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Abstract - For precise histopathological image analysis and classification, segmentation is a critical step that must be carried 

out accurately. Segmentation aids early detection and diagnosis of tumor and cancerous cells. Machine learning and artificial 

intelligence processes play a vital role in image processing applications. In this proposed work, the nature-inspired Whale 

Optimization Algorithm is used for the segmentation of whole slide images through multi-objective image thresholding. The 

images are subjected to initial pre-processing to eliminate disturbance and enhancement, followed by the application of the best 

threshold value. Various histopathology images are examined to validate the efficiency and versatility of the proposed 

methodology. A Dice coefficient of 50.8, a Jaccard index of 51.33, a Precision of 51.22, a Sensitivity of 71.59, an Accuracy of 

91.86, an F-measure of 50.76, and a Specificity of 71.17 were the average results obtained for the tested images using the 

proposed system. The outcomes are assessed with other common segmentation approaches, validating the algorithm. 

Keywords - Histopathology image, Image segmentation, Multi-objective optimization, Otsu thresholding, Whale optimization 

algorithm. 

1. Introduction 
Automated image analysis is now possible for Whole-

Slide Images (WSIs) due to their digitization in pathology. 

Pathological analysis is a long, difficult, and knowledge-

exhaustive process. Over the last ten years, a major change has 

been seen in the pathological field due to the swift growth of 

artificial intelligence. The benefits of digital pathology 

include ease of storage, remote diagnosis capabilities, and the 

utilization of image analysis, hence improving the precision 

and accuracy of the diagnostic procedure. A fully automated 

method of assessment is anticipated in the future because of 

advancements in artificial intelligence, thus helping 

pathologists.  The effective application of artificial 

intelligence algorithms to WSIs may result in the development 

of new clinical instruments that are more objective, repeatable, 

and accurate than those employed presently in routine clinical 

settings [1]. Subsamples of pictures or tiles are employed for 

WSI analysis because of the vast size of WSIs.  Studies show 

that only 22% of the WSI’s total area is made up of relevant 

tissue [2]. To avoid analyzing the entire WSI needlessly, the 

tissue segment has to be highlighted. Therefore, correctly 

identifying and separating these tissue patches from the 

background is an essential initial step before classifying tumor 

cells from healthy cells [3, 4]. Thresholding is a popular, 

practical, and computationally efficient segmentation 

technique for identifying Regions Of Interest (ROI) in high-

resolution histopathology images. It works by dividing pixels 

into background and foreground according to their intensity 

values, frequently with the use of the image's histogram [5], 

[6].  Otsu's method, which optimizes the variation among 

classes, is one of the most often used automatic thresholding 

techniques [7]. The challenging issue of determining the 

optimal threshold values can be tackled as a single-objective 

or multi-objective optimization. Nature-inspired metaheuristic 

optimization techniques have been widely used recently to 

solve this issue [8, 9]. Additionally, several studies have 

presented ROI segmentation for histopathology images using 

swarm intelligence algorithms. These methods often 

maximize a single objective function, such as Kapur's entropy 

or Otsu's variance.   Though multi-objective optimization is 

known for its benefits, such as maintaining population variety, 

improving convergence to genuine Pareto-optimal front and 

offering a solution reflecting trade-off between several 

objectives [10], its application for segmentation of whole slide 

images remains unexplored. While single-objective methods 

are useful for maximizing a particular metric, they frequently 

fall short of the intricate practical needs of histopathology 

segmentation, where it is critical for diagnostic reliability to 

balance the drop in false positives and false negatives. An 

exclusive Multi-Objective Whale Optimization Algorithm 
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(MOWOA) to accomplish optimal thresholding-based WSI 

segmentation is proposed in this work, directly addressing this 

gap.  Because of its strong convergence rate, capacity to break 

out of local optima, and proven effectiveness in engineering 

applications, the Whale Optimization Algorithm (WOA) is 

selected in this work [11-13]. Developing a segmentation 

framework that concurrently maximizes three important 

goals: maximizing between-class variation, minimizing false 

positives, and decreasing false negatives, is the key objective 

of the proposed work.  Unlike single-objective approaches, 

this methodology guarantees a balanced and robust 

segmentation performance. The key contributions are:  

 To attain a clinically significant balance between various 

error types, a unique Multi-Objective WOA (MOWOA) 

model is proposed for histopathology image 

thresholding, incorporating three distinct segmentation 

objectives. 

 The algorithm's versatility and generalizability are 

demonstrated by thorough validation on a wide range of 

WSIs. 

 The competence of the MOWOA technique for effective 

segmentation is validated through various performance 

metrics.  

 The proposed model’s performance is compared to other 

popular approaches, including Otsu with PSO and 

single-objective WOA versions, to verify its superiority. 

This paper’s remaining sections are organised as follows. 

