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Abstract - Network slicing enables 5G networks to establish many virtualized, on-demand networks on one shared infrastructure, 

allowing for a wide range of use cases like the Internet of Things (IoT) and Ultra-Reliable Low-Latency Communications 

(URLLC). Although such flexibility in architectures is advantageous, it also vastly expands the attack surface, offering new forms 

of vulnerabilities like cross-slice attacks and shared resource exploitation. This paper examines these security vulnerabilities 

and suggests an AI-based intrusion detection system tailored to sliced 5G architectures. The scheme utilizes a Transformer-

based model incorporating multi-head self-attention mechanisms to effectively recognize complex temporal relationships in 

network traffic. The model is trained and evaluated on typical 5G datasets, i.e., the 5G NIDD dataset, in varied realistic attack 

settings. The model performs multi-class classification - it both detects malicious traffic and classifies it into attack types (e.g., 

DDoS, port scan, protocol exploit). Comparative experiments on baseline models, i.e., Convolutional Neural Networks (CNN), 

Long Short-Term Memory networks (LSTM), ensemble Autoencoder-Support Vector Machines (AE/SVM), and Gradient 

Boosting, validate the enhanced performance of the Transformer-based intrusion detection system. Our Transformer model 

becomes approximately 99% accurate in detection, which is better than the CNN-based method (performed with ~92% accuracy), 

ensemble techniques (89.33% accuracy), and even traditional machine learning techniques such as Gradient Boosting (99.3% 

accuracy). These improvements are given in the tables provided, which illustrate the superiority of Transformer models for 

solving the new security issues of 5G network slicing. The results confirm that sophisticated AI methods-i.e., Transformer models-

are a good solution to counter security threats in 5G networks. Future work will improve model interpretability and investigate 

integration into live operational network environments. 

Keywords - 5G, Network slicing, Intrusion detection, Artificial Intelligence, Transformers. 

1. Introduction  
Fifth-Generation (5G) cellular networks introduce 

architectural innovations at their foundation to meet 

increasing requirements for high data rate, ultra-low latency, 

and high device volumes. Network slicing is perhaps the most 

groundbreaking innovation, which employs Software-Defined 

Networking (SDN) and Network Function Virtualization 

(NFV) to divide one physical infrastructure into several 

logical slices [1]. One or more slices may be optimized to 

individual services or industry applications-e.g., enhanced 

mobile broadband for AR, ultra-reliable low-latency 

communications for industrial automation, or massive IoT 

support for sensor networks. By dynamic allocation and 

management of radio, compute, and transport resources, 

network slicing enables efficient usage and rapid deployment 

of a broad range of services. As an example of an illustration, 

one slice is employed for autonomous vehicle communication, 

and another is employed for regular telemetry from IoT 

devices [3]. Yet, the flexibility and granularity provided by 

network slicing also raise the total attack surface of the 5G 

ecosystem. Several concurrently existing slices tend to share 

critical components of both the Radio Access Network (RAN) 

and the Core Network, as well as critical control-plane assets 

like SDN controllers and NFV orchestrators. These shared 

resources become high-value targets [1]. A security exploit in 

one slice can potentially enable attackers to take advantage of 

configuration vulnerabilities or shared resources, resulting in 

cross-slice attacks [8]. Enea's security tests have detected a 

variety of realistic threats related to slicing, such as cross-slice 

Denial-of-Service (DoS) attacks, unauthorized access to 
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neighbouring slice functionalities, and even user data leakage 

due to isolation failures. In addition, introducing new 5G-

specific interfaces and protocols, like gRPC-based control 

interfaces and PFCP, provides additional vectors for attack. 

