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Abstract - Power electronics-based electrical equipment is widely used across modern industrial sectors, offering advancements 

in energy conservation, efficiency, performance, and industrial needs. However, these devices-such as rectifiers, converters, 

inverters, Variable Frequency Drives (VFDs), Uninterruptible Power Supplies (UPS), furnaces, and other equipment-are 

categorized as non-linear loads, leading to waveform distortion in the electric power supply. This waveform distortion is a 

significant issue, causing Power Quality (PQ) problems in both power systems and local distribution networks. Total Harmonic 

Distortion (%THD) is a key metric for assessing the extent of harmonic pollution in an electrical system. The IEEE 519-2022 

standard provides clear guidelines on voltage and current harmonic limits (%THDV and %THDI) based on system voltage 

levels. This study focuses on reducing harmonics produced by a three-phase rectifier through the implementation of a hybrid 

harmonic filter that integrates both passive and active components. To improve the effectiveness of the active filter, an Artificial 

Neural Network (ANN) is employed. Real-time measured data are used to train the ANN, resulting in better %THDI reduction. 

The article presents a performance analysis of the proposed active harmonic filter, hybrid harmonic filter, and ANN-trained 

hybrid harmonic filter. Testing and validation of the proposed hybrid harmonic filters are conducted using the MATLAB 

simulation platform. 

Keywords - Artificial Neural Networks, Hybrid filters, Variable frequency drives, Total Harmonic Distortion, Harmonic filter.  

1. Introduction  
Ensuring high-quality power delivery is essential in 

modern electrical systems, requiring the supply to be stable, 

consistent, and free from distortion. Ideally, voltage and 

current waveforms should remain purely sinusoidal, 

maintaining specified frequency and amplitude levels for end-

user applications. However, nonlinear loads commonly found 

in real-world systems often distort these ideal waveforms. 

This distortion is typically measured as Total Harmonic 

Distortion (THD), which occurs when the fundamental 

waveform is altered by the presence of harmonics-frequencies 

that are integer multiples of the fundamental. 

Devices such as AC/DC converters, Variable Frequency 

Drives (VFDs), Uninterruptible Power Supplies (UPSs), arc 

furnaces, and certain types of lighting, like fluorescent lamps, 

are major contributors to harmonic distortion. Their switching 

operations result in current waveforms that deviate 

significantly from sinusoidal forms, leading to a non-linear 

relationship with the applied voltage. Such distortions can 

negatively impact system performance, causing issues like 

overheating, insulation degradation, protection system 

malfunctions, and inaccurate metering. 

Both passive and active filtering techniques are employed 

to address harmonic problems. Passive filters, while 

economical and effective for specific frequencies, have 

limitations including fixed compensation, possible resonance 

with the power system, and large physical size. In contrast, 

Active Power Filters (APFs) offer adaptive filtering 

capabilities, adjusting to varying harmonic conditions in real 

time, making them suitable for dynamic and complex load 

environments. However, their widespread adoption is limited 

by high implementation costs and complex control 

requirements [7, 8]. As a middle ground, hybrid filters 

combining active and passive components have emerged, 

providing improved filtering performance at a lower cost by 

sharing the harmonic compensation burden. 

Despite these developments, a key research gap remains 

in active filters’ accurate and adaptive control, especially 

under dynamic conditions involving fluctuating harmonic 
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content and system parameters. Traditional control methods 

struggle to generate accurate reference signals in such 

environments, leading to suboptimal compensation. 

This study addresses this gap by proposing the integration 

of Artificial Neural Networks (ANNs) into the control strategy 

of a hybrid power filter. ANNs, known for their learning and 

generalization capabilities, are particularly effective for 

nonlinear, time-varying systems. The proposed ANN is 

trained using input parameters such as load power, firing 

angle, and current waveforms produced by a three-phase 

controlled rectifier functioning as a nonlinear load. The ANN 

calculates the essential gate signals to drive the active filter in 

real-time, confirming effective harmonic mitigation and 

power factor improvement under fluctuating operating 

environments [9-11].  

This work presents a neural network-trained hybrid 

power filter with dual feedforward and feedback control, 

different from conventional passive and active filters with 

fixed compensation, which suffer from limited adaptability. 

Prevailing approaches frequently struggle under dynamic load 

and nonlinear conditions because of static control approaches. 

The proposed system integrates artificial intelligence to 

empower real-time learning and fine-tuning. This allows for 

more precise harmonic detection and flexible control than PID 

or fuzzy-based controllers described in previous studies. The 

approach addresses key stability, responsiveness, and 

scalability limitations found in traditional filtering techniques. 
The development and performance analysis of the planned 

system are carried out using MATLAB/SIMULINK, and its 

performance is assessed across diverse load conditions and 

firing angles, signifying its robustness and effectiveness in 

sustaining the power quality. 

2. Proposed Hybrid Harmonic Filter for Non 

Linear Load 
Hybrid power filters combine active and passive filtering 

elements, giving better filtering performance. This section of 

the study presents the hypothetical basis for the proposed 

active harmonic and hybrid power filtering approaches. 

