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Abstract - This article deals with the prediction of energy consumption of certain loads whose behavior is difficult to predict 

using artificial intelligence tools. It examines the prediction of electricity consumption of a Southern Interconnected Grid (SIG) 

industrial load using the hybrid GM (1,1)-PPO model on the one hand, and that of the electricity consumption of a SIG household 

load using the hybrid ARIMA-GRNN model on the other hand. The input data taken by our GM (1,1) model is submitted to the 

Accumulated Generating Operator (AGO) and then to the Inverse Accumulated Generating Operator (IAGO) to determine the 

forecast values. Finally, a rolling mechanism is applied to enhance the performance of the GM (1,1) configuration. The 

hybridization of the GM (1,1)-PPO algorithm helps determine and optimize parameters a and b of the PPO. The results of the 

hybrid GM (1,1)-PPO model show high accuracy according to the LEWIS criteria: MAPE=3.8% against MAPE=11.41% for 

the GM (1,1) model alone. As for the second tool, the ARIMA model receives the input data, performs a regression and provides 

the predicted values from the generalized differential equation. Finally, given the random nature of the parameters p, d and q, 

the ARIMA model is combined with the Generalized Regression Neural Network (GRNN). The prediction results give good 

accuracy: MAPE = 9.33% versus MAPE = 92.5% for the ARIMA model alone. 

Keywords - Electric energy consumption, Prediction, GM-PPO model, ARIMA-GRNN model, Rolling mechanism, Hybridization.

1. Introduction   
The electricity sector is constantly evolving due to the 

ever-increasing demand and social, geographical and 

technological changes. Given the failure to store electrical 

energy in large quantities, good management of the primary 

energy available in power plants is essential to ensure optimal 

efficiency of the generation-transmission-distribution chain. 

For the Southern Interconnected Grid (SIG) of Cameroon, the 

annual demand for electrical energy has a growth rate of 6.7% 

to 7.5% on average compared to 3% for supply [1]. For the 

current planning of electrical energy supply, power plant 

operators need reliable data on energy demand. However, in 

some cases, the available data is highly variable, which 

variability does not allow for stability of energy generation. 

Nowadays, power plant operators are using increasingly 

precise energy demand prediction tools for better power 

generation scheduling. These prediction tools that are 

constantly under investigation are short, medium and long-

term or on an hourly basis, allowing the reliable dispatching 

of energy to consumers. In their work, JUBERIAS et al [2] 

used the ARIMA (Autoregressive Integrated Moving 

Average) model to predict the electricity consumption of 

universities in Japan and to forecast the load in real time. This 

model is based on the analysis of time series and has the new 

advantage of using the daily energy forecast as an explanatory 

variable. B. NEPAL et al [3] proposed a hybrid clustering 

model and the ARIMA configuration to improve the reliability 

of the result of the peak electrical load forecast of these same 

university buildings in Japan. The synthesis of clustering and 

the ARIMA configuration has been proven to increase the 

performance of forecasts compared to those using the ARIMA 

model alone. In the same vein, A. SUMOBAY et al [4] 

proposed to enhance the forecast of electricity demand in the 

city of CAGAYAN by combining the ARIMA model with the 

ANN model. This combined model, used for a non-

exponential growth of demand, seems to have limitations 

when observing the energy supply-demand shortage noted. 

Regarding the GREY model, ERDAL KAYACAN et al [5], 

in their article, compare the performances of different 

modified GREY configurations in the prediction of time 

series. They showed that the performance of GREY predictors 

can be improved by considering error residuals. Then, they 

specified that among these GREY configurations, the 

modified GM (1,1), which uses the Fourier series over time, is 
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the best in terms of modeling and forecasting. Among the 

recent comparative works, BILAL SISMAN [6] compared 

ARIMA and GREY models with error estimates and 

estimation of future electricity demand in Turkey. His results 

revealed that ARIMA and GREY configurations produce 

solutions close to the MAPE (Mean Absolute Percentage 

Error) errors with 4.9% and 5.6%, respectively. It showed that 

ARIMA and GREY methods are effective and give better 

MAE results to forecast long-term prospects. Recently, 

HAORU DU [9] conducted a systematic review of the 

theoretical principles, forecasting process and characteristic 

differences of the ARIMA model, the GREY model and the 

polynomial regression model. Then, he performed a 

comprehensive empirical calculation and comparison using 

China's typical economic indicators: the real GDP (Gross 

Domestic Product) growth rate and the CPI (Consumer Price 

Index).  

His results show that the sequence predicted by the 

polynomial regression model has the highest degree of 

agreement with the actual value, and has the lowest prediction 

error and better prediction performance, while the other two 

types of models are not suitable for long-term prediction. Isaac 

Kofi et al [8] presented an examination of about seventy-seven 

relevant papers from academic journals over nine years (2010-

2020) in the domain of electricity demand. Findings indicated 

that the nine most commonly used models for electricity 

forecast were based on Intelligence Artificial (IA), with 

Artificial Neural Network (ANN) accounting for 28%. Still in 

IA, Shahzad Ahsan et al [9] found good results in demand 

prediction with the LTSM (Long Short-Term Memory) 

model. They concluded that by adding data sources such as 

smart meter readings and social networks, the accuracy of the 

forecasts can be further improved. Sasmitoh  Rahnad and al 

[10], Majdi Frikha and al [11] and then C. Ragupathi and al 

[12] have also used it for predictions in electricity 

consumption. In this study, the researcher [10] introduces a 

model and algorithm within the Deep Learning Framework, 

specifically a Multivariable Time Series Model utilizing the 

Long Short-Term Memory (LSTMs) Algorithm with the 

eacher Forcing Technique to predict future electrical energy 

consumption.  

The research compares the performance of Teacher 

Forcing LTSM versus Non-Teacher Forcing LTSM in a 

Multivariable Time Series model, employing various 

activation functions that yield notable differences. For Majdi 

Frikha and al [11], power consumption forecasting is a 

challenging time series prediction topic. To address this issue, 

algorithms combining the Stationary Wavelet Transform 

(SWT) with deep learning models have been proposed. The 

findings clearly highlight the success of the SWT denoising 

technique with the bior2.4 filter in improving the power 

consumption prediction accuracy. The Deep Energy Predictor 

Model (DEPM) proposed by C. Ragupathi et al [12] achieved 

strong results in this study, with a reliability of 98 %, 

exactness of 0.97, recall of 0.99, and F1-score of 0.98. Despite 

these achievements, the study has some limitations. The 

DEPM validation was done on a single dataset, potentially 

limiting its representation of energy consumption variability 

in different geographical or climatic conditions. Additionally, 

the model lacks real-time data integration, limiting its 

responsiveness to sudden shifts in consumption patterns. 