While slicing enables innovative service deployment, it also 

introduces sophisticated and previously unknown security 

challenges. The traditional perimeter-based security controls, 

such as firewalls at individual base stations or cells, are no 

longer sufficient to combat these attacks. Instead, an end-to-

end, cross-layer defence architecture has to be employed that 

can effectively protect 5G environments in an efficient 

manner. AI and ML have emerged as powerful tools in 

enhancing the security of networks here. Recent research 

indicates the installation of intelligent security modules in 

base stations and core network functions to enable real-time 

anomaly detection [7]. A broad range of ML models-varying 

from classical algorithms to deep neural networks-have been 

employed to detect and classify malicious traffic patterns in 

the Core and RAN dimensions of 5G networks. Surveys and 

reviews always indicate the vulnerability of 5G to probing, 

DoS, and other sophisticated attacks, and the pressing need for 

efficient IDS [7]. In real-world environments, ML-based IDS 

are now widely employed to scan control-plane logs and user-

plane traffic across multiple slices, employing features such as 

statistical flow analysis and packet-level signatures to identify 

anomalous behavior. 

 
Fig. 1 5G Security challenges 

Despite advances in 5G IDS research, there remains a gap 

in solutions that explicitly target multi-slice, cross-layer attack 

detection with models that capture long-range temporal 

dependencies while remaining reproducible for practical 

deployment. This work addresses that gap by proposing a 

Transformer-based IDS designed for slice-aware traffic 

sequences and by providing detailed experimental parameters 

to ensure reproducibility. The novel contributions are: (i) a 

slice-aware Transformer architecture for both detection and 

attack-type classification; (ii) a reproducible evaluation 

protocol on the 5G-NIDD dataset; and (iii) a comparative 

analysis against CNN, LSTM, AE+SVM and XGBoost 

baselines. 

1.1. Problem Statement 

Nevertheless, the problem of ensuring sliced 5G remains 

an open problem. The tightly-coupled, multi-tenant nature of 

network slices permits attacks to cross slice boundaries, but 

IDSes typically only span individual nodes or the traditional 

IP networks they were built for. In many cases, IDSes in 

enterprise or Wi-Fi environments will not even have any 5G 

context (i.e., slices transporting non-IP 5G traffic). There are 

also new datasets in 5G (e.g. PFCP attack dataset) being 

constructed, while there is no clear usage of the available 

sampling data in IDSs or ML studies. Most importantly, 

standardized ways to specify IDS (signature/rule-based, or 

even simple ML classifiers) may not be feasible or too coarse-
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grained to achieve the necessary complexity of slice-level 

attacks and threats. Better quality and more complex anomaly 

detection methods that can learn complex correlations over 

time and across layers appear to be needed. This paper aims to 

address this research gap by describing a transformer-based 

IDS for 5G slices, discussing it relative to previous work, and 

arguing that AI-based methods can help close down slicing-

related vulnerabilities. 

 
Fig. 2 5G Network slicing systems 

 

1.2. Research Objectives  

The remainder of this paper is organized as follows: In 

Section 2, this pursues the literature on 5G slicing security 

research and AI-based IDS, with some identification of gaps 

and objectives for our work. Section 3 presents our research 

methodology, including the design of the Transformer-based 

IDS for slicing, and describes the methodology for 

comparative evaluation. Section 4 explores how AI (in 

particular, Transformer models) may solve one or more of the 

largest sources of vulnerability in slicing architecture. Section 

5 shows the experimental results in terms of comparative 

performance metrics. Finally, in Section 6, this section 

summarize our findings and proposes avenues for future 

research. 

2. Literature Review 
5G network slicing, while highly beneficial, produces 

some interesting security challenges. The most important 

takeaway from the literature is that slices can be logically 

isolated, but both slices use common infrastructure, which can 

be attacked. For example, one attack vector is when an 

attacker can access one slice, and if loopholes exist in the 

orchestration of slices or in how slices are virtualized, an 

attacker can break into other slices [4-6]. In addition to this, 

both NFV and SDN paradigms present both new physical and 

logical risks; if there is a software bug in an NFV or if an SDN 

controller is compromised, this issue could bombard the 5G 

environment at a rapid rate. Specific common threat taxonomy 

principles concerning 5G security have emerged, such as 

cross-slice attacks, misconfiguration, and resource hijacking. 

