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Abstract - For 5G aerial base station (UAV-BS) networks to have a smooth and dependable handover, human trajectory 

prediction is crucial. Although the majority of research focuses on individual architectures rather than hybrid approaches, deep 

learning models such as SimpleRNN, GRU and LSTM demonstrated potential in modeling sequential data. There are currently 

few comparative studies of hybrid designs, especially when dropout regularization is used. The SimpleRNN-Dropout-LSTM-

Dropout model produced the best results out of all of them after 50 epochs of training with Tanh activation, Adam optimizer, 

learning rate of 0.001, 64 hidden units, and batch size of 32. With little training and validation loss (0.0007 each), it recorded 

the lowest errors across all metrics: MSE (0.0003), MAE (0.0146), ADE (0.0207), FDE (0.0434), RMSE (0.0168), and MAPE 

(0.0157). These results demonstrate how well hybrid deep recurrent networks - in particular, SimpleRNN-LSTM combinations - 

perform in accurately predicting short-term human trajectories. 

Keywords - Coordinate, Deep Learning, Hybrid, Human, Trajectory Prediction. 

1. Introduction  
In a variety of applications, including intelligent tracking 

systems by anticipating suspicious behavior [2], reducing the 

frequency of user handovers in 5G networks [3], and safe 

navigation and collision avoidance in self-driving cars and 

mobile robots [1], human trajectory prediction is essential. In 

the context of mobility management in telecommunication, 

trajectory prediction is increasingly important for improving 

handover performance, especially in 5G networks as users 

move rapidly between small, densely deployed base stations. 

Frequent and inefficient handovers can degrade network 

quality and user experience. However, because human motion 

is nonlinear, dynamic, and even surprising, trajectory 

prediction is still difficult. Recurrent Neural Networks 

(RNNs), a recent development in deep learning, have 

demonstrated significant promise in modeling time-series 

data, including human trajectories [4]. The ability to learn 

temporal correlations has been demonstrated for the Long 

Short-Term Memory (LSTM) [5], Gated Recurrent Units 

(GRU) [6], and SimpleRNN designs. However, choosing the 

best architecture and component combination for trajectory 

prediction is still up for debate, particularly when it comes to 

striking a balance between training effectiveness and 

prediction accuracy. While some research has investigated 

more intricate designs, including attention processes [38] or 

graph-based models [7], others have suggested employing 

standalone LSTM [5] or GRU [6] models for trajectory 

prediction. The systematic comparison of hybrid recurrent 

models, which incorporate several RNN variations and 

dropout layers to improve generalization and robustness, has 

received less attention. This paper compared six hybrid deep 

learning architectures developed for predicting a single human 

trajectory consisting of different sequences of RNN layers, 

such as SimpleRNN, LSTM, and GRU, integrating dropout 

regularization. The models are trained and evaluated on 

normalized coordinate sequences under two epoch conditions 

(50 and 500), and their performances are assessed using 

multiple evaluation metrics, including MSE, MAE, ADE, 

FDE, RMSE, and MAPE. The combination of SimpleRNN-

Dropout-LSTM-Dropout, which shows the novelty of this 

research, was trained for 50 epochs and yielded the lowest 

error rates across all measures, according to simulation 

findings. The rest of the paper is organized as follows. Section 

2 describes the related works of human trajectory prediction, 

and Section 3 outlines the methodology used for conducting 

the research, including dataset generation, data normalization, 

sequence creation, and the evaluation metrics used. Section 4 

presents experimental results and performance comparisons, 

and Section 5 concludes the paper with key findings and future 

work directions.  

2. Related Works 
Numerous sectors, such as smart cities and 

telecommunications, utilize trajectory prediction in their 

applications in order to understand behavioral patterns and 

provide real-time responses. Conventional methods such as 
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Hidden Markov Models (HMMs) [40], Kalman filters [41], 

and ARIMA [42] were among the first approaches that offered 

simple and effective processes for predicting trajectories. 

However, conventional methods commonly struggle to adapt 

to real-world environments, which consist of complex 

scenarios such as dense urban mobility or highly dynamic 

environments. 