Advances in switching technology and issues about the cost of 

passive filter components have stimulated research into active 

harmonic filters currently. Mostly at higher ratings, the cost of 

inductive and capacitive components can become exorbitant. 

Active filters outperform in challenging conditions where 

passive filters may fail, particularly in situations involving 

parallel resonance [13-15]. 

2.1. Active Harmonic Filter  

Active filters alleviate harmonic distortions that occur 

due to nonlinear loads by injecting compensating current 

through power electronic devices. These filters are mainly 

used in low-voltage systems and depend on high-speed 

switching elements such as MOSFETs and IGBTs, because of 

their ability to withstand high currents and voltages while 

switching rapidly. Active filters are preferred for their 

effective harmonic mitigation, small size, and adaptability. 

Active filters are normally classified into two primary 

types: shunt and series configurations. Shunt active filters are 

commonly positioned at the load side and are primarily 

employed for eliminating current harmonics. They achieve 

this by injecting compensating currents that reflect the 

harmonic components in magnitude but are opposite in phase, 

effectively canceling both harmonic and reactive elements at 

the Point of Common Coupling (PCC) additionally, if series 

active filters are placed in line with the power supply through 

a coupling transformer to mitigate voltage harmonics by 

maintaining stable voltage levels at the load terminals. 

To generate these compensating signals, active filters rely 

on converter circuits such as Voltage Source Inverters (VSIs) 

or Current Source Inverters (CSIs). In this study, a VSI-based 

shunt active filter is employed to suppress current harmonics. 

As shown in Figure 1, the proposed shunt active filter 

incorporates a control system that continuously measures key 

electrical parameters, including source current, load current, 

and load voltage. Based on these real-time measurements, the 

controller produces gate signals that govern the inverter’s 

switching, ensuring optimal filter performance. 

Fig. 1 Simplified schematic of the active filter setup 

2.2. Control Technique of Active Harmonic Filter 

The control mechanism for the active filter necessitates 

the computation of harmonic content within the load currents. 

Several methods exist for controlling active filters, including 

Instantaneous Reactive Power Theory, Fourier 

Transformation, and dq-Transformation. The dq-

Transformation technique is employed in the proposed active 

filter. Space vector transformation is employed in this method 

to enable the identification and quantification of harmonics in 

non-sinusoidal current signals. Researchers typically utilize 

active filters with both feedforward and feedback control 

loops. 
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In feedforward control: 

1. The control system acquires real-time measurements of 

the load current, iL. 

2. It then applies digital signal processing to isolate the 

harmonic portion from the total current. 

3. To suppress the harmonic content, the active filter 

supplies a compensating current equal in magnitude but 

opposite in phase to that sourced from the supply voltage 

VS. 

In feedback control: 

1. Instantaneous supply current, Is, is sensed by the control 

unit. 

2. The harmonic portion of the supply current is extracted 

using digital signal processing algorithms. 

3. A compensating voltage is applied by the active filter 

across the transformer's primary winding. When the 

feedback gain is sufficiently high, this effectively 

minimizes the harmonic current in the supply. 

The feedback control strategy plays a vital role in 

directing harmonic components of the load current into the 

active filter, thereby preventing harmonic currents from the 

supply side from flowing into the filter. This targeted control 

enhances the performance of the passive filter by minimizing 

the risk of overloading and maintaining its filtering capability. 

Furthermore, feedback control allows the active filter to act 

like a damping resistor for lower-order harmonics, thus 

reducing potential resonance between the passive filter and the 

system’s inductive elements. On the other hand, the 

feedforward control approach focuses on selectively 

extracting and mitigating specific harmonics-particularly the 

fifth harmonic-from the load current, guiding it into the active 

filter for mitigation. The control system employs the dq-

transformation technique to precisely recognize and process 

distorted current signals. The major components of this 

approach include abc-to-dq and dq-to-abc transformations. 

Also, it uses a Phase Locked Loop (PLL) for synchronization, 

High Pass and Low Pass Filters (HPF and LPF), and a current-

to-voltage conversion unit, as represented in Figure 2. 

 
Fig. 2 Control scheme of active filter 

In the dq-transformation technique, the time-dependent 

three-phase load currents IL(abc) are initially captured within 

a stationary reference frame, and then the measured three-

phase load currents are converted into a synchronously 

rotating dq reference frame associated with the fundamental 

frequency of the AC supply.  

This transformation depends on the phase angle (θ), 

which is continuously traced by a Phase Locked Loop (PLL). 

Compared to the conventional P-Q theory, the dq-based 

method results in better signal decomposition and control 

precision.  

In this frame, the abc-to-dq transformation equations are 

applied to convert the time-domain currents into direct-axis 

(d) and quadrature-axis (q) components. These dq signals can 

then be separated into their respective DC (fundamental) and 

AC (harmonic) parts for further analysis and control. 
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abc to dq Transformation: Using a two-axis rotating 

reference frame, The abc-to-dq transformation translates 

three-phase signals into their equivalent components along the 

direct (d) and quadrature (q) axes in a rotating reference 

frame., q-axis, and zero-sequence components.  