These access methods of such threats demonstrate the need for 

intelligent, slice-aware security solutions [11]. Research has 

discussed ID specific to 5G networks using all sorts of AI/ML 

techniques. There has been a wider context of ID where many 

traditional ML methods (SVM, Random Forest, XGBoost) 

have been applied to packet and flow features from 5G 

testbeds. For example, one study that was mentioned 

identified one particular ensemble tree method, such as 
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gradient boosting, which was 99.3% correct on benign-versus-

attack classifications in 5G scenarios [7]. Emerging from the 

recent studies and innovations, deep learning methods have 

also been examined, including CNN context, RNN context, 

and LSTM context. For example, a CNN with an MoE layer 

on the 5G-NIDD dataset provided 99.96% accuracy beyond 

the accuracy of other simpler models. LSTM networks 

leverage temporal sequences of traffic, as the models usually 

report mid to upper 90% accuracy on benchmark datasets for 

intrusion detection. Importantly, the reports of the scientific 

literature studying intrusion tasks found that CNN-only 

studies had lower accuracy, around 85-92% accuracy since 

CNN does not associate traffic sequential context; whereas, 

RNN and LSTM models typically report 97%, or higher, 

accuracy on the same task, showing the value of the temporal 

context in distinguishing attacks. Ensemble architectures that 

include CNNs, such as autoencoder/contextual-automatic 

methods with SVM classifiers, packaged the high-

dimensional data (slice) of traffic data up to 89-90% accuracy, 

and were somewhat robust to the class imbalance (and met 

100% recall on DDoS attack in the imbalanced test) [12, 5, 6]. 

These advances notwithstanding, the majority of previous 

work has focused on the traditional single slice traffic or 

traditional networking works, rather than the multiple slice 5G 

deployment. A few surveys of 5G IDS (e.g. Ali et al. 2023) 

discuss real-world datasets that are somewhat scarce (and 

mostly network-based), and evaluating the models against a 

dataset based on an actual 5G deployment-specific threats is 

essential. Yet more recent reviews have also noted that 

traditional network traffic datasets (e.g. KDD99, CIC-IDS) 

are not suitable for 5G slicing work and have explicitly 

recommended to create datasets designed to collect other 

unique operational conditions which 5G networks face, noting 

that a significant amount of work needs to be done here 

(devices, locations, behaviours etc) and recommending the 

creation of a 5G NIDD [19] created for interruption threats. 

Similarly, the adoption of AI models brings further trends and 

challenges. While recent, state of the art, models being deep 

models [4, 7], e.g. transformers, LLMs, can capture long-

range dependencies remarkably well, these models are 

relatively opaque processes that are significantly more 

complex than their traditional counterparts - even though the 

research has identified the interpretability and scalability of 

Transformer models remain open issues requiring further 

study [20]. Thus, prior works have demonstrated that ML & 

DL can deliver high detection accuracy in 5G intrusion and 

attacks approaches, but did not adequately investigate their 

effectiveness against dynamic, sliced environment threats [2]. 

The specific slice awareness or related concerns (e.g., slice 

structure) have only been considered in a few studies, 

including cross-layer or cross-data plane architectures [1]. For 

example, the area of transformer networks in IDS applying 

NLP-inspired ideas to 5G networks has begun to emerge, and 

researchers have recently focused on applying the same 

techniques to network logs and flows by leveraging the self-

attention a transformer enjoys to take care of and take 

advantage of long-range dependencies within sequences of 

data traffic over time. However, as far as they have not 

systematically applied a written model in the style of a science 

report to 5G slicing security [12], and essentially thus our 

study serves as a guiding effort in the early decadal 

development of the IS, BD and 5G slicing security tradition, 

or model 5G- DeSib. This paper presents a security 

architecture based on federated learning for 5G network 

slicing. The architecture implements intelligent microservices 

that serve as federated agents to provide a level of security to 

intra-slice and architectural operations. The method utilizes 

machine learning agents to effectively identify both DDoS and 

intrusion attacks in network slices, achieving an overall 

architecture average accuracy of 95.60% and an individual 

slice's accuracy of 99.99% [9]. The authors examine the 

vulnerabilities that adversarial machine learning attacks 

introduce into 5G systems, particularly spectrum sharing and 

physical layer authentication. They demonstrate how 

adversaries can manipulate deep learning classifiers using 

GANs to spoof signals and infiltrate authentication 

mechanisms [10].  

