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Abstract - The modern power system is subject to transformation from centralized to a distributed one because of the rapid 

advancements in Distributed Generation (DG) technology. At the same time, the increased demand for electricity is resulting in 

transmission network congestion, and the transmission lines are pushed to operate closer to their limit. This raises a need for 

power system operators to evaluate and enhance the Available Transfer Capability (ATC) of existing transmission lines to relieve 

the congestion in transmission networks and improve the power system reliability and security. Several methods, viz. Sensitivity 

factors-based methods and repeated power flow methods are used to estimate ATC by performing power flow studies. This paper 

demonstrates the development of Artificial Neural Networks (ANN) to predict the day ahead ATC of power system with the 

penetration of DGs by using its past performance.         
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1. Introduction 
The increased penetration of DGs in existing power 

systems has led to numerous challenges in efficient operation 

and power network control. Recently, the transmission system 

has become highly congested because of the growing need for 

electricity and the insufficient capacity of transmission 

infrastructure. The operational and planning issues to relieve 

network congestion initiate certain challenges for the power 

system operator. In such situations, the prediction of ATC 

becomes an important subject. ATC of the system is the 

capability of the transmission network to allow power transfer 

between two areas, zones or buses for additional commercial 

trading. The inaccurate estimation of ATC leads to the 

inefficient utilization of the transmission network. To address 

this problem, accurate and efficient ATC prediction methods 

are needed. According to the framework provided by “North 

American Electric Reliability Council (NERC)”, the “Total 

Transfer Capability (TTC) of transmission line is the 

maximum amount of power that can be transferred between 

two areas or zones or buses without causing the overload of 

transmission lines, violations in voltage limits at system buses 

and/or any other system security problems”[1].   

Mathematically, ATC is written [2] as per Equation (1).  

 

ATC = TTC – TRM – CBM – ETC (1) 

Here, “Transmission Reliability Margin (TRM) is the 

transfer ability of the system required to ensure that the power 

system is secure during any kind of uncertainties”. Also, 

“Capacity Benefit Margin (CBM) is the transfer capability 

reserved for load serving agencies to access generation 

reliability requirements”. “ETC is the Existing Transfer 

Commitment”.  

The researchers have proposed various techniques for the 

evaluation of ATC, such as sensitivity factors-based methods, 

which evaluate ATC by evaluating Power Transfer 

Distribution Factors (PTDF) for a particular transaction [3]. 

Even though these methods are simple to handle, they are less 

accurate, especially for large systems. Few researchers have 

discussed about Continuous Power Flow (CPF) methods, 

which are more accurate but do not address the issue of 

convergence in power flow solution; however, a few 

researchers have proposed repeated power flow methods for 

evaluation of ATC that are mathematically less complex, and 

more efficient to carry out power flow with improved 

convergence [4]. Probabilistic methods are also used to 

evaluate ATC with better accuracy, whereas statistical 

approaches are used to model load and generation 

uncertainties [5]. As AI techniques are proven tools for real-

time predictions in many applications, a few authors have used 

ANN-based algorithms to evaluate ATC by making use of 

historical data. In paper [6], researchers have employed a 

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:smanjula845@gmail.com


Manjula S Sureban &  S.G. Ankaliki / IJEEE, 12(8), 287-294, 2025 

288 

multi-layer feed-forward neural network to evaluate the power 

transfer capability between two areas. Along with evaluation, 

enhancing the ATC of transmission lines is also an important 

issue to address in power system planning since the 

transmission lines operate near their limits. The enhancement 

of their power transfer capability to accommodate the 

additional power without violating the system limits is another 

challenge addressed in the literature. Various FACTS devices, 

viz. Thyristor Controlled Series Capacitor (TCSC) and Static 

Var Compensator (SVC) are used to enhance the ATC by 

modifying the transmission line reactance [7]. Various 

optimization techniques such as “Hybrid Grey Wolf Flower 

Pollination Algorithm”, TLBO [8], Gravitational search [9] 

and Adaptive Moth Flame optimization [10] are various 

optimization algorithms applied to determine and improve 

ATC of transmission lines with the aid of TCSC.  

Determination of ATC is a crucial task to be performed 

by the power system operator, especially in the scenario of an 

integrated complex power system with renewable penetration. 

To relieve network congestion and to carry out the power 

transaction economically, the determination of ATC becomes 

the primary objective. Also, the enhancement of ATC is 

another issue to be addressed when operating transmission 

systems securely and within safe limits. It is observed that 

many studies are carried out on ATC evaluation by 

considering the conditions in the system to be static. 