The conventional method of predicting trajectory was 

upgraded with the utilization of data-driven, machine learning 

approaches such as Random Forest (RF) [43], Gaussian 

Processes [44], and Support Vector Machines (SVM) [45] to 

process nonlinear patterns in both vehicle and human 

trajectories. However, these models commonly require 

features that are specifically made and are unable to scale 

efficiently to long sequential data. Due to this limitation, Deep 

Learning (DL) models were developed and adopted for 

predicting trajectories that are capable of learning temporal 

dependencies and spatial correlations directly from raw 

datasets. 

 

Among DL methods, Recurrent Neural Networks (RNNs) 

and the upgraded versions, such as Gated Recurrent Unit 

(GRU) and Long Short-Term Memory (LSTM), have 

interested multiple researchers in predicting trajectories due to 

their capabilities of capturing temporal correlations in 

sequential data [3, 5, 38]. Multiple research studies have been 

conducted applying these models for predicting pedestrian 

trajectory, vehicle path prediction, and UAV trajectory 

prediction. Among the three models, LSTM-based models 

have shown greater accuracy in crowd trajectory prediction, 

while GRU-based approaches have been preferred for faster 

convergence and minimum computational cost applications. 

 

In order to enhance prediction accuracy, hybrid-based 

deep learning designs were proposed, advancing single-model 

architectures. CNN-LSTM [11] was developed to predict the 

surrounding vehicle trajectories, Social-Grid LSTM [12] to 

forecast pedestrian trajectories for intelligent driving systems 

applications, Knowledge Graph Convolutional Network 

(KGCN)-LSTM [13] for predicting the trajectory of a vehicle 

to enhance the transportation system, and Time-to-Collision 

(TTC)-SLSTM [14] for forecasting human trajectories in 

highly dense scenarios.  

 

Trajectory prediction has also attracted researchers in 

wireless communication systems, especially for UAV-assisted 

networks and 5G handover management. By predicting User 

Equipment (UE) mobility patterns, handover algorithms that 

integrate trajectory predictions minimize handover latency, 

lower the likelihood of failure, and enhance Quality of Service 

(QoS) [8, 9]. Trajectory knowledge makes it possible to 

optimize resource allocation, minimize interference, and 

maintain uninterrupted connectivity in automotive and UAV 

communication systems [10]. Using Kalman filters, Markov 

models, or LSTM-based prediction, a good deal of research 

has investigated trajectory-aware handovers; however, the 

majority concentrates on large-scale or vehicular mobility 

rather than the fine-grained movement of individual humans. 

 

Two significant gaps still exist in spite of these 

advancements. First, there is little comparative analysis 

among hybrid recurrent architectures; most of the work that 

has already been done focuses on either single-architecture 

models or more specialized designs (such as social interaction 

modeling). Despite the potential for more generic solutions for 

a variety of mobility contexts, there are few systematic 

assessments of hybrid RNN configurations that combine 

LSTM, GRU, and SimpleRNN with regularization processes 

like dropout. Second, although a lot of research has been done 

on predicting the mobility of vehicles and unmanned aerial 

vehicles, comparatively less has been done on forecasting the 

trajectory of a single human, which is crucial for applications 

like customized handover optimization in networks of aerial 

base stations. 

 

By comparing six hybrid RNN-based designs that 

incorporate LSTM, GRU, and SimpleRNN layers with 

dropout regularization, this paper fills in these research gaps. 

In order to determine the best architecture for precise single-

human trajectory prediction, the models are evaluated across 

a variety of error metrics and training settings. This has 

obvious implications for predictive-aware handover methods 

in UAV-assisted wireless networks. 
 

3. Methodology 
This Section describes the methodology utilized for 

producing this research, consisting of coordinate generation, 

where a single user trajectory in a scenario of overlapping 

signal coverage between two aerial base station was 

generated; the data normalization and sequence generation 

section, where the data is normalized, scaled, and inserted into 

a function for generating a sequence, the building of six hybrid 

DL models for predicting trajectory; and the evaluation 

metrics for evaluating the prediction accuracy. 

