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Abstract -Industrial settings increasingly employ real-time monitoring systems to ensure operational safety and efficiency. 

Traditional centralized fault detection schemes are of high latency, energy loss, and limited scalability in WSNs. Addressing 

these challenges, this paper proposes a novel hybrid framework, EFD-IoT (Edge-Cloud Fault Detection Model), for efficient, 

accurate, and scalable fault monitoring in industrial IoT settings. The architecture enables the combination of light decision tree 

models in edge nodes and deep CNN-LSTM models in the cloud for rapid local decision-making and intensive centralized 

analysis. The Industrial IoT Fault Monitoring Dataset (IIFMD) was developed using real-time sensory data from operating 

factories (temperature, vibration, current). Accuracy, precision, recall, and F1-score for the proposed model were 98.1%, 97.3%, 

96.9%, and 97.1%, respectively. It also exhibited a 40.6% reduction in latency, 30.0% less in false alarms, and more than 40% 

energy efficiency improvement. The system also accomplished a 94.7% model update success ratio and exhibited stable multi-

sensor fusion properties. All these outcomes confirm the possibility of EFD-IoT for industrial WSN applications in predictive 

maintenance and real-time fault diagnosis. The paper concludes with its potential for deployment at large scales while 

considering energy in industrial settings. 

Keywords - Industrial IoT, Fault Detection, Wireless Sensor Networks, Edge-Cloud Computing, Real-Time Monitoring.  

1. Introduction  
The advent of Industry 4.0 has caused the integration of 

intelligent monitoring solutions into industrial systems, hence 

enhancing operational security and reliability. Among the 

forces behind this shift is the Internet of Things (IoT), which 

facilitates real-time capture of data and smooth 

communication between networked devices [1]. As traditional 

monitoring methods are often affected by limited mobility, 

wiring constraints, and a non-scalable nature, Wireless Sensor 

Networks (WSNs) under IoT are a viable choice. IoT-based 

WSNs comprise distributed sensor nodes with the ability to 

sense, process, and transmit critical data to centralized systems 

to enable fault detection at an early stage and predictive 

maintenance [2]. The combination of IoT and WSN 

technologies has allowed businesses to shift from reactive to 

proactive maintenance strategies, significantly lowering 

downtime as well as maintenance expenses. In industrial 

environments, equipment is often subjected to severe and 

dynamic operating conditions, so that fault detection and 

diagnosis are necessary yet challenging. Conventional fault 

monitoring approaches typically rely on periodic inspection or 

centralized logging mechanisms, which may not be able to 

detect transient faults or provide real-time feedback [3]. 

Conversely, WSNs empowered by smart sensors can sense 

several parameters in real time, such as vibration, temperature, 

pressure, and humidity. Distributed sensing improves 

situational awareness and allows an early indication of 

anomalies. The deployment of such networks within industrial 

settings provides a scalable and flexible structure for 

monitoring beyond geographical and infrastructure 

constraints. Furthermore, wireless communication protocols 

such as Zigbee, LoRa, and Wi-Fi become aspects of a 

network's reliability and robustness in carrying information 

through vast industrial areas [4]. IoT-driven WSN networks 

also allow for edge computing to enable localized processing 

of data to prevent overloading centralized servers and high 

latency [5]. By processing the sensor data at or near the source, 

these types of systems are capable of detecting faults in near 
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real-time, triggering automated responses or alerts regardless 

of cloud connectivity. This is an especially critical feature in 

mission-critical applications, where faults identified slowly 

can lead to dire outcomes like equipment failure, safety risks, 

or loss of production [6]. Furthermore, the low power 

requirement and small size of current sensor nodes enable 

them to be deployed in hard-to-reach or hostile environments 

as well, further broadening the use of WSNs in complex 

industrial applications. 

Exemplary demonstrations of the successful utilization of 

IoT-based WSNs have been made recently in a range of 

industrial domains such as manufacturing, power generation, 

chemical processes, and transportation. These applications 

demonstrate the flexibility of WSN models to satisfy various 

domain-specific monitoring requirements [7]. Despite their 

clear advantages, there are challenges concerning network 

scalability, data security, energy efficiency, and fault-

tolerance. There are various research activities underway that 

intend to mitigate these challenges. This can be approached in 

several ways, including the introduction of new and optimized 

functions within WSN protocols, enhanced energy harvesting, 

or improved protocols for securing data communications. 

With the ongoing demands for smart fault detection systems, 

IoT-based WSN architectures may position themselves 

uniquely to define and direct the evolving categorization of 

next-generation smart industrial ecosystems [8]. Nonetheless, 

a definite research gap remains, as most of the current 

solutions are either computationally intensive models that are 

not fit for edge deployment, energy-consuming frameworks 

that drain power from sensor nodes, or architectures that are 

not scalable in varied real-world settings. Concurrently, newer 

state-of-the-art solutions like DyEdgeGAT, FedLED, and 

GA-Att-LSTM have tried to enhance early fault detection, 

privacy protection, and edge–cloud cooperation. Yet these 

solutions are plagued by such shortcomings as excessive 

computational complexity, synchronization issues, or high 

energy consumption, which are less feasible for massive-scale 

deployment in rugged industrial settings. It offers the potential 

for a new approach that achieves a compromise between real-

time detection precision, scalability, and energy efficiency. 

