings. Finally, the overall summary, 

along with the outcomes and future scope, is presented in 

Section 5. 

2. Related Works 
It is important to note that forecasting helps in correct 

prediction and hence in increasing the production of energy, 

making the grid stable and efficiently managing resources. 

The literature review of this paper presents an account of the 

main approaches, how they have developed over the years, 

and the merits and demerits of each. In the past, the forecast 

of solar energy was mainly dependent on the physical model, 

which depended on meteorological data and atmospheric 

physics. These models rely on equations of the nature of the 

atmosphere influencing solar irradiation, including the 

formation of clouds, aerosols and water vapour. Another 

advantage of physical models is that they provide an accurate 

picture of the atmosphere influencing solar radiation. 

However, they often call for significant computing power and 

rely on a high level of accuracy of the input data [20]. Further, 
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these models are deficient in predicting at high spatial-

temporal accuracy, which could be essential for real-time grid 

control. However, this type of physical model still remains an 

important instrument for solar energy forecasting when it is 

used in combination with other technologies. Statistical 

models, which were the second approach in solar forecasting, 

use historical information to predict solar radiation based on 

the occurrence of patterns. In comparison to physical models, 

these models are comprehensible and less computational 

power is needed for their application. Nevertheless, it 

significantly relies upon the availability and quality of data 

from past occurrences. Therefore, statistical models are 

composed with other approaches to improve their evaluation 

results.  

Lai et al [21] presented a novel method for identifying 

Global Horizontal Irradiance (GHI) with a deep learning-

based hybrid model, specifically made and tested on 1-hour 

ahead predictions. The main methodology is to combine 

advanced machine learning methods to handle problems 

caused by the changeable nature and irregular appearance of 

solar energy. Zhou et al [22] gives a plan for guessing the 

amount of Photovoltaic (PV) energy created, suggesting 

applying a mixed deep learning method. The fresh model 

combined clustering methods, attention mechanisms, Long 

Short-Term Memory (LSTM), and Convolutional Neural 

Networks (CNN) with a wireless sensor network. Osorio et al 

[23] offer a complex data-based machine learning modeling 

framework that is built on a customized side of the Deep 

Operator system planning. 

Irshad et al [24]  introduced a new prediction model, 

known as Arithmetic Optimization with Hybrid Deep 

Learning (AOHDL-SRP), for an effective solar radiation 

prediction. The suggested framework uses the standard data 

preprocessing and prediction operations with hyperparameter 

tuning. By incorporating arithmetic optimization with a deep 

learning technique, the forecasting precision and reliability of 

the suggested framework are greatly improved. Neshat et al 

[25] developed a cross LSTM-RNN technique with 

covariance matrix adaptation evolution strategy. The 

integrated use of optimization and deep learning in the 

suggested framework could significantly enhance the overall 

prediction performance. Azizi et al [26] gives a new idea for 

predicting long-term future values of worldwide solar 

radiation and temperature, using deep learning methods. The 

model is not like old ones that forecast only one step ahead 

with a single output; it uses a time series framework combined 

with a multi-step multivariate output to predict various 

variables simultaneously across an extended forecasting 

period. The suggested model predicts more than one future 

value over a given time range instead of just one possible 

outcome. This method, with several steps, gives a fuller 

comprehension of upcoming patterns and differences in solar 

irradiance and temperature. This makes the predictions more 

useful for planning and making decisions. Duan et al [27] used 

a mix of chaotic Aquila optimization algorithm, WRF-Solar 

model, and deep Fully Convolutional Networks (FCNs). The 

method to optimize FCN model parameters is called the 

chaotic Aquila optimization algorithm. This technique, which 

takes inspiration from chaos theory, aids in fine-tuning and 

enhancing the prediction power of the FCN-based solar 

radiation prediction model.  

Assaf et al [28] made a detailed study of different models 

that use deep learning for solar irradiance forecasting. The 

study included methods such as LSTM, GRU, RNN, CNN, 

GAN and AM, and other hybrid forms. This ensures that 

readers acquire an understanding of different techniques with 

their own benefits and weaknesses. Multiple studies look into 

combination deep learning models, applying many deep 

learning methods or mixing deep learning with old-style 

prediction techniques. These mixed ways often display 

enhanced forecast precision and strength compared to solitary 

models. Much progress has been made in forecasting solar 

irradiance using deep learning, but there are still some 

difficulties that persist. These include handling large and 

diverse data collections, comprehending the model's 

semantics, and managing computational intricacy. The deep 

learning techniques are more useful for enhancing the 

forecasting accuracy and prediction performance, since they 

help to make accurate decisions while predicting solar 

radiation. 

