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Abstract - Renewable energy sources are extensively incorporated into the conventional electric grid via Voltage Source 

Converters. Due to the sporadic nature of renewable sources, voltage fluctuations are developed at the input terminals of 

converters. However, these converters experience switching transients and inrush current issues during voltage fluctuations, 

degrading converter performance. With this, the electric grid experiences accelerated component aging, increased power loss, 

and frequent tripping. To mitigate these issues, a novel "Moving Average-based Artificial Neural Network (MA-ANN)" controller 

that fuses the Moving Average filter’s smoothing feature with Artificial Neural Network adaptive learning capability has been  

suggested in this study for accurate current regulation in the system. The Input signal with transients is processed using the 

Moving Average Filter, where the Artificial Neural Network is trained to predict the appropriate switching to regulate the gr id 

current. Analytical results are validated through the proposed controller, which is then simulated and tested in 

MATLAB/Simulink, where the DC source is modelled as a distributed energy resource (with its DC link connected to the grid 

through a voltage source converter). The proposed Moving Average-based Artificial Neural Network (MA-ANN) controller 

outperformed conventional Artificial Neural Network and Proportional–Integral (PI) controllers in suppressing switching 

transients, minimizing surge inrush current while maintaining accurate current tracking. This controller offers enhanced 

robustness, reduced converter stress, and improved power quality, making it a promising control strategy for next -generation 

renewable energy systems with high dynamic variability. 

Keywords - ANN controller, Switching transients, Inrush current, Current regulation, Renewable energy integration .

1. Introduction  
Electrical energy plays a crucial role in meeting global 

energy demand. With ongoing technological advancements, 

renewable energy sources such as solar and wind are being 

rapidly integrated into the electric grid [1]. However, due to 

the intermittent nature of these sources and their variable and 

unpredictable output depending on environmental conditions, 

the conventional electric grid encounters several operational 

challenges. These include switching transient currents, inrush 

currents, and voltage sags [2]. Switching transients are short-

duration, high-frequency disturbances that occur during the 

rapid connection or disconnection of renewable sources [3]. 

These are developed due to the frequent incoming and 

outgoing renewable energy sources concerning the electric 

grid, imposing voltage sags, and due to the adjusted switching 

pattern of voltage source converters for injecting required 

current into the system under voltage sag conditions [4, 5]. In 

contrast, this surge inrush currents are developed with large 

capacitance or inductance in the system, and frequent 

switching operation of Voltage source converters without a 

soft starting mechanism. These currents are large, sudden 

surges of current that occur when power converters are 

energized and can severely affect converter lifespan and 

reliability [6]. Addressing these challenges is important to 

protect the Voltage Source Converter (VSC) linking 

renewables to the electric grid. Voltage Source Converters 

change DC electricity from renewables into AC that follows 

the grid’s requirements. The systems consist of semiconductor 

power devices designed to function within specific voltage, 

current, and power levels. To mitigate these issues of 

switching transients and surge inrush currents in the event of 

variable power generation, advanced control techniques and 

hardware-based solutions are explored in [7], including fast-

acting voltage limiters and coordinated reactive power 

support. Fast-acting voltage limiters exhibit poor response, 

and coordinated reactive power support is restricted with  

Voltage source converter ratings, making these controllers 

ineffective in coordinating multiple energy sources during 

rapid grid changes.In contrast, Proportional Integral (PI) 

controllers are popular, easy to implement, and work 
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efficiently in steady-state situations. Because of their fixed 

gain parameters, these controllers exhibit inadequate 

performance in dynamic system variations [8, 9]. Due to 

delayed response and poor damping, transient currents rise 

abruptly in the dynamic environment of the grid.  This restricts 

the application of PI controllers to steady state over dynamic 

state [10].  

However, Fuzzy logic controllers outperform PI 

controllers under dynamic conditions by adjusting their 

control actions based on the linguistic rules and membership 

functions, posing real-time challenges in implementation due 

to the complexity of the rule-based membership functions, 

which makes fuzzy systems inadequate in transient control 

[11]. Similarly, Model Predictive Control (MPC) is 

investigated for predictive voltage control but is restricted for 

real-time applications due to its dependency on accurate 

system models and high computational complexity [12]. 