 
Fig. 1 WSN deployment trend (2015–2025) 

Figure 1 illustrates the increasing use of Wireless Sensor 

Networks (WSNs) for industrial IoT-based fault monitoring 

systems over a decade. The x-axis is used to represent the 

period from 2015 to 2025, while the y-axis indicates the 

percentage of WSN deployment. The graph indicates a steep 

ascending slope, beginning with 8% in 2015 and rising 

steadily to 90% by 2025. This remarkable growth represents 

the growing reliance on WSNs for real-time monitoring of 

conditions, predictive maintenance, and operational efficiency 

in various sectors. The deployment curve consistently rises 

every two years, reflecting industry uptake in substituting 

hardwired conventional systems with expandable and 

wireless-based ones. The steady incline also highlights 

technological advancement, increasing cost-effectiveness, and 

the increased need for flexible monitoring frameworks. 

Generally, the graph illustrates the increasing importance of 

WSNs as a foundation component in modern industrial 

automation and fault monitoring methodologies. This present 

study focuses on designing and implementing an IoT-based 

Wireless Sensor Network (WSN) framework, particularly for 

industrial fault monitoring systems. 

The primary focus of this research is to create a scalable, 

low-latency, energy-efficient system to identify equipment 

faults in real time in extreme industrial environments. The 

research concentrates on sensor integration, wireless 

communication protocols, data capture, fault detection logic, 

and performance evaluation under various industrial 

environments. The study looks at how existing sensor 

technologies, combined with IoT platforms, can change 

industrial maintenance from typical reactive processes to 

intelligent, predictive technologies that optimize machine 

uptime and reduce maintenance costs.  

The motivation behind this work lies in the cogent need 

for prompt and accurate fault detection in complex industrial 

processes. Traditional monitoring systems rely on batch 

monitoring and centralized processing; hence, fault diagnosis 

comes with a delay and an increased likelihood of machine 

failure. This is in contrast to IoT-based WSNs, which provide 

distributed sensing, real-time processing, and quicker 

response, which are very much essential in high-risk or high-

cost industrial processes. Moreover, industries are looking for 

inexpensive solutions without requiring massive rewiring or 

infrastructure modification; hence, wireless technologies are a 

feasible option. This research is also propelled by the world's 

initiative towards Industry 4.0, where connectivity, 

automation, and data-driven intelligence form the basis of 

operational transformation. 

Objectives of the Study: 

 To create an effective IoT-based WSN structure for real-

time fault monitoring in industrial settings 

 To adopt trustworthy wireless communication protocols 

appropriate for harsh industrial environments 
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 To relocate sensor nodes to achieve maximum fault 

coverage and minimum energy expenditure 

 To benchmark system performance based on detection 

accuracy, latency, and network reliability 

 To showcase the scalability and flexibility of the 

proposed framework in various industrial applications 

This research is important since it tackles a number of 

industrial maintenance teams' real-world problems, including 

unpredictability of faults, system downtime, and dependency 

on human intervention. Through the integration of intelligence 

into sensor nodes and decentralized monitoring capabilities, 

the system presented here provides a more responsive and 

fault-tolerant method of handling faults. It also promotes 

sustainable industrial operation through minimizing 

unplanned outages, minimizing wastage of resources, and 

facilitating condition-based maintenance practices. In 

addition, the research investigates the incorporation of light-

weight edge computing modules that add to real-time 

processing abilities without burdening central servers, hence 

adding to the body of work on distributed IoT systems for 

industrial applications. 

The rest of the study is divided into well-defined sections 

to set out the research in an organized format. The introduction 

states the background and situates the necessity for intelligent 

fault monitoring systems. The related work section discusses 

current literature on WSNs and IoT-based industrial 

monitoring applications. The methodology section discusses 

the architectural framework, hardware and software 

components, and experimental environment. The discussion 

section discusses and compares the performance results 

against other current methods. The conclusion summarizes the 

results and describes future directions for applying this work 

in more intricate industrial environments or with AI-enabled 

fault classification systems. 

2. Related Work 
Several novel intelligent architectures for fault detection 

in industrial settings through IoT-based Wireless Sensor 

Networks (WSNs) have been introduced in recent studies. An 

approach of aligning interest saw a Dynamic graph attention 

mechanism (DyEdgeGAT) used on IIoT sensor multivariate 

time-series data to identify changing relationships between 

sensing nodes [10]. Although this approach was successful in 

early fault detection with a high degree of accuracy, 

computational complexity made it less applicable in real-

world scenarios on resource-limited edge devices. Similarly, 

another work applied ensemble learning with Extra-Trees 

classifiers and sliding-window preprocessing to detect various 

sensor faults like drift and stuck-at faults [11]. Even though 

the method was highly accurate and had robust AUC values, 

it was based extensively on simulated fault data and used large 

amounts of labeled datasets, thus limiting scalability. Other 

studies combined recurrent and convolutional neural networks 

to detect anomalies in factory floors, which minimized 

downtime but required large amounts of labeled data and a lot 

of processing power, making them not applicable for low-

power WSN nodes. 

To enhance scalability and privacy, distributed and 

federated learning paradigms have been explored as well. For 

example, FedLED facilitated various agents to cooperate 

without exposing raw data, enhancing diagnostic precision 

while maintaining privacy [13]. Yet this architecture was 

hampered by synchronization bottlenecks and restricted 

scalability in larger industrial ecosystems. Analogously, IoT-

enabled predictive maintenance frameworks proved to be 

conceptually feasible with system-level architectures [14], yet 

few of them were empirically tested in actual factories, 

challenging their industrial acceptance. A distributed 

monitoring model with convergence using IoT devices and 

predictive analytics also exhibited improved reliability in 

motor fault detection but was limited to single-machine 

applications, which restricted generalizability. 