3.1. Coordinate Generation 
For predicting the pedestrian trajectory, the coordinates 

were generated using the Python programming language to 

produce a single human movement from a starting point to the 

end point. In this case, a scenario of two aerial base stations 

(UAV-BS) that produce 5G signal coverage to humans on the 

ground overlaps to show a handover region between the 

overlapping coverage.  

Figure 1 below shows the illustration of the scenario 

depicting the serving aerial base station (UAV-BS1) in a green 

circle, the target aerial base station (UAV-BS2) in a red circle, 

the starting point of the user in a black dot, the movement of 

the user in a blue dot, and the endpoint of the user in a red dot. 

The radius of coverage at both aerial base stations (UAV-BS) 

is 1 km. When generating the user coordinate, the starting 
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point starts at (-500, 0) and ends at (550, 100) with an iteration 

of 1000 points using Python’s Numpy linspace function. The 

single user coordinate generated is then saved into a CSV file 

using Python’s Pandas library to be inserted into the hybrid 

DL model for the trajectory prediction process. 

 
Fig. 1 Scenario of a single user movement from the starting point to the 

endpoint 

3.2. Data Normalization and Sequence Creation 
Before inserting the coordinates into the hybrid DL 

model, the coordinates will first go through the normalization 

process. The CSV file containing the single user coordinates 

is converted into an array using Python’s Numpy module with 

the shape (no. of samples, 2). Then, using Python’s Scikit-

Learn MinMaxScaler was initialized for scaling the data to be 

in the range of [0,1], based on the minimum and maximum of 

each feature (e.g x and y coordinates).  

The scaler is fit to the data and transforms it. The 

MinMaxScaler fit_transform function consists of fit, which 

computes the minimum and maximum values of the 

coordinates, and transform, which scales all values to the 

range [0,1] using the formula in Equation (1) [15]. 

x'=
𝑥−𝑥min

𝑥max−𝑥min
 (1) 

The output from the MinMaxScaler consists of 

coordinates that are normalized. Data normalization is 

important before feeding the data into machine learning 

models, especially those sensitive to the scale of input data, 

such as neural networks. There are several key reasons for 

implementing data normalization, such as improving the 

model accuracy [16], ensuring data consistency and 

interpretability [17], and enhancing computational efficiency 

[18]. Once the data has been normalized, it is then inserted into 

the function for creating sequences. Trajectories are time-

ordered data; thus, predicting a single future point ignores how 

past and present positions influence future movement.  

These dependencies are learned by sequence-based 

models like RNN, LSTM, and GRU, which produce 

predictions that are more realistic and accurate [19-21]. 

3.3. Hybrid DL Model Building 
In this Section, the hybrid DL model was built using 

Python’s Tensorflow Keras layers module, which consists of 

six combinations of RNN-based models such as SimpleRNN, 

LSTM, and GRU. Figure 2 below shows the combination of 

different DL models, and Table 1 shows the configuration for 

each of the hybrid models. Figure 2(a) consists of Model (0) 

and Model (1) with a combination of LSTM-Dropout-LSTM-

Dropout, SGD optimizer, and a learning rate of 0.1. Figure 

2(b) shows Model (2) and Model (3) with a combination of 

SimpleRNN-Dropout-LSTM-Dropout, the Adam optimizer, 

and a learning rate of 0.001. Figure 2(c) shows Model (4) and 

Model (5) containing SimpleRNN-Dropout-LSTM-Dropout 

with SGD optimizer and a learning rate of 0.001. Figure 2(d) 

displays Model (6) and Model (7) with a combination of GRU-

Dropout-LSTM-Dropout, SGD optimizer, and a learning rate 

of 0.001. Figure 2(e) displays Model (8) and Model (9) with 

LSTM-Dropout-GRU-Dropout, SGD optimizer, and a 

learning rate of 0.001. Figure 2(f) displays Model (10) and 

Model (11) with a combination of LSTM-Dropout-

SimpleRNN-Dropout, an SGD optimizer, and a learning rate 

of 0.001. 