Coupling physical, statistical, and machine learning 

methods into hybrid models has received increasing interest in 

the last few years. This technique helps to increase the skill in 

forecasting, particularly for strongly nonlinear and variable 

given contexts. This is where hybrid models become handy, 

especially when the quality and availability of data vary due 

to the integration of multiple sources and types of information. 

Table 1 summarizes the limitations and descriptions of 

research works discussed in the literature. 

Table 1. Summary of different research works discussed in the literature 

Author / 

Work 
Description / Approach Limitations 

Lai et al. 

[21] 

Deep learning + time-series clustering for 1-hour  

ahead GHI prediction. 
Limited to short-term forecasting. 

Zhou et al. 

[22] 

The hybrid model uses CNN, LSTM,  

attention mechanisms, and clustering. 

Complexity in integrating multiple 

modules. 



R.Sumathi  et al. / IJEEE, 12(8), 120-132, 2025 

 

123 

Osorio et al. 

[23] 

Machine learning model using a modified Deep Operator 

Network. 
Dependence on historical data. 

Irshad et al. 

[24] 

AOHDL-SRP model combining arithmetic  

optimisation and DL with hyperparameter tuning. 

Generalizability to unseen data is 

unclear. 

Neshat et al. 

[25] 

The hybrid model uses LSTM-RNN with a Covariance Matrix 

Adaptation Evolution Strategy. 
Computation-heavy. 

Azizi et al. 

[26] 
Multi-step multivariate DL architecture for lasting forecast. May suffer from overfitting. 

Duan et al. 

[27] 

Combines chaotic Aquila optimization,  

WRF-Solar model, and deep FCNs. 
Complex architecture. 

2.1. Research Gap 

Despite the progress in forecasting solar energy, a number 

of challenges remain. One key challenge arises with the fusion 

of a number of different data types and sources- satellite 

imaging, ground-based observations, and numerical weather 

predictions- which call for sophisticated data fusion 

techniques and models that are able to cope with 

heterogeneously sourced data. Besides that, a further 

complication lies in the intrinsic uncertainty of the weather 

forecast and variability in the solar radiation, which worsens 

the challenges to predictive accuracy. It is within the quest for 

new methodologies, including ensemble learning, transfer 

learning, and incorporating real-time data, that researchers are 

constantly in the process of devising better forecast reliability 

and robustness. 

3. Materials and Methods 
A detailed focus is given to the Temporal Attention Gated 

Convolutional Network (TAGC-Net) and Generative 

Adversarial Networks (GAN) model proposed in the study. 

Furthermore, it also considers complex patterns better than the 

other models and integrates effectively with the operations 

such as temporal convolutional, attention and the gated 

recurrent unit. Climates an enhanced solar radiation forecast. 

Second, estimating the low-frequency parts with GAN 

provides a novel and appealing feature to the structure. 

Because of this, they can identify and reproduce the basic 

behavior and long-term oscillation that is inherent in solar 

irradiance data that GAN is capable of recognizing. It 

improves one’s ability to be precise and accurate in the 

forecasts made in the future. This combined model of TAGC-

Net and GAN is a new advancement in different solar 

irradiance predictions. It could ultimately result in more 

detailed and more comprehensive predictions for various 

application options.  

EMD breaks down data adaptively into Intrinsic Mode 

Functions (IMFs) and residuals. On the other hand, with 

EEMD, a decrease in mode mixing is noticed because it adds 

random noise from a white Gaussian distribution to the signal. 

However, this causes residual noise that causes errors while 

reconstructing. Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise (CEEMDAN) addresses 

these problems by significantly reducing mode mixing, 

achieving near-zero reconstruction error and lowering 

computational costs. This method is highly efficient for 

various applications like analysing signals from satellites, 

recognizing speech, and predicting economic data. In this 

approach, white Gaussian noise is initially added to the 

original signal, and EMD is applied to every noise realization 

of that signal.  

