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Abstract - Digital Imaging and Communication in Medicine (DICOM) is a medical imaging file standard employed for storing 

large amounts of data, such as imaging procedures, patient data, and the image itself. With the increasing use of medical imaging 

in medical diagnoses, it is imperative to have a secure and rapid technique for sharing a considerable number of medical images 

among medical staff, and compression has often been a choice. Different compression approaches are utilized, including lossless 

techniques such as Run-Length Encoding (RLE) and lossy methods such as JPEG and JPEG2000. Lossless compression 

preserves each image's information, which makes it fit for healthcare data where fidelity is vital, like in radiology. At the same 

time, lossy compression is used to sacrifice some image details to accomplish high compression ratios, frequently employed in 

situations where slight degradation in quality is acceptable, like in telemedicine applications or while transmitting larger 

datasets over a limited bandwidth network. DICOM compression standard ensures compatibility and interoperability over 

dissimilar medical imaging modalities and systems. This article introduces a new DICOM Image Compression Using a Sheep 

Flock Optimization Algorithm with Modified Haar Wavelet (SFOA-MHW) approach. The presented SFOA-MHW technique uses 

SFOA to resolve the wavelet discontinuities that take place while performing image compression via thresholding. The SFOA-

MHW technique converts the input images into sub-band details and approximation by using MHW, which then employs the 

threshold. Finally, the SFOA is used to select the threshold values. The SFOA-MHW technique aids in DICOM image 

compression by preserving fine details with a high compression ratio. The performance evaluation of the SFOA-MHW model is 

verified utilizing DICOM image sample sets. The experimental values highlighted that the SFOA-MHW technique gains better 

performance over other techniques in terms of distinct measures. 

Keywords – DICOM, Sheep Flock Optimization, Image Compression, Discrete Wavelet Transform, Threshold Value.

1. Introduction
In the last few years, the medical field has seen a dramatic 

change due to the rise of digital technology, which has touched 

almost every area of patient care. The speedy development of 

non-invasive medical imaging devices is impressive; these 

devices are now a requirement for the purposes of diagnosis, 

treatment planning, and follow-up [1]. The explosive growth 

in data output has been made possible through the widespread 

use of imaging modalities such as Computed Tomography 

(CT), Magnetic Resonance Imaging (MRI), and 

ultrasonography. As a consequence of the exponential growth 

of medical imaging data, the importance of storage, 

transmission, and interoperability standards that cover a wide 

range of healthcare platforms is growing [2]. The American 

College of Radiology and National Electrical Manufacturers 

Association (ACR-NEMA) originally created the DICOM 

standard to address these requests. DICOM creates a 

standardized medical picture representation, interchange, and 

archiving framework that assures compatibility across 

heterogeneous systems and imaging apparatus from different 

companies [3, 4]. DICOM files are crucial for secure 

transmission of data and clinical application in hospital 

networks, as they integrate pixel data and metadata, including 
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patient information, collection parameters, and modality 

details [5]. However, the immense volume of DICOM images 

is a problem for telemedicine applications, network 

transmission, and storage systems in low-bandwidth 

environments [6]. To maximize storage and communication 

effectiveness, medical image compression is unavoidable. To 

avoid patient harm, medical image compression must preserve 

diagnostic integrity, a major difference from natural image 

compression. Lossy techniques can find high compression 

ratios at the cost of diagnostically critical features, while 

lossless techniques often only realize small data size 

reductions [7]. This means that the industry still has a big 

challenge to attain an equilibrium between good compression 

and picture quality. Due to this problem, various transform-

based compression approaches have been studied. Traditional 

algorithms, such as the Discrete Cosine Transform (DCT), 

have been used due to their simplicity and effectiveness, even 

though they often create blocking artifacts if highly 

compressed [8]. Although the Discrete Wavelet Transform 

(DWT) supports simultaneous spatial and frequency domain 

localization and a multi-resolution representation of the 

image. Haar laid the groundwork for fidelity-sustaining and 

efficient image compression algorithms by his pioneering 

contributions to wavelets [9]. Discontinuities at thresholding 

can, however, lead to the loss of minute details that are often 

crucial for diagnostic applications in conventional DWT-

based techniques. 