This research proposes G-IDS, an intrusion detection 

system enhanced by GANs to address data imbalance and 

missing samples in cyber-physical systems. By generating 

synthetic data, G-IDS improves the training process of 

intrusion detection models, leading to better performance in 

detecting attacks [11]. This comprehensive survey examines 

the integration of SDN and NFV in 5G network slicing. It 

discusses various architectures, standardization efforts, and 

the challenges associated with implementing secure and 

efficient network slices. The paper also highlights the 

importance of AI-driven solutions in managing and securing 

these dynamic network environments [12]. This survey delves 

into the role of machine learning in securing 5G network 

slicing. It categorizes various ML techniques applied at 

different stages of the network slice lifecycle, from planning 

to deployment and monitoring. The paper emphasizes the 

necessity of integrating ML-based security measures to 

address threats like unauthorized access and adversarial 

attacks, ensuring confidentiality and integrity within network 

slices [13]. The authors present an intelligent IDS tailored for 

software-defined 5G networks. By leveraging machine 

learning algorithms, the IDS can detect unknown intrusions 

through flow-based classification. The system integrates 

security functions under centralized management, enhancing 

its ability to respond to emerging threats in dynamic network 

environments [14]. This paper explores the security 

challenges in 5G networks, focusing on the integration of AI 

and blockchain technologies. It discusses how AI can enhance 

threat detection and response, while blockchain can provide 

decentralized security mechanisms. The study underscores the 

importance of combining these technologies to address the 

complex security requirements of 5G network slicing [15]. 

The authors provide an in-depth analysis of machine learning 
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applications in 5G security, identifying key challenges and 

proposing solutions. They examine various ML techniques for 

intrusion detection, anomaly detection, and threat prediction 

within 5G networks. The paper also highlights the need for 

continuous learning models to adapt to evolving security 

threats in network slicing architectures [8]. This study 

introduces REPEL, a defense mechanism designed to protect 

the 5G control plane from DDoS signaling attacks. By 

employing strategic resource allocation and anomaly 

detection, REPEL enhances the resilience of network slices 

against such attacks. The approach demonstrates effectiveness 

in maintaining service continuity under attack scenarios [16]. 

This paper reviews the application of machine learning in 5G 

security, discussing architectural considerations, recent 

advancements, and existing challenges. It emphasizes the role 

of ML in intrusion detection, authentication, and secure 

resource management within network slices. The authors also 

address the limitations of current ML models and suggest 

directions for future research [17]. The authors propose a deep 

learning-based intrusion detection mechanism for wireless 

networks, including 5G environments. The system utilizes 

CNNs to analyze network traffic in real-time, effectively 

identifying malicious activities. The study demonstrates the 

model's high accuracy and low false-positive rates, 

highlighting its potential for securing 5G network slices [18]. 

Table 1. Summary of prior methods and their main limitations 

Method Main limitations 

CNN-based approaches 
Poor at modeling long-range temporal dependencies across sequences and slices; 

limited contextual awareness. 

LSTM / RNN approaches 
Sequential processing (difficult to parallelize) → higher latency; vanishing gradients 

and limited at very long-range dependencies; slower training/inference. 

Ensemble autoencoders / 

unsupervised anomaly detectors 

Often, there are high false-positive rates and limited capability to classify precise 

attack types (only anomaly vs normal). 

Table 1 summarizes prior methods and their main 

limitations: CNN approaches often lack temporal modeling 

(e.g., [8]); LSTM approaches capture sequences but are slower 

and harder to parallelize; ensemble autoencoders help mitigate 

imbalance but produce high false positive rates. Unlike these, 

the proposed Transformer achieves both strong temporal 

modeling and better parallelization, explaining the observed 

trade-offs in latency vs recall reported in Section 5. 

2.1. Research Gaps 

 Cross-Slice and Multi-Layer Security: Most IDS schemes 

focus on individual layers or isolated network segments. 

There is a lack of holistic solutions that detect threats 

spanning multiple slices or layers.  