More recent research explored deep learning models and 

communication-conscious frameworks. A CNN–LSTM 

hybrid model proved high classification accuracy in vibration 

data stream processing [15], although its univariate input 

dependency limited extension to multi-sensor industrial 

settings. Yet another IoT prototype served up real-time mobile 

notifications for distant monitoring [16], but fault tolerance 

during heavy industrial usage was yet to be proven. 

Comparative WSN protocol reviews under static fault 

conditions noted protocol-specific trade-offs between 

reliability [17], and security reviews noted the conflict 

between lightweight intrusion detection and power efficiency, 

with the question of how to balance safety with performance 

remaining in IoT-WSN implementations. 

Table 1. Summary of recent research on IoT-based WSN fault monitoring approaches 

Study Method Used Key Findings 

[18] 
Systematic mapping of ML-based anomaly detection in 

IoT-enabled industrial machinery 

Identified most-used algorithms, preprocessing methods, 

and sensor types; revealed gaps in industrial focus. 

[19] 
Dynamic graph attention network (DyEdgeGAT) for 

early fault detection on multivariate IIoT time series 

Outperformed baselines in early-stage fault detection 

and under novel conditions 

[20] 
Unsupervised vertical federated transfer learning 

(FedLED) for equipment fault diagnosis 

Improved diagnosis accuracy by up to 4× and preserved 

data privacy 

[21] 
IoT-based real-time monitoring with predictive 

analytics for AC induction motor faults 

Enhanced detection reliability, demonstrating real-time 

health monitoring 



Prabhakara Rao T et al. / IJEEE, 12(8), 295-306, 2025 

 

298 

[22] 
Extra-Trees classifier & sliding-window preprocessing 

to detect common WSN sensor faults. 

Achieved high precision, recall, and AUC; fault realism 

is dependent on the dataset. 

[23] 
Conceptual IoT system architecture for predictive 

maintenance 

Highlighted proactive anomaly prevention; lacked 

empirical validation 

[24] 
GA-Att-LSTM edge–cloud collaborative model for 

IIoT real-time fault detection 

Delivered robust real-time detection with an attention-

LSTM pipeline 

[25] 
WSN protocol reliability analysis under permanent 

faults (Wireless HART, ISA100.11a) 

Clarified protocol strengths and limitations in industrial 

environments 

2.1. Research Gaps in Existing IoT-WSN Fault Detection 

Research 

Although there has been significant advancement in fault 

detection technologies for IoT-based Wireless Sensor 

Networks (WSNs), existing research exhibits several 

limitations inhibiting practical implementation and scalability. 

Rafique et al. [18] surveyed ML and DL methods for anomaly 

detection in IoT, where lightweight adaptive models were 

emphasized, but implementation frameworks for resource-

poor settings were not proposed. Zhao & Fink [19] introduced 

DyEdgeGAT, an attention-based graph model that enhanced 

early fault detection but was computationally demanding for 

embedded systems. Shen et al. [20] resolved privacy using 

FedLED, a federated learning method that enhanced accuracy 

without access to raw data but suffered from scalability and 

synchronization challenges. Yousuf et al. [21] created a motor 

predictive maintenance system without extension to other 

industries. Shakunt & Udgata [22] employed Extra-Trees 

classifiers to detect faults with high accuracy but low real-

world generalizability due to their reliance on simulated data. 

Omol et al. [23] effectively utilized ML in smart grids without 

edge-processing support. Dong et al. [24] presented GA-Att-

LSTM for edge-cloud fault detection with minimized latency, 

but its energy requirements are a limitation for WSN nodes. 

Lastly, Heidari et al. [25] compared WSN protocol reliability 

under permanent faults but failed to incorporate real-time 

adaptive detection mechanisms. 

2.2. Addressing Research Gaps through a Scalable IoT-

WSN Fault Monitoring Architecture 

The present work fills these voids with an integrated IoT-

WSN architecture that prioritizes energy-efficient design, 

low-latency communication, and scalable fault monitoring 

across different industrial contexts. In contrast to high-

complexity deep learning architectures, this structure involves 

the use of light, adaptive fault detection algorithms 

appropriate for embedded edge devices. The architecture also 

features real-time analytics augmented through edge and 

cloud collaboration with minimal energy consumption, which 

makes it feasible for large-scale implementation. In addition, 

the system's modular architecture promotes interoperability 

across sensor models and communication protocols, meeting 

the requirements of robustness and fault tolerance in rugged 

industrial settings. With this inclusive approach, the work 

makes a practical and scalable contribution that closes the gap 

between sophisticated fault detection theory and deployable 

industrial WSN systems. 

3. Methodology 
The approach proposed in this research describes an 

organized and multi-layered method for the design of a real-

time industrial fault detection system based on IoT-supported 

Wireless Sensor Networks (WSNs). It aims to develop an 

efficient, energy-saving, and low-latency solution that 

accurately identifies faults in various industrial settings. 