To overcome these limitations, current studies have 

focused on the advancement of techniques for combining 

optimization algorithms with transform-based compression 

techniques. Maintaining image quality and making it possible 

to adjust threshold parameters have been enabled by 

employing evolutionary algorithms, which include Particle 

Swarm Optimization (PSO), Genetic Algorithms (GA), and 

Grey Wolf Optimizers (GWO) [10-12]. In some cases, these 

techniques have limitations like premature convergence, high 

population requirement, or processing overhead. This paper 

aims to compress DICOM images in a more effective way by 

fusing the Modified Haar Wavelet (MHW) with the Sheep 

Flock Optimization Algorithm (SFOA). The MHW improves 

the Peak Signal-to-Noise Ratio (PSNR) and Compression 

Ratio (CR) by optimizing the basic Haar wavelet's ability to 

maintain clarity and fine structural details.  

SFOA uses a bio-inspired migratory mechanism to select 

threshold values adaptively, thus eliminating wavelet 

thresholding discontinuities, while attempting to balance 

search space exploration and exploitation. Through the use of 

SFOA, compression is both adaptive and diagnostically 

reliable, setting it apart from fixed or heuristic thresholding 

approaches. The proposed SFOA-MHW model seeks to fill a 

wide knowledge gap in medical image storage and 

transmission through transform-based compression supported 

by nature-inspired optimization. It is superior to existing 

methods founded on DCT, DWT, and SPIHT by having 

greater efficiency in compression without loss of diagnostic 

quality, which is its unique selling point. Practicalities are also 

considered in the approach. Some of these include the growing 

need for reliable medical data exchange, the excessive storage 

capacities of hospital information systems, and the limitations 

of bandwidth for telemedicine. Experimental results show that 

the suggested methods outperform the current state-of-the-art 

in compression ratio, PSNR, and structural similarity, as 

indicated by the DICOM image datasets employed to validate 

the contributions of the study. 

2. Literature Review 
The authors [10] Developed A Novel Wavelet 

Compression of DICOM images via a Hybrid Generalized 

Extreme Value Distribution-Based Continuous Wavelet-

Based Contourlet Transform (HGE-CWBCT) and presented 

enhanced SPHIT coding approaches to perform sorting pass 

using Divot Quick Sort Algorithm (DQSA). The sorting can 

be made by a pair of pivot elements from LIS, and sorting is 

performed with a dual pivot element. Nagamani and 

Rayachoti [11] progress a novel DL-based technique utilizing 

OCT imageries. Next, the volumetric OCT imageries are 

categorized through a novel DL-based method. The OCT 

images of the human eye were utilized to determine a DL 

Network (DL-Net) method.  

This study presents the Modified ResNet-50 model and 

Image Processing (IP) for many OCT image identification 

tasks. This study projects an effective analytic model for 

image segmentation dependent upon Bi-LSTM-based 

DRCNN. The altered SqueezeNet method analyses the 

volumetric separation of OCT imageries. In [12], the 

technique initially presented that the traditional techniques fail 

to estimate the probability of classification. Next, an intuitive 

and scalable structure for hesitation quantification in medical 

imagery segmentation is developed. Then, the use of k-fold 

cross-validation is proposed to overcome the necessity for 

seized calibration data.  

Finally, the technique generates pseudo labels to acquire 

from unlabeled images and human-machine associations. In 

[13], the new aspect of the research is the partition of brain 

cancers utilizing a hierarchical DL model. The analysis and 

cancer identification are important for speedy and creative 

medicine, and medicinal IP utilizing Convolutional Neural 

Networks (CNNs) is providing outstanding results in this size. 

CNN employs an image portion to sequence the data and 

categorize them into cancer kinds. Hierarchical DL-Based 

Brain Tumor (HDL2BT) identification is projected with the 

aid of CNNs for the recognition and identification of brain 

cancers. Raza et al. [14] developed a new TL-based feature 

creation called VNL-Net, which is a collaborative of VGG16, 

Light Gradient Boosting Machine (LGBM) and Non-Negative 

Matrix Factorization (NMF) models. This exclusive VNL-Net 

feature extractor originally removes the spatial feature from 

the image's input data. Next, the collaborative feature set of 
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LGBM and NMF is removed from the spatial feature. 