The variation in load, generation, system conditions, and 

contingency conditions must be considered for real-time 

monitoring. Also, the methods such as CPF and RPF are more 

time-consuming. With the aid of AI techniques, the 

computational speed and accuracy can be increased. This 

paper addresses the use of Artificial Neural Networks (ANN) 

to predict the values of ATC between pairs of buses for 

different percentage penetration of solar DG using the 

“Levenberg-Marquardt Algorithm” and “Scaled Conjugate 

Algorithm”. The results are compared with the DC-PTDF 

method.  

2. Methods 
The determination of ATC plays a vital role in assisting 

the power system operator in making decisions about 

economic transactions and relieving network congestion 

without disturbing the security and reliability of the system. 

Various approaches are discussed to evaluate ATC. There are 

four categories of ATC evaluation methods. (a) Optimal 

power flow-based methods (b) Sensitivity Factors Based 

Method (c) Repeated Power Flow (RPF) method (d) methods 

using probabilistic approach.  All these methods evaluate ATC 

of transmission lines based upon the existing system 

conditions. But artificial intelligence techniques such as 

regression models, fuzzy inference systems, expert systems, 

and Artificial Neural Networks (ANN) can be employed to 

evaluate ATC based upon the existing conditions and predict 

the ATC for future conditions. The important features of 

ANN, such generalization, learning from nonlinear data for 

future prediction, are used in this paper for the prediction of 

ATC in the presence of DGs by using forecasted load demand 

and forecasted generation from DG.   

2.1. Sensitivity Factors based Methods 

The sensitivity factors-based methods use the sensitivity 

factors of a system for a given topology to evaluate ATC. The 

“Power Transfer Distribution Factor” (PTDF) indicates “the 

incremental distribution of power flows corresponding to 

transactions between two areas/buses/regions” [11]. There are 

two ways of defining PTDF while evaluating ATC: AC-PTDF 

and DC-PTDF.  

The DC-PTDF use only active power flows during ATC 

computation, whereas the in-PTDF method considers both the 

active and reactive power flows. AC- The PTDF method is 

more accurate than DC PTDF; however, most researchers 

have used the DC-PTDF method as it involves simple 

computations and takes less time to implement. In this study, 

the DC-PTDF method is used.  

PTDF is “a fraction of the power from seller to buyer 

flowing through a given transmission line” [12]. 

Symbolically, PTDFij, mn represents the fraction of overall 

transactions from source bus ‘m’ to sink bus ‘n’ which transfer 

through a transmission line connecting buses ‘ii and‘j’. The 

PTDFij, mn, was evaluated using Equation (2). 

 

PTDFij,mn = 
Xim−Xjm−Xin+Xjn

xij
 (2) 

 

In Equation (2), xij indicates the transmission line’s 

reactance connecting the buses i and j. Xim, Xjm, Xin and Xjn 

are the elements present in the bus sensitivity matrix or 

reactance matrix derived by taking the inverse of the bus 

admittance matrix. The Transfer Capability (TC) of a line 

connecting i-j  by making use of PTDFs is evaluated from 

Equation (3)    

𝑇𝑖𝑗,𝑚𝑛 = 

{
 
 

 
 

Pij
max−Pij

0

PTDFij,mn
             ;    PTDFij,mn > 0  

−Pij
max−Pij

0

PTDFij,mn
       ;  PTDFij,mn < 0

   ∞                        ;     PTDFij,mn < 0       

 (3) 

 

In Equation (3), Pij
max  is the maximum power limit of the 

line connecting bus i and j,  Pij
0 is the real power that flows 

through a line between bus i and j for base case analysis. The 

line with minimum transfer capability is noted as the 

constraining branch, which decides the ATC of the system. 

Finally, the system’s ATC is computed using Equation (4). 
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ATC = min {Tij,mn} (4) 

2.2. ANN Models for Evaluation of ATC 

Artificial Neural Networks are “the systems consisting of 

a huge number of simple and highly integrated data processing 

elements”. The neural network’s architecture is defined based 

on Biological Neural Networks (BNN) [12]. ANNs are 

arranged in ‘layers’ and comprise a huge number of 

interconnected ‘nodes’ with an ‘activation function’. The 

training data, called ‘inputs are provided via the ‘input layer’. 

The input layer interacts with one or more ‘hidden layers’ 

where the real data processing takes place using ‘weighted’ 

connections. The hidden layer then interacts with the ‘output 

layer’ from which the outputs are derived. The fundamental 

configuration of an ANN is shown in Figure 1.  

 
Fig. 1 Fundamental configuration of Neural Network 

When input data along with the target pattern is provided 

to a neural network, it starts iteration with a random guess 

about the output, known as ‘predictions’. Then checks how far 

the predictions are from the actual one provided as ‘targets’ 

and accordingly makes adjustments in its connection weights 

[13]. This type of learning in ANN is called as supervised 

learning. Several supervised learning algorithms are proposed 

for weight adjustment based on the given training data. The 

Levenberg–Marquardt (LM) algorithm is one such efficient 

iterative supervised learning algorithm used for solving 

nonlinear least square problems. It is the most commonly used 

algorithm to choose a local minimum, which need not be a 

global minimum. This method finds the solution even if the 

initial solution is very far from the final minimum [14]. In the 

SCG algorithm, the weights and biases of the NNs are updated 

based on the calculated gradient and the scaled conjugate 

direction. SCG does not carry out a line search every iteration 

to find the optimal step size like LM algorithm [15].  