Artificial neural networks have emerged as a promising 

solution for intermittent renewable energy resources by 

incorporating adaptive learning mechanisms [13]. Despite this 

advantage, Artificial Neural Networks-based controllers 

struggle to handle switching transients and Inrush currents 

during voltage fluctuations due to a lack of a smoothing 

mechanism [14], leaving a research gap. These limitations 

raise two key research questions: Can an intelligent control 

strategy be designed to enhance transient damping and surge 

current control during variable voltage input? Furthermore, 

how would such a strategy compare with conventional PI 

controllers in regulating current and suppressing voltage-

related disturbances? To address these questions, this research 

aims to fill the gap of minimizing the switching transients and 

surge Inrush currents under variable input voltage conditions 

using the Artificial Intelligence-based techniques. A Novel 

Moving-Average-Based Artificial Neural Network (MA-

ANN) augmented with a standard Artificial Neural Network  

Controller is designed to address these issues. This proposed 

controller demonstrated its superiority over the Proportional 

Integral controller through MATLAB-based simulations in 

damping out switching transients, Inrush currents, and 

regulating the current under dynamic input voltage conditions. 

2. Research Methodology  
This research employs a systematic methodology, as 

shown by the flowchart of Figure 2, to develop an effective 

control strategy for mitigating switching transients and inrush 

currents issues in grid-connected renewable energy systems. 

The approach begins with modelling the Voltage Source 

Converter (VSC) system in the rotating dq-reference frame, 

which simplifies the complex three-phase current control 

problem into a manageable form. Conventional Proportional-

Integral (PI) controllers are first implemented as a baseline to 

highlight the limitations faced in dynamic operating 

conditions. To dea l with these issues, the ANN-based  

controller is presented for adapting to the challenges caused 

by system nonlinearities. Recognizing the challenges posed by 

noise and transient spikes during switching, the ANN 

controller is augmented with a moving average filter, forming 

the Moving Average-Augmented ANN (MA-ANN) 

controller. The use of a hybrid design increases the system’s 

ability to block noise and deal with sudden changes. The 

approach to design involves teaching the neural networks 

thoroughly, using powerful algorithms, and checking the 

performance with MATLAB simulations to guarantee proper 

control of the current and dampening of transients under all 

grid situations. Unlike voltage-mode control that computes 

active and reactive currents based on the phase and amplitude 

of the VSC’s AC terminal voltage [15, 16], the current-mode 

approach directly regulates the VSC line current relative to the 

Point of Common Coupling (PCC). This technique delivers 

superior dynamic response, higher control accuracy, and 

stronger robustness to parameter variation in the voltage 

source converter and grid.  

2.1. System Configuration and Modelling 

As shown in Figure 1, a  DC energy source, representing 

Distributed Energy Resources (DERs), connects to an ideal 

AC grid via a Voltage Source Converter (VSC) operating at 

grid-imposed frequency. The VSC controls both active and 

reactive current injection, while the AC grid is modelled as an 

ideal, balanced three-phase voltage source Vsabc with 

constant frequency and sinusoidal waveform. To simplify 

control design, the three-phase system is transformed using a 

space vector representation, as defined by  

𝑓(𝑡) = 𝑓𝑒 −𝑗(𝜔𝑡 +𝜃0)  (1) 

This is mapped into the stationary αβ frame:  

𝑓𝛼 + 𝑗𝑓𝛽 = 𝑓𝑒𝑗𝜃0  (2) 

 Finally, it is projected into the rotating dq-frame:  

𝑓(𝑡) = (𝑓𝑑 + 𝑗𝑓𝑞 )𝑒𝑗𝜌 (𝑡) (3) 

The dq transformation reduces the three-phase sinusoidal 

current tracking problem into a decoupled DC control 

problem, which is ideal for PI-based regulators.  