Layer 

(type) 

Output Shape 

LSTM (None, 10, 64) 

Dropout (None, 10, 64) 

LSTM (None, 64) 

Dropout (None, 64) 

Dense (None, 2) 
(a) Model (0) and Model (1) 

Layer 

(type) 

Output Shape 

SimpleRNN (None, 10, 64) 

Dropout (None, 10, 64) 

LSTM (None, 64) 

Dropout (None, 64) 

Dense (None, 2) 
(b) Model (2) and Model (3) 

Layer 

(type) 

Output Shape 

Simple RNN (None, 10, 64) 

Dropout (None, 10, 64) 

LSTM (None, 64) 

Dropout (None, 64) 

Dense (None, 2) 
(c) Model (4) and Model (5) 

Layer 

(type) 

Output Shape 

GRU (None, 10, 64) 

Dropout (None, 10, 64) 

LSTM (None, 64) 

Dropout (None, 64) 

Dense (None, 2) 
(d) Model (6) and Model (7) 

Layer 

(type) 

Output Shape 

LSTM (None, 10, 64) 

Dropout (None, 10, 64) 

GRU (None, 64) 

Dropout (None, 64) 

Dense (None, 2) 
(e) Model (8) and Model (9) 

Layer 

(type) 

Output Shape 

LSTM (None, 10, 64) 

Dropout (None, 10, 64) 

Simple RNN (None, 64) 

Dropout (None, 64) 

Dense (None, 2) 
(f) Model (10) and Model (11) 

Fig. 2 Combination of DL model 

 

Table 1. Configuration for a combination of DL model 

DL. 

No. 
Epoch Optimizer L. Rate 

Hidd. 

Units 

Batch 

Size 

0 50 SGD 0.1 64 32 

1 500 SGD 0.1 64 32 
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2 50 Adam 0.001 64 32 

3 500 Adam 0.001 64 32 

4 50 SGD 0.001 64 32 

5 500 SGD 0.001 64 32 

6 50 SGD 0.001 64 32 

7 500 SGD 0.001 64 32 

8 50 SGD 0.001 64 32 

9 500 SGD 0.001 64 32 

10 50 SGD 0.001 64 32 

11 500 SGD 0.001 64 32 

 
3.4. Evaluation Metrics 

This Section discusses the evaluation measures used to 

assess the accuracy of the prediction. Equation (2) illustrates 

Mean Absolute Error (MAE), a commonly used metric for 

evaluating the precision of prediction models by measuring 

the average absolute differences between expected and actual 

values. When compared to other error metrics such as Mean 

Squared Error (MSE) and Root Mean Squared Error (RMSE), 

it is especially valued for its interpretability [22].  

Among its many uses, MAE was used to assess models 

that predicted rice production based on economic activity and 

population increase [23]. In deep learning, MAE has also been 

used as a loss function and has shown benefits over MSE, 

especially when dealing with non-Gaussian errors [24]. 

MAE=
1

𝑛
∑ (𝑦true,i − 𝑦pred,i)
𝑛
i=1  (2) 

Mean Squared Error (MSE), as shown in Equation (3), is 

a statistical measure that quantifies the average squared errors, 

which are the differences between estimated and actual values. 

The author(s) in [25] defined MSE as the expectation of the 

squared deviation of an estimator from the true parameter 

value. MSE measures how close an estimator is to the true 

value, indicating the quality of the estimation and prediction 

process. Predicted coordinates are denoted as 𝑦𝑖
pred

, the actual 

coordinates are denoted as 𝑦𝑖
true and the total data points is 

depicted as n.  

MSE=
1

𝑛
∑ (𝑦true,i − 𝑦pred,i)

2𝑛
i=1  (3) 

The Root Mean Squared Error (RMSE) can be measured 

using Equation (4) and is a widely utilized metric for 

quantifying the differences between predicted values 

generated by a model and the actual observed values. It is a 

popular option utilized in multiple applications, such as 

machine learning and structural dynamics, because it works 

especially well in situations where a Gaussian error 

distribution is expected [26, 27]. RMSE is calculated as the 

square root of the average of the squares of the errors, 

providing a measure that emphasizes larger errors due to the 

squaring process, and is often compared with the MAE. While 

RMSE is optimal for Gaussian errors, MAE is better suited for 

Laplacian error [28, 29]. This distinction suggests that neither 

metric is universally superior; their effectiveness depends on 

the specific error distribution. 