The first Intrinsic Mode Function (IMF) from each 

iteration is extracted and averaged to get a better first mode. It 

does so by adding noise-adapted residuals and applying EMD 

to each iteration's result, taking the average of all these 

iterations for the extraction of every subsequent IMF. This 

process continues until all IMFs are obtained from the 

decomposing process step by step; it ensures that every mode 

comes out as a result of previous decompositions' residual and 

helps reduce mode mixing while enhancing decomposition 

precision. The last step is about computing the complete 

residual after acquiring all IMFs, which holds the remaining 

tendency of the initial signal. This leftover part is normally 

smoother and is helpful in reducing the forecast errors, and it 

will provide for a better glimpse of the concealed trends. Thus, 

the process of decomposing the signal into distinct IMFs and 

one final piece helps CEEMDAN to examine different 

timescales and frequency sections included in a signal. This 

method demonstrates usefulness in analytic situations that 

involve nonlinear as well as non-stationary time series. 

The novelty of the proposed model is that it will combine, 

for the first time, a Temporal Attention Gated Convolutional 

Network and a Generative Adversarial Network. These two 

strong architectures are integrated into this model, enabling it 

to learn both the intrinsic temporal dependencies in the solar 

irradiance data and heavy tail distributions of the underlying 

data. The attention mechanism of TAGC-Net allows the 

model to focus only on those salient time-varying features, 

enabling it to handle the sequential nature of solar irradiance 

data effectively and to enable an accurate short-term forecast. 

Temporal focus is an ability indispensable in forecasting solar 

radiation because it naturally varies depending on daily, 

seasonal, and weather-related factors. On the other hand, one 

of the big challenges in solar irradiance forecasting includes 

managing sparsity and noisiness in data that may not be 

available for high-quality training. This is where GAN's 

contribution plays its role. It is really good at generating 
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realistic synthetic data that captures the real-world distribution 

of solar irradiance. The ability of GAN to augment this dataset 

with more and higher-quality samples helps the model 

generalize better on limited or noisy data. It merges the 

capability of handling temporal dynamics by TAGC-Net with 

the generation capabilities of GAN, hence forming a model 

that enhances forecasting accuracy and the predictive 

capability of the model towards solar irradiance under many 

conditions. This new hybrid approach guarantees more 

reliability. 

3.1. Temporal Attention Gated Convolutional Network 

(TAGC-Net) 

The short-term solar irradiance prediction framework 

formulated in this work consists of a preprocessing and 

decomposition process from CEEMDAN. This approach is 

used to extract IMFs and residuals from the irradiance data 

obtained from the surface of a body. It also effectively 

transforms the original data into various parts that, in one way 

or another, act as a measure of different frequency scales. The 

disadvantage of decomposition is used to understand frequent 

changes in the solar irradiance data set, referred to as high-

frequency variation and low-frequency variation. After 

decomposition, the subsequences for the data are split into two 

parts, namely high-frequency and low-frequency. There are 

fast and short-lived variations in solar irradiance frequencies 

of these groups, and we subjected them to the Temporal 

Attention Gated Convolutional Network (TAGC-Net). 

TAGC-Net has been designed to handle the squiggly and 

dynamic nature caused by frequent data by incorporating 

temporal convolution networks and focus systems along with 

gated recurrent units. This enhances its ability to focus on 

time-critical attributes while at the same time dealing with 

longhorn connections at the network. Conversely, regions 

with low-frequency subsets are smoother and denote gradual 

fluctuations in irradiance data.  

After the CEEMDAN decomposition, the data is 

segmented into two primary categories: global and three low-

frequency noise components. With the help of temporal 

convolutional networks combined with attention mechanisms 

and gated recurrent units, TAGC-Net expands its capacity to 

pay attention to selected time-dependent features and address 

the dynamic character of high-frequency data.  

On the other hand, the low-frequency sub-sequences, 

which indicate gradual changes in the irradiance level, are 

comparatively stable and possess a more deterministic 

characteristic. These components are processed separately, 

acknowledging that they are not as high frequency as the data 

normally dealt with. When it comes to the low-frequency 

analytics, simple modeling methods are usually incorporated, 

as such data sets are not characterized by significant 

fluctuations. However, it is important to manipulate these 

components in a way that enhances the accuracy of the gradual 

variation in the overall prediction model.  

