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Abstract - One of the essential components of managing and maintaining power systems is transformer fault diagnostic. This 

study examines the use of deep learning algorithms, advanced data analytics methods, and other recent advancements in this 

area. Work has been carried out on fault prognostics in distribution transformers in the power system of the Sultanate of Oman. 

Based on Duval’s Pentagon method, artificial intelligence tools are developed to distinguish the fault types. The fault types 

identified are partial discharge, thermal fault of temperature T1 < 300°C, thermal fault of temperature T2 < 700°C, thermal 

fault of temperature T3 > 700°C, low energy discharges - sparking (D1), high energy discharges - arcing (D2), and stray gassing 

(S). The same has been implemented using the MATLAB Artificial Intelligence Toolbox. Around 150 transformer data in 

compliance with local utility have been utilized for analysis, from which around 80% have been taken for training and the 

remaining 20% for testing and validation. One of the significant features of this analysis is that it also highlights the feeble 

insipient faults. The results obtained from Artificial Intelligence are quite promising, and they could offer insightful information 

on the significance of transformer fault diagnostics and the part artificial intelligence plays in guaranteeing the dependable 

operation of the power grid. 

Keywords - Artificial Intelligence, Condition monitoring, Dissolved gas analysis, Fault types, Transformer. 

1. Introduction  
The main objective of condition monitoring of the 

transformer is to reduce the operational costs of the device in 

service and extend its utilization period economically through 

its appropriate maintenance. Generally, there are two kinds of 

maintenance action plans: proactive and reactive. The 

proactive maintenance action plan’s objectives are to reduce 

expenses and maintain system performance, whereas a 

reactive action plan addresses the post-fault diagnostic 

circumstances and financial losses [1-3]. The utility practices 

two types of preventive maintenance: Time-Based 

Maintenance (TBM) and Condition-Based Maintenance 

(CBM). The CBM is widely accepted as preventive 

maintenance [4] as it cuts manpower costs. This type of 

preventive maintenance mainly focuses on applying detailed 

and comprehensive Condition Monitoring (CM) and 

diagnostic techniques. The chemical, physical and electrical 

properties of the transformer oil and the paper insulation of the 

transformer windings play a key role in evaluating the 

condition of the transformer. The oil decomposes and releases 

the various gases [5] due to the high electric and thermal stress 

within operating transformers developed by the inception of 

thermal and electrical faults in the transformer windings. 

These gases dissolve in the oil and decrease its dielectric 

strength. However, the presence of these gases reveals very 

useful information and is achieved by the Dissolved Gas 

Analysis (DGA) method in four steps: (i) Collecting a sample 

of transformer oil, (ii) Extraction of dissolved gases, (iii) 

Interpretation of dissolved gases and (iv) Identification of the 

type of faults. For oil-filled distribution transformers, the 

DGA is one of the most acceptable methods used to detect 

incipient and other faults [6-8]. The list of various techniques 

under the umbrella of DGA is mentioned in Section 2. Many 

utilities are investing in digital resilience to reduce business 

risk and fend off fault threats. One example is the Supervisory 

Control and Data Acquisition (SCADA) system, which is used 

to monitor transformer parameters in remote areas. In the 

SCADA system, more sensors are being used, and physical 

assets are becoming more connected, creating a lot of 

accessible data useful for condition monitoring. To anticipate 
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abnormalities before they happen, transformer status 

monitoring and prognostics techniques are gradually shifting 

toward fuzzy expert and Artificial Intelligence (AI) techniques 

[9-11]. Since the membership function and diagnostic rules 

are established through trial-and-error or practical experience, 

the fuzzy expert system was unable to learn from the prior 

diagnosis outcomes. To overcome this, the AI can identify the 

hidden association between fault types and DGA gases 

through training, which is more significant [12-14].  

This paper investigates the application of Artificial 

Intelligence (AI) for fault prediction in distribution 

transformers using data from more than 150 units. Oil samples 

and Dissolved Gas Analysis (DGA) reports were collected 

from Majan Electricity Company, a local utility in Oman. 