Section 2 presents the literature review, and Section 3 portrays 

the methodologies and workflow of the proposed study. Next, 

Section 4 gives the details of the dataset considered for the 

study, while Section 5 gives the results obtained. Further, 

Section 6 illustrates the discussion and inferences drawn, and 

the paper is concluded in the final section. 

2. Related Works 
Whole Slide Image (WSI) segmentation is a cornerstone 

of digital pathology, enabling the analysis of high-resolution 
histopathological images for disease diagnosis, prognosis, and 

research. WSIs are characterized by their massive size, 

complex tissue structures, and variability in staining protocols, 

making segmentation a challenging yet essential task. Over 

time, numerous approaches have been developed to address 

these problems, ranging from complex deep learning models 

to traditional image processing techniques. Below is a detailed 

thematic review of WSI segmentation, supported by an 

extensive literature review. 

2.1. Tissue Region Segmentation 

Tissue region segmentation aims to separate different 

tissue types, such as tumor, stroma, and necrosis, within WSIs. 

Early methods relied on thresholding and morphological 

operations for coarse segmentation [14]. Handcrafted 

elements like texture and color were used to increase accuracy 

through machine learning approaches like Random Forest and 

Support Vector Machines [15]. However, this field has 

undergone a revolution with the emergence of deep learning 

algorithms. U-Net, a Convolutional Neural Network (CNN) 

architecture, is one of the best-performing methodologies 

because of its capacity to process minimal datasets and 

generate accurate results [16]. Extensions like ResUNet and 

Attention U-Net have further enhanced performance by 

incorporating residual connections and attention mechanisms 

[17]. Recent advancements include vision transformers, which 

have shown promise in capturing long-range dependencies in 

WSIs [18]. Despite these advancements, challenges such as 

staining variability and tissue heterogeneity persist, 

necessitating robust pre-processing and normalization 

techniques. 

2.2. Lesion and Tumor Segmentation 

Accurate segmentation of lesions and tumors is essential 

for cancer diagnosis and treatment planning. Traditional 

methods like active contour models and region-growing 

algorithms have been used for lesion detection [19]. Machine 

learning techniques, such as feature-based classifiers, 

improved tumor segmentation by incorporating texture and 

shape features [20]. In tumor segmentation, fully 

convolutional networks and attention-based architectures have 

attained cutting-edge results [21]. TransUNet, for example, 

enables accurate tumor border delineation by combining 

transformers and CNNs to identify a local and global 

framework [22]. Recent advancements include Swin-UNet, 

which leverages shifted window transformers for improved 

tumor segmentation [18]. Challenges such as heterogeneous 

tumor morphology and class imbalance continue to drive 

research in this area. 

2.3. Gland Segmentation 

Gland segmentation is particularly important in colorectal 

and prostate cancer analysis. Traditional methods, such 

as morphological operations and edge detection, have been 

used for gland boundary identification [23]. Machine learning 

approaches, including graph-based methods, improved gland 

segmentation by modelling spatial relationships between 

glandular structures [24]. Deep learning models, such 

as Gland-Net and Micro-Net, have been specifically designed 

for gland segmentation, achieving high accuracy in complex 

datasets [25, 26]. Recent works, such as Gland Vision, have 

introduced transformer-based architectures for gland 

segmentation, achieving superior performance in challenging 

datasets [27]. Challenges like glandular variability and lumen 

detection remain active areas of research. 

2.4. Supervised and Unsupervised Segmentation 

The reliance on large, annotated datasets is a significant 

bottleneck in WSI segmentation. Models with slide-level 

labels have been trained using weakly supervised learning 

techniques like Multiple Instance Learning (MIL), eliminating 

the necessity of pixel-level annotations [28]. Unsupervised 
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learning techniques, such as clustering and self-supervised 

learning, have also been explored for WSI segmentation [25]. 

Recent works like WSI-MIL have introduced transformer-

based MIL frameworks for improved weakly supervised 

segmentation [29]. These approaches are particularly useful in 

low-resource settings where annotated data is scarce. 

2.5. Evolutionary Algorithms for Segmentation 

Using nature-inspired optimisation algorithms to obtain 

the best threshold as an optimization problem is a prevailing 

method that has been extensively employed by the authors in 

the recent past. To name a few, manta ray foraging 

optimization algorithm [30], enhanced equilibrium optimizer 

[31], hybrid marine predator algorithm with salp swarm 

algorithm [32], opposition-based Lévy Flight chimp optimizer 

[33], black widow optimization algorithm [34] and cuckoo 

search algorithm [35].  

These techniques were used on various benchmark 

images, COVID-19 CT images, and thermography pictures. 

[36] suggests using an improved particle swarm optimization 

to perform multi-threshold segmentation of an image based on 

Otsu's method. Authors in [37] provide information on the 

choice of the threshold value and summarise the usage of 

Otsu's method in image segmentation. [38] proposed adaptive 

thresholding method that uses the mean and standard deviation 

to threshold images, enhancing the image segmentation 

quality.  