However, in some countries, the data available for prediction 

are related to uncertain and uncontrollable factors such as 

economic development, hacking of distributed electricity, 

national policies, and climate change. This makes it difficult 

to use IA. Our approach is based on recent works [13-15]. 

Nicolai Bo Vanting et al [13] recommended, thanks to a 

multivariate deep learning configuration blending 

convolutional and recurrent neural networks based on findings 

from the scoping review.  

Inputs include historical consumption, patterns, weather 

conditions and day characteristics as input variables. YAMUR 

K et AL [14] suggested a multi-objective Genetic Algorithm 

(GA) based on the ARIMA model. This GA provides further 

possibilities for calculating the parameters (p,d,q) and 

improves data forecasting. Its results can help to predict 

forecasted data with a high level of accuracy. Finally, ZHAO 

HUIRI et AL [15] proposed a new hybrid electricity 

consumption forecasting method, namely the GM (1,1) model, 

optimized by the Moth Flame Optimizer algorithm (MFO) 

with a rolling mechanism MFO-GM (1,1) to improve the 

prediction accuracy.  

In this paper, a hybrid approach (combination of tools) is 

proposed that combines the Grey Model and the Predator Prey 

Optimization (GM (1,1) - PPO) algorithm with a rolling 

mechanism, to predict the electricity demand of the industrial 

sector of the city of DOUALA, the largest load of the SIG 

(Southern Interconnected Grid). Similarly, the ARIMA model 

hybridized with the Generalized Regression Neural Network 

(GRNN) is suggested to predict the household load in the city 

of DOUALA. It addresses the problem of energy prediction in 

environments where electrical energy demand is volatile and 

electricity piracy is recurrent. In the remaining section 2, the 

GM-PPO and the ARIMA-GRNN solutions are implemented, 

followed by prediction tests using SIG industrial and 

household loads data. In section 3, the results obtained are 

analyzed and commented on, and the error levels are assessed. 

The article closes in section 4 with the work conclusion, which 

specifies the limits and future prospects.  

2. Implementation of Hybrid Solutions 

Prediction  
In this part, the choice of tools used in the prediction of 

energy demand will be justified first, followed by a reminder 

of the rules for calculating and assessing the reliability of these 

tools. Then, the GM-PPO and ARIMA-GRNN solutions will 

be successively developed. Finally, tests with data from the 

Southern Interconnected Network (SIG) of energy 

consumption in the city of Douala will be carried out. 
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2.1. Growth of the SIG Industrial Load 

The industrial consumption data provided in Table 1, the 

subject of this study, are those of the industrial load of the city 

of Douala connected to the SIG of Cameroon from the years 

2005 to 2020. Figure 1 is representative of the growth of 

energy consumption of the industrial load. Data appears to 

have an exponential growth of energy over the years, with an 

increased profile towards the year 2009. The Grey Model 

(GM) is best aligned for a more effective prediction 

Table 1. Energy of the SIG industrial sector  [1] 

Years Energies Years Energies Years Energies Years Energies 

2005 411.65 GWh 2009 711.63 2013 922.47 2017 1112.05 

2006 499.16 2010 749.63 2014 977.23 2018 1200.19 

2007 591.91 2011 864.09 2015 1032.28 2019 1325.18 

2008 699.57 2012 907.84 2016 1083.20 2020 1344.96 GWh 

 

  
Fig. 1 Industrial consumption profile 

2.2. Growth of a SIG Household Load 

Table 2 provides the values of energy consumed by the 

household users of the city of Douala, a major load of the SIG, 

at each hour of the day, from September 2013 to March 2016. 

From the data in Table 2, the shape of the variation in 

electricity demand illustrated in Figure 2 is obtained. Since 

these values have a non-exponential growth of energy over the 

years, the ARIMA model is best suited for a more efficient 

prediction.

Table 2. Household energy consumed in the city of Douala between 2013 and 2016 [1] 

Date and 

Time 

Electrical Energy 

Consumption (GWh) 

Date and 

Time 

Electrical Energy 

Consumption(GWh) 
Date and Time 

Electrical Energy 

Consumption(GWh) 

01/09/2013 

01:00 
121 956 

01/09/2013 

11:00 
105 009 

01/09/2013 

21:00 
142 020 

01/09/2013 

02:00 
116 705 

01/09/2013 

12:00 
100 686 

01/09/2013 

22:00 
144 635 

01/09/2013 

03:00 
112 089 

01/09/2013 

13:00 
80 380 

01/09/2013 

23:00 
136 049 

01/09/2013 

04:00 
109 115 

01/09/2013 

14:00 
89 510 

02/09/2013 

00:00 
127 185 

01/09/2013 

05:00 
106 328 

01/09/2013 

15:00 
98 189 

02/09/2013 

01:00 
117 492 

01/09/2013 

06:00 
106 035 

01/09/2013 

16:00 
100 340 

02/09/2013 

02:00 
111 584 
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01/09/2013 

07:00 
104 442 

01/09/2013 

17:00 
100 423 … … 

01/09/2013 

08:00 
102 280 

01/09/2013 

18:00 
104 507 

18/03/2016 

00:00 
229 809 

01/09/2013 

09:00 
105 099 

01/09/2013 

19:00 
118 153   

01/09/2013 

10:00 
105 227 

01/09/2013 

20:00 
136 174   

 

 
Fig. 2 Household electric energy between 2013 and 2016 

2.3. Recall of Methods for Calculating the Reliability of 

Prediction Tools 

Three main criteria were used to estimate the prediction 

of electricity demand [16].  

The Mean Absolute Percentage Error (MAPE) is 

determined as follows: 

𝑀𝐴𝑃𝐸 =
1

𝐾
∑ |

|𝐴𝑐𝑡𝑢𝑎𝑙𝑖−𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖|

𝐴𝑐𝑡𝑢𝑎𝑙𝑖
|𝐾

𝑖+1 ∗ 100% (1) 

It allows for the comparison of the performance of 

different prediction models, even if the consumption scales are 

different. 