RMSE=√(MSE)  (4) 

Mean Absolute Percentage Error (MAPE), as shown in 

Equation (5), is a commonly used metric to measure the 

accuracy of prediction or regression models. MAPE is 

calculated as the average of the absolute percentage errors 

between predicted and actual values. For each data point, the 

absolute error is divided by the actual value, and the results 

are averaged over all data points [30, 31]. Some MAPE 

advantages are scale-independence, which can be used to 

compare forecast accuracy across different datasets because it 

is expressed as a percentage [32], and the ease of 

interpretation, where decision-makers can easily understand 

the magnitude of errors in percentage terms [33]. 

MAPE=
1

𝑛
∑ (

𝑦true,i−𝑦pred,i

𝑦true,i
) ∗ 100𝑛

i=1  (5) 

The Average Displacement Error (ADE), which 

calculates the mean difference between projected and actual 

positions across all time steps or data points in a sequence or 

dataset, is a frequently used statistic to assess the accuracy of 

displacement predictions or measurements in a variety of 

domains. It is widely used to assess the performance of models 

in tasks like trajectory prediction and displacement sensing 

[34, 35]. For the calculation, ADE is computed as the average 

of the Euclidean distances between each predicted point and 

its corresponding ground truth point [36] as shown in Equation 

(6). 

ADE=
1

𝑁
∑ √((𝑥true − 𝑥pred)

2
+ (𝑦true − 𝑦pred)

2
)𝑁

i=1  (6) 

Final Displacement Error (FDE) in Equation 33 shows a 

calculation that determines the distance between the actual 

endpoint and the prediction endpoint at a particular predicted 

time. It is widely used to evaluate the accuracy of models that 

predict movement or paths, such as in autonomous vehicles or 

pedestrian tracking [37]. 

FDE=√((𝑋true − 𝑋pred)
2
+ (𝑦true − 𝑦pred)

2
) (7) 

4. Results and Discussion  
4.1. Error Performance and Losses For Different 

Combinations of DL Models 
In this Section, the error performance and losses for 

different combinations of DL models are discussed 

thoroughly. The full results for all six hybrid DL models are 

shown in Table 2.  
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Table 2. Error performance and losses for hybrid DL models with a linearly generated dataset 

Model No. Epoch Val_Loss Train_loss MSE MAE ADE FDE RMSE MAPE 

0 50 0.0888 0.0203 0.1895 0.4326 0.6124 0.7208 0.4353 0.4787 

1 500 0.0295 0.0077 0.004 0.063 0.0896 0.1282 0.0651 0.0696 

2 50 0.0007 0.0007 0.0003 0.0146 0.0207 0.0434 0.0168 0.0157 

3 500 0.0002 0.0002 0.0005 0.0202 0.0285 0.0518 0.0219 0.0219 

4 50 0.0107 0.0048 0.0497 0.2183 0.3093 0.4185 0.2229 0.2401 

5 500 0.0039 0.0023 0.0205 0.1377 0.1982 0.2754 0.1434 0.1512 

6 50 0.1075 0.0244 0.2015 0.4465 0.6315 0.7436 0.4489 0.4941 

7 500 0.0032 0.0021 0.0057 0.0741 0.1049 0.1441 0.0757 0.0815 

8 50 0.0992 0.0242 0.2036 0.4478 0.6347 0.7468 0.4512 0.4955 

9 500 0.0029 0.0021 0.0090 0.0916 0.1323 0.1704 0.0947 0.1010 

10 50 0.0087 0.0107 0.0264 0.1546 0.2271 0.2899 0.1625 0.1705 

11 500 0.0014 0.0030 0.0064 0.0785 0.1111 0.1539 0.0803 0.0863 

 