2.2. Current Control Equations 

In the dq reference frame, the dynamic behavior of the 

converter is captured by :  

𝐿
𝑑𝑖𝑑

𝑑𝑡
= (𝐿

𝑑𝜌

𝑑𝑡
) 𝑖𝑞 − (𝑅 + 𝑟𝑜𝑛 )𝑖𝑑 + 𝑉𝑡𝑑 − 𝑉𝑠cos(𝜔0 𝑡 +

𝜃0 − 𝜌) (4) 

𝐿
𝑑𝑖𝑞

𝑑𝑡
= (𝐿

𝑑𝜌

𝑑𝑡
) 𝑖𝑑 − (𝑅 + 𝑟𝑜𝑛 )𝑖𝑞 + 𝑉𝑡𝑞 − 𝑉𝑠sin(𝜔0𝑡 +

𝜃0 − 𝜌) (5) 
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Fig. 1 dq-axis frame-based VSC control 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Control strategy 

The system angular frequency is:  

𝑑𝜌

𝑑𝑡
= 𝜔(𝑡) (6) 

The VSC modulation signals in the dq-frame are derived 

as:  

𝑚𝑑 (𝑡) =
2

𝑉𝑑𝑐

(𝑢𝑑 − 𝐿𝜔0 𝑖𝑞 + 𝑉𝑠𝑑 ) (7) 

𝑚𝑞 (𝑡) =
2

𝑉𝑑𝑐

(𝑢𝑞 + 𝐿𝜔0 𝑖𝑑 + 𝑉𝑠𝑞 ) (8) 

Here 𝑖𝑑 , 𝑖𝑞 are state variables 𝑉𝑡𝑑 , 𝑉𝑡𝑞  are control inputs, 

and 𝑉𝑠𝑑 , 𝑉𝑠𝑞  Are disturbance inputs [17, 18]. The control loop 

uses PI compensators that transform the sinusoidal tracking 

into a DC tracking task with modest steady-state error, as 

shown in Figure 3.  

2.3. Artificial Neural Network (ANN) Based Controller 

The active and reactive current control of the Voltage 

Source Converter (VSC) system, as shown in Figures 1 and 3, 

is implemented using an Artificial Neural Network (ANN)-

based controller in place of conventional Proportional-Integral 

(PI) controllers. These intelligent controllers are trained to 

inject the required currents into the grid to achieve effective 

current regulation. The control strategy is developed using 

simulated data generated from the voltage source converter 

model under the PI-based current control loops of Figure 3. 

This data is used to train the artificial neural network 

controller, with the input features being the control loop errors 

ed and eq, and the corresponding output variables being the 

modulated indices md and mq.  For mapping the nonlinearity 

between the input errors and the desired modulating indices, a  

three-layer feedforward neural network architecture is used 

[19].  

System Operating Parameters Id_ref, Iq_ref and Id, 

Iq 

Error Calculation  

ed = Id_ref - Id, eqIq_ref - Iq 

Controllers: 
ANN + MA-ANN (trained with PI controller data 

under voltage sag) 

md, mq modulation signals 

VSC Switching Control 

System Outputs: 

 Id_ref, Iq_ref and Id, Iq 

System Response: 

• Switching transients suppressed 

• Inrush currents mitigated 

• Stable operation under sag 

Start 
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Fig. 3 dq axis frame based VSC control 

The neural network is designed with an input layer, a  

hidden layer with 50 neurons of sigmoid activation functions, 

and an output neuron with a pure linear transfer function. The 

Levenberg-Marquardt (LM) learning algorithm is used for 

training the model due to its fast convergence property and 

suitability for function approximation problems. This LM 

algorithm is the most efficient training method, requiring large 

memory compared to other optimization techniques, 

irrespective of the large memory requirement. The Mean 

Squared Error is decreased by penalizing larger errors than 

smaller ones to match network predictions closely with the 

target values [20, 21]. Once trained, the ANN successfully 

mimics the behaviour of the dq-frame closed-loop current 

control strategy. The trained ANN model will map active 

currents (𝑒𝑑 to 𝑣𝑑) and reactive currents (𝑒𝑞 to 𝑣𝑞Upon 

successful training, depicting the process of conventional 

controllers.  

The effectiveness of the ANN is validated through 

performance plots shown in Figures 4(a) through 4(f). While 

Figures 4(a) and 4(b) display the regression plots of the d-axis 

and q-axis controllers, comparing the ANN outputs with the 

actual target values. The regression coefficients of these 

controllers are 0.9, which indicates a perfect fit. Figures 4(c) 

and 4(d) represent the error histograms of the trained neural 

network with the distribution of prediction errors. After 

validation, error values are within the range of ±0.1, and the 

presence of only a few outliers suggests the network’s high  

accuracy and generalization capability.    Figures 4(e) and 4(f) 

show the ANN's training, validation, and testing performance. 