The Root Mean Square Error (RMSE) is obtained by:  

𝑅𝑀𝑆𝐸 =
1

𝐾
√∑ (𝐴𝑐𝑡𝑢𝑎𝑙𝑖 − 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖)

2𝐾
𝑖𝑖=1  (2) 

The Mean Absolute Error (MAE) is thus obtained: 

𝑅𝑀𝑆𝐸 =
1

𝐾
∑ |𝐴𝑐𝑡𝑢𝑎𝑙𝑖 − 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖|

𝐾
𝑖=&  (3) 

Lewis [13] recommends the benchmarks for accuracy 

assessment based on MAPE index values as shown in Table 3 

below. 

Table 3. Prediction assessment [16] 

MAPE 

(%) 
<10 

10-

20 
20-50 >50 

Rating 

level 

High 

precision 
Good Reasonable Inaccurate 

2.4. Study Assumption 

Logarithmic transformations, non-seasonal, and seasonal 

differences are used here to stabilize the time series. Our 

prediction model considers the following factors:  

 The network's behavior is non-linear for household and 

industrial loads. 

 The system is stochastic.  

 The prediction is limited to two future values to ensure 

accurate predictions.  

 The forecast is designed for systems with non-linear, 

chaotic, uncontrollable properties.  

 The trend in electrical load data does not take into account 

disturbances (rain, public holidays, weekends, etc.). 

2.5. Constructing the GM-PPO Model 

The GM-PPO Model is the association of the Grey first-

order one variable model (GM (1.1)) to which the Predator 

Prey Optimization (PPO) algorithm is associated for a better 
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prediction of the demand in the industrial sector. This is done 

by determining the values of parameters a and b that 

significantly reduce the prediction error. 

2.5.1. Implementation of the GM (1,1) Model  

The Grey Model First Order One Variable, GM ((1,1)), is 

used here to predict the energy demand in the SIG. This model 

will take the data of the electrical energy consumption of the 

industrial sector provided by Table 1 as input, following a 

process of accumulation and regression in order to obtain a 

sequence of data from an original sequence. Data in the GREY 

model is generated by Equation (4). 

𝑋(0) = 𝑥(0)(1), 𝑥(0)(2), 𝑥(0)(3). . . 𝑥(0)(𝑛)); 𝑛 ≥ 4 (4) 

x(0) : Initial consumption at each date   

X(0) : Is the initial sequence of the database of 

electrical energy actually consumed. 

x(0)(1) : Energy consumption on the date t1 

𝑛 is the number of energy observations, here 16, 

according to Table 1.  

Data in Table 1 is then submitted to an operator named 

Accumulating Generation Operator (AGO) [17] in order to 

smooth out their randomness. Then, using this predicted value, 

the purpose of the inverse generation and accumulation 

(IAGO) operator is to help determine the forecast values of the 

original data. Finally, in order to enhance the output of the 

original Grey configuration, we propose a rolling mechanism. 

Accumulation Process (AGO) 

The accumulation process of X(0) is defined by Equation 

(5): 

𝑋(1) = 𝑥(1)(1), 𝑥(1)(2), 𝑥(1)(3). . . 𝑥(1)(𝑛)) (5) 

𝑥 (1)(1), the accumulation process of the data X(1),  on the 

date t1. The accumulation process X(2),X(3),X(4),etc. is 

subsequently defined as Equation (6). 

In Equation (6), 

 (𝑥(1)(𝐾)) = ∑ 𝑥(0)𝑛
𝑗=1 (𝑗)𝐾 = 1,2,3. . . 𝑛 (6) 

x(1)(k)is given by the following first-order differential 

equation: 

𝑑𝑥(1)

𝑑𝑡
+ 𝑎𝑥(1) = 𝑏 (7) 

It therefore results that :  

 𝑥(0) + 𝑎𝑍(1)(𝑘) = 𝑏; 𝑘 = 1,2,3. . . . . 𝑛 (8) 

With the Grey growth factor, Z(1), the background value, 

b, represents the Grey control factor, and k is the data series 

number.  

The differential Equation (8) is therefore a model with 

one variable of order 1, recorded as GM (1,1), where a and b 

are determined in the technique of minimising  squared errors 

by: 

[
𝑎
𝑏

] = [𝑎 𝑏]𝑇 + (𝐵𝑇 . 𝐵)−1. 𝐵𝑇 . 𝑌𝑛 (9) 

𝐵 = [
−𝑍(1)(2)

. . .
−𝑍(𝑛)(𝑛)

1
1
1

] = [

−1

2
[𝑥(1)(1) + 𝑥(1)(2)]

. . .
−1

2
[𝑥(1)(𝑛 − 1) + 𝑥(1)(𝑛)]

1
1
1

]

 (10) 

𝑌𝑛 = [
𝑥(0)(2)

𝑥(𝑛)(𝑛)
] (11) 

Yn and B: matrices used to détermine a and b 

𝑍(1) = {𝑧(1)(2), 𝑧(1)(3), . . . , 𝑧(1)(𝑛)}, 𝑘 = 2,3. . . . . 𝑛
 (12) 

With 

𝑧(1)(𝑘) = 𝜆𝑥(1)(𝑘 − 1) + (1 − 𝜆)𝑥(1)(𝑘), 𝑘 = 2,3. ..
 (13) 

Z(1) : background 

The value of the horizontal adjustment coefficient 𝜆 is 

comprised in [0, 1]. Value 𝜆=0.5, which represents the 

average, has been taken. 

X(0)(k): time response sequence of the GM (1,1); 

The final solution for calculating energy prediction is then 

given by the differential Equation (14) : 

𝑥⏜
(1)

(𝑘 + 1) = 𝑥(1)(𝑘 + 1) = [𝑥(1)(1)
−𝑏

𝑎
] . 𝑒−𝑎𝑘 +

𝑏

𝑎
, 𝑘 = 1,2, . 𝑛 (14) 

x(1)(k+1) is the predicted value of electrical energy 

consumption at time k+1 following the first accumulation 

sequence. 