 
Fig. 3 Error performance for DL models with 50 epochs 

 
Fig. 4 Losses for DL models with 50 epochs
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The error performance and loss performance for 50 

epochs were plotted using the scatter-line plotting method, as 

shown in Figure 3 for error performance and Figure 4 for loss 

performance. For 50 Epochs, the best model with the lowest 

error in terms of MSE, MAE, RMSE, ADE, FDE, and MAPE 

is the 2nd model (SimpleRNN-Dropout-LSTM-Dropout) with 

RMSE of 0.0168, MAE of 0.0146, MSE of 0.003, ADE of 

0.0207, FDE of 0.0434, and MAPE of 0.0157, while, the 

poorest model performance is the 8th model (LSTM-Dropout-

GRU-Dropout) with RMSE of 0.4512, MAE of 0.4478, MSE 

of 0.2036, ADE of 0.6347, FDE of 0.7468, and MAPE of 

0.4955, as shown in Figure 3 below. For the evaluation of 

losses, the lowest training loss and validation loss go to the 2nd 

model (SimpleRNN-Dropout-LSTM-Dropout) with training 

loss of 0.00069401 and validation loss of 0.000062976, while 

the highest loss goes to the 6th model (GRU-Dropout-LSTM-

Dropout) with training loss of 0.0244 and validation loss of 

0.1075. In conclusion, the best model in terms of minimum 

error and losses goes to the 2nd model (SimpleRNN-Dropout-

LSTM-Dropout).  

The error performance and loss performance for 500 

epochs were plotted using the scatter-line plotting method, as 

shown in Figure 5 for error performance and Figure 6 for loss 

performance. For 500 epochs, the lowest error in terms of 

MSE, MAE, RMSE, ADE, FDE, and MAPE is the 3nd model 

(SimpleRNN-Dropout-LSTM-Dropout) with MSE of 0.0005, 

MAE of 0.0202, RMSE of 0.0219, ADE of 0.0285, FDE of 

0.0518, and MAPE of 0.0219, while, the poorest model 

performance is the 5th model (SimpleRNN-Dropout-LSTM-

Dropout) with MSE of 0.0205, MAE of 0.1377, RMSE of 

0.1434, ADE of 0.1982, FDE of 0.2754, and MAPE of 0.1512, 

as shown in Figure 5 below.

 

 
Fig. 5 Error performance for DL models with 500 epochs 

 
Fig. 6 Losses for DL models with 500 epochs
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For the evaluation of losses, the lowest training loss and 

validation loss go to the 3rd model (SimpleRNN-Dropout-

LSTM-Dropout) with training loss of 0.00019618 and 

validation loss of 0.00022697, while the highest loss goes to 

the 1st model (LSTM-Dropout-LSTM-Dropout) with training 

loss of 0.0077 and validation loss of 0.0295. In conclusion, the 

best model in terms of minimum error and losses goes to the 

3rd model (SimpleRNN-Dropout-LSTM-Dropout). 

Table 3 shows the hybrid models that have the lowest 

error and losses, showing the 2nd model (SimpleRNN-Dropout-

LSTM-Dropout) at 50 epochs and the 3rd model (SimpleRNN-

Dropout-LSTM-Dropout) at 500 epochs. When comparing the 

two models, it can be seen that the 2nd model has the lowest 

error in terms of MSE of 0.0003, MAE of 0.0146, ADE of 

0.0207, FDE of 0.0434, RMSE of 0.0168, and MAPE of 

0.0157. 

Table 3. Best combination of DL models in terms of error performance and losses 

Model No. Epoch Val_Loss Train_loss MSE MAE ADE FDE RMSE MAPE 

2 50 0.0007 0.0007 0.0003 0.0146 0.0207 0.0434 0.0168 0.0157 

3 500 0.0002 0.0002 0.0005 0.0202 0.0285 0.0518 0.0219 0.0219 

Table 4. Error performance and losses for the 2nd model with the UCY-ZARA02 dataset 

Model No. Epoch Val_Loss Train_loss MSE MAE ADE FDE RMSE MAPE 

2 50 0.0015 0.0006 0.0029 0.0425 0.0711 0.1236 0.0537 0.0452 

 
Table 5. Comparison of ADE and FDE between the 2nd model (SimpleRNN-dropout-LSTM-dropout) and [38] 