This is made possible by the detailed division of the data 

into high and low frequency components, which the TAGC-

Net then processes for the high frequency component, and the 

other suitable methods for the low frequency component allow 

for adequate solar irradiance prediction. This methodology is 

beneficial for making accurate short-term predictions. Figure 

6 elaborates these ideas, depicting how the framework deals 

with frequency components of irradiance data to improve the 

predictive capability.  

 These sections are generated using a Generative 

Adversarial Network, which works in sections. As a result, 

GANs are beneficial for modelling and predicting data 

distributions in data-related trends under the bottom and less 

fluctuating aspects of low-frequency components. It 

effectively combines TAGC-Net, whose strength lies in 

processing high-topology information with frequency, and 

GAN with low-topology details. This structure ensures the 

accuracy and thoroughness of predictions concerning different 

periods of time. The last part of the framework combines the 

prediction results from both models. This final aggregation 

gives a strong and unified forecast of solar irradiance, 

including changes happening right away as well as those that 

occur over longer periods. The combined method, explained 

through CEEMDAN's accurate breakdown and specialized 

prediction models, greatly improves the precision and 

trustworthiness of short-term predictions about solar energy's 

strength. The proposed TAGC-Net is given in Figure 1, and 

the flowchart of operation is given in Figure 2. 

In this technique, the convolution layer operation is 

performed initially after collecting data, as mathematically 

represented below: 

𝒸i = Conv(𝒸i,𝒲x) + 𝒷𝒸 (1) 

Where, 𝒸i indicates the input, 𝒲x denotes the kernel of 

convolution, and 𝒷𝒸 is the bias term. Then, the temporal 

attention mechanism is implemented for estimating the 

attention score according to the following equation: 

𝒜k = tanh⁡(𝒲𝒜𝒽k +𝒷𝒜) (2) 

Where, 𝒽k represents the feature vector, 𝒲𝒜  indicates the 

weight matrix of the attention module, and 𝒷𝒜  is the bias term. 

Moreover, the context vector is computed with the attention 

score based on the following equation: 

℘ = ∑ 𝒜k𝒽k
K
k=1  (3) 

Where  denotes the context vector. As a consequence of 

this, the GRU layer operation is performed for effectively 

handling temporal dependencies, and its memory state output 

is determined as follows: 

ℏk = 𝓊k𝒽k−1 + (1 − 𝓊k)𝒽̃k (4) 
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Fig. 1 Architecture of proposed TAGC-Net 

 
Fig. 2 Flowchart of proposed model 
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Where, 𝓊k is the update gate information. The final 

output 𝒪̂k of TAGC-Net is obtained with the use of a fully 

connected layer, as shown below: 

𝒪̂k = Dense(𝒽k,𝒲o) + 𝒷o (5) 

Where, 𝒲o and 𝒷o are the output weight matrix and bias 

values. The mathematical expressions represented in the 

model directly enhance its predictive capability through well-

defined key operations at each stage of the process. The first 

operation, the convolution layer, is represented by Equation 

(1), where the important features are extracted from the input 

data, spatial or local patterns, essential to the nature of solar 

irradiance. This is followed by the temporal attention 

mechanism; Equation (2) allows the model to attend to the 

most informative time-dependent feature by computing 

attention scores that drive the network to determine where it 

should put more influence between temporal elements in a 

dataset. The operation of the GRU layer, as defined by 

Equation (4), addresses temporal dependencies due to the 

maintenance of memory states; this allows the model to persist 

in memory certain important information from past steps in 

time and adjust its forecast at any given time, accordingly. 

Finally, the result is further refined using a fully connected 

layer according to Equation (5). The proposed method could 

enable much-enhanced grid stability and optimum energy 

storage since the forecasting of short-term solar irradiance is 

more accurate and reliable. As forecasting of energy 

generation through solar systems is better, it is relatively easy 

for grid operators to monitor the energy flow and prevent 

imbalance conditions, resulting in energy supply-demand 

mismatch. The algorithm applied to the Efficient Channel 

Attention Module is given below: 

Algorithm: Efficient Channel Attention Module 

Input: Time-series input data X with meteorological 

variables 

Output: Predicted solar irradiance values 

Step 1: Begin. 

Step 2: Apply dilation, causal convolution and weight 

normalization; 

Step 3: Apply ReLU activation and dropout. 