Application of IAGO  

Using IAGO, the predicted values 𝑥𝑝
(0)(𝑘) for the 

primary data are thus calculated as follows: 

𝑋̂(0)

= {
𝑥̂(0)(1) = 𝑥𝑝

(0)
(1)

𝑥̂(0)(𝑘 + 1) = 𝑥𝑝
(0)

(𝑘 + 1) = 𝑥̂(1)(𝑘 + 1) − 𝑥̂(1)(𝑘)
} 

𝑥𝑝
(0)

(𝑘 + 1) = [𝑥(0)(1)
−𝑏

𝑎
] 𝑒−𝑎(𝑘−1)(1 − 𝑒𝑎), 𝑘 = 2,3. . 𝑛

 (15) 
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Rolling Mechanism 

The rolling mechanism to improve our Grey model is as 

follows:  

Step 1: (x(0)(k+1) is estimated using the GM (1,1) model 

for 

X(1)= (x(1)(1),x(1)(2),x(1)(3),….,x(1)(n))    , k < 16  

Step 2: The procedure is repeated, and the new energy 

value x(0)(k+1) is added at the end of the series, and the first 

energy value (𝑥(0)(1)) is removed from the data series. 𝑋(0) = 

(𝑥(0)(2), (𝑥(0)(3), (𝑥(0)(4), . . .  , (𝑥(0)(𝑘 + 1)) is used to 

estimate (𝑥(0)(𝑘 + 2)).  

Finally, for 𝑘 + 1 < 16, the mean absolute percentage error 

(MAPE), given by Equation (1), is calculated for k = 1, 2, 3, 

4.5,... (15) using the following equation: 

𝑀𝐴𝑃𝐸 =
1

𝑛
|

∑ 𝑥(0)(𝑘)−𝑥(0)(𝑘)𝑛−1
𝑘=1

𝑥(0)(𝑘)
| . 100 (16) 

The algorithm given in Figure 3 illustrates the various 

steps shown above.  

The prediction results using the GM model (1.1) of one 

and several future values are shown in sections 3.1.1 and 3.1.2. 

 
Fig. 3 Flowchart for calculating grey model prediction values 

Start 

Insertion of the data (X)(0) 

Calculation of (X)(1) 

Insertion of the matrice B and Yn  

Insertion of [b a]T =(BTB)-1(B)T Yn  

 

 

Calculation of the value predicted from IAGO of the matrice B and Yn 

Calculation of MAPE 

End 
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2.5.2. Hybridization of the GM (1,1)-PPO algorithm  

This section concerns the determination of the optimal 

values of parameters a and b using the PPO algorithm for a 

better prediction of electricity demand. The Grey model and 

the PPO algorithm are combined, and then a rolling 

mechanism is applied. This hybridization process is done in 3 

steps: 

Step 1: Initialization of GM (1,1)-PPO parameters.  

The GM(1,1) – PPO method is applied to data sequences 

x(0) = [ 𝑥(0)(1), (𝑥(0)(2), (𝑥(0)(3), . . . , (𝑥(0)(k)] with k < 16, in 

order to predict the sequence  𝑋̂(0) = [ (𝑥(0)(𝑛 + 1) 

(𝑥(0)(n+2), 𝑥(0)(n+3), . . . , 𝑥(0)(n+p)]. 

Step 2: The PPO algorithm optimizes the parameters a 

and b of the Grey whose objective function f is defined from 

the MAPE by : 

𝑓 = 𝑚𝑖𝑛
1

𝑛
∑ |

𝑥(0)(𝑘)−𝑥(0)(𝑘)

𝑥(0)(𝑘)
|𝑛

𝑘=1  (17) 

With : 

𝑥̂(0)(𝑘) = 𝑥𝑝
(0)(𝑘) = 𝑥̂(1)(𝑘) − 𝑥̂(1)(𝑘 − 1) , 𝑘 =

2,3 … … … 𝑛  

Generating multiple MAPE values from various values of 

a and b, finding the optimal values of a and b from the PPO 

using Equation (17) and calculating the predicted value from 

these values of a and b by substituting in Equation (15).  

Step 3: Apply the rolling mechanism to the previous data. 

Our current data is X(0)= [ x(0)(p+1), (x(0)(P+2), (x(0)(P+3), . . . 

, (x(0)(p+n))] . The parameters a and b are optimized again from 

the PPO, and the new predicted values are: 

𝑥(0)(𝑝 + 𝑛 + 1), 𝑥(0)(𝑝 + 𝑛 + 2), … , 𝑥(0)(𝑝 + 𝑛 + 𝑝)  

These steps are repeated until all the predicted values are 

obtained. The algorithm given in Figure 4 shows the 

development of this procedure.

 
Fig. 4 GM (1,1) prediction model based on PPO 

Start 

Prey Optimisation Predator 

Initialisation of the parameters of the PPO 

algorithm 

Construction of model GM(1,1) with values a 

and b obtained from PPO` 
Optimization of the parameters a and b of the 

GM(1,1) model 

Obtaining the Predicted 

Sequence 

Obtaining the optimum values of a and b 

of the model GM(1,1) End 

Satisfaction of the 

criteria at the end of 

PPO 

Grey Modelling GM(1,1) 

Real data 

Error calculation 

Model construction optimizes GM(1,1) and 

forecast future values 

No 

Yes 
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The combined GM(1,1)-PPO prediction results are 

presented in Section 3.2 

2.6. Constructing ARIMA-GRNN Model 

2.6.1. Implementation of the ARIMA model  

The analysis of the household energy consumption data 

shows that the data is stationary, allowing us to justify using 

the ARIMA model. The ARIMA model will take the data on 

household electrical energy consumption in the city of Douala 

as input. A regression is then carried out in order to obtain a 

sequence of data from an original sequence given by Equation 

(4). Then the differential quantity is given by Equation (18) 

and the predicted value at time t by Equation (19). 