The voltage conversion from the three-phase (abc) system 

to the dq frame is carried out using Equations (2) to (4). 
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dq to abc Transformation: Reversing the Park 

transformation, the dq-to-abc conversion block translates the 

d-axis, q-axis, and zero-sequence signals-defined in a rotating 

reference frame-into their corresponding three-phase voltages. 

Equations (5) to (7) define this dq-to-abc voltage 

transformation. 

𝑒𝑎 = 𝑒𝑑 𝑠𝑖𝑛(𝜔𝑡) + 𝑒𝑞 𝑐𝑜𝑠(𝜔𝑡) + 𝑒0 (5) 
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3
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3
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The dq-transformation method offers both advantages 

and disadvantages. While accurate tracking of source voltages 

ensures minimal impact of source voltage harmonics on 

filtering performance, this tracking necessitates increased 

computing power. The PLL serves a critical function in 

feedback control by dynamically adjusting the phase of a local 

signal to maintain synchronization with the external input 

signal. This PLL produces sine and cosine waveforms that are 

required for the abc to dq transformation technique. 

Accurate determination of the phase angle (𝜃) of the 

source voltage is vital for synchronizing the reference signals 

with the voltage waveform. This synchronization is done by 

the Phase-Locked Loop (PLL), which locks onto the 

fundamental frequency of the supply voltage. The PLL 

effectively handles waveform distortions by ensuring 

consistent phase tracking. 

A High-Pass Filter (HPF) enables high-frequency 

components to pass while attenuating frequencies below a 

specific cutoff point. Conversely, a Low-Pass Filter (LPF) 

allows only low-frequency signals to pass, filtering out 

components above its cutoff frequency. The degree of 

attenuation across frequencies depends on the design and 

characteristics of each filter.  

For feedforward control, the conversion of current 

quantities into voltage quantities through real and reactive 

powers is indispensable. The conversion process involves 

transforming current components (ILdq) into voltage 

components (VLdq) using real and reactive power, as depicted 

in Equation (8).
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As shown in Figure 2, the system's signal flow begins 

with the three-phase source voltage (VabcV_{abc}Vabc) 

being directed into the PLL block, which calculates the phase 

angle θ\thetaθ. This angle serves as a reference for both abc–

dq and dq–abc transformations. Simultaneously, these 

transformation blocks measure and utilise the source current 

and load current. In the feedback control loop, the current 

components are converted into voltage components using a 

gain block. Subsequently, the outputs of these two control 

loops are combined, resulting in the generation of the 

necessary gate pulses (VAF) for the active filter. 

2.3. Hybrid Harmonic Filter  

Active power filters effectively address the limitations of 

conventional passive filters, such as fixed compensation 

issues, resonance problems, and large size. However, their 

significant drawback lies in their high cost. Hybrid filters, 

which combine active and passive filtering elements, present 

a cost-effective alternative for power quality improvement. In 

this arrangement, a shunt-connected active filter protects the 

three-phase system by compensating for harmonic distortions 

and by addressing the reactive power requirements of the load. 

When connected in parallel with the utility source and the 

active filter, the passive filter helps ease the burden on the 

active filter. It does so by supplying a portion of the reactive 

power and filtering out specific harmonics. This synergy 

lowers the power rating and cost requirements of the active 

filter. 

Hybrid filters incorporate power electronic switching 

components like MOSFETs, IGBTs, Thyristors, and GTOs 

alongside traditional passive components like inductors, 

capacitors, and resistors. The structural layout of a hybrid 

harmonic filter is illustrated in Figure 3.  

 
Fig. 3 Hybrid harmonic filter 

Compared to purely active or passive filters, this hybrid 

configuration offers a more practical and economically viable 

solution, particularly in high-power applications. Key 

considerations in hybrid filter design include operational 

principles, system performance, and overall cost efficiency. 

An enhanced hybrid filter topology for rectifier-based loads 
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was proposed by Bhim Singh and Vishal Verma (2007). 

Connected in parallel with nonlinear loads, this system 

reroutes harmonic currents away from the supply lines and 

simultaneously improves the power factor while mitigating 

harmonic distortion. 

3. Architecture of Neural Network 
Artificial Neural Networks (ANNs) are algorithmic 

frameworks modeled after the structure and operation of the 

human brain, where multiple processing units operate 

concurrently. The behavior of the network is primarily 

governed by the strength of connections, referred to as 

weights, between these processing elements. Learning in 

ANNs involves adjusting these weights so that, for a given 

input, the network produces an output that closely 

approximates a desired target.  