3. Case Study 
The IEEE 14 bus system is used as the test system in this 

study to predict ATC. This system consists of three PV buses, 

nine load buses, two transformers, and one shunt capacitor. To 

prepare a data set for training an ANN to predict ATC of said 

system for various loading conditions over a period of 24 

hours, a sample load profile shown in Figure 2 is considered. 

Here, the base load is 259MW, and for a period of 24 hours, 

the system’s load varies from 220MW to 280MW, which is 

approximately 70% to 108% of the base case. 105% of the 

base load is considered the peak load for analysis, which 

occurs at the 12th hour. In this study, solar DG is modelled as 

a real power generator [16] located at the optimal load bus. 

The MW generation from solar DG depends upon the solar 

irradiation. The MW power obtained from the photovoltaic 

system is given by Equation (5) 

Ppv = {
Ppvr × (

G

G0
)                0 ≤  G ≤ G0

Ppvr                        G0  ≤ G
 (5) 

 
Fig. 2 Sample load profile 
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The solar DG power rating is considered to be 20MW, 

which is nearly 10% of the total generation in the system. The 

solar irradiance rating is 1000 W/m2. The variation of solar 

irradiation in W/m2 for a period of 24 hours is shown in Figure 

3. The power output in MW from PV DG for 24 hours by 

considering the irradiance pattern as per Figure. 2 for different 

penetration levels is calculated using Equation (5) and 

tabulated in Table 1. 

 
Fig. 3 The variation of solar irradiation over a period of 24 hours 

Table 1. PV DG output for 24 hours 

Time  in 

hours 

Solar irradiation 

in W/m2 

Power output in MW for different penetration level in % 

10% 

DG rating = 

20MW 

20% 

DG Rating = 40 

MW 

30% 

DG rating 

= 60 MW 

40% 

DG rating    = 

80MW 

0 0 0 0 0 0 

4 0 0 0 0 0 

8 100 2 4 6 12 

12 800 16 32 48 64 

16 700 14 28 42 56 

20 100 2 4 6 8 

24 0 0 0 0 0 
 

The suitable location for placement of DG resulting in 

reduced losses is obtained by calculating the “Real Power 

Loss Reduction Sensitivity Factor (PLRSF)” shown in 

Equation (6).  

PLRSF =
Ploss with DG−Ploss base

PDGi
            (6) 

 

Here, PDGi is the real power rating of DG located at load 

bus i, Ploss base is the power losses in the system for the base 

case without DG, and Ploss with DG is the real power loss in the 

system after placing DG. The PLRSF value should always be 

negative as the real power losses in the system are to be 

reduced after placement of DG; otherwise, the DG integration 

into the system is not suggested. Therefore, the bus with the 

maximum negative PLRSF value among all other buses is 

chosen as a suitable location for DG placement. To find a 

suitable location of the DG, the PLRSF is calculated by 

inserting the DG in load buses one after the other during peak 

load conditions and at a unity power factor. The PLRSF are 

tabulated in Table 2. It is clear from the table that the 14th bus 

is the optimal location for the insertion of DG, as it results in 

the least power losses with the largest PLRSF 

Table 2. PLRSF with DG at load buses 

Load Bus 
For a 20MW-rated solar DG at the load bus 

Power loss in MW PLRSF Rank 

4 13.324 -0.1215 5 

5 13.613 -0.1034 8 

9 13.299 -0.1231 3 

10 13.288 -0.1238 2 
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11 13.478 -0.1119 6 

12 13.499 -0.1106 7 

13 13.319 -0.1218 4 

14 13.033 -0.1397 1 

4. Results 
Data set preparation is the first and most important step 

for training neural networks. The accuracy of the result 

obtained from the trained model depends on the quality and 

size of the data set used for training. In this work, having 

obtained the forecasted solar DG output in MW and load 

demand for a test system the available transfer capability is 

predicted by preparing data set using previous data by 

considering five input parameters viz. time in a day, load 

demand in MW, forecasted power generation from DG at 

optimal location in MW, source bus, and sink bus. The target 

set is prepared by evaluating ATC for all these input 

conditions using the PTDF method. The data is collected every 

five minutes for a duration of 24 hours with bus 2 as a source 

bus and 5 as a sink bus. This resulted in an input data set of 

289X5 and a target data set of 289X1. The same shall be 

created for any combination of source and sink bus. 