[1 − ∑ 𝜙𝑖𝐵
𝑖𝑖=𝑝

𝑖=1 ][1 − 𝐵]𝑑𝑥𝑡 = [1 + ∑ 𝜙𝑗𝐵𝑗𝑗=𝑝
𝑗=1 ] ∈𝑡;  

𝜙(𝐵). (1 − 𝐵)𝑑 . 𝑦𝑡 = 𝜃(𝐵) ∈𝑡 (18) 

𝑥𝑡 = ∑ 𝜙𝑖𝑥𝑡−𝑖 +∈𝑡
𝑝
𝑖=1 + ∑ 𝜃𝑗. ∈𝑡−𝑗

𝑝
𝑖=1  (19) 

By studying the value of the AKAIKE Information 

Criterion (AIC), it is possible to check the order of the ARIMA 

(Autoregressive Integrated Moving Average). AIC is defined 

as follows: 

𝐴𝐼𝐶(𝑝, 𝑞) = 𝑙𝑛 𝜎2 (𝑝, 𝑞) +
2(𝑝+𝑞)

𝑁
 (20) 

The reals ∅𝑖(𝑖 = 1,2, . . . , 𝑝)  and 𝑗(𝑗 = 1,2, . . . , 𝑞) are 

respectively the autoregressive and moving average 

parameters; 

t : Random error at t period is a white noise of 

variance 2; 

Ø(B), (B) : Are relatively prime polynomials in the delay 

operator B of orders p, q with free coefficient 

1. 

P : Number of autoregressive terms (AR order); 

D : Non-seasonal difference numbers; 

q : Number of Moving Average (MA) terms. 

Our household energy consumption data is divided into 

two parts: 46 training data and 9 validation data. The 

validation data will allow us to assess the prediction in order 

to have an idea of the reliability of the predicted values. The 

correlation function used here characterizes the observations 

at the current time and the observations at all previous times.  

This function is used to determine the number of MA 

where the standard model is ARIMA(p,d,q)×(P, D, Q)s, with 

s being the number of periods per season and P, D and Q are 

the seasonal equivalents of p,d and q. The AKAIKE 

Information Criterion (AIC) and the SCHWARZ Bayesian 

Information Criterion (SBC) are used to choose the preferred 

model.  

 
Fig. 5 ARIMA-GRNN flowchart model 
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The one that has the minimum AIC and SBC values. 

Since the values of parameters p, d, and q are generated 

randomly, we will combine this model with a generalized 

regression neural network to generate optimal values of these 

parameters for a more accurate prediction. Since the values of 

parameters p, d, and q are generated randomly, this model will 

be combined with a generalized regression neural network to 

generate optimal values of these parameters for more accurate 

prediction.  

Since the values of parameters p, d, and q are generated 

randomly, this model will be combined with a generalized 

regression neural network to generate optimal values of these 

parameters for more accurate prediction. The flowchart given 

in Figure 5 presents the calculation steps of the ARIMA 

model. 

2.6.2. GRNN Model 

Generalized Regression Neural Network (GRNN) is a 

branch of radial basis function neural network, which is a 

powerful regression tool with a dynamic network structure 

[18]. The structure of the GRNN includes four strata: input 

stratum, pattern stratum, summation stratum and output 

stratum. The relationship between each pair of the input X and 

the observed output Y is examined by the network to infer the 

inherent function. The following Equation (21) summarizes 

the GRNN. 

𝑥𝑡 = 𝐹(𝑥1, 𝑥2, . . . , 𝑥1−𝑘, 𝑤) (21) 

Let xt be the predicted value by the F function, produced 

by the GRNN network, and t is the connection weight.  

x1,x2,...,xt-k: set of prior consumption 

ω is the vector of all parameters 

In our non-linear regression method, Equation (22) below 

summarizes the GRNN 

𝐸 [
𝑌

𝑋
] =

∫ 𝑌𝑓(𝑋,𝑌)𝑑𝑌
+∞

−∞

∫ 𝑓(𝑋,𝑌)𝑑𝑌
+∞

−∞

 (22) 

Where 

X denotes the input vector (X1, X2, Xn) which consists 

of n predictor variables; 

Y denotes the output values predicted by the GRNN; 

E[Y/X] is the expected value of output Y given an input 

vector X; 

f(X, Y) is the joint probability density of X and Y. 

2.6.3. ARIMA-GRNN Hybrid Model 

Predicting the electrical load without considering factors 

such as holidays, the use of heating and air conditioning, the 

occurrence of events, the use of experimental facilities, etc., 

may result in a significant error in the forecast result. 

Hybridization is therefore necessary. The combined ARIMA-

GRNN prediction results are shown in Section 3.3.  

 
Fig. 6 ARIMA-GRNN flowchart hybrid model 

3. Results and Discussions 
In this section, the results are presented from the 

implementation of various algorithms developed, namely the 

Grey models, the GM (1,1) - PPO models to predict electricity 

consumption for a time series, and the ARIMA-GRNN model. 

All the required stages were coded into the MATLAB 

software environment. The simulation results of the 

algorithms are presented, discussed and compared to other 

algorithms based on the prediction approach in order to 

demonstrate the effectiveness of our prediction approach.  

Several parameters, including the MAE, the RMSE, the 

MAPE and the MSE, were used to compare the performances 

of the different models. 
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3.1. GM (1,1) Forecast Result 

3.1.1. Forecasting a Future Value 

Figure 7 depicts the result of the prediction of a future 

value, from Equation (14) and data in Table 1. Three behaviors 

are observed: From 2005 to 2007 and then from 2016 to 2020, 

the prediction of energy demand was higher than the actual 

consumption of electrical energy. From 2010 to 2013, the 

prediction of energy demand was lower than the actual 

consumption of electrical energy. From 2007 to 2010 and then 

from 2013 to 2016, the prediction of energy demand was equal 

to the actual consumption of electrical energy. Thus, the 

prediction made only from the GM (1,1) model gave the error 

MAPE = 11.6%. The predicted value is 1392.5173 GWh 

(While the actual value is 1344.96 GWh). 