 2nd Model ((SimpleRNN-Dropout-LSTM-Dropout) [38] 

ADE 0.0711 0.4827 

FDE 0.1236 0.7099 

 

4.2. Comparative Analysis with State-of-the-Art Methods 

The 2nd model (SimpleRNN-Dropout-LSTM-Dropout) is 

then compared with other researchers’ models using a similar 

dataset to that used by the researcher. The comparison 

research is based on [38], which uses Interaction-Aware 

LSTM (IA-LSTM) to predict pedestrian trajectory, focusing 

on accurately recreating complex human-human interactions 

in crowded environments. The study proposes a new 

correntropy-based method to measure the relative importance 

of human-human interactions and depict each individual’s 

personal space. The utilization of the interaction module with 

LSTM allows each pedestrian LSTM to receive interaction 

information from others in the scene. The disadvantage of this 

method is that the performance of the IA-LSTM model is 

highly dependent on the Gaussian kernel size (σ), which 

requires careful adaptation for different datasets or situations. 

This might be a useful limitation. The research in [38] utilizes 

the UCY-ZARA02 dataset [39, 40]. 

 

Fig. 7 Comparison of ADE and FDE between the 2nd model and [38]
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For standardization purposes, this research will use the 

UCY-ZARA02 dataset for comparing the proposed model 

with the model in [38]. Table 4 shows the error performance 

from the 2nd model resulting from predicting the trajectory 

using the UCY-ZARA02 dataset. The comparison of 

prediction accuracy between the 2nd model and the model in 

[38] was made in terms of ADE and FDE, as shown in Table 

5 and Figure 7. As seen in Figure 7, the ADE and FDE for the 

2nd model are lower than those of the model in [38]. This 

suggests that, compared to the model in [38], the second model 

predicts trajectories with the least error and the highest 

accuracy. I 

t can also be concluded that the hybrid-based DL model 

displays better prediction accuracy than a single-based model 

or a model consisting of an interaction module.  The primary 

reasons why Interaction-Aware LSTM (IA-LSTM) produced 

lower results in terms of ADE and FDE when compared to the 

proposed hybrid-based models are due to the interaction-

aware models’ limitations, which tend to indiscriminately 

incorporate all agents within a predetermined proximity when 

modeling interactions [46].  

This approach substantially escalates computational 

demands, particularly in scenarios that simultaneously present 

various pedestrians or vehicles. Another reason would be the 

interpretability challenges faced by the attention mechanisms 

and neural network architectures utilized in the IA-LSTM 

model [46]. This creates a propensity for the model to allocate 

unreliable correlation coefficients to certain agents, adversely 

impacting trajectory prediction accuracy. 

5. Conclusion  
This study investigated the efficiency of hybrid-based 

deep learning architectures combining LSTM, GRU and 

SimpleRNN units for the task of single human trajectory 

prediction. Simulations consist of two training durations (e.g. 

50 and 500 epochs) showing that SimpleRNN-Dropout-

LSTM-Dropout outperformed other hybrid models. The 

model demonstrated improved accuracy and reported the 

lowest error rates in terms of MSE, MAE, ADE, FDE, RMSE, 

and MAPE after 50 epochs of training with Tanh activation 

and the Adam optimizer at a learning rate of 0.001. The fact 

that it demonstrated the lowest training and validation losses 

further supported its generalization ability. The results suggest 

that combining both SimpleRNN and LSTM components with 

dropout regularization can increase forecast accuracy while 

maintaining processing efficiency. The proposed hybrid 

model also shows greater prediction accuracy in terms of ADE 

and FDE when compared to other researchers’ models that 

integrated an interaction module with a DL model. This 

indicates that hybrid model achieved greater accuracy in 

forecasting trajectory than single-based or models integrated 

with an interaction module due to its minimum error.  Future 

work will explore trajectory prediction in more complex 

environments and extend the methodology to multi-agent 

scenarios. 
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