The final MSE is small, and the error curves for the validation 

and testing phases exhibit similar trends. This performance 

implies that the network is generalized well to unseen data and 

does not overfit the training set. Overall, the ANN-based  

current controller demonstrates its effectiveness in capturing 

the nonlinear behaviour of the VSC system and serves as a 

robust alternative to conventional PI controllers. 

2.4. Moving Average-Augmented ANN (MA-ANN) 

Controller 

The proposed Moving Average-based ANN controller 

integrates a Moving Average Artificial Neural Network filter 

with an Artificial Neural Network (ANN) controller to address 

the limitations of conventional PI and ANN-based controllers. 

These conventional controllers often struggle with transient 

spikes during the switching operations of Renewable sources. 

In contrast, the Moving Average-based ANN filter and ANN 

controller suppress transients and inrush currents, resulting in 

enhanced performance and reliability of Voltage Source 

Converters (VSCs). The design procedure of the controller 

filter follows a systematic procedure as illustrated in Figure 5. 

A noisy signal is developed to simulate real-time transient 

conditions by combining a clean sine wave with Gaussian 

noise, as shown in Figure 6. This noisy signal is then 

processed using a proposed controller to produce a smoother 

signal that serves as the input to the voltage source controller. 

The formula for the moving average filter model is presented 

below.  

• Noisy_signal=Clean_signal+Noise 

• Clean_signal=Idealsinewave 

• MA_signal=movmean(Noisy_signal,Window_size) 
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Fig. 4 Performance metrics of ANN controller 
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Fig. 5 Flow chart to design MA-ANN filter 

The movmean function calculates the local mean of the 

noisy signal over a sliding window. Specifically, M = 

movmean(A, k) computes the k-point moving average of array 

A, where k is the window size. If k is odd, the window centers 

on the Current element. If k is even, it centers between the 

current and the previous elements. The formula for the mean 

is  

𝝁 =
𝟏

𝑵
∑𝑵

𝒊=𝟎 𝑨𝒊 (9) 

The MA signal goes into the ANN; the target output is the 

clean signal. The structure of the MA-ANN filter uses a 

feedforward type of three-layer neural network. During the 

training, the controller aims to continuously change the MA 

signal into a clean signal by filtering the information it 

receives. Adjusting the weights during training reduces the 

error between the network output and the clean signal. A noisy 

signal is generalized with the Bayesian regularization 

algorithm. This approach combines the Levenberg-Marquardt 

Input Data to  

MA-ANN Filter 

Input Layer(Noisy Signal) 

Hidden Layer(ANN Processing) 

Output Layer(Filtered Signal) 

ANN FILTER 

Loss Function 

(Error Calculation) 

Levenberg 

Marquardt Bayesian 

Regression (Weight 

Update) 

Updated ANN 

Model 

Pass noisy signal to Input Layer 

Desired Cleaning Signal 

(Moving Average 

Filter) 

Provides Clean  

Signal 

Desired Signal 

for Comparison 

Updated Model for next 

Iteration 

Updated Weights based on 

error 
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optimization algorithm with Bayesian regularization to 

prevent overfitting and ensure robust learning.  

Although this method increases training time, it produces 

a network that performs well even on small or noisy datasets. 

Training continues iteratively until the network achieves 

validated performance. Performance validation metrics 

confirm the effectiveness of the MA-ANN filter. The 

regression value reaches 0.97, indicating a strong correlation 

between the predicted and actual clean signals. Furthermore, 

the error remains bounded between -0.5 and +0.5, as 

illustrated in Figure 7.  

The cascaded ANN controller and MA-ANN filter, 

depicted in Figure 8, implements a closed-loop current control 

strategy. It enables the VSC to inject clean, distortion-free 

current into the grid, even under varying operating conditions. 

The integration of the MA-ANN filter into this framework 

significantly reduces the impact of switching transients. 