Step 4: Apply Efficient Channel Attention Module (ECA); 

Step 5: Apply 1x1 convolution; 

Step 6: Repeat steps 2 to 6; 

Step 7: Add residual connection from input F8=F7+X; 

Step 8: Output; 

3.2. Generative Adversarial Network 

In the proposed work, low-frequency subsets are fed into 

a GAN for prediction, which is an innovative and special part. 

This utilizes the strength of GANs in representing intricate 

data distributions to predict the hidden trends and long-term 

changes in solar irradiance. Low-frequency subsets capture 

smoother alterations found within irradiance data, unlike high-

frequency components that represent fast fluctuations and 

short-term dynamics. When these subsets are subjected to a 

GAN, the model can properly understand and imitate the 

complex designs existing in low-frequency parts. The 

generator network of the GAN learns to create fake data 

samples, ones that are similar to real low-frequency irradiance 

data. A discriminator network checks how genuine these 

made-up samples are. By using an adversarial training 

method, the GAN gets knowledge about the main structure 

and changeability of low-frequency data. This makes it give 

good predictions, which show longer-term patterns in solar 

irradiance. This new combination of GANs to predict low-

frequency patterns improves the system’s general forecasting 

ability, giving a complete comprehension of how solar 

irradiance changes over various time periods. 

Relatively, in the proposed framework, the use of GAN, 

especially for predicting low-frequency subsets of solar 

irradiance data, is innovative and makes a big difference. 

Long-term trends and smoother oscillations in irradiance can 

be predicted with the help of this technique since GANs are 

efficient at modeling and understanding complex data 

distributions.  Several subsets of the solar irradiance data have 

low frequency as opposed to the high frequency radiation 

schematics, and these show slow, less unsteady changes, 

which are used in understanding wider fluctuations in solar 

radiation. The above subsets show trends that are likely to 

extend for a long time, like changes resulting from seasonal 

changes and slow changes as a result of climatic change. In 

contrast to high-frequency data that are characterized by high 

frequency and short duration, low-frequency data present low-

frequency data of irradiance variation with time.  

The innovative use of GANs in this context involves two 

main components: It gives two networks: the generator and the 

discriminator. In the GAN structure, the generator’s role is to 

generate low-frequency irradiance data samples similar to the 

real data samples. This process entails understanding the 

distribution of the data and structures that are difficult to 

explicate in the low-frequency data. In other words, the goal 

of the generator is to come up with data that consists of 

gradually varying patterns similar to what is observed in the 

real-world irradiance data. At the same time, the second 

network, the discriminator, compares the samples with real 

low-frequency data and synthetic data produced by the 

generator. It is in this process of repeated opponents’ battle 

between the generator and the discriminator that the GAN 

develops better algorithms for producing realistic data. The 

generator optimizes its outputs to deceive the discriminator, 

giving accurate simulations of low-frequency data trends.  

In this manner, the GAN becomes proficient in 

distinguishing and generating the subtle changes and possible 

long-term features inherent in the low-frequency subsets. It 

also increases the potential of this model to produce long-term 

patterns of the solar irradiance data with higher accuracy. 
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Many of these trends are captured and modeled well by the 

GAN, thus enhancing the overall forecasting capability of the 

model. It not only improves the short-term solar irradiance 

forecast, the most important variable affecting the generation 

of solar electricity, but also adds to the overall knowledge of 

how solar irradiance changes at different frequencies. Thus, 

this innovative approach proves more effective, making both 

sharp short-term changes and slow trends predictable, which 

makes the created system quite reliable and universal. The 

present work, therefore, poses an improvement over the 

application of GANs for low-frequency prediction in that the 

dynamics of the solar irradiance data are captured better and 

in more detail by this model. 

4. Results and Discussion 
The results part is for verifying that the suggested 

framework for solar irradiance forecasting is effective in many 

ways. In order to demonstrate the results of this model’s 

effectiveness, special attention is paid to assessing how well it 

performs in terms of solar irradiance level by employing a 

number of measuring instruments and standard tools to answer 

the questions about how reliable and accurate it is. This will 

enable us to check if this model is flexible enough to work on 

other datasets other than the one we used in developing it. The 

set of data applied in the research of the present study has been 

obtained from the National Solar Radiation Database 

(NSRDB) [29, 30].  