These samples were analyzed to determine the concentrations 

of key dissolved gases, and Duval’s Pentagon technique was 

employed to diagnose potential faults.   

The diagnostic results were subsequently used to train the 

AI model, enabling accurate and data-driven predictive 

maintenance of the transformers. This article is divided into 

five sections. The introduction is developed in section 1, while 

section 2 describes the techniques used to interpret the DGA. 

The Artificial Neural Network (ANN) simulation set-up and 

its training have been discussed in Section 3. The results 

produced by the AI model and corresponding discussion are 

presented in Section 4. Finally, the key takeaways of the work 

in the form of a conclusion and future scope are highlighted in 

section 5.         

2. Techniques to Interpret the DGA 
The accurate interpretation of DGA is essential for power 

and distribution transformers to churn out information on 

incipient and other faults. There are various techniques 

proposed by authors in the literature [15-17] for the 

interpretation of dissolved gases from test results.  

For instance, (i) the IEC ratio; (ii) Doernenburg ratio; (iii) 

Roger ratio; (iv) Muller-Schlesinger and Soldner; (v) Duval 

triangle and Duval pentagon. Some of these techniques are 

recommended by professional bodies like IEC 60599-2015 

[18, 19] and IEEE C57.104-2019 [20, 21], as the standards for 

transformer oil samples and their DGA interpretation. To 

forecast the identification of thermal faults, such as the low 

energy and partial discharges, the data gathered through 

interpretation is crucial.  

Additionally, the AI system might be trained using these 

findings. This paper presents a novel approach to include the 

fault feeble concept using an AI technique based on the 

interpretation of Duval’s Pentagon Method (DPM) as 

described in section 2.1 to improve the accuracy and 

consistency. The AI algorithm has been trained to detect the 

three possibilities of abnormality, like (i) fault existing; (ii) 

fault not existing and (iii) fault is at a feeble state.   

 
Fig. 1 Duval’s pentagon for transformer oil 

2.1. Duval Pentagon Method 

Michel Duval has proposed the pentagon method, which 

is a modified and more accepted version of his triangle 

method. The triangle method uses the three hydrocarbon 

gases: Methane, Acetylene, and Ethylene. In the pentagon 

method, two additional gases, like Hydrogen and Ethane, are 

included, which are beneficial to separate PD phenomena out 

of the thermal fault at low energy for mineral oil problem 

investigation [22]. The capacity of the pentagon technique to 

classify the typical aging state of the insulation used in a 

transformer has also been enhanced by the introduction of the 

stray gas zone (S), which is related to the gas generation under 

normal operation [23]. When compared to alternative 

techniques, DPM’s excellent accuracy in identifying 

transformer faults is documented by [24]. The midpoint of the 

pentagon is the beginning point, and its axes span the range 
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from 0 to 100%. Figure 1 illustrates the plotting of the 

pentagon's centroid on Duval’s pentagon [24]. 

2.2. Data Collection  
The DGA and Breakdown Voltage (BDV) results of 150 

distribution transformers from a local utility are collected to 

detect the fault types by DPM. These detected faults are used 

to train the AI algorithm. As a sample, the data of three DGA 

reports are shown in Tables 1 and 2. The distribution 

transformer ratings lie in the 6 to 20 MVA range, at 33/11 kV, 

50 Hz, power system network. 

2.3. AI in Transformer Fault Diagnosis 
The ANN is one of the most significant subfields of 

artificial intelligence. The biological nerve systems in the 

human brain served as the model for this information 

processing paradigm [25]. The neurons are the basic building 

blocks for gathering information in terms of signals from each 

other when weighed and connected in a fashion as shown in 

Figure 2. Earlier, transformer health has long been monitored 

using traditional methods like Frequency Response Analysis 

(FRA), Partial Discharge (PD) detection, and DGA.  

These methods' efficacy is frequently limited by human 

interpretation, noise interference, and inconsistent diagnostics 

[25]. To address the limitations of conventional diagnostic 

methods, AI and Machine Learning (ML) techniques are 

increasingly being applied to transformer fault diagnostics. 