Compared to standalone PI and ANN controllers, the proposed 

system provides a safer, reliable, and cost-effective solution 

with extended operational life. To evaluate the effectiveness 

of the proposed control strategies, a  simulation-based 

experimental setup was developed using MATLAB/Simulink  

for a grid-connected Voltage Source Converter (VSC) system 

integrated with a Distributed Energy Resource (DER). The 

model includes a DC energy source, an LCL filter [22], and 

the VSC operating under various current control schemes: a 

conventional Proportional-Integral (PI) controller, a  

standalone Artificial Neural Network (ANN) controller, and 

the proposed Moving Average-Augmented ANN (MA-ANN) 

controller. 

 
Fig. 6 Performance of MA-ANN filter 

 
Fig. 7 Regression and error plots of MA-ANN filter 
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Fig. 8 Proposed MA-ANN controller 

The system parameters, such as grid voltage, switching 

frequency, and filter elements, were chosen to ensure stable 

operation and accurate current tracking [16] as shown in Table 

1. Three voltage dips were introduced at 0.1s, 0.3s, and 0.5s to 

simulate real-world disturbances, reflecting transient events 

commonly observed in renewable energy systems.  

The main objective of this study is to assess each 

controller’s performance in terms of current regulation, 

suppression of switching transients, and mitigation of inrush 

currents during startup or source reconnection. The MA-ANN 

controller was specifically designed to enhance transient 

stability and current smoothness by combining real-time 

adaptability with noise suppression, thus demonstrating its 

superiority over conventional methods in dynamic and noisy 

grid conditions. 

Table 1.  Grid and VSC parameters 

Parameter Name Acronym Value Unit 

Nominal AC 

voltage 
𝑉𝑛𝑜𝑚  230 V 

Nominal frequency 𝑓𝑛𝑜𝑚  50 Hz 

Nominal Angular 

Frequency 
𝜔𝑛𝑜𝑚  2𝜋 ∗ 𝑓𝑛𝑜𝑚  𝑟𝑎𝑑

𝑠⁄  

DC-link voltage 𝑉𝐷𝐶  800 V 

LCL filter 

Inductance 
     𝐿𝑓 500 Μh 

LCL filter 

Capacitance 
 𝐶𝑓 100 Μf 

Line Resistance R 0.5 Ω 

Line Inductance L 1 μF 

 

3. Results and Discussion  
This study analyzes the performance of three current 

control strategies for a grid-connected Voltage Source 

Converter (VSC): the conventional Proportional-Integral (PI) 

controller, a  standalone Artificial Neural Network (ANN) 

controller, and the proposed Moving Average-based Artificial 

Neural Network (MA-ANN) controller. The comparison 

focuses on current regulation, transient suppression, and 

inrush current mitigation under sudden voltage fluctuations, 

reflecting the conditions typical of renewable energy systems.  

Simulation results confirm that the MA-ANN controller 

outperforms both the PI and ANN controllers. It consistently 

tracks the reference current with precision, suppresses 

transient disturbances, and mitigates inrush surges. Under all 

tested scenarios, it maintains a settling time below 10 

milliseconds, ensuring rapid dynamic response and 

operational reliability in volatile grid conditions. Figure 9 

shows that the PI controller responds to voltage dips by 

reducing current proportionally but lacks damping capability.  

The current waveform exhibits large oscillations, and 

after voltage recovery, it overshoots sharply, often exceeding 

twice the rated current. This behavior prolongs settling time 

and places thermal and electrical stress on converter 

components. Although the PI controller reacts to disturbances, 

it cannot stabilize the system against high-frequency events.  

Figure 10 presents the performance of the MA-ANN 

controller under the same disturbance. Unlike the PI strategy, 

it maintains smooth and stable current tracking. During a 

voltage dip, the controller follows the reference without 

significant oscillation. After voltage recovery, the current 

returns to its target value without overshoot.  

This behavior results from its two-stage architecture: the 

moving average filter attenuates fast voltage fluctuations 

before the signal enters the ANN. With this preconditioning, 

the ANN produces precise and stable control responses. 

Together, these stages prevent overreactions to high-

frequency noise and enhance the robustness of the system. 
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Fig. 9 Line currents PI-based current controller 

Fig. 10 Line currents with cascaded controller (ANN and Moving Average) 

As shown in Figure 11, the MA-ANN controller 

maintains control accuracy under both leading and lagging 

power factor conditions. It injects high-quality current into the 

grid without waveform distortion, regardless of the reactive 

power demand. This adaptability supports real-time grid 

interaction, a critical requirement for modern renewable 

systems with dynamic active and reactive power flows. Inrush 

current behavior, illustrated in Figure 12, highlights another 

clear advantage. The PI controller produces high surge 

currents during converter startup, and the standalone ANN 

reduces this surge only partially. In contrast, the MA-ANN 

controller introduces a gradual current ramp-up.  