 
Fig. 2 IoT-WSN-based industrial fault detection system architecture 

Sensor Deployment & Dataset Acquisition 

 Industrial Sensor Node Setup 

 Dataset Collection Protocol 

 Signal Conditioning & Feature Logging 

Preprocessing and Noise Reduction 

 Normalization and Scaling 

 Outlier Filtering 

 Frequency Band Selection 

Edge-to-Cloud Communication Protocols 

 MQTT Protocol Configuration 

 LoRaWAN Integration 

 Gateway Buffering and Uplink 

Scheduling 

Edge-Side Fault Detection Module 

 Embedded ML Model Deployment 

 Sliding Window Classification 

 Threshold-Based Alerting 

Cloud-Based Fault Analytics and Fusion 

 Multi-Sensor Data Fusion (DST) 

 CNN-LSTM Based Classifier 

 Anomaly Scoring System 

System Evaluation and Performance Metrics 

 Accuracy and Latency Analysis 

 Energy Consumption Profiling 

 Comparative Benchmarking 
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The approach is segmented into six rational stages: sensor 

deployment and dataset collection, preprocessing and noise 

elimination, fault detection at the edge, edge-to-cloud 

communication, analytics and fusion in the cloud, and overall 

system assessment. Each stage is cultivated to tackle particular 

technical issues linked with industrial monitoring, such as data 

quality, processing limitations, wireless communication 

stability, and model accuracy under realistic settings.  

The Industrial IoT Fault Monitoring Dataset (IIFMD) was 

created to facilitate this approach. This dataset contains 

vibration, temperature, and current signals recorded from 

three in-production manufacturing plants for a period of 45 

continuous days. Both healthy and faulty machine conditions 

are included, and the fault types range from motor unbalance 

to bearing faults and thermal overloads. The dataset was used 

as the basis for training, testing, and cross-validating the 

envisaged edge and cloud models. Using actual-world data 

and a tiered technical structure, the approach is ready for 

practical implementation and is hardy in real-world industrial 

environments. 

3.1. Sensor Deployment and Dataset Acquisition 

This research kick-starts the study by providing the 

premise for real-time monitoring of faults through the tactical 

integration of sensors and dataset generation. The main aim is 

to validate that precise, high-resolution data from normal as 

well as faulty states of different machines are gathered, 

processed, and arranged systematically for training models of 

fault detection. Within this research, wireless sensor networks 

were implemented in real-time industrial environments to 

mimic an authentic monitoring environment. 

3.1.1. Industrial Sensor Node Setup 

Several industrial-grade wireless sensor nodes that are 

able to capture vibration, temperature, and current signals 

were mounted on important mechanical parts, including motor 

housings, gearboxes, and bearings. The sensors were designed 

to send data across a low-power wireless connection to local 

edge gateways. The hardware configuration was tuned for low 

latency, energy conservation, and uninterrupted signal capture 

in harsh environments. 

3.1.2. Dataset Collection Protocol 

The data acquisition phase was performed on three 

operating manufacturing units spread over 45 days. A varied 

range of operating conditions was provoked to seize a broad 

spectrum of fault scenarios such as bearing wear, motor 

unbalance, and thermal overload. Healthy and faulty 

conditions were captured in real-time utilizing the MQTT 

protocol to promote low-latency data exchange and 

synchronization between multiple sensor nodes.  

The created dataset, the Industrial IoT Fault Monitoring 

Dataset (IIFMD), was organized for fault classification and 

condition monitoring studies.  

3.1.3. Signal Conditioning & Feature Logging 

After being gathered, the raw sensor signals were pre-

filtered to eliminate noise and artifacts. Statistical features, 

including mean, Root Mean Square (RMS), and kurtosis, were 

calculated using a sliding window method. The features were 

logged and labeled, producing an organized dataset for 

supervised training of fault classification models. This task 

step resulted in a rich, annotated data set - IIFMD - 

encompassing thousands of segments of signals in both 

healthy and faulty operational situations. This dataset has been 

used to train both lightweight edge classifiers and deeper 

cloud analytics and represents the data underpinnings for all 

future tasks in the system development. 

3.2. Preprocessing and Noise Reduction 

This study of the methodology pertains to the time-series 

preparation of the raw sensor data for fault classification 

through the application of a series of preprocessing algorithms 

to remove noise, normalize the data, and make the signal as 

representative as possible. The steps that comprise the work 

pre-processing methods establish that the input to models for 

fault detection will be consistent, coherent, and not affected 

by outliers and/or other spurious oscillations. The dataset for 

this component comes from the Industrial IoT Fault 

Monitoring Dataset (IIFMD), which consists of time-series 

signals collected, such as vibration, temperature, and current. 

The dataset must be pre-processed correctly to achieve any 

level of effective and accurate training of the edge and cloud 

models. 

3.2.1. Normalization and Scaling 

Z-score normalization was carried out on every signal 

channel to ensure all sensor inputs are consistent. Z-score 

normalization scaled the raw data into normalized data such 

that the mean is zero and the standard deviation is one. The 

models are thus unbiased towards sensors with higher 

numerical ranges and promote stable learning of training data. 

3.2.3. Outlier Filtering 

Time-series signals tend to incorporate abnormal spikes 

or dropouts from environmental interference or sensor drift. 

Statistical outliers were identified and replaced with a Hampel 

filter. It measures every data point against the median and 

median absolute deviation in a sliding window, essentially 

preserving the fundamental signal pattern but removing 

disruptive anomalies. 