This dataset was pre-processed for the proposed model by 

cleansing and preparing it for the appropriate quality and 

relevance of inputs. It normally contains the hourly variables 

of the measured solar irradiance, like Global Horizontal 

Irradiance, Direct Normal Irradiance, Diffuse Horizontal 

Irradiance, temperature, wind speed, and other meteorological 

variables that can be useful in any solar energy forecast. First, 

missing or inconsistent values were identified, followed by 

interpolation or imputation using the median or mean of 

surrounding data points. It provides the level of different 

irradiances in Texas within a year. The numbers were 

collected at a measuring station, which, according to existing 

information, consists of 118. 31 degrees west longitude, and 

33. 98 degrees north latitude. The experiment or validation is 

performed using the following software and hardware 

configurations mentioned in Table 2. 

This specific site displays typical weather conditions; 

similar to the other locations within this region, there are four 

seasons and daily fluctuations in temperature. These climatic 

conditions have an impact on solar irradiance and are quite 

evident when comparing the different months of the year. In 

summer, the irradiance level tends to remain constant and 

produces a steady rate of solar energy input because the day is 

long and the weather is normally fine. However, it depicts 

variable values irradiated by factors such as short days, cloud 

cover, and different weather conditions in winter. In the 

collected data, it is possible to observe regular annual changes 

in irradiance and a considerable daily temperature variation. 

This shows the variation of the data, and therefore, it is useful 

in the study and development of models for research in solar 

irradiance forecasting. 

Table 2. Hardware/Software Specifications 

Programming 

environment 
Python 3.10 

Libraries 
PyTorch 2.0 and TensorFlow 

2.12 

Training/Validation 

/Test split 
70% / 15% / 15% 

Batch size 64 

Learning rate 0.001 (with Adam optimizer) 

Epochs 
100 (with early stopping if 

validation loss plateaued) 

Loss function Mean Squared Error (MSE) 

Evaluation metrics MAE, RMSE, MAPE, R² Score 

Cross-validation 5-fold cross-validation 

 
Fig. 3 Solar energy predicted output 

Figure 3 presents the forecasted output of solar energy as 

a function of time. In this graph, the red dashed line represents 

predicted solar energy values generated by the forecasting 

model. This could be important in visualizing how the model 

forecasts solar energy from applications in grid management, 

energy storage, and optimization of solar power systems. 

Forecasted values are obtained using elaborate models that 

study historical data in order to predict future energy output. 

In this graph, the red dashed line represents the forecasted 

values of solar energy obtained from the forecasting model. 

This may be important for visualizing how the model forecasts 

solar energy from applications in grid management, energy 

storage, and optimization of solar power systems. Forecasted 

values are obtained from elaborate models that study historical 

data in order to predict future energy output. 
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Figure 4 gives a detailed comparison of the actual and 

forecasted solar energy outputs, including the confidence 

intervals with the model uncertainty. The graph depicts 

observed solar energy data, as shown in blue, and the 

forecasted values shown by the red dashed line. The 

confidence intervals are given by the area around the 

forecasted line in red, which is important in order to quantify 

the degree of certainty of the forecast. These intervals are 

defined statistically by considering various sources of error 

and variability in the data. The confidence intervals shown in 

this figure represent a range within which forecasted values 

can be expected to lie, given that a forecast, by definition, 

cannot be devoid of uncertainty. By visualizing these 

intervals, it is investigated how reliable the forecasted values 

are and how well the model accounts for uncertainty. Besides 

that, the graph also includes a rolling mean on the forecasted 

data represented by the green dashed line. Such a use of the 

rolling mean will smooth out short-term variations and 

underline the tendencies that may occur in the forecasted data. 

The rolling mean is computed over a specified window size. 