These models provide a data-driven approach that 

enhances fault detection accuracy, enables automated fault 

classification, and supports predictive maintenance strategies, 

thereby improving the reliability and efficiency of power 

system operations.

 
Fig. 2 AI neural structure executed for fault prediction 

One way to conceptualize a trained neural network is as 

an "expert" in the type of data it has been trained to assess. 

Then, given fresh conditions of interest and response, this 

expert can be used to generate projections. Two sets of gas 

concentration measurements are available for the 150 

transformers, namely (i) the training set and (ii) the testing set. 

The data for 120 transformers, or 80% of the total data 

available, were chosen at random from the 150 transformers' 

data set. Data for the final 30 transformers, or 20% of the total 

data set, make up the testing set. A multi-layer perception 

neural network (MLP) is employed to estimate the kind of 

transformer failures. Figure 2 displays the MLP. Two hidden 

layers, one input layer, and one output layer make up the 

neural network. Seven neurons make up the input layer, and 

the data from 150 transformers serves as its input. The output 

layer is made up of a single neuron that represents the 

transformer's health index. 

3. ANN Simulation Set Up 
The simulation of the ANN has modelled using 

MATLAB R2023a with the Neural Network Toolbox. 

Alternatively, Python 3.10 with TensorFlow and Keras 

libraries are used for flexible model customization and GPU 

acceleration. All simulations are performed on a machine with 

an Intel Core i7 processor, 16GB RAM, and NVIDIA GTX 

1660 GPU. 
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3.1. Input and Output Data 

The input dataset used for training the ANN model is 

constructed based on key gases measured through DGA and is 

aligned with the principles of the DPM. The gases involved in 

this method are as follows: 

 H₂ (Hydrogen) 

 CH₄ (Methane) 

 CO (Carbon Monoxide) 

 CO₂ (Carbon Dioxide) 

 C₂H₄ (Ethylene) 

 C₂H₆ (Ethane) 

 C₂H₂ (Acetylene) 

These seven gases that form the input feature vector are 

chosen due to their diagnostic relevance in transformer fault 

identification. The DPM has an advantage over the classic 

Duval Triangle. It introduces Hydrogen (H₂) and Ethane 

(C₂H₆) to enhance the separation of Partial Discharge (PD) 

phenomena from low-energy thermal faults, thereby 

improving classification accuracy. Furthermore, including a 

stray gas zone (S) that reflects gas behaviour under normal 

operating conditions extends the DPM's capability to detect 

insulation aging and distinguish non-faulty states. The output 

vector is represented by binary indicators, each corresponding 

to a specific fault type or condition derived from the DPM 

classification: 

 T1, T2, T3 - Thermal faults (classified by temperature 

severity) 

 D1, D2 - Discharge faults (arcing-related events) 

 PD - Partial Discharge 

 S - Stray gas zone, indicating normal operational gas 

patterns 

The dataset used for training and testing the ANN model 

is shown in Table 3. The fault conditions are represented using 

discrete integer values (0, 1, or 2) to indicate the status of each 

fault type. The interpretation of these values is as follows: 

 0 → Fault is not present. 

 1 → Fault is present at a normal level or lower severity. 

 2 → Fault is present in a feeble state 

Each sample in the dataset may have multiple types of 

faults existing simultaneously (multi-label), reflecting real-

world transformer behaviour. Each row in the dataset consists 

of the gas concentration inputs in parts per million (ppm) and 

the corresponding fault classification outputs based on the 

DPM.  

This structure allows the ANN model to learn from 

complex gas patterns and accurately predict diverse fault 

scenarios as categorized by the DPM framework. 

3.2. Architecture and Parameters 

The Artificial Neural Network (ANN) model employed 

in this study is structured as a feedforward backpropagation 

network, as shown in Figure 4, to optimized for the multi-class 

classification of transformer faults.  

The architectural and training parameters are as follows: 

 Input Layer: Comprised of 7 neurons, each representing 

one of the dissolved gas inputs: H₂, CH₄, CO, CO₂, C₂H₄, 

C₂H₆, and C₂H₂. 