A widely used architecture is the two-layer feedforward 

neural network, which typically includes nonlinear activation 

functions, such as the sigmoid, that are typically employed in 

the hidden layers, while the output layer often uses a linear 

activation function to produce continuous outputs. In the 

current study, the ANN training is carried out using the 

Levenberg-Marquardt (LM) backpropagation algorithm. As 

Wilamowski and Yu (2010) noted, the LM algorithm offers an 

efficient and optimized approach to training by minimizing the 

mean squared error and is evaluated through regression 

metrics. 

The Backpropagation (BP) learning algorithm updates the 

network’s weights based on error minimization, typically 

using gradient descent, to enhance classification or prediction 

performance. This method allows the network to iteratively 

learn and refine its internal parameters during training. A 

backpropagation neural network is composed of an input 

layer, one or more hidden layers, and an output layer. Neurons 

within the network apply nonlinear activation functions, 

allowing the model to capture intricate patterns and 

relationships between the input and output variables.  

Additionally, neurons in the hidden and output layers 

incorporate bias terms-special units with fixed inputs-that 

function similarly to adjustable weights. Figure 4 presents the 

schematic of the backpropagation network used in this study, 

showing the directional flow of signals through ‘n’ input 

nodes, ‘p’ hidden neurons, and ‘m’ output neurons. The 

matrices V and W represent the weight connections from the 

input to hidden and hidden to output layers, respectively. 

Sivanandam and Deepa (2007) provided a comprehensive 

study of different neural network models. In contrast, 

Temurtas et al. (2004) implemented feedforward and Elman-

type recurrent neural networks for harmonic detection within 

active filter frameworks, achieving enhanced processing 

efficiency and a simplified detection methodology. 

𝑦 = 𝜎(𝜔0 + ∑ 𝜔𝑖𝑥𝑖
𝑘
𝑖=1 ) (9) 

 
Fig. 4 Architecture of neural network 

To enhance efficiency and achieve precise outputs, 

activation is applied, providing a driving force in attaining 

accurate results. Similarly, in Artificial Neural Networks 

(ANNs), activation functions are employed over the net input 

to compute the network's output. Various activation functions, 

such as Identity, Binary Step, Bipolar Step, Sigmoid, and 

Ramp function, serve this purpose. 

Among these functions, the sigmoid function is 

extensively utilized in backpropagation networks due to its 

favorable relationship between function value and derivative 

value at a given point, reducing computational complexity 

during training. Also referred to as the log-sigmoid function, 

it can be defined using Equation (10), where α represents the 

steepness parameter determining the function's behavior, as 

illustrated in Figure 5. 

 
Fig. 5 Log-Sigmoid transfer function 
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The log-sigmoid activation function generates output 

values within the range of 0 to 1, corresponding to neuron 

inputs that vary from negative to positive infinity. This non-

linear function is commonly used in neural network models 

due to its smooth gradient and bounded output. Sivanandam 

and Deepa (2007) have examined several activation functions, 

including the log-sigmoid (equation 10), for their suitability in 

various neural network applications.  

𝑓(𝑥) =
1

1+𝑒−𝜆𝑥 (10) 

 
Fig. 6 Schematic diagram of the proposed ANN-controlled hybrid 

power filter 

4. Proposed ANN-Based Hybrid Power Filter 
4.1. System Description  

Figure 6 presents the architectural layout of the proposed 

hybrid power filter system based on Artificial Neural 

Networks (ANN). In this configuration, a three-phase 

controlled rectifier functions as the nonlinear load. The hybrid 

filtering system integrates a shunt active filter with a tuned 

passive filter to mitigate power quality issues. Key electrical 

parameters-namely, the three-phase source, source current and 

load current, which corresponds to the rectifier input current-

are captured through a data acquisition system. These signals 

are processed to generate gate control signals for the active 

filter. 

The control strategy can be executed using two distinct 

approaches: a feedforward control scheme aimed at filtering 

harmonic currents, and a feedback control scheme for 

managing harmonic voltages. Both methods rely on the abc-

to-dq transformation, which converts three-phase sinusoidal 

signals into direct-axis (d), quadrature-axis (q), and zero-

sequence components within a rotating reference frame. The 

Phase-Locked Loop (PLL) plays a key role by continuously 

adjusting the phase of a locally generated signal to 

synchronize with the input signal, thereby enabling precise 

gate signal generation for the active filter. A high-pass filter is 

employed to extract the harmonic components from the 

current by attenuating the fundamental frequency and passing 

higher-frequency signals. This study chooses a three-phase 

controlled rectifier as the representative nonlinear load. Its 

load characteristics are obtained from real-time data collected 

at the Point of Common Coupling (PCC) of a Variable 

Frequency Drive (VFD), using a power quality analyzer. This 

real-world load profile is used to validate the simulation model 

of the proposed ANN-driven hybrid power filter. Figure 7 

presents real-time screenshots of the three-phase VFD 

measurements for reference. 

 
Fig. 7 Real-time data for a VFD 

The data collection, network creation, training the 

network and performance analysis are the sequential processes 

of NN to get the desired output. They are discussed in the 

following section.  