Numerous innovative AI-based techniques are constructed on 

the newly produced feature set. Vikraman and Jabeena [15] 

project an effectual medicinal image compression dependent 

upon hybrid ML techniques. There are two main phases 

measured in this projected approach, called the segmentation 

phase. The ROI is known by the segmentation phase and 

assumed to be the subsequent phase. Segmentation was 

executed by a hybrid Grey Wolf Optimizer with Fuzzy C-

Means (FCM), which was developed. Then, NN, i.e., 

enhanced CNN, constrains the ROI area of an input image 

dependent on the perceived parts. In the meantime, NROI is 

compacted by the RNN. Leng et al. [16] presented the 

valuation of organoid morphology utilizing DL.  

Dependent upon the light-weight method YOLOX, a 

light-weight intestinal organoid recognition technique called 

Deep-Orga is presented. At initial, the Deep-Orga technique 

was equated with other traditional methods on the dataset of 

intestinal organoids. Next, ablation experiments were 

employed to authorize the enhancement of the method 

recognition performance by the enhanced unit. Lastly, Deep-

Orga was equated with another technique. In [17], a highly 

improved DL technique is measured based on a CNN with a 

mass association study. Where an input database was 

originally occupied by pre-processing, while an Average Mass 

Elimination Algorithm (AMEA) was used. AMEA is to 

eliminate the noisy pixel from an image. The major features 

were made by utilizing the Median value. Next, the removed 

features are proficient by utilizing the CNN system dependent 

upon Mass Correlation Analysis (MCA), which aids in 

allocating the portion of weight.  

3. Proposed Work 
3.1. Proposed System  

This paper proposes a new model called SFOA-MHW, or 

Sheep Flock Optimization Algorithm-Modified Haar 

Wavelet. The model is aimed at effectively compressing 

medical images based on DICOM data. The approach 

achieves optimal compression effectiveness while ensuring 

image quality by integrating the most important elements of 

wavelet-based image decomposition and evolutionary 

optimization. The Modified Haar Wavelet (MHW) structure, 

sub-band segmentation through thresholding, and adaptive 

threshold value determination through the Sheep Flock 

Optimization Algorithm (SFOA) are the three key elements of 

the process. The goal in each step is to maximize the 

Compression Ratio (CR) and Peak Signal-To-Noise Ratio 

(PSNR) with the simultaneous goal of minimizing picture data 

redundancy, preserving picture quality, and generating 

diagnostically relevant images. MHW is used on the input 

DICOM images at the first compression phase. The MHW 

alters the transformation process by applying it 

simultaneously to rows and columns, improving 

representation and reducing discontinuities, compared to the 

standard Haar wavelet transform, which uses sequential row-

column decomposition. The image is segmented into small 

2x2 matrices by the wavelet transform, which then produces 

new coefficients (A, B, C, D) using weighted averages of pixel 

values. The inverse transformation reconstructs the image 

with little distortion, whereas the forward transformation 

decreases the data's dimensionality. The reversibility of the 

transform is assured by its mathematical basis, which is a 

requirement for medical imaging owing to the need for 

maintaining vital diagnostic information. Through alterations 

in the decomposition process, the MHW can enhance 

structural detail and edge acuity retention, subsequently 

affecting visual fidelity and objective quality tests.  

After decomposition, the image is subjected to 

thresholding and sub-band analysis. Three sub-bands-LH, HL, 

and HH-and one approximation sub-band (LL) are separated 

by the wavelet transform, which preserves horizontal, vertical, 

and diagonal features, respectively. The Leading Light (LL) 

sub-band preserves the most prominent features of the image, 

and the detail sub-band s pick up finer, higher-frequency 

information like contours and edges. The MHW is recursively 

applied to twelve sub-bands, three of which are LH, HL, and 

HH, in an effort to enhance compression efficiency. Recursive 

decomposition allows greater control in altering coefficients 

as well as better frequency localization. 

Thresholding the sub-band detail coefficients comes next 

in an effort to reduce redundancy and storage needs. 