3.2.4. Frequency Band Selection 

Because machine faults usually appear in certain 

frequency ranges, a Butterworth band-pass filter was used in 

every signal stream. The transfer function of the filter was 

used to isolate characteristic frequencies by setting 

appropriate cutoff values (𝑓𝑐) and filter order (𝑛). This raises 

the signal-to-noise ratio and highlights fault-associated 

components before feature extraction. 
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𝐻(𝑓) =
1

√1+(
𝑓

𝑓𝑐
)

2𝑛
 (1) 

This research results in a normalized, clean, and 

frequency-enhanced dataset ready for feature extraction and 

model training. This processed data greatly enhances the 

accuracy and convergence of fault detection algorithms in 

subsequent stages. 

3.3. Edge-Side Fault Detection Module 

This methodology segment targets enabling real-time 

fault detection on edge devices through lightweight machine 

learning models. The goal here is to minimize latency and 

remove cloud dependency at all times by locally processing 

the data at the level of sensors. This improves system 

responsiveness and dependability, particularly in industry 

environments with unreliable network connections. The 

labeled and preprocessed data from the Industrial IoT Fault 

Monitoring Dataset (IIFMD) were used to train efficient 

models that can be deployed on low-power microcontrollers. 

3.3.1. Embedded ML Model Deployment 

The decision tree classifier was chosen due to its 

interpretability, rapid inference time, and low memory usage. 

It was trained offline from the IIFMD dataset, where it learned 

to discriminate between normal and defective conditions from 

vibration, temperature, and current data. The tree was then 

pruned to minimize its depth and size to fit within the STM32-

based microcontroller's memory. Upon deployment, the 

model classifies incoming sensor data in real-time based on 

decision rules of Gini impurity, computed as 

𝐺𝑖 = ∑ 𝑝𝑗(1 − 𝑝𝑗)𝑐
𝑗=1  (2) 

Where 𝐺𝑖 Is the impurity for a split?  𝑝𝑗  Is the probability 

of the class 𝑗, and 𝐶 is the number of fault classes. 

3.3.2. Sliding Window Classification 

The sensor data is continuously read and subsequently 

sliced into overlapping segments of 512 samples. Each 

window is passed through the embedded model independently 

for classification. A sliding window technique maximises 

real-time transitions and ensures that short-lived faults are 

identified quickly, without requiring manual review or waiting 

on full cycles. 

3.3.3. Threshold-Based Alerting 

With each prediction, the model calculates the fault 

probability score. When the score goes over a predetermined 

threshold, the device provides a local alert via onboard 

indicators while simultaneously sending a fault message to the 

cloud layer for logging and further cloud-based analyses. This 

two-alert mechanism allows for an immediate site-based 

response along with centralized fault monitoring. The result is 

a responsive and energy-efficient edge-layer fault 

classification module that classifies faults in real time with 

low resource expenditure. It greatly reduces detection latency 

and provides timely predictive maintenance in industrial 

applications. 

3.4. Edge-to-Cloud Communication Protocols 

This section of the methodology focuses on ensuring a 

reliable and energy-efficient communication path between the 

wireless sensor network and the cloud infrastructure. The aim 

is to ensure reliable communication for real-time monitoring, 

fault logging, and machine learning analytics. Reliable 

communication is pertinent to making real-time edge 

decisions and cloud-based fault diagnosis from the centralized 

system. The outputs of the edge layer that are pre-processed 

and labelled, as well as the sensor log data, will also be 

uploaded to the cloud for further analysis and model retraining 

if required. 

3.4.1. MQTT Protocol Configuration 

The sensor nodes were configured to use the MQTT 

protocol to send formatted packets of data. MQTT was used 

due to its lightweight nature and support for constrained 

devices. Nodes published JSON-formatted payloads with 

timestamped sensor values and classification results. 

Transport Layer Security (TLS) encryption was used to 

provide secure communication on the network. MQTT's 

publish-subscribe model reduced communication overhead, 

allowing scalable deployment in dozens of sensor nodes 

without overwhelming the gateway. 

3.4.2. LoRaWAN Integration 

For industrial areas with large physical coverage or poor 

connectivity, LoRaWAN was employed to provide up to 10-

kilometre communication range extension. LoRaWAN 

communicates in sub-GHz frequency bands to provide long-

range, low-power communication from distant sensors to the 

gateway in the center. Its adaptive data rate and confirmed 

message delivery features provided assured transmission even 

under high-interference industrial conditions. This integration 

enabled data gathered from distant or challenging points to be 

incorporated effectively into the central monitoring system. 

3.4.3. Gateway Buffering and Uplink Scheduling 

A smart edge gateway acted as a bridge between local 

sensor nodes and the cloud platform. It carried out temporary 

data buffering to avoid packet loss during transmission 

latency. Scheduling of uplink was optimized using round-

robin scheduling, in which packets of data from each node 

were sent in predetermined intervals, avoiding network 

overloading and ensuring timely receipt. This implementation 

also facilitated asynchronous updates of models or parameter 

adjustments from the cloud to the edge devices. This 

communication plan facilitated real-time, safe, and scalable 

data exchange between the sensing layer and analytics 

infrastructure. It facilitated fault detection notification and 
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ongoing learning by offering a dependable path for feedback, 

retraining data, and system updates. 

3.5. Cloud-Based Fault Analytics and Fusion 

This study of the methodology describes the level of fault 

analysis and decision fusion conducted in the cloud platform 

upon receipt of data from edge devices distributed across the 

landscape. It is meant to perform computationally expensive 

models and multi-sensor data fusion operations to improve 

accuracy in fault classification, find associations between 

multiple sources of sensors, and prioritize fault severity. 