 
Fig. 7 Prediction of a value by the GM (1,1) 

3.1.2. Forecasting Several Future Value 

Figure 8 presents the result of the prediction of 6 future 

values, always from Equation (14) and the data from Table 1 

of the industrial load. Figure 8 depicts three behaviors that are 

different from those observed in Figure 7: From 2005 to 2007 

and then from 2013 to 2020, a prediction of energy demand 

higher than the actual consumption of electrical energy is 

observed. From 2007 to 2009 and then from 2010 to 2012, a 

prediction of energy demand lower than the actual 

consumption of electrical energy is observed. From 2009 to 

2010 and then from 2012 to 2013, a prediction of energy 

demand equal to the actual consumption of electrical energy 

is observed. Thus, the prediction made solely from the GM 

(1,1) configuration still gave unacceptable results. Hence, the 

high error MAPE = 68%. The predicted values are: 1091.31, 

1174.29, 1263.58, 1359.66, 1463.05, 1574.29 GWh against 

respectively 1032.28, 1083.20, 1112.05, 1200.19, 1325.18, 

1344.96 GWh for actual values. 

 
Fig. 8 Prediction of 6 values by the GM (1,1) model 
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Figure 8 depicts three behaviors that are different from 

those observed in Figure 7: From 2005 to 2007 and then from 

2013 to 2020, a prediction of energy demand higher than the 

actual consumption of electrical energy was noticed. From 

2007 to 2009 and then from 2010 to 2012, a prediction of 

energy demand lower than the actual consumption of electrical 

energy was noticed. From 2009 to 2010 and then from 2012 

to 2013, a prediction of energy demand equal to the actual 

consumption of electrical energy was noticed. Thus, the 

prediction made solely from the GM (1,1) configuration still 

gave unacceptable results. Hence, the high error MAPE = 

68%. The predicted values are: 1091.31, 1174.29, 1263.58, 

1359.66, 1463.05, 1574.29 GWh against respectively 

1032.28, 1083.20, 1112.05, 1200.19, 1325.18, 1344.96 GWh 

for actual values. 

3.2. GM (1,1)-PPO Hybrid Model Forecasting Results 

Since the Grey model prediction results shown in 3.1 

were insufficient, the parameters a and b of this model using 

the PPO algorithm are optimized in order to improve the 

prediction results. 

Table 4. PPO algorithm parameters [19] 

Number of iterations 100 

Population size 100 predators, 90 prey 

ak=0.5 et bk= 0.05 
Gaussian mutation standard 

deviations (step sizes) 

Probability of predator 

movement 
1/ degree of predator position 

ak+1 =0,99 ak; 

bk+1 =0,99 bk 
Decrease in predator step size 

3.2.1. GM (1,1) PPO Forecasting Results 

The optimization parameters of the objective function 

given in Equation (17) are defined in Table 4. The simulation 

results of the PPO and GM(1,1)–PPO models are shown in 

Figures 9 and 10, respectively. The industrial load data from 

2005 to 2014 was used as training data and from 2015 to 2021 

as validation data. (Table 1). It is observed that a convergence 

towards the local minimum occurs by the twelfth iteration.  

The application of the GM (1,1)-PPO model, set up after 

obtaining the parameters a and u, allowed us to obtain the 

prediction data presented in Figure 10.  

 
Fig. 9 Process of convergence to the minimum 

 
Fig. 10 Prediction of industrial load by the GM (1,1)-PPO model 
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Figure 10 again depicts three different behaviors. Data 

from 2005 to 2014 was used for training the developed GM-

PPO model with RMSE = 0.3356 and MAE = 0.2791. 

From 2012 onwards, the predicted values are higher than 

the actual values. In order to assess the accuracy of this model, 

the predicted values were compared with the actual value to 

validate the prediction model.  

The various error values reported in Table 5 show an 

improvement in the accuracy of the GM-PPO prediction 

compared to the single GREY model and the GM-PSO 

(Particle Swarm Optimization) model. The different error 

values (MAPE, RMSE, MAE) are recorded in Table 5. 

3.2.2. Comparison of GREY-PPO and GREY PSO Results 

Estimates 

Table 5 shows a summary of the various predictions of 

the demand for electrical energy in the industrial sector by the 

Grey model and its hybridizations. Data from 2004 to 2014 

were used for training, and data from 2015 to 2020 were used 

as validation data for the developed GM-PPO model with 

RMSE = 0.3356 and MAE = 0.2791. In order to assess the 

accuracy of this model, the predicted values were compared 

with the actual value to validate the prediction model. The 

various error values reported in Table 5 and Figure 11 show 

an improvement in the accuracy of the GM-PPO prediction 

compared to the single GREY model and the GM-PSO 

(Particle Swarm Optimization) model. 

Table 5. Summary of the results of the different GREY-PPO prediction methods 

 Real Data (GWh) Predicted data  (GWh) 

Years  GM (1,1) GM (1,1) – PSO GM (1,1) – PPO 

2015 1032.28 1091.31 1056.25 1065.22 

2016 1083.20 1174.29 1128.27 1133.07 

2017 1112.05 1260.59 1205.20 1205.22 

2018 1200.19 1359.67 1287.37 1282.01 

2019 1325.18 1463.06 1375.14 1363.67 

2020 1344.96 1574.3 1468.90 1450.53 

 Data type  Learning data Predicted values Learning data 
Predicted 

values 

Error 
MAPE (%) 11.41 3.41 6.19 3.39 3.8 

RMSE (%) 148.2 32.93 82.31 33.44 77.56 

MAE (%) 138.06 23.30 74.66 23.27 69.91 
 

In each of the two cases, we obtained an MAPE lower 

than 10%, which corresponds to a good forecast according to 

the Lewis classification [16] and is recalled in Table 3, which 

means that the predicted value of electrical energy 

consumption is good and close to the real value consumed. 

This represents a clear improvement compared to the GM 

(1.1), whose MAPE, RMSE, and MAE values are recorded in 

Table 5. 

Finally, an improvement in the accuracy of the results of 

the GM (1,1) - PPO model, better than those of the GM (1,1) 

+ PSO model.  

Thus, the Grey model hybridized with the PPO allowed 

us, after training and validation, to re-predict the electrical 

energy consumption of the industrial sector between 2022 and 

2025. Table 6 gives these energy values. 

 
Fig. 11 Illustration of errors in different prediction methods 
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Table 6. Prediction of industrial sector consumption of  Douala between 2022 and 2025 by the GM (1,1) - PPO 

YEARS ENERGIES (GWh) YEARS ENERGIES (GWh) 
2022 1501.96 2024 1766.59 

2023 1628.91 2025 1915.91 

 

3.3. Forecasting Results by the ARIMA-GRNN Model 

3.3.1. ARIMA Forecast Results 

The data set is the household consumption of electrical 

energy at 12 noon by household users in the city of Douala, 

every day, from October 1, 2014, to November 25, 2014, i.e. 