4.2. Data Collection  

The data collection and preparation phase is a crucial step 

in network design. Multilayer networks can achieve robust 

generalization within the bounds of the training data. For the 

proposed ANN model, four input parameters are considered: 

the rectifier firing angle (α), load real power (P), source 

current (IS), and load current (IL). 

Data are gathered based on the variation of the firing 

angle from 1° to 50° with a step interval of 1°, and the load 
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real power ranging from 10kW to 50kW with a step interval 

of 3kW. For each scenario, the source current, load current, 

and network output are recorded. In this study, the network 

output is designated as the target, representing the gate control 

signal for the active filter. In total, 1,400 samples are to be 

collected and normalized. Increasing the number of samples 

contributes to an efficient training process. 

4.3. Network Creation 
While two-layer feedforward networks have the potential 

to learn nearly any input-output relationship, adding more 

layers to a feedforward network may enable it to learn 

complex relationships more efficiently. Typically, it's 

advisable to begin with two layers and then consider 

increasing to three layers if the performance with two layers 

is unsatisfactory. Mark Hudson Beale et al (2010) have 

provided insights into the creation, training, and testing 

procedures of neural networks using various NN toolbox 

approaches.  

The Artificial Neural Network (ANN) employed in this 

work utilizes a three-layer architecture comprising four input 

neurons, a hidden layer with twenty neurons, and one output 

neuron, as illustrated in Figure 8. Several network 

configurations were evaluated, and the structure with twenty 

hidden neurons yielded the best performance. The network’s 

output is responsible for generating the gate control signals 

required to operate the active power filter. The selection of 

input and output neurons is inherently tied to the specifics of 

the application. While increasing the number of neurons in the 

hidden layer can enhance the network’s capacity to model 

complex relationships, it may also result in increased 

computational load and a higher risk of overfitting. 

 
Fig. 8 Architecture of the proposed ANN model 

Training a neural network entails fine-tuning its weights 

and biases to enhance its predictive accuracy. In feedforward 

networks, the Mean Squared Error (MSE) is a performance 

metric used for evaluation. It determines the average of the 

squared errors between the predicted outputs and the required 

target values, thus giving the prediction accuracy. Neural 

network training is done under two modes: incremental and 

batch. In incremental (or online) mode, after each individual 

input is presented, the network weights are updated. But in 

batch mode, the weights are updated only after the entire 

training dataset is processed. For multilayer feedforward 

networks, the Backpropagation (BP) algorithm is mostly 

preferred to minimise mean squared error. This algorithm 

fine-tunes the weights and biases using the negative gradient 

of the cost function (Loss function), ensuring error reduction. 

The learning rate controls the magnitude of weight 

adjustment during each training step, with values typically 

ranging from 0 to 1. An acceleration factor can be added to the 

weight updating process to accelerate the rate of convergence. 

The acceleration factor makes significant weight adjustments 

until corrections are aligned for multiple patterns of data.  

The Neural Network Toolbox has multiple training 

algorithms that include different factors such as the task 

convergence, training data size, network architecture, target 

error levels, and the application-whether it comes under 

pattern recognition or function approximation. For function 

approximation tasks that involve networks with an optimum 

number of weights, the Levenberg-Marquardt (LM) algorithm 

is commonly preferred because of its rapid convergence and 

better accuracy in lessening mean squared error. Due to its 

efficiency and precision, the LM algorithm is a suitable choice 

for estimating the performance of the proposed three-layer 

neural network in this study. 

The Levenberg–Marquardt algorithm-trained Neural 

network is well-suited for curtailing nonlinear least squares 

problems, resulting in rapid convergence for medium-sized 

neural networks. Training data for this network is obtained by 

simulating the system without an ANN under various load 

conditions and firing angles (α) of controlled rectifiers. Source 

currents (Is), load currents (IL), and corresponding gate pulses 

of the active filter are recorded. These parameters act as inputs 

for the ANN model, with gate pulses as the desired targets to 

train the proposed ANN.  

4.4. Performance Analysis 

After providing inputs and targets in the MATLAB NN 

toolbox, the training process begins. It generates plots for 

performance, training state, and regression. The performance 

plot displays the variation of the error function throughout the 

training process, indicating how well the network performs on 

the training, validation, and test sets. The training state plot 

provides insights into essential metrics such as gradient values 

and validation checks, which help assess convergence and 

guide training termination.  

Additionally, regression plots visualize the correlation 

between predicted outputs and actual targets, which may not 

align perfectly due to inherent real-world data variability. The 

performance and regression graphs, serving as training 

indicators, are depicted in Figure 9 for Phase A. The 

performance plot juxtaposes training, validation, and testing 

data performances against the best output derived from mean 
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squared error evaluation. In this instance, 320 iterations and 

100 validation checks yield the optimal outcome. Notably, the 

performance plot in Figure 9(a) highlights the peak validation 

at epoch 220. In the regression graph, the Regression (R) 

values quantify the correlation between network outputs and 

targets. For Phase A, the overall regression stands at 0.93042, 

as illustrated in Figure 9(b). This metric reflects the 

cumulative regression across training, validation, and testing 

datasets, providing insight into model performance.  