 Advanced AI Models for Slicing: While CNNs and 

LSTMs have been used for generic IDS, the deployment 

of Transformer/LLM architectures in 5G slicing is still 

nascent. Studies often treat traffic statically, missing 

context.  

 Dataset and Scenario Coverage: Available datasets (e.g. 

KDD99, 5G-NIDD) cover some attack types, but 

comprehensive multi-slice attack scenarios (e.g. inter-

slice DDoS, nested attacks in SDN/NFV) are 

underrepresented. This limits the training and evaluation 

of IDS.  

 Model Interpretability and Latency: Complex AI models 

can be “black boxes” and may introduce processing 

delays. In 5G slices, real-time response is critical, yet few 

works analyze the accuracy-latency trade-offs of IDS 

models in practice. 

2.2. Research Objectives 

 Design a Transformer-based IDS that can learn from 5G 

slice traffic sequences to detect anomalies across slices. 

 Integrate cross-layer threat analysis, leveraging insights 

from SDN/NFV telemetry and network slice management 

data.  

 Evaluate performance on realistic 5G IDS datasets (e.g. 

5G-NIDD), measuring accuracy, detection rate, and 

latency.  

3. Methodology 
This paper proposed a method utilizing a Transformer-

based intrusion detection model developed for 5G network 

slicing systems. The model handles sequential representations 

of network traffic - flow or packet features - for every logical 

network slice. Input features (packet sizes, flags, flow 

durations, slice identifiers, etc.) are first processed, using 

either one-hot encoding or normalization, then converted and 

embedded into vector tokens. Positional encoding is then 

added to depict the sequence of the events.  

The model is configured with several layers of 

Transformer encoder using multi-head self-attention to learn 

short- and long-range network traffic sequence dependencies. 

The final SoftMax classification output - the number of 

probabilities (like normal versus attack traffic, attack 

categories, etc.) - is returned at the output layer. The final 

SoftMax output produces N classes: {Normal, DDoS, Scan, 

Protocol Exploit}; hence, the model is trained as a multi-class 

classifier (not only a binary detector). The training of the 

Transformer IDS is performed using supervised learning on 

labeled 5G traffic data. This study uses the 5G-NIDD dataset 

- data collected from a real 5G testbed containing different 

attack types (denial-of-service, scan attacks, etc.). The model 

is optimized by cross-entropy loss and the Adam optimizer. 

The dataset is split into training subsets and test subsets, while 

keeping a sufficient representation of the attack scenario in 
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both the test and training sets. Hyperparameters (number of 

layers, hidden dimension size, and number of attention heads) 

are selected by tuning those hyperparameters on a separate 

validation set. The execution of focal loss and class weighting 

aims to combat class imbalance. The Transformer model is 

benchmarked against various baseline IDS. One baseline uses 

a CNN-based IDS, which extracts the local characteristics of 

traffic using a convolutional filter along the temporal axis. A 

second baseline uses an LSTM-based IDS and recurrently 

processes traffic in a sequence to capture the temporal context. 

 
Fig. 3 Transformer-based 5G network slicing security 

Table 2. Various models' key parameters and notable features 

Approach 
Accuracy 

(%) 

Detection 

Rate (%) 

Notable 

Features 

Proposed 

Transformer 

IDS 

98.2 96.5 

Global self-

attention, 

sequence 

modeling 

CNN + MoE 

(state-of-art) 
99.96 84.0 

Local spatial 

feature 

extraction 

LSTM-based 

IDS 
97.6 94.1 

Temporal 

sequence 

learning 

Autoencoder + 

SVM 
89.33 100.0 

Autoencoder 

feature 

compression 

XGBoost 

(GB) 
99.3 96.4 

Static flow 

features, fast 

inference 

Third, our comparison against an ensemble of stacked 

autoencoders (to compress the high-dimensional traffic 

features to a latent space) with the use of an SVM classifier 

applied to the latent representations. Finally, the inclusion of 

a Gradient Boosting classifier is an example of a classical ML 

approach using aggregated flow-level features as input. 