This soft-start behavior avoids excessive stress on 

components, minimizes the risk of triggering protection 

mechanisms, and ensures safer and reliable energization. 

Throughout all test cases, the MA-ANN controller rapidly 

restores the converter current to its reference value, always 

within 10 milliseconds. This quick stabilization helps suppress 

high-frequency transients and reduces inrush currents. 
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Fig. 11 Line currents under unity, lag, and lead cases 

Fig. 12 Surge inrush currents with PI, ANN, and cascaded ANN-controller 

It also protects sensitive loads downstream, which is 

crucial in distributed energy systems where switching events 

occur frequently. The research aimed to determine whether a 

cascaded MA-ANN controller could improve current 

regulation, suppress switching transients, and reduce inrush 

currents under renewable-induced voltage disturbances. The 

simulation outcomes confirm this objective. Compared to both 

the PI and ANN controllers, the MA-ANN controller 

consistently delivers superior performance in every key 

metric. Quantitative results further validate this conclusion. 

During fault recovery, the PI controller exhibits overshoot 

close to 200 percent of the nominal current, while the MA-

ANN controller eliminates this overshoot. At startup, the 

inrush current under PI control exceeds rated limits, whereas 

the MA-ANN controller maintains a controlled ramp. Figures 

9 through 11 substantiate these improvements with clear 

visual and numerical evidence.  

These results underscore the MA-ANN controller’s 

practical value for renewable energy integration. PI 
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controllers are too slow and rigid for real-time response, while 

ANN controllers, although adaptive, suffer from sensitivity to 

noisy inputs. Sensitive loads downstream are also protected, 

which is necessary for distributed energy, as switches are 

activated regularly. The study focused on understanding 

whether using a cascaded MA-ANN controller can improve 

the current regulation methods, control switching transient 

oscillations, and decrease the amplitude of inrush currents due 

to voltage faults from renewa ble sources. The simulation 

results confirm this objective. The MA-ANN controller 

outperforms the PI and ANN controllers in addressing these 

issues. During faults, the PI controller overshoots the nominal 

current by nearly 200 percent, but the MA-ANN controller 

stops the overshoot from occurring. During startup, the PI 

controller causes the current to rise above rated values, but the 

MA-ANN controller maintains a slow increase. The findings 

demonstrate that using an MA-ANN is practical for 

integrating renewable energy. Although PI controllers are 

slow, they still respond in real time, but ANN controllers that 

can learn from inputs are sensitive to noisy data. 

4. Conclusion  
The paper presented an MA-ANN controller as a method 

to achieve dynamic behavior when VSCs are used to interface 

renewable energy sources to the grid. To address two 

continuous issues during converter switching in variable 

renewable energy systems, the controller takes care of 

switching transients and inrush currents. An MA-ANN 

controller takes advantage of the way moving average filters 

have the capacity to reject noise and how artificial neural 

networks can update their learning. The MA filter removes 

noise present in the signals, allowing the ANN to find the 

connection between the filtered output and a neat surface.  

Together, they inject a steady and undistorted current into 

the grid under all running conditions. Results from the 

simulation confirm that the proposed MA-ANN controller is 

superior to traditional PI and standalone ANN approaches. It 

allows for less overshoot, shorter settling times, and a nicer 

response at the start of switching actions. These benefits are 

useful for converter protection, power consistency, and system 

stability against sudden voltage swings due to renewable 

sources. By limiting distortion, removing sharp transient 

peaks, and allowing instant recovery, the MA-ANN controller 

keeps the converter hardware intact and increases the system’s 

operational lifetime. Smooth active and reactive current 

management and successful operation under various load 

conditions benefit grid matching. Adding an MA-ANN 

controller to VSC systems connected to the grid increases their 

dependability and stability. Because as renewables are on the 

rise, this controller helps create a flexible and intelligent setup 

that ensures stable and secure grid operation.  
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