In Phase B, the training process completes 457 iterations 

to fulfil the 100 validation checks. Figures 10(a) and 10(b) 

display the performance and regression plots, respectively. 

Notably, both the validation and test curves exhibit similar 

trends, with the best validation performance observed at the 

457th epoch, as depicted in Figure 10(a). The overall 

regression for Phase B stands at 0.92722, as illustrated in 

Figure 10(b). For Phase C, the ANN model undergoes 303 

iterations. The optimal validation performance for Phase C is 

achieved at the 203rd epoch, as shown in Figure 11(a).  

Moreover, the complete regression result for Phase C is 

obtained as 0.93108, as depicted in Figure 11(b). The training, 

testing, and validation plots exhibit minimal deviation, 

suggesting low error discrepancies between training and 

testing phases.  

 
(a)                                                                                      (b)  

Fig. 9 ANN trained performance and regression plots for phase A (a) Performance graph, and (b) Regression graph. 

 
(a)     (b) 

Fig. 10 ANN trained performance and regression plots for phase B (a) Performance graph, and (b) Regression graph. 
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(a)        (b) 

Fig. 11 ANN trained performance and regression plots for phase C (a) Performance graph, and (b) Regression graph. 

 
Fig. 12 ANN Simulated models for respective phases 

After training the network using Neural Network 

Toolbox, the simulation model was developed, as shown in 

Figure 12. During the period of training, weights are updated 

in the ANN model, which gives a minimized error. The trained 

ANN model has been tested using simulation, until getting 

minimized Total Current Harmonic Distortion (THDI) 

specified by IEEE standard 519-1992. 

5. Results and Discussion  
In this section, the simulation models and their 

corresponding results for the system under various scenarios 

are analyzed, focusing on different firing angles and load 

powers. Specifically, the analysis centers on a firing angle (α) 

of 30o. To evaluate the effectiveness of the system, the Total 

Harmonic Distortion of the Current (THDI) is examined. A 

comparative analysis is conducted by simulating the system 

both with and without the filter. 

5.1. Analysis without Filter 

The simulation model depicting the system without a 

harmonic filter is shown in Figure 13. A three-phase source 

supplies power to a controlled rectifier, which acts as a non-

linear load, via a three-phase step-down transformer. The six-

pulse rectifier, constituting six valves, represents the non-

linear load subsystem. An RL load is connected to the DC 

output side of the rectifier, with the load power details 

provided in Figure 13. The controlled rectifier generates 

harmonic distortion based on its firing angle and load profile 

variation. The distorted input current waveform of the rectifier 

is observed through the scope. Furthermore, the input current 

waveforms of the rectifier and the harmonic spectrum, along 

with THDI values, are obtained using Fast Fourier Transform 

(FFT) within the Powergui block, available in MATLAB 

SIMULINK. The Powergui block in MATLAB/SIMULINK 

is used to analyze the harmonic spectrum of current 

waveforms. Figure 14 shows the unfiltered current waveform 

and its harmonic spectrum, where the 3rd and 5th harmonic 

components dominate. At a firing angle of 30°, the Total 

Harmonic Distortion (THD) values are 18.39% for Phase A, 

19.20% for Phase B, and 18.84% for Phase C. These exceed 

the permissible THD limits set by the IEEE 519-1992 

standard, which recommends a current THD of ≤5%. High 

THD leads to overheating, power losses, and reduced 

equipment lifespan. 
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Fig. 13 Simulation model: six pulse rectifier without harmonic filter  

Passive filters can reduce specific harmonic frequencies 

but suffer from limitations such as resonance and fixed 

compensation. Active filters offer better dynamic 

compensation but are costly and require complex control 

systems. To overcome these drawbacks, a hybrid harmonic 

filter is proposed, integrating both passive and active filtering 

techniques. The passive component is tuned to suppress 

prominent low-order harmonics, while the active filter targets 

higher-order and dynamically varying harmonic components. 

This synergy reduces the required rating and associated cost 

of the active filter and enhances the system's overall harmonic 

mitigation capability. Furthermore, the hybrid configuration 

demonstrates superior adaptability under fluctuating load 

conditions. Simulation results confirm the effectiveness and 

robustness of the proposed solution, showing a significant 

reduction in THD. Compliance with IEEE standards is 

achieved. Thus, the hybrid filter improves power quality 

efficiently and economically. 