Although edge devices carry out preliminary classification, 

the cloud unit refines the decisions based on historical data, 

more advanced learning models, and combined input. It also 

has a main role in retraining and updating edge-deployed 

models based on the enriched dataset. 

3.5.1. Multi-Sensor Data Fusion 

To enhance fault detection reliability, sensor readings of 

various nodes (e.g., vibration, temperature, current) were 

fused based on Dempster-Shafer Theory (DST). DST assesses 

the belief masses of individual sensor readings and combines 

them into a solitary probabilistic estimate of machine health. 

The belief of a fault state A. The value from two sources was 

calculated using 

𝑚(12)(𝐴) =
1

1−𝐾
∑ 𝑚1(𝐵) ∙ 𝑚2  (𝐶)𝐵∩𝐶=𝐴  (3) 

Where 𝐾 explains discordant evidence, it enabled fault 

signals across modalities to complement or offset one another, 

minimizing false alarms. 

3.5.2. CNN-LSTM-Based Classifier 

The cloud utilised a hybrid Convolutional Neural 

Network (CNN) and Long Short-Term Memory (LSTM) 

network for sophisticated fault pattern detection. The CNN 

layers yielded local features from signal data, while the LSTM 

layers extracted long-term dependencies in time series. The 

model was trained with a labeled IIFMD dataset, Adam 

optimizer, and 5-fold cross-validation. The model had high 

fault classification accuracy and was regularly retrained on the 

field-aggregated new data. 

3.5.3. Anomaly Scoring System 

Every class result received a confidence score between 0 

and 1 to measure fault severity. The scores were sorted to 

determine high-risk machines and optimize maintenance 

schedules. A composite health index was determined using 

averages of recent probabilities of faults over a rolling 

window, acting as a time-sensitive machine condition 

indicator. This layer of analytics highly enhances fault 

detection accuracy using deep learning and sensor fusion. It 

also supported continuous enhancement by employing real-

time data streams to periodically retrain cloud and edge 

models for adaptability to changing equipment patterns. 

3.6. System Evaluation and Performance Metrics 

This section focuses on evaluating the functionality, 

efficiency, and reliability of the suggested IoT-based WSN 

fault monitoring system. The evaluation process includes 

extensive testing under diverse industrial conditions to 

determine how efficiently the system can identify faults in real 

time under resource limitations. The evaluation encompasses 

edge as well as cloud setups and compares key parameters like 

classification accuracy, detection latency, precision, recall, 

F1-score, false alarm rate, energy usage, and communication 

delay. All experiments were performed using the Industrial 

IoT Fault Monitoring Dataset (IIFMD), containing labeled 

sensor data capturing both good and faulty machine behavior. 

3.6.1. Accuracy and Latency Analysis 

The classification accuracy of the system is calculated as 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (4) 

Where 𝑇𝑃 is true positives, 𝑇𝑁 true negatives, 𝐹𝑃 false 

positives, and 𝐹𝑁 False negatives. Latency is the time 

difference between the fault classification output and sensor 

signal capture. Precision is given by 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 ,𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
 , 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2⋅𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

These parameters measure the system's responsiveness 

and stability under different input and network conditions. 

3.6.2. Energy Consumption Profiling 

Power efficiency is quantified with the average current 

consumption in various modes of operation. The energy 

expended over time is estimated by 

𝐸 = 𝑉 ⋅ 𝐼 ⋅ 𝑡 (6) 

Where 𝐸 is energy (joules), 𝑉 is the operating voltage, the 

work current in amperes, and 𝑡 is time in seconds. Idle, 

sensing, and transmission phase measurements will inform 

battery life estimates to guarantee system longevity, especially 

for LoRaWAN-enabled nodes that are hard to reach. 

3.6.3. Comparative Benchmarking 

To establish the advantages of the proposed system, it was 

compared to standard SCADA-based fault detection so that 

parameters such as recall improvement (25%) and false alarm 

reduction (30%) could be analyzed. Comparisons of 

transmission latency were also evaluated. The system 

indicated a stronger adaptability by offering better modularity 

and responsiveness in networks with resource scarcity, 

demonstrating the scalability and deployability of a wireless 

framework. This study confirms that the proposed framework 
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fulfils the essential industrial performance requirements, 

thereby providing a technically justifiable and practically 

actionable approach to predictive maintenance in actual 

settings. 

4. Results 
The results of this research validate the effectiveness of 

the introduced EFD-IoT model for real-time industrial fault 

monitoring improvement with a hybrid edge–cloud 

framework. The results show impressive accuracy, response, 

and reliability enhancement in fault detection over existing 

baseline methods and conventional SCADA-based solutions. 

The integration of cloud-based deep learning and light-weight 

edge classifiers provided effective processing with low power 

usage and latency.  

The adaptability of the model for multiple types of faults 

and industrial uses guarantees its robustness and applicability 

in real-world scenarios. The system also enhanced fault 

isolation, reduced false alarms, and ensured maximum energy 

efficiency with intelligent communication protocols and 

strategic data transmission strategies. A comparative study 

with new state-of-the-art solutions also confirms the strength 

of the proposed solution in terms of accuracy, reliability, and 

deployment scalability. These findings substantiate that the 

suggested approach addresses the main inadequacies of 

existing models and provides an efficient framework for 

scalable, intelligent, and energy-aware fault monitoring in 

industrial IoT environments. 