55 data points (from Table 2). Figure 12 depicts the variations 

of this energy every day for 55 days. These data were divided 

into two blocks (46 training data and nine validation data). 

 
Fig. 12 Household consumption profile every day at 12 o’clock 

Table 7. ARIMA model parameters 

Model AIC SBC 
ARIMA (0,1,2)(1,1,1)12 -1.0542 -0.9268 

ARIMA (0,1,1)(1,1,1)12 -1.0492 -0.9536 

ARIMA (1,1,1)(1,1,1)12 -1.0539 -0.9255 

 

This figure shows a dynamic and fluctuating variation of 

the demand for electric energy at midnight (11:00 pm - 11:59 

pm). Table 7 presents the parameters of the ARIMA models 

according to the AIC and SBC [20]. The ARIMA (0,1,2) 

(1,1,1) model being the most appropriate with the residual test 

showing a white noise sequence, the possible values of q and 

Q are 1, 2, 3 and 1 base on the Auto Correlation Function 

(ACF) plot, and the possible values of p and P are 1, 2, 3 and 

1 base on the Partial Auto Correlation Function (PACF) plot. 

Out of the 55 data points, 46 data points (from October 1, 

2014, to November 16, 2014) were used to train our ARIMA 

model.  Figure 12 depicts the profile of the training model of 

the household electrical energy consumption data. The 

predicted training data values of the household load by the 

ARIMA model, as shown in Figure 13, are higher than the 

demand.   

 
Fig. 13 ARIMA (0,1,2)(1,1,1) training model profile 
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The 46 input data vary between [100686,..., 168378] 

GWh. The negative values of AIC (-1.2084) and BIC (-

0.92366) and the fact that the AIC is lower than the BIC, 

indicate that the model fits the data well. Subsequently, 09 

electrical energy consumption data (from November 17, 2014, 

to November 25, 2014) were used to validate our model. 

Figure 14 depicts the profiles of the validation model for 

household electrical energy consumption data.  

 
Fig. 14 ARIMA (0, 1, 2)(1, 1, 1) profile of the validation model 

Data from [172711...,185081] GWh were used for the 

validation of the ARIMA model developed with an RMSE = 

0.9391 and a MAE = 0.0878, which characterizes an 

unacceptable prediction. The prediction values were 

subsequently used to predict the hybrid ARIMA-GRNN 

model.  

It appears that our ARIMA model, which takes our time 

series data as input, generates the various values of AIC (-

1.2084) and BIC (-0.923) after verifying the stationarity of 

these data by calculating the MAPE, and provides prediction 

values that the hybrid model uses to improve the accuracy of 

the ARIMA model. 

3.3.2. Assessing the GRNN model 

The 12h electric load data (1st October 2014 to 25th 

November 2014) were again used as samples. The GRNN 

model has the lowest RMSE; therefore, 1.7 was selected as the 

most appropriate smoothing factor to develop our GRNN 

model. Subsequently, the prediction findings of the ARIMA 

model were picked as the input values of the GRNN model, 

and the output values were the predictive values of the 

combined ARIMA-GRNN model. Figure 15 depicts the 

profile of the generalized neural network training data. It 

appears that the GRNN model shows a good prediction of 

demand from our training data; however, some error values 

are recorded in Table 8. Here, the curves are merged. 

 
Fig. 15 Profile of the  training data using GRNN 
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The model shows a perfect fit to the input data. However, 

it raises concerns regarding overlearning as the model may 

have captured the noise of the learning data. 

Which is a problem in our case, where data variation is 

inevitable? The prediction values were subsequently used to 

predict the hybrid ARIMA-GRNN model.  

3.3.3. Test of the ARIMA-GRNN model 

The smoothing factor, taken from 0.01 to 0.40 with a 0.01 

gap, was picked to find the least RMSE for the GRNN model. 

The GRNN configuration has the lowest RMSE when the 

smoothing factor reaches 0.07 [21]. Figure 16 presents the 

MATLAB GUI interface of the input and output data of the 

ARIMA-GRNN configuration. 

 
Fig. 16 MATLAB GUI interface for prediction and accuracy of ARIMA-GRNN 

These details were put into two blocks, of which 46 

training data varied between [100686, 168378] GWh and 9 

validation data varied between [172711...,185081] GWh. The 

prediction result of the ARIMA configuration is used to 

predict the ARIMA-GRNN model with an acceptable MAE 

=01933 and RMSE = 0.4665. The different error values used 

to assess the accuracy of the prediction are presented in Table 

8. Figures 17 and 18 depict the prediction profiles of the 

ARIMA-GRNN training and validation model for the 55 days 

of household load consumption. These two figures show a 

dynamic and fluctuating variation of the demand for electrical 

energy at 12 hours (11:00-11:59) precisely. Whether it is the 

training or validation model, the predicted values are slightly 

higher than the actual values. The various error values 

analysed to rate the exactness of the prediction are also shown 

in Table 8. 
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Fig. 17 Prediction profile of the ARIMA-GRNN training model 

Figure 17 presents the variations in household energy 

consumption by users in the city of Douala every day for 46 

days as training data by the ARIMA-GRNN model, with an 

MAE of 8.78, which is a low value indicating that the model 

is precise and a relatively high RMSE of 93.31, which 

indicates a reduction in data variance for less precise areas. 

 
Fig. 18 Prediction profile of the ARIMA-GRNN validation model 

Figure 18 presents the variations in household energy 

consumption by users in the city of Douala every day for 46 

days, plus 9 days of validation data by the ARIMA-GRNN 

model, with a MAE= 0.1933 which is of low value indicating 

that the model makes accurate predictions and an 

RMSE=0.4665 relatively higher than the first MAE but of 

reasonable value indicating that some predictions deviate from 

the actual value with small errors that do not compromise the 

prediction. 