 
Fig. 14 Rectifier input current waveforms and harmonic spectrumwithout filter 

5.2. Analysis with ANN Trained Hybrid Power Filter 

A shunt-connected hybrid power filter, integrating both 

passive and active elements, is implemented to mitigate 

harmonic distortion on the input side of a three-phase 

controlled rectifier. Initial analysis conducted through the 

Powergui block reveals that the 3rd and 5th harmonic orders are 

the most significant contributors to waveform distortion. Tune 

passive filters are designed to mitigate these specific harmonic 

frequencies. The design procedure, based on Equations (8) to 

(14), incorporates system power ratings, and the final values 

of passive filter components are listed in Table 1. 
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Table 1. Design values of passive filter parameters 

Order of 

Harmonics 

Inductance 

(mH) 

Capacitance 

(µF) 

3rd 1.01 1114 

5th 0.33 1228 

In dynamic loading scenarios, passive filters alone are 

insufficient due to their fixed tuning. To enhance filtering 

performance, passive filters are paired with an active 

harmonic filter, forming a hybrid configuration where the 

active part’s effectiveness is closely tied to its control 

approach, which generates precise gate pulses based on 

system conditions. 

To enhance the control system, an Artificial Neural 

Network (ANN) is trained using key system parameters. The 

trained ANN provides real-time gate signals for the active 

filter, improving harmonic elimination under variable 

conditions. The ANN model, once validated, is implemented 

in the simulation environment (Figure 15), where it functions 

as a control subsystem for the hybrid filter system. 

Simulation results in Figure 16 show that with the ANN-

trained hybrid filter, THDI is significantly reduced to 4.20%, 

4.68%, and 4.51% for Phase A, Phase B, and Phase C, 

respectively. These values fall well within IEEE 519-1992 

limits and reflect improved waveform quality. 

Beyond harmonic mitigation, power factor improvement 

is achieved. According to Equation (11), power factor (PF) is 

inversely related to THDI. High harmonic content leads to 

phase misalignment between voltage and current. As given in 

Table 2, the system’s power factor improves to 0.999 with the 

ANN-controlled hybrid filter, compared to ~0.982 without 

filtering. 

 
Fig. 15 Simulation model with an ANN-trained hybrid power filter for 

rectifier 

 
Fig. 16 Rectifier input current waveforms and harmonic spectrum with an ANN-trained hybrid power filter 
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Table 2. Comparison of THDI and power factor for controlled rectifier 

without and with a neural-trained hybrid power filter 

Phase 

 

Rectifier Firing Angle = 30o 

Without Filter 
With Neural Trained 

HPF 

THDI 

(%) 

Power 

Factor 

THDI 

(%) 

Power 

Factor 

Phase 

A 
18.39 0.983 4.20 0.999 

Phase 

B 
19.20 0.982 4.68 0.999 

Phase 

C 
18.84 0.982 4.51 0.999 

In addition to reducing harmonic distortion, harmonic 

filters aid in improving the power factor, a key parameter 

reflecting the system’s power quality and efficiency. As 

emphasized by Azazi H.Z. et al. (2010), various topologies of 

Power Factor Correction (PFC) circuits exist, each offering 

specific advantages and limitations depending on system 

requirements. Equation (11) defines the mathematical 

relationship between the system power factor and the Total 

Harmonic Distortion Index (THDI), highlighting the inverse 

correlation between harmonic content and the quality of 

current waveform alignment with voltage.  

When THDI is high, the current waveform is significantly 

distorted and deviates from the voltage waveform, resulting in 

a lagging or leading power factor. Such deviations from unity 

(i.e., a power factor of 1) introduce multiple operational 

issues: increased I²R losses, reduced system efficiency, 

heating of equipment, and the potential injection of harmonics 

into the neutral conductor. These harmonics can interfere with 

the performance of other connected equipment and disrupt 

sensitive loads. The primary goal of any power factor 

correction technique is to reduce waveform distortion and 

ensure that the current waveform closely aligns with the 

voltage waveform, tracks the voltage waveform as accurately 

as possible, thereby reducing reactive power and enhancing 

overall power transfer capability. 

PF  =   
1

√1+(
𝑇𝐻𝐷𝐼(%)

100
)

2
 (11)  

By significantly reducing current harmonics through the 

application of an intelligent filtering approach-such as the 

neural network-trained Hybrid Power Filter (HPF)-the system 

power factor can be brought closer to unity. To validate this, 

simulation results for a controlled rectifier operating with a 

firing angle of 30° were analyzed and compared for different 

filter configurations. Table 2 presents the THDI and power 

factor values for the system without any filter, and with the 

implementation of the ANN-based HPF. The results clearly 

indicate that the ANN-trained hybrid filter offers superior 

performance. Without filtering, the THDI for phases A, B, and 

C stands at 18.39%, 19.20%, and 18.84%, respectively, with 

corresponding power factors of 0.983, 0.982, and 0.982.  

Upon integrating the ANN-based HPF, the THDI is 

reduced to 4.20%, 4.68%, and 4.51%, and the power factor is 

remarkably improved to 0.999 for all three phases. This 

substantial enhancement ensures compliance with IEEE 519-

1992 standards and improves the sinusoidal purity of the input 

current waveform, which now closely resembles an ideal sine 

wave. These improvements collectively contribute to reduced 

energy losses, enhanced voltage stability, and improved 

performance of connected electrical and electronic equipment. 