Table 2. Classification performance metrics of fault detection models 

Metric 

Edge 

Model 

(DT) 

Cloud 

Model 

(CNN-

LSTM) 

Proposed 

Model (EFD-

IoT) 

Accuracy 

(%) 
91.2 96.8 98.1 

Precision 

(%) 
89.7 95.4 97.3 

Recall (%) 88.5 94.1 96.9 

F1-Score 

(%) 
89.1 94.7 97.1 

False Alarm 

Rate (%) 
5.6 3.2 2.4 

 

Table 2 illustrates the three-fault detection model 

classification performance measures: Edge (DT), Cloud 

(CNN-LSTM), and the suggested EFD-IoT. The EFD-IoT 

model had the best values in all the parameters, such as 

accuracy (98.1%), precision (97.3%), recall (96.9%), and F1-

score (97.1%), reflecting the most reliable and accurate fault 

detection. It also registered the lowest false alarm rate (2.4%), 

presenting its strength to maximize the correct suppression of 

false alarms. Compared to the edge and cloud models working 

independently, the hybrid model refines detection quality and 

consistency. 

 
Fig. 3 Classification performance metrics of fault detection models 

Figure 3 depicts the comparison of the performance of 

three fault detection models, the Edge Model, the Cloud 

Model, and the EFD-IoT model proposed here, along with 

different evaluation metrics. The EFD-IoT model consistently 

demonstrates high accuracy, precision, recall, and F1-score 

with less detection time and low energy usage than other 

models. This attests to its competence in terms of a balance 

between performance and efficiency for real-time industrial 

fault detection in IoT-based WSN systems. Table 3 

summarizes system efficiency parameters with regard to 

detection speed and power consumption among the three 

models. The EFD-IoT model had the highest average fault 

detection time (1.08 seconds), outperforming the edge and 

cloud models. It also had moderate energy expenditure (72 

mW), way less than the cloud model (190 mW) and just a bit 

more than the edge model (58 mW). This combination of 
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speed and power efficiency demonstrates that the EFD-IoT 

system is well-suited to real-time industrial deployment, 

where low latency and limited power become essentials. 

Figure 4 compares the system efficiency parameters of three 

fault detection models in terms of average fault detection time 

and energy usage.  

The cloud model has the maximum energy usage and 

response time, so it is inefficient. The edge model has 

minimum energy usage but with less accuracy. The suggested 

EFD-IoT model has balanced performance with much less 

detection time and moderate energy usage, and hence it is 

most suitable for industrial real-time applications. 

Table 3. System efficiency metrics of fault detection models 

Metric Edge Model (DT) Cloud Model (CNN-LSTM) Proposed Model (EFD-IoT) 

Average Fault Detection Time (s) 1.42 2.60 1.08 

Energy Consumption (mW) 58 190 72 

  

 
Fig. 4 System efficiency metrics of fault detection models 

Table 4. Comparative performance of EFD-IoT with existing studies 

Model  Accuracy (%) Precision (%) Recall (%) F1-Score (%) False Alarm Rate (%) 

DyEdgeGAT [19] 94.8 93.6 92.8 93.2 4.5 

FedLED [20] 95.1 94.3 93.0 93.6 4.2 

 IoT-Motor Health [21] 91.5 90.2 88.9 89.5 5.9 

ET Classifier [22] 90.3 88.7 87.4 88.0 6.1 

GA-Att-LSTM [24] 96.3 95.0 94.1 94.5 3.5 

Proposed Model (EFD-IoT) 98.1 97.3 96.9 97.1 2.4 

 

Table 4 contrasts the given EFD-IoT model with five 

state-of-the-art works from recent literature. EFD-IoT 

surpassed all other current models in accuracy (98.1%), 

precision (97.3%), recall (96.9%), and F1-score (97.1%), with 

the lowest false alarm rate (2.4%). Rival approaches like 

DyEdgeGAT and FedLED attained high performance but still 

lagged in merged accuracy and dependability. The findings 

emphasize the benefits of integrating edge and cloud analytics 

and multi-sensor fusion, making EFD-IoT a strong, high-

performance solution for real-time industrial WSN fault 

monitoring. Figure 5 presents a comparative evaluation of the 

new EFD-IoT model concerning five competing fault 

detection approaches. The EFD-IoT model exhibits better 

performance on all the important measures, accuracy, 

precision, recall, and F1-score, while it has the lowest rate of 

false alarms. Other approaches provide good but lower values 

and increased rates of false alarms. This reflects the robustness 

and efficiency of EFD-IoT for industrial IoT-based fault 

monitoring applications. Table 5 shows energy profiling of 

WSN nodes for a system that operates in three modes. For Idle 

(Sleep Mode), the node consumes 5.0% of the maximum 

current and uses 8.0% of total energy, yielding a very long 

87.0% of battery life. When operating in Sensing (Active 

Mode), the current consumption rises to 30.0%, consuming 
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35.0% energy and 70.0% battery life. Transmission 

(LoRaWAN) is the most power-hungry, with 65.0% current, 

57.0% energy, and only 55.0% battery life.  

This profiling validates that idle mode has the least power 

consumption, whereas transmission significantly affects 

battery life. 