 Hidden Layers: The network contains two hidden layers 

to capture complex nonlinear relationships: 

o First hidden layer: 25 neurons 

o Second hidden layer: 15 neurons 

 Activation Functions: TANSIG (Hyperbolic Tangent 

Sigmoid) is used across all layers to introduce non-

linearity and enable fine-grained mapping. 

 Output Layer: Contains 7 neurons, each corresponding to 

a distinct output class derived from the DPM (i.e., T1, T2, 

T3, D1, D2, PD, S). This enables multi-label 

classification, where multiple fault types can be identified 

for a single input. 

 Training Function: The network is trained using 

TRAINBR (Bayesian Regularization backpropagation), 

which enhances generalization by reducing overfitting, 

especially in smaller datasets. 

 Training Samples: Around 150 training samples were 

used to train the ANN model, the majority of which were 

collected from real-world transformer fault cases in 

cooperation with a local utility. These samples represent 

typical fault conditions encountered in the industry, 

ensuring that the network is trained on realistic and 

practical scenarios. 

3.3. Training Performance and Validation 

To assess the efficacy of the proposed ANN model in 

transformer fault diagnosis, a comprehensive evaluation was 

conducted through training performance, regression analysis, 

and training state assessment. 

The training performance plot demonstrates a rapid and 

smooth convergence of the network's Mean Squared Error 

(MSE) as shown in Figure 3, with minimal overfitting 

observed. This indicates that the model effectively generalized 

from the training data without suffering from noise or 

imbalance in the dataset.  

The training regression plot, as shown in Figure 5, 

exhibits a high degree of correlation between the predicted and 

actual output targets, with regression values (R) approaching 

1.0 across the training, validation, and testing phases. This 

highlights the network’s excellent ability to accurately classify 

multiple fault conditions based on dissolved gas 

concentrations. 
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Fig. 3 Training performance 

Furthermore, the training state, as shown in Figure 6, 

displays the evolution of the gradient, Mu (damping factor), 

and the number of successive validation failures (ssX), 

confirming the stability of the learning process. The gradient 

showed a consistent decrease, indicating effective 

convergence, while Mu remained within stable bounds 

throughout training. The ssX values stayed within an 

acceptable range, ensuring that the early stopping mechanism 

was not prematurely triggered. These results demonstrate that 

the Bayesian regularization algorithm (trainbr) successfully 

minimized the error while maintaining high generalization 

capability and robustness. These results collectively validate 

the reliability and high performance of the ANN-based 

approach in transformer condition monitoring and fault 

prediction, thereby proving the applicability of AI-based 

methodologies for transformer condition monitoring. 

 
Fig. 4 Proposed AI architecture 

Table 1. DGA test report as per IEEE C57-104 standard 

Sr 
Capacity 

(MVA) 

Oil temp 

At site(0C) 

DGA Test Results (ppm)  

H2 CH4 CO CO2 C2H4 C2H6 C2H2 TDCG 

1 6 50 107.63 4.10 879.25 1382.05 0.69 0.93 0.00 992.60 

2 10 62 13.94 2.49 578.21 2969.43 40.85 0.18 0.00 635.67 

3 20 42 15.23 18.36 1452.56 6635.01 1.63 1.64 0.00 1489.42 

 
Table 2. BDV Test Result as per IEC 60156 standard 

Sr Capacity 

(MVA) 

Breakdown Voltage (kV) 

Test1 Test2 Test3 Test4 Test5 Test6 Avg Voltage 

1 6 87.4 82.4 83.0 93.8 80.7 87.8 85.8 

2 10 65.3 71.1 65.8 66.3 81.3 88.2 73.0 

3 20 62.0 57.7 67.5 94.1 92.7 97.5 78.6 
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Table 3. Sample dataset demonstrating input gas concentrations and the corresponding fault categories (T1, T2, T3, D1, D2, PD, S) derived based on the 

DPM 

Sr 

No. 