Diagrammatic representation of a trained neural network by 

considering 10 neurons in the hidden layer is shown in Figure 

4. Out of 289 data samples, 203 are used for training, 43 for 

validation, and 43 for testing. The neural network is trained 

using the LM and SCG algorithms to obtain the desired 

performance. The regression plots for both the algorithms are 

depicted in Figure 5 (a) and 5 (b). It is observed that the 

training performance is satisfactory for both the algorithms, as 

the regression values are very close to the expected regression 

value of 1. The training performances for both the algorithms 

are shown in Figure 6(a) and 6(b). It is observed that the LM 

algorithm takes 20 iterations and the SCG takes 38 iterations 

for processing. Processing time for the LM algorithm is almost 

equal to zero, as SCG takes 30 seconds.  

 
Fig. 4 Schematic of trained Neural Network 

 
Fig. 5(a) Regression plot for ANN using Levenberg–Marquardt 

algorithm 

 
Fig. 5(b) Regression plot for ANN using the scaled gradient conjugate 

algorithm 
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Fig. 6(a)Training Performance for the LM algorithm 

 
Fig. 6(b) Training performance for SCG algorithm 

The error histograms displayed in Figure 7 (a) and 7 (b) 

show that errors are very much closer to the zero error line for 

training, validation, and testing using the LM algorithm 

compared to that of SCG. The regression values and Mean 

Squared Errors (MSE) during training, validation and testing 

for both the algorithms are tabulated in Table 3. 

 

 
Fig. 7(a) Error histogram for the LM algorithm 
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Fig. 7(b) Error histogram for SCG algorithm 

Table 3. Metrics of LM and SCG algorithms 

Algorithm LM Algorithm SCG Algorithm 

Process/Metric Regression MSE Regression MSE 

Training 0.99479 0.0576161 0.993073 0.7802096 

Validation 0.99521 0.0358506 0.985163 1.29465 

Testing 0.99971 0.0444589 0.996674 4.119995 

 
After ensuring that the performance of the trained neural 

network is satisfactory, the model is deployed to predict ATC 

in MW from bus number 2 to bus number 5 for any other 

conditions. Here, two cases are considered to demonstrate the 

efficiency of the trained model.  

Case 1: 11:04 hours, Loading = 0.98.   

Solar DG in MW (Penetration level): 15MW (10%), 

30MW (20%), 45MW (30%), 60MW(40%).    

Case 2: 16:18 hours, Loading = 1.01%. 

Solar DG in MW (Penetration level): 13MW (10%), 

26MW (20%), 39MW (30%), 52MW(40%). 

Table 4 shows the predicted ATC values using the LM 

and SCG algorithms for case 1 and case 2. It is ensured that 

these data are not used for training. The results are also 

compared with the PTDF method. It is noted that the predicted 

ATC values using the LM algorithm are more accurate than 

those using SCG. It is also observed that DG penetration 

enhances ATC values. Here, the two algorithms, viz. LM and 

SCG used for training the neural network have resulted in 

good performance in terms of regression nearer to one and 

MSE nearer to zero. The evaluated ATC using these 

algorithms is accurate when compared with the PTDF method.  

The trained models can be further used to predict ATC 

during any other load conditions and with any other DG 

penetration level. 

Table 4. Predicted ATC values using LM and SCG algorithms 

Method 

ATC in MW for Case 1 for the DG 

penetration of 

ATC in MW for Case 2 for the DG 

penetration of 

10% 20% 30% 40% 10% 20% 30% 40% 

ANN-LM algorithm 28.67 33.16 48.57 60.1 24.06 34.56 41.28 50.25 

ANN- SCG algorithm 27.67 41.46 49.54 52.57 24.06 35.81 38.2 43.73 

PTDF method 28.344 37.635 46.668 55.461 24.053 32.414 40.5637 48.5157 

 

5. Conclusion 
The ATC prediction and interpretation are important to 

ensure network reliability and manage congestion problems in 

the presence of distributed generation at different penetration 

levels. This paper uses ANN techniques to predict ATC for 

varying load and DG penetration conditions. The two 

algorithms, viz. LM and SCG used for training the neural 

network have resulted in better performance in terms of 

regression nearer to one and MSE nearer to zero. The trained 

models can be used to predict ATC for any other load 
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conditions and DG penetration level. The proposed models 

can be further used in deciding the economic transaction at a 

given operating condition to improve the reliability and 

security of the power system by ensuring economic operation. 

Conventional methods to evaluate ATC can estimate only 

static values. The static ATC does not reflect the time-varying 

generation patterns and grid dynamics. The need for a 

dynamic ATC evaluation framework using time series 

approaches and the use of AI techniques for the evaluation of 

dynamic ATC would be the future scope of this work. 
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