5.3. Performance Analysis of Proposed Filter 

In this study, the load power of the controlled rectifier is 

varied systematically from 10 kW to 50 kW to 

comprehensively evaluate the effectiveness of the proposed 

filtering strategies under realistic and dynamic operating 

conditions. Unlike many existing works that evaluate filter 

performance at fixed load levels, this investigation 

emphasizes a load-dependent analysis, which adds practical 

relevance to the study. For each load level, the corresponding 

Total Harmonic Distortion Index (THDI) is recorded for 

different configurations-without a filter, with a conventional 

hybrid filter, and with the proposed neural network-trained 

hybrid power filter (ANN-HPF). The comparative results are 

visually presented using a bar chart in Figure 17, which 

distinctly demonstrates the consistent and superior harmonic 

mitigation capability of the ANN-HPF across the entire load 

range. The novelty of this approach lies in the adaptive 

learning mechanism of the ANN, which dynamically adjusts 

the active filter control based on varying load and system 

conditions, unlike fixed-rule or PID-based controllers used in 

earlier works. A performance effectiveness metric is 

introduced to quantitatively evaluate the impact of the filtering 

system. This metric measures the percentage reduction in the 

current harmonic distortion of the supply before and after the 

application of the filter. The performance coefficient, 

expressed in Equation (12), serves as an indicator of harmonic 

mitigation efficiency for each filter setup. Among different 

tested structures, the proposed ANN-based Hybrid Power 

Filter (ANN-HPF) is highly effective under various load 

conditions. The proposed system is highly adaptable and 

robust. The proposed system’s performance, which was 

experimentally confirmed through improved filtering 

performance under dynamic load conditions, enhances its 

practical suitability for modern power systems that integrate 

nonlinear and time-variant loads. 

𝜀𝑖 =  [1 − (
𝐼𝑑

𝐼𝑑𝑜
)] ∗100 (12) 

 Hybrid Power Filter, Active Filter, and Neural 

Trained Hybrid Filter implement distinct methods that differ 

in efficiency with respect to Total Harmonic Distortion Index 

(THDI). Filter performance in reducing the Total Harmonic 
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Distortion Index (THDI) for the three filtering methods is 

shown in the bar chart with respect to the increase in load from 

10 kW to 50 kW. The neural-trained filter performed the best 

in all load scenarios, maintaining a THDI of 4.8%-5.2%, even 

as the load increased. THDI values of 6% to 6.8% from the 

hybrid filter indicate a medium performance where only 

partial and stable harmonic suppression was achieved. The 

active filter is the least efficient among all three filters, with 

the highest THDI of 9%-11% across all load scenarios. These 

results show that the adaptation of the ANN-based hybrid 

filter to the changing dynamic conditions of operation is quite 

effective. It can actively learn to accurately adjust for the 

harmonic distortion in factors such as the load profile, which 

makes dynamic compensation possible, unlike the static 

compensation of the other two filters. Thus, the performance 

of the ANN-trained hybrid filter is shown to be more effective 

and increases the efficiency of power quality in non-linear 

power systems. 

 
Fig. 17 Comparison of % THDI vs. Real power 

The above bar chart compares the % filter effectiveness 

across Phase A, Phase B, and Phase C for the above-discussed 

filter types. Neural Trained Hybrid Filter reliably gives better 

efficiency, reaching nearly 98% in Phases A and C, and 

around 95% in Phase B. The Active Filter exhibits the lowest 

filter performance at 85% to 90%. The Hybrid Power Filter 

performs reasonably well, achieving effectiveness scores 

between 93% and 96% across all phases. These results prove 

that the ANN-based hybrid filter gives better harmonic 

suppression in all phases. This adaptive learning ability 

ensures reliable performance under varying load conditions, 

outperforming traditional filtering methods. 

 
Fig. 18 Effectiveness of filter performance 
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6. Conclusion  
This study presents a novel ANN-trained hybrid power 

filter designed to reduce current harmonics and improve the 

power factor in a nonlinear three-phase rectifier system 

operating under varying load conditions (10 kW to 50 kW) 

and firing angles. Unlike conventional filters, the proposed 

system integrates both feedforward and feedback control 

schemes, enabling dynamic real-time control through neural 

network learning. This dual-control architecture enhances 

adaptability and responsiveness, addressing the limitations of 

fixed-parameter filters. Simulation results demonstrate a 

significant reduction in Total Harmonic Distortion (THD): for 

instance, Phase A THD decreased from 18.39% (unfiltered) to 

4.20% with the ANN-based filter, while the power factor 

improved from 0.983 to 0.999.  

Additionally, filter effectiveness surpassed 97% in all 

phases, outperforming traditional active and hybrid filters by 

8–12%. These quantitative outcomes affirm the superiority 

and novelty of the ANN-based hybrid filter in achieving IEEE 

519-1992 compliance and optimizing power quality. In 

conclusion, the proposed method offers an intelligent, cost-

effective, and scalable solution for harmonic mitigation in 

dynamically varying power systems. 
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