Insignificant coefficients within the range of the mean (μ) and 

standard deviation (σ) of sub-band coefficients are suppressed 

in the thresholding process. The data is reduced to a lower 

range of values due to the elimination of coefficients within 

the interval μ ± σ and the retention of others. One of the ways 

to obtain such selective suppression is to preserve 

diagnostically important features while shrinking the search 

space. The approximation sub-band (LL) is spared 

thresholding because it has essential image data. To create a 

structured compression system, thresholding and recursive 

sub-band processing are combined. This approach reduces 

data irrelevance with preserved reconstruction quality.  

The reconstruction quality and compression ratio are 

decided by the threshold values that are optimal, even though 

thresholding effectively eliminates data redundancy. The 

reason is that fixed thresholds often generate unsatisfactory 

results when used with diverse datasets. To address this 

optimization problem, SFOA is utilized, which dynamically 

calculates the optimal threshold values. The method is 

developed based on the real grazing activity of livestock, 

which is determined by a range of factors such as the 

commands of the shepherd, the experience of the animals, and 

their influence from the environment. Sheep and goats display 

this behavior. This similar behavior provides the basis for 

establishing a computer optimization method that effectively 

explores the solution space. The scheme relies upon assumed 

threshold values, and every sheep in the SFOA is a potential 
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solution. The birds explore the search space collectively to 

find the best thresholds that maximize image quality while 

keeping high compression efficiency. The approach is 

controlled by two grazing radii, 𝑟𝐺  sheep and 𝑟𝐺Goat, that 

changes from iteration to iteration and controls the balance 

between exploration and exploitation. Three factors affect 

sheep migrations: attraction toward the optimal solution for 

the flock, maintenance of individual optimal experience, and 

interaction with randomly chosen neighbors. When the control 

parameter T takes on higher values, the sheep show 

exploratory behaviors.  

However, lower values favor the exploitation of potential 

areas. Goats make up about 10% to 20% of the population. By 

following the shepherd's guidance and going back to 

productive points, they bring diversity to the chase. By 

avoiding stagnation at the initial stage, this hybrid sheep-goat 

flock behavior ensures global convergence towards optimal 

solutions. Mathematically described motions of goats and 

sheep are marked by deterministic and random elements in the 

changes in their velocities. To promote exploratory diversity, 

randomization is introduced into the algorithm. The algorithm 

now modifies sheep placements by means of a weighted sum 

of global best, local best, and random sheep positions. Goats, 

as humans, check the global optimal alternative but also factor 

in the proportional impact of their most effective past 

experiences. This allows them to control their weight. The 

shepherd ensures that the flock is guided toward promising 

areas of the search space by keeping a record of the best 

solution found so far. The coordinates of the sheep and goats 

are updated iteratively until the maximum number of iterations 

is achieved in an attempt to find the best threshold. The best 

global solution is then found. The model for compression is 

able to adjust the thresholding method according to the 

statistical characteristics of the image data as a result of the 

integration of SFOA and MHW-based decomposition. To 

achieve high compression ratios and enhanced values for 

PSNR, this method makes dynamic adjustments in thresholds. 

The resilience of SFOA to a wide range of image types, 

varying from those with variably distributed to noisy textures, 

is complemented by its stochastic exploration. The model also 

addresses effectively the problems of conventional wavelet-

based compression techniques, including degraded structural 

clarity and thresholding-induced discontinuities brought about 

by static thresholding. Figure 1 shows the overall process of 

the SFOA-MHW model. Figure 2 shows the flowchart of the 

system. 

 
Fig. 1 Overall process of the SFOA-MHW model 
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Fig. 2 Flowchart of SFOA

3.2. Pseudocode 

Input: DICOM image I of size W × H 

Output: Compressed image Ic 

1. Apply the Modified Haar Wavelet (MHW) transform on I 

2. Decompose image into sub-band s: LL, LH, HL, HH 

3. Apply recursive MHW on the detail sub-bands to generate 12 sub-bands 

4. For each detail sub-band : 

      Compute μ and σ 

      Apply threshold function T(x) 

5. Initialize SFOA parameters: N (population), MaxIteration, UB, LB 

6. For each iteration until MaxIteration: 
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      For each sheep and goat: 

          Calculate grazing radius rG 

          Update movement using Equations (15-27) 

          Update positions X 

      Evaluate fitness using PSNR and CR metrics 

      Update X_GBest and X_Lbest 

7. Select optimal threshold values from SFOA 

8. Apply inverse MHW using optimized thresholds 

9. Generate compressed image Ic 

 
3.3. Glossary 

 Digital Imaging and Communications in Medicine 

(DICOM): Standard for storing and transmitting medical 

images. 