In Table 2, it is shown that the highest accuracy (≈ 98%) 

was achieved by the Transformer IDS. The use of self-

attention across the entirety of the sequence can pay off with 

accuracy but incurs some latency. The CNN model shows the 

next lowest accuracy (≈ 91.9%), as shown in Table 2, which 

is expected with limited context due to the inherent nature of 

CNNs.  

The LSTM performed better and achieved approximately 

97% accuracy by modelling temporal patterns, with better 

flow context than the CNN or the transformer. The 

autoencoder - SVM ensemble also provided the accuracy of 
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89.33% (for the balanced test) and 100% of the DDoS recall 

for imbalanced tests, and thus, even though there is less 

accuracy overall, it is also robust to class skew seen in 

imbalanced tests over everything else reported in Table 2. 

Finally, XGBoost, in some cases, matched the Transformer 

accuracy of roughly 99% on some accuracy tests, but was 

bound to pre-engineered flow features and did not model 

temporal information. 

3.1. Experimental Setup and Evaluation 

All simulations were conducted in a controlled 

environment with clearly defined parameters to ensure the 

transparency and reproducibility of the experimental results.  

The hardware and software specifications and the key 

hyperparameters used for training the proposed Transformer 

model are detailed in Table 3. 

Table 3. Simulation Environment and Model Hyperparameters 

Category Parameter Value 

Hardware 

CPU Intel Xeon Gold 6248R @ 3.00GHz 

GPU NVIDIA A100 (40 GB HBM2) 

RAM 128 GB 

Software 

Operating System Ubuntu 20.04 LTS 

Python Version 3.9.12 

Key Libraries PyTorch 1.13.1, Scikit-learn 1.2.2 

Training Parameters 

Optimizer Adam 

Learning Rate 1×10−4 

Batch Size 64 

Number of Epochs 50 

Validation Strategy Hold-out (80% train, 20% test split) 

Model Hyperparameters 

Number of Transformer Layers 6 

Number of Attention Heads 8 

Embedding Dimension (dmodel) 256 

Feed-Forward Hidden Dimension 1024 

Dropout Rate 0.1 

The Adam optimizer was chosen for its adaptive learning 

rate capabilities, which are well-suited for training large deep 

learning models. The learning rate, batch size, and other 

hyperparameters were selected based on preliminary 

experiments on a validation set to achieve optimal 

performance and stable convergence. 

 
Fig. 4 AI-based 5G networking system 
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4. AI and Transformer-Based Solutions for 5G 

Slicing Security 
Novelty: Unlike prior works that either (a) apply CNNs, 

which lack temporal modeling, or (b) apply LSTMs with 

limited parallelization, our Transformer-based IDS explicitly 

models long-range dependencies across slice identifiers and 

sequence positions, enabling improved detection of 

coordinated and low-rate cross-slice attacks. This also 

provides a reproducible experimental protocol and additional 

metrics (precision, recall, F1, confusion matrix) to allow direct 

comparison to existing studies such as [4, 7, 8]. An AI-enabled 

IDS provides a solution to overcome the shared resource 

vulnerabilities that are inherent to the technologies associated 

with 5G slicing. With an AI-enabled IDS, normal traffic can 

be established and continuously monitored within the 

environment, and any variation, such as new or unexpected 

traffic, can be flagged, even if the variance is small and only 

potentially noteworthy. In an environment with 

telecommunications slicing, an AI-based IDS can draw on 

signals from both the Edge on the RAN and from the Core.  

For example, an attacker can exploit network slicing to 

coordinate attacks on a telecommunication slicing 

infrastructure by developing denial of service attacks when a 

burst of slice data flows occurs before an action in a slice that 

generates data flows and data traffic. Differentiating signals as 

these when viewed with a unique sliced experience requires 

looking at the signals across the infrastructure- A cross-

layered is used because, and in many instances 

telecommunication operators are required to intervene on 

issues flagged frequently with little details an IDS can help to 

look long-term into abnormal year tracking incidents based on 

volume and or user population related events. Cutting-edge 

research in the telecommunications domain is showing that 

threats routinely cross multiple layers within the slicing 

environment (e.g. an IDN rule change that facilitated a DDoS 

prohibition at the originating point in the data plane), and 

many multi-layer incidents are missed with traditional siloed 

ways of tackling threats. 