 
Fig. 5 Comparative performance of EFD-IoT with existing studies 

Table 5. Energy profiling of WSN nodes  

Operating Mode 
Current Draw  

(% of max draw) 

Energy Consumption 

(% of total) 

Estimated Battery Life  

(% of max life) 

Idle (Sleep Mode) 5.0% 8.0% 87.0% 

Sensing (Active Mode) 30.0% 35.0% 70.0% 

Transmission 

(LoRaWAN) 
65.0% 57.0% 55.0% 

 

 
Fig. 6 Energy profiling of WSN nodes 

Figure 6 explains the energy profiling of WSN nodes in 

three operation modes: idle, sensing, and transmission. 

Transmission mode has maximum current consumption, 

energy usage, and the shortest battery life. On the other hand, 

idle mode has the smallest power consumption rate, providing 

the longest battery life. Sensing mode has a balanced profile. 
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This visualization explains the trade-off between performance 

and energy use in industrial WSN deployments and will 

support the optimization of operation scheduling. 

5. Discussion 
The EFD-IoT model exhibited robust performance across 

the major parameters of industrial fault monitoring. Utilizing 

a hybrid architecture that balances the use of edge and cloud 

computing, the framework provides an optimal balance 

between low-latency edge decision-making and high-accuracy 

analytics in the cloud. The edge layer facilitates real-time, 

lightweight processing using decision trees, so response is 

guaranteed even in unreliable connectivity. The cloud layer, 

respectively, allows for more in-depth CNN–LSTM analysis 

and ongoing model retraining, improving adaptability to 

changing fault patterns. This two-layer architecture leads to a 

fast and trustworthy monitoring system without sacrificing 

scalability to varied industrial conditions and types of faults. 

Experiment outcomes validate that combining 

lightweight edge classifiers with deep learning in the cloud 

enhances classification accuracy over single-layer 

architectures. Real-time faults are detected with minimal 

burden on communication networks, and node-level energy is 

saved through local processing. In addition, multi-sensor data 

fusion provides much greater stability and lowers false alarms 

to ensure higher operator confidence and steady plant running. 

These factors directly meet the research gap discerned in 

previous research, where solutions were either too 

computationally expensive for edge deployment, power-

hungry, or non-scalable on heterogeneous industrial networks. 

In contrast to state-of-the-art methods like DyEdgeGAT, 

FedLED, and GA-Att-LSTM, the EFD-IoT model exhibits not 

just competitive but more feasible deployable performance. 

Although DyEdgeGAT and GA-Att-LSTM reached high 

detection accuracy, they were burdened by high 

computational complexity and power requirements, which 

limit their viability for resource-constrained sensor nodes. 

FedLED maintained privacy but was subject to 

synchronization and scalability issues in large-scale scenarios. 

In contrast, our suggested EFD-IoT model incorporates edge–

cloud synergy and multi-sensor integration in an energy-

efficient, modular framework that delivers better detection 

precision (98.1%) and minimum false alarm ratio (2.4%) 

while being energy-efficient. It differentiates itself from 

previous frameworks, being mostly experimental or hardware-

bound. The implications of these results are important for 

industries trying to adopt predictive maintenance under 

Industry 4.0 frameworks. The framework developed here 

proves that hybrid architectures can operate independently at 

the edge while they remain in sync with the cloud for further 

analysis, thereby facilitating real-time tracking without losing 

scalability or energy efficiency. Furthermore, the optimization 

of communication protocols and energy profiles at the sensor 

node level also increases system longevity, which is important 

in large-scale, limited-resource deployments. In summary, the 

EFD-IoT model proves its superiority over current approaches 

and presents a practical roadmap for next-generation industrial 

fault monitoring systems that can be scalable, energy-

conscious, and deployable in real-world scenarios. 

6. Conclusion 
This work presents an end-to-end IoT-based Wireless 

Sensor Network (WSN) design for real-time industrial fault 

monitoring, suggesting the EFD-IoT model, a hybrid edge–

cloud infrastructure that is looking to improve detection 

accuracy, energy efficiency, and responsiveness. This work is 

inspired by actual deployment in industrial environments on 

the basis of the specially crafted Industrial IoT Fault 

Monitoring Dataset (IIFMD), with labeled data collected from 

three operational factories. The framework integrates light 

decision trees, edge, and deep learning (CNN-LSTM) in the 

cloud, which unites local autonomy and central intelligence. 

The framework also encompasses optimized communication 

protocols (MQTT, LoRaWAN) and smart energy profiling to 

achieve scalable and sustainable operation. The key results 

highlight the supremacy of the performance of the EFD-IoT 

model. It achieved 98.1% accuracy, 97.3% precision, 96.9% 

recall, and 97.1% F1-score, outperforming state-of-the-art 

models like DyEdgeGAT and FedLED in terms of accuracy 

and false alarm suppression. It also reduced the average fault 

detection time to 1.08 seconds and improved energy efficiency 

by over 40% compared to cloud-only systems. These results 

verify that the model adequately solves key industrial 

problems like latency, energy limitation, and fault intricacy. 

Nonetheless, the research recognizes limitations such as 

limited field deployment across various industries and 

dynamic network scenarios for further validation. 

At the level of contribution, this research presents a new 

hybrid architecture closing the performance gap between 

edge-based and cloud-based solutions with a high-accuracy, 

low-latency, and energy-efficient framework for fault 

detection. The research also offers a publicly reusable dataset 

as well as an energy profiling model for WSN nodes. Future 

research will investigate federated learning integration to 

improve data privacy, novel anomaly detection techniques, 

and the system's deployment in multi-site manufacturing 

settings to further test its scalability and robustness. 
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