 Modified Haar Wavelet (MHW): An improved Haar 

transform designed to enhance PSNR and CR by reducing 

artifacts. 

 Sub-band Decomposition: Splitting transformed 

coefficients into approximation and detail components. 

 Peak Signal-to-Noise Ratio (PSNR): Quality metric 

indicating image fidelity after compression. 

 Compression Ratio (CR): Ratio representing the 

efficiency of compression. 

 Sheep Flock Optimization Algorithm (SFOA): A 

metaheuristic optimization method inspired by the 

grazing behavior of sheep and goats. 

 Shepherd: An entity in SFOA that records the global best 

solution discovered by the flock. 

 Thresholding: The Process of setting insignificant 

coefficients to zero to reduce redundancy. 

 μ and σ: Mean and standard deviation of coefficients used 

for adaptive threshold selection. 

4. Result and Discussion 

In this section, the DICOM image compression outcomes 

of the SFOA-MHW system are investigated in detail. Table 1 

and Figure 3 show the comparative MSE results of the SFOA-

MHW model with recent techniques [10]. The results 

demonstrated that the SFOA-MHW method has proficient 

enhanced performance with the least MSE values. With 

image1, the SFOA-MHW method has reduced MSE of 0.259, 

whereas the WT and CWBCT techniques have increased MSE 

of 0.810 and 0.425, respectively. Also, with image2, the 

SFOA-MHW method has reduced MSE of 0.346 while the 

WT and CWBCT techniques have attained enhanced MSE of 

0.830 and 0.436, respectively. Additionally, with image3, the 

SFOA-MHW system has gained a decreased MSE of 0.294 

while the WT and CWBCT approaches have increased MSE 

of 0.740 and 0.415, respectively. Meanwhile, with image4, the 

SFOA-MHW model has decreased MSE of 0.234 while the 

WT and CWBCT systems have achieved increased MSE of 

0.770 and 0.423, respectively. Furthermore, with image5, the 

SFOA-MHW model has gained a decreased MSE of 0.378; 

however, the WT and CWBCT methods have achieved an 

enlarged MSE of 0.790 and 0.438, respectively. 

Table 1. MSE analysis of the SFOA-MHW technique with existing models under different images 

Images Wavelet Transformation CWBCT SFOA-MHW 

1 0.810 0.425 0.259 

2 0.830 0.436 0.346 

3 0.740 0.415 0.294 

4 0.770 0.423 0.234 

5 0.790 0.438 0.378 

The PSNR results of the SFOA-MHW technique are 

compared with other techniques in Table 2 and Figure 4. The 

experimental values inferred that the SFOA-MHW technique 

resulted in better performance with enlarged PSNR values. 

With image1, the SFOA-MHW technique has attained 

improved performance with an increased PSNR of 54.00dB, 

while the WT and CWBCT models have displayed decreased 

PSNR values of 49.05dB and 51.85dB, correspondingly. 

Additionally, with image2, the SFOA-MHW system has 

enhanced performance with an enlarged PSNR of 52.74dB, 

whereas the WT and CWBCT techniques have shown reduced 

PSNR values of 48.94dB and 51.74dB, respectively. In line 

with image 3, the SFOA-MHW method has developed 

performance with an enlarged PSNR of 53.45dB, whereas the 

WT and CWBCT approaches have exhibited decreased PSNR 

values of 49.44dB and 51.95dB, correspondingly. 