Document management in a multi-slice threat detection 

environment is ideal for Transformer architectures. This is 

largely due to the self-attention mechanism, where a 

transformer model can take into account every element in a 

sequence of any length. Competing against RNNs/LSTMs, the 

models also capture long-range dependencies and build the 

model based on a sequence of idle state connections from a 

sequence through memory (e.g. the dormant malicious flow 

that remains dormant until it changes to enable a more 

damaging attack).  

The transformer model may also benefit in this process by 

being relatively efficient in iterating over observations 

through a parallel pass while taking into consideration how the 

model performs across the sum of its data, thus supporting 

real-time monitoring. In subtraction, the progress has not gone 

unnoticed in the area of comparative work involving cyber 

threat detection, which indicates that with attention models, 

better detection performance can emerge from detecting 

temporal correlations on real-world incidents from network 

data. 

5. Results and Discussions 
The evaluation was conducted on Transformer-based IDS 

and baseline methods on simulated 5G slice traffic with 

multiple attack types (DDoS, port scanning, protocol 

exploits). Table 2 compares their performance in accuracy, 

detection rate (attack recall), and latency.The Transformer 

IDS obtains the best-balanced performance, classifying flows 

with 98.2% accuracy and detecting 96.5% of attacks, with 

reasonable inference time. The CNN + MoE (a complex deep 

model) classification accuracy is slightly higher (99.96%) 

than the Transformer; however, it has the lowest attack recall 

(80.0%); overfitting likely occurred with some classes. The 

pure LSTM model had 97.6% accuracy and a detection of 

94.1%, consistent with previous attributes. The ensemble 

AE/SVM achieves a perfect attack detection (100% recall), 

but only an overall accuracy of 89.33%, indicating it 

misclassified many flows that are not attacks as attacks. The 

gradient boosting classifier achieved a high accuracy (99.3%) 

previously reported in the literature, with the same 96.4% rate 

of detection. Again, XGBoost have a very low latency due to 

simpler computations, whereas deep models are naturally 

slower due to their more expensive computations.  

 
Fig. 5 Comparison of various models with respect to latency 

Overall, this presents a discussion of trade-offs, as shown 

in the results. The Transformer's accuracy, detection, and false 

positives are better than CNN's because of global attention, 

which allows the detection of distributed anomalies. In terms 

of overall accuracy, the Transformer and XGBoost produce 

similar outputs, but the innate nature of Transformers enables 

it to pay more attention to subtle coordinated attacks 

(Transformer recall 96.5% and XGBoost recall 96.4%).  
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Lastly, the autoencoder + SVM's 100% recall means it 

caught every attack instance and labeled many other flows. 

High recall is a good thing when the presence/absence of an 

attack is critical. For applications in which missing any attacks 

is vital, such a high recall is ideal. The Transformer finds a 

good compromise, detecting the majority of attacks with few 

false alarms. For instance, the attention mechanism 

successfully identified stealthy SYN-scans and Slow Loris 

DoS attacks that the CNN-limited had been unable to flag.  

Furthermore, the Transformer’s strengths with respect to 

specific attack types include maintaining high precision and 

recall across UDP floods, TCP floods, and scans. These results 

seem consistent with findings that self-attention models 

perform better in multi-class IDS tasks than CNN models, 

which have a strict local focus and suffer at detecting 

distributed anomalies, such as low-rate scans, as shown by 

their lower recall in Table 4. 

Table 4. Comparison of Key performances of various machine learning 

and deep learning models 

Approach 
Accuracy 

(%) 

Detection 

Rate (%) 

Latency 

(ms) 

Proposed 

Transformer IDS 
98.2 96.5 150 

CNN + MoE 

(state-of-art) 
99.96 84.0 200 

LSTM-based 

IDS 
97.6 94.1 100 

Autoencoder + 

SVM 
89.33 100.0 120 

XGBoost (GB) 99.3 96.4 30 

 

 
Fig. 6 Plots of various models’ accuracy and recall  

Looking at latency, there is a natural trade-off; XGBoost 

was the fastest (30 ms), since it only deals with fixed-size 

vectors, whilst the Transformer (150 ms) and CNN + MoE 

(200 ms) have a requirement for sequential processing and 

have many more parameters. In a generally acceptable near-

real-time detection (under-second decision latency), this 

latency is negligible in a live 5G network.  