Inputs measured in parts per million (ppm) Condition and Type of Fault 

H2 CH4 CO CO2 C2H4 C2H6 C2H2 T1 T2 T3 D1 D2 PD S 

1 107.63 4.1 879.25 1382.05 0.69 0.93 0 0 0 0 1 0 1 1 

2 13.94 2.49 578.21 2969.43 40.85 0.18 0 0 0 1 0 1 0 0 

3 36.73 3.38 541.07 5533.24 17.49 7.19 0 0 0 0 1 2 0 1 

4 15.23 18.36 1452.6 6635.01 1.63 1.64 0 1 1 1 0 0 0 0 

5 33.09 1.87 289.32 6546.51 15.45 1.02 0 0 0 0 1 1 0 1 

6 67.46 2.46 1089.76 184.87 8.07 7.26 0 0 0 0 1 1 0 1 

7 61.4 1.36 1020.99 4946.73 2.73 8.32 0 0 0 0 1 0 0 1 

8 80.04 2.61 770.84 3056.99 15.99 2.81 0 0 0 0 1 1 0 1 

 

 
Fig. 5 Training regression 

 
Fig. 6 Training state 
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4. Results and Discussions  
The proposed Artificial Neural Network (ANN) model 

achieved excellent performance in classifying transformer 

fault conditions using Dissolved Gas Analysis (DGA) inputs. 

Approximately 150 training samples representing typical 

industrial fault scenarios, obtained in collaboration with a 

local utility, were used to develop the model.  

A corresponding Simulink model was also created to 

simulate the trained ANN structure, enabling real-time fault 

detection. The model was tested with various unseen input 

samples, as illustrated in Figure 7 (a) and Figure 7(b), 

demonstrating high accuracy and consistency across both 

training and testing phases. The model's strong predictive 

capability and robustness support its practical deployment for 

transformer condition monitoring.  

Its ability to deliver fast, automated, and reliable fault 

diagnosis contributes significantly to predictive maintenance 

strategies, ultimately minimizing downtime and reducing the 

risk of unanticipated transformer failures in the power systems 

network. Even though the proposed strategy has a lot of 

merits, there exist some limitations, such as the AI method's 

sensitivity to the quality of training and the data quality. In 

addition, the methodology has a limitation: whenever a new 

type of problem manifests, it is taken as an existing fault based 

on the previous training set, which may lead to considerable 

deterioration of diagnostic accuracy. 

 
(a) Input 1 

 
(b) Input 2 

Fig. 7 Simulink model at different inputs 
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5. Conclusion and Future Scope 
This study presents a robust ANN-based methodology for 

precise fault classification in power transformers using DGA 

data. The ANN was trained on real-world industrial samples 

obtained in collaboration with a local utility. The 

MATLAB/Simulink model uses a feedforward 

backpropagation network with Bayesian regularization, 

showing strong accuracy on both training and testing datasets. 

The simulation results have confirmed the ANN’s 

effectiveness in accurately detecting and classifying various 

types of transformer faults, including thermal faults, partial 

discharges, and stray gassing, with high precision and 

reliability. The integration of the ANN within the Simulink 

environment further enhances its potential for real-time fault 

monitoring and intelligent decision support in power system 

operations. 

5.1. Limitations and Future Scope 

This study was limited to DGA-based results with a 

relatively small dataset, so the model may not fully capture the 

diversity of transformer operating conditions. Its performance 

is sensitive to data quality, and rare or unseen fault types may 

be misclassified, reducing diagnostic accuracy. Future 

research should resolve these challenges by incorporating 

greater and more assorted datasets and extending the model to 

handle complex multi-fault scenarios. Integration with real-

time data streams from SCADA systems or IoT-enabled 

sensors could enable continuous online monitoring and 

adaptive diagnostic capabilities.  

Furthermore, adopting hybrid AI techniques, such as 

combining ANN with fuzzy logic, genetic algorithms, or 

ensemble methods, may enhance robustness and 

interpretability. Finally, developing a lightweight, user-

friendly graphical interface would support practical field 

deployment and promote wider adoption in the power 

industry. 
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