 
Table 8. Calculation of the rolling ARIMA-GRNN forecast 

 Training data (%) Validation data (%) 

PREDICTION ERROR MAPE MAE MSE RMSE MAPE MAE MSE RMSE 

ARIMA 11.5 120.45 242.1 155.6 92.5 99.1 123.2 111.0 

GRNN 1.50 15.95 22.33 47.26 82.66 82.66 170.90 130.73 

ARIMA-GRNN 8.78 88.20 88.20 93.31 9.33 19.33 21.76 46.65 
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The hybrid ARIMA-GRNN model showed a better 

prediction of the household load compared to the single 

ARIMA model and the basic GRNN model. The smoothing 

factor of the basic GRNN model and the combined GRNN 

model with ARIMA were 1.7 and 0.07, respectively. It 

appears from Table 8 that the hybrid ARIMA-GRNN model 

presents a clear improvement in RMSE compared to the 

ARIMA model taken alone. Therefore, the ARIMA model 

hybridized with GRNN allowed for predicting household 

electricity consumption of household subscribers in Douala 

for four future days (Table 9), after the training and validation 

of the model. This training of the model can be done regularly 

by inserting the new prediction values into the time series. 

 
Table 9. Prediction of energy consumption in the area of Douala by ARIMA-GRNN 

Date Time ENERGIES (GWh) 

26/11/2014 12H00 155414.0995 

27/11/2014 12H00 155703.1534 

28/11/2014 12H00 155992.745 

29/11/2014 12H00 156282.8751 

 

4. Conclusion 
This work addresses the problem of forecasting electricity 

demand in certain countries where uncertain and 

uncontrollable factors, such as the state of the economy, 

hacking of distributed electricity and certain policies, disturb 

the prediction. The article suggests two hybrid models for 

predicting demand: GM(1,1)-PPO, for predicting the 

consumption of the industrial sector of the city of Douala and 

ARIMA-GRNN for predicting the consumption of household 

users in the city of Douala, a load of the SIG.  

These models use data from 2005 to 2020 and from 2013 

to 2016, respectively.On the GM (1,1) model assessed on one 

and on six future values, the data of the electrical energy 

consumption of the industrial load from 2005 to 2020 were 

submitted to the Accumulated Generating Operator (AGO), 

then to the Inverse Accumulated Generating Operator (IAGO) 

to find the predicted values. Then, a rolling mechanism was 

applied to enhance the efficiency of the GM (1,1) model.  

It turns out that the prediction values found are sometimes 

lower, sometimes higher than the current values, hence the 

MAPE error of 68%. Given the unsatisfactory results of this 

model, the hybridization of the GM (1,1)-PPO algorithm 

allowed for determining the parameters optimizing a and b of 

the PPO. It appears that MAPE =3.8%; RMSE = 77.56%; 

MAE = 69.91% for the hybrid GM (1,1)-PPO model against 

MAPE = 11.41%; RMSE = 148.2%; MAE = 138.06% for the 

GM (1,1) model taken alone, then MAPE = 6.19%; RMSE = 

82.31%; MAE = 74.66% for its hybridization with the PSO 

(GM (1,1) - PSO). Therefore, the hybrid GM (1,1)-PPO model 

provided high precision according to the LEWIS 

classification.  

The second hybrid model was tested for the prediction of 

the 12:00 period, i.e. 55 data (46 training and 9 validation). It 

appears that our ARIMA model, which takes our time series 

data as input, generates different values of AIC (-1.2084) and 

BIC (-0.923) after checking the stationarity of these data by 

calculating the MAPE. With this model alone for household 

loads, it is found that the predicted consumption is generally 

much higher than the actual consumption, which is not 

interesting. On the other hand, the GRNN model presents a 

good prediction of demand, hence the MAPE error value is 

lower than that of the ARIMA model.  

Then, the ARIMA model provides prediction values, 

which are used by the hybrid ARIMA-GRNN model in order 

to improve the accuracy of the ARIMA model. The prediction 

results give a good accuracy: MAPE = 9.33%, RMSE = 

46.6%, MAE = 19.33 against MAPE = 92.5%, RMSE = 111%, 

MAE = 99.1%. 

The simulation results showed an improvement in the 

quality of our solutions regarding prediction error after 

comparing them with other stationary time series prediction 

methods, such as the ARMA, ARIMA, AR, GM (1,1)-PSO 

and MA models taken alone. Electric load forecasting is the 

initial stage of developing future generation, transmission and 

distribution facilities.  

However, the reliability of the power load prediction 

often cannot reach the desired result because it is influenced 

by various uncertain and uncontrollable factors such as 

economic development, human social activities, national 

policies and climate change.  

The data used in this paper was applied to the prediction 

methods for household and industrial electric loads. However, 

there is still work to improve the prediction results. This 

improvement can be achieved by considering the following 

aspects: 

 The data used in this paper applies only to the electric 

load. Adding other factors, such as climatic 

characteristics with temperature as the main variable, can 

be interesting. A study on the factors that have an impact 

on the electric load and look for ways to use them in 

modeling. 

 A classification of data can be done so that the modeling 

is subsequently carried out according to the seasons. 

 Making a prediction, taking into account the type of days, 

can be interesting. 
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 Using other techniques to predict the electrical load, 

namely Kalman filters or fuzzy logic, can be helpful.  

 Energy fraud by subscribers prevents an accurate estimate 

of future industrial and domestic consumption data. 

 Currently, various options for integrating renewable 

energy sources and data accumulation are being studied 

in order to extend this work and improve accuracy.  Other 

possible machine learning packages in the areas 

mentioned above can be explored. 
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Nomenclature 
Abbreviation Meaning Abbreviation Meaning 

SIG Southern Interconnected Grid AIC AKAIKE Information Criteria 

GM Grey Model PSO Particle Swarm Optimisation 

GM (1,1) Grey Model first-order one variable BIC Bayesian Information Criterion 

PPO Predator Prey Optimization ACF Autocorrelation Function 

ARIMA Autoregressive Integrated Moving Average PACF Partial Autocorrelation Function 

GRNN Generalized Regression Neural Network AR Autoregressive terms 

AGO Accumulated Generating Operator SBC Schwarz Bayesian Information Criterion 

IAGO Inverse Accumulated Generating Operation LSTM Long Short-Term Memory 

MAPE Mean Absolute Percentage Error ANN Artificial Neural Network 

RMSE Root Mean Square Error CPI Consumer Price Index 

MAE Mean Absolute Error MFO Moth Flame Optimizer Algorithm 

MA Moving Average SWT Stationary Wavelet Transform 

IA Intelligence Artificial DEPM The Deep Energy Predictor Model 

GA Genetic Algorithm DWT Discrete Wavelet Transform 
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