The specified window size balances responsiveness to recent 

changes against the stability of long-term trends. This 

provides a view of both immediate predictions and broader 

patterns in the data. Forecasted solar energy production was 

obtained using the model. The figure shows the various levels 

of irradiance that the system is to predict within a given 

timeframe. Schematically, this is how the said fluctuations of 

solar energy production could change with time, weather 

conditions, and seasons. This graph hence can show that such 

variations are well captured by the model with very high 

accuracy; thus, the model is quite suitable for practical 

applications in energy management. The proposed model 

attained an MAE and RMSE value of 0.28 and 0.35, which is 

graphically represented in Figure 4. To further validate the 

model, the error rates for each of the seasons, spring, summer, 

autumn and winter are depicted in Figures 5 to 8. The 

calculation of these error rates is based on four important 

performance measurements, such as MAE, RMSE, MAPE, 

and R2. MAE is a measure of the typical absolute deviation of 

the sum of the differences in some set of forecast values and 

corresponding actual values. MAPE provides an initial idea of 

how closely the model identifies actual values approximately- 

it shows how, on average, the numbers estimated actually 

deviate from the numbers observed. RMSE stands for root 

mean square error. Compared with sequentially processed 

LSTM and GRU, the proposed model possesses high 

accuracy. Apart from this, LSTM and GRU are subject to such 

issues as vanishing gradients, or they cannot work well on 

noisy and sparse data, while the GAN part enhances the 

robustness of the whole model due to its capability to generate 

highly realistic synthetic data for complementing a real-world 

training dataset. 

 
Fig. 4 Comparison with confidence intervals 

The augmented data helps the model generalize to 

hitherto unseen conditions because the problems brought in by 

limited or noisy datasets are resolved. Besides, convolutional 

layers implemented in the architecture enable the TAGC-Net 

to capture the spatially relevant features necessary for 

understanding solar radiation patterns, a layer of depth 

noticeably missing in the models based on either LSTM or 

GRU. Therefore, the proposed model will be able to learn 

complex temporal dynamics and spatial features of solar 

irradiance supported by a much stronger architecture for better 

performance regarding high accuracy, low error, good 

generalization, and reliability compared to other traditional 

methods. At last, the R² score or the coefficient of 

determination shows a model's explanatory strength. 

Checking the error rates for various seasons, both in the 

models already present and those proposed, gives us an 

important understanding of how well each approach performs 

and its effectiveness. These visuals reveal the high forecasting 

accuracy of the suggested solar irradiance prediction 

framework. They make it easy to understand, helping with 

making decisions and improving the model for future use 

cases.  
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Fig. 5 Error rate for the spring season 

 
Fig. 6 Error rate for the summer season 

 
Fig. 7 Error rate for the autumn season 
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Fig. 8 Error rate for winter season 

 
Fig. 9 Comparison of different models based on RMSE and R2  

Finally, a comparative analysis is performed with the 

proposed TAGC-Net and other models discussed in the 

literature, like LSTM-RNN, AOHDL-SRP, WRF-FCN, 

Multivariate DL, and CNN-LSTM-Attention, based on RMSE 

and R2 factor. Upon interpretation n Figure 9, it can be seen 

that TAGC-Net clearly outperforms with the lowest RMSE 

(0.35) and a high R2 value (0.97), indicating high prediction 

accuracy and reliability.   

5. Conclusion 
This paper developed a new TAGC-Net model integrated 

with a GAN to make better predictions about short-term solar 

irradiance. The combination of these new designs shows great 

accuracy and trustworthiness in forecasting short-term solar 

irradiance levels. The complete examination of the suggested 

model confirms its superiority to current methods, 

highlighting its possible role in changing how renewable 

energy and grids are used. With the increased need for 

sustainable energy solutions, this research helps improve 

efficiency and practicality in solar energy systems. It moves 

towards a more eco-friendly and lasting future. Analysis of the 

projected model reveals its superiority in predicting solar 

irradiance levels in different ways, owing to an MAE of 0.28 

and RMSE of 0.35. Finally, as a result of comparative analysis 

with existing models like RNN, GRU, LSTM, and so on, the 

model excelled in all metrics, such as low errors and high R2. 

This confirmation strengthens how well the novel method 

works and its possible influence on improving predictions of 

solar irradiance. Yet, the system still requires a large amount 

of high-quality data for the evaluation of the model. 

Additionally, high training, inference cost, and model 

interpretability are encountered, which are considered in 

future enhancements. Future work on this model could be 

done in many areas to further its performance and 

applicability. One such area is incorporating more advanced 

hybrid architectures, using proposed TAGC-Net and GAN 

with reinforcement learning for greater instantaneous 

managerial power, such as the ability to animatedly regulate 
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the forecasting strategy based on current grid conditions or 

energy storage levels. This would involve further 

development of the dataset of previous environmental 

conditions, like atmospheric pressure, cloud wrap, and 

pollution, that may influence the solar irradiance received but 

are probably not reflected by this model. That would help give 

the model robustness for quite a few places and weather 

conditions. 
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