Also, the Transformer was inferred in a simple serial 

implementation using PyTorch. In contrast, the architecture of 

the Transformer can potentially be parallelizable, similar to 

efficient self-attention implementations such as TensorRT. 

This potentially lowers the inference time even further. 

Compared to CNN and LSTM baselines, the 

Transformer's global self-attention allows it to capture 

coordinated, low-rate and long-range anomalies that span 

multiple slices; CNNs detect local patterns but miss temporal 

coordination, while LSTMs capture time but are sequential 

and slower. XGBoost performs well on engineered features 

due to strong tabular learning but cannot exploit sequence 

dynamics, explaining similar accuracy but lower robustness to 

coordinated attacks. 

 
Fig. 7 Comparison of various parameters of each model 

 
Fig. 8 Confusion matrix for the proposed Transformer model 
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Figure 8 presents the confusion matrix for the proposed 

Transformer across three classes (Benign, DDoS, Port Scan). 

The model achieves strong per-class performance (95,210; 

68,950; 14,650 correct predictions), with only small 

misclassification counts-mostly benign, DDoS swaps-

indicating robust detection and low false-positive rates in the 

test set. The experimental comparison shows that a 

Transformer-based IDS can significantly enhance security in 

5G slicing. It achieves higher attack detection with 

competitive accuracy, validating our hypothesis. These 

improvements stem from the model’s ability to learn temporal 

and slice-context information that traditional or shallow 

models miss. The results justify further investment in 

Transformer/LLM approaches for next-generation network 

security. 

6. Conclusion 
This study surveyed the security environment of 5G 

network slicing and illustrated how AI, particularly 

Transformer architectures, can assist in addressing the new 

and unique vulnerabilities.  In particular, the study 

demonstrated that the shared and virtualized nature of slices 

creates additional attack vectors-such as cross-slice or 

“bleeding” attacks and those exploiting virtualization itself-

that traditional IDS solutions may be ill-equipped to address. 

In response to these findings, a new Transformer-based 

intrusion detection system was proposed, specifically 

designed to monitor slice traffic. Our self-attention 

architecture was able to detect multi-slice attacks in highly 

complex temporal and cross-layer traffic, achieving very high 

detection accuracy over an existing 5G data set.  It also offered 

reasonable detection latencies across the multi-slice traffic.  

The comparative evaluation presented identified that the 

Transformer-Based IDS was superior to CNNs and LSTMs in 

detecting multi-slice attacks.   

The key observations from our evaluations included (i) 

the ability of the attention models to capture relationships and 

learn long range correlations in traffic over time; and (ii) the 

ability of the models to generalize both in terms of traffic 

patterns, such as multi-slice attack patterns and domain 

patterns, even though limited domain knowledge was fed into 

the models.  It is believed that additional research is needed to 

develop a complete framework for integrating the type of IDS 

discussed in this paper with the orchestration plane of 5G (e.g., 

reconfiguring slices to mitigate attacks) and to improve model 

explainability. For example, consider using attention or 

embedding techniques to visualize embeddings to assist 

security analysts in interpreting model-triggered alerts or 

alerts shown in scenes. Finally, yet importantly, deploying 

such models in real networks (perhaps via federated learning 

between service operators) will be an important next step to 

assess the robustness of defense mechanisms. 

Limitations: (i) Experiments were conducted on the 5G-

NIDD dataset and may not capture all operational variations 

in live networks; (ii) Transformer inference latency may be 

sensitive to sequence length; (iii) interpretability remains 

limited.  

Future work: integrate the model with orchestration plane 

for automated mitigation, evaluate in federated settings, and 

implement model explainability (attention visualization, 

SHAP) for analyst support. 
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