Concurrently, with image4, the SFOA-MHW procedure has 

reached enhanced performance with an enlarged PSNR of 

54.44dB, while the WT and CWBCT models have established 

decreased PSNR values of 49.27dB and 51.87dB, 

respectively. Simultaneously, with image5, the SFOA-MHW 

methodology has enhanced performance with an enlarged 

PSNR of 52.36dB, whereas the WT and CWBCT 

methodologies have exhibited decreased PSNR values of 

49.15dB and 51.72dB, respectively. 
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Fig. 3 MSE analysis ofthe SFOA-MHW technique under various images 

Table 2. PSNR analysis of the SFOA-MHW model with existing models under different images  

Images Wavelet Transformation CWBCT SFOA-MHW 

1 49.05 51.85 54.00 

2 48.94 51.74 52.74 

3 49.44 51.95 53.45 

4 49.27 51.87 54.44 

5 49.15 51.72 52.36 

 
Fig. 4 PSNR analysis of the SFOA-MHW technique under various images 
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Table 3 and Figure 5 give the comparative RMSE 

outcomes of the SFOA-MHW technique with current 

methods. The results verified that the SFOA-MHW method 

has proficient improved performance with the least RMSE 

values. With image1, the SFOA-MHW approach has obtained 

a reduced RMSE of 0.509 while the WT and CWBCT models 

have reached amplified RMSE of 0.900 and 0.652, 

correspondingly. Likewise, with image2, the SFOA-MHW 

approach has decreased RMSE of 0.588 while the WT and 

CWBCT approaches have achieved improved RMSE of 0.911 

and 0.660, respectively. Also, with image3, the SFOA-MHW 

model has reduced RMSE of 0.542 while the WT and 

CWBCT systems have reached increased RMSE of 0.860 and 

0.644, respectively. While with image4, the SFOA-MHW 

technique has acquired a declined RMSE of 0.484, the WT 

and CWBCT models have achieved increased RMSE of 0.877 

and 0.650, respectively. Besides, with image5, the SFOA-

MHW approach has gained a decreased RMSE of 0.615, 

whereas the WT and CWBCT techniques have improved 

RMSE of 0.889 and 0.662, respectively. 

Table 3. RMSE analysis of the SFOA-MHW method with existing models under dissimilar images  

Images Wavelet Transformation CWBCT SFOA-MHW 

1 0.900 0.652 0.509 

2 0.911 0.660 0.588 

3 0.860 0.644 0.542 

4 0.877 0.650 0.484 

5 0.889 0.662 0.615 

 
Fig. 5 RMSE analysis of the SFOA-MHW technique under various images 

The SFOA-MHW model can face the challenge, as 

confirmed by actual medical image compression tasks. The 

Modified Haar Wavelet (MHW) improves frequency 

localization and removes discontinuities, providing a better 

PSNR and compression ratio compared to traditional Haar 

wavelet-based schemes. The integration of the Sheep Flock 

Optimization Algorithm (SFOA) is a notable breakthrough in 

adaptive threshold selection.  

The algorithm allows the system to change thresholds 

dynamically according to the sub-band coefficients' 

distribution. This makes diagnostically important items 

remain in compressed data without increasing redundancy. 

The results also show that the new approach is more scalable 

and robust compared to the conventional static threshold 

techniques.  
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Moreover, the hybrid exploration-exploitation strategy of 

SFOA allows it to produce consistent outcomes in a broad 

variety of image forms, such as those with complex structures 

and noise patterns. In medical environments where diagnoses 

need to be accurate, images in DICOM format are useful, and 

SFOA-MHW achieves an acceptable balance between 

compression effectiveness and image integrity, increasing 

redundancy.  

5. Conclusion 
The Sheep Flock Optimization Algorithm (SFOA) and 

Modified Haar Wavelet (MHW) were utilized in this research 

to establish the possibility of adaptive image compression. 

The aforementioned distortions and discontinuities that are 

exhibited at thresholding are corrected by the proposed 

approach, thus eliminating the drawbacks of traditional 

wavelet-based compression. To improve the accuracy of 

reconstruction, the MHW reconfigures the decomposition step 

by preserving fine details from the image, thus lowering data 

dimensionality. Adaptive thresholding is achieved using 

SFOA to achieve maximum compression efficiency without 

loss of diagnostic quality. This considerably strengthens the 

framework.  

The SFOA-MHW model's higher efficiency and 

robustness are testified to by its superior PSNR values and 

comparable compression ratios to classical methods, as shown 

by experimental results. The methodology can be applied to 

compress images in medical environments, thus making 

storage more efficient and transmitting without loss of 

important clinical data, as these results show. Potential future 

adaptations include incorporating SFOA with other 

evolutionary algorithms or expanding the model to 

multimodal medical data to maximize its relevance and 

usefulness further.
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