The Otsu method with fuzzy logic was applied to obtain 

the best threshold for various types of pictures in [39]. Particle 

swarm optimization was combined with Otsu thresholding for 

lung CT image segmentation in [40]. The opposition-based 

Manta Ray foraging optimization was used to identify regions 

of interest in CT images of COVID patients in [41]. Multi-

level thresholding was carried out for COVID CT images 

utilizing the equilibrium optimizer algorithm in [31]. Various 

studies used swarm-based optimization methods to find the 

best threshold for various types of benchmark images and 

medical images. A hybrid methodology for cytology image 

segmentation was employed in [42] using gray wolf 

optimization and fuzzy clustering. Wavelet method and WOA 

were combined for CT and MR image segmentation in [43]. 

The authors in [32] employed a Gaussian barebone salp swarm 

algorithm in combination with a stochastic fractal search 

technique to segment CT COVID-19 images. In [44], the 

Firefly algorithm was used to find the optimum threshold for 

the segmentation of breast cancer images. A grouping model 

for breast histopathology images was published by the authors 

in [45], utilizing the Cuckoo search algorithm. In addition, a 

summary of various optimization approaches for image 

segmentation is provided in Table 1. It is observed from the 

literature review that there have not been many studies on 

using multi-objective problems to segment whole slide 

images. As a result, this paper presents a multi-objective 

whale optimization technique that determines the ideal 

threshold for the entire slide picture segmentation. 

Table 1. List of works adopting optimization techniques for image segmentation 

Reference Algorithm Type of Image Objective 

[31] 

Moth Flame 

Optimization and 

Whale optimization 

algorithm 

Benchmark images Otsu’s objective function was used for segmentation 

[32] 

Artificial bee colony 

and Sine-cosine 

algorithm 

Images from art 

explosion 

database 

Multilevel thresholding for image segmentation was 

implemented. To improve performance, the ABC used 

SCA as a local search. 

[33] 
Harris Hawks 

Optimization 

Mammography 

images 

When segmenting images, minimal cross-entropy was 

used as a fitness function. Two machine learning 

algorithms and other similar optimizers are used for 

validation. 

[34] Firefly Optimization Standard images 
Multilevel segmentation for maximizing Otsu’s variance 

was employed in this work. 

[14] Equilibrium optimizer 
Test images from 

Berkley University 

An objective function based on Kapur entropy was 

utilized and compared with seven other algorithms for 

performance evaluation. 

[35] 
Cuckoo Search 

Algorithm 
Satellite images 

Otsu and Kapur's method is used to address the color 

image segmentation problem. 

[36] Artificial Bee Colony Standard Images 
Otsu thresholding using the ABC algorithm for image 

segmentation was proposed in this work. 

[37] 
Particle swarm 

optimization 
Standard Images 

This method was employed to split the color images based 

on pixels. 

[38] 

Whale optimization 

algorithm, grey wolf 

optimizer and PSO 

Benchmark Test 

Images 

Multilevel thresholding for image segmentation was 

carried out on twenty benchmark test images to maximize 

the Otsu approach. 
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[16] Firefly algorithm 
Satellite images and 

Standard Text Images 

A multilevel thresholding technique with a fitness 

function as fuzzy entropy for color images was carried 

out. 

[39] 
Particle swarm 

optimization 
Benchmark images 

This study used Kapur's entropy as the objective function 

to create a non-revisiting quantum-inspired PSO method 

aimed at finding the best multilevel thresholds for 

grayscale images. 

[40] 

Teaching a learning-

based optimization 

algorithm 

Standard test images 
Otsu and Kapur's entropy objective functions were applied 

to 10 typical test images using the TLBO algorithm. 

[41] 
Differential Evolution 

method 

Real-life true color 

images and satellite 

images. 

A beta differential evolution-based multilevel thresholding 

for color images with two distinct objective functions is 

proposed. 

[17] 
Black Widow 

optimization algorithm 
Benchmark images 

The algorithm employed two different fitness functions - 

the Otsu and Kapur algorithms- to obtain an optimal 

threshold value and evaluate the multilevel 

image segmentation problem. 

[30] 
Elephant herding 

optimization 
Standard test images 

Outcome-based learning and dynamic Cauchy mutation, 

maximizing the difference between classes and Kapur’s 

entropy for multilevel image thresholding. 

3. Proposed Work and Methodologies 
Here, the workflow and the methodologies used are 

presented in detail. The basic whale optimization algorithm 

and fundamental Otsu thresholding are explained, which are 

the foundation for developing the proposed methodology. 

Figure 1 demonstrates the workflow of the proposed 

algorithm. Once the images are read, they are transformed into 

grayscale images. In the next step, photos are tiled with 

128x128 pixel dimensions and passed for preprocessing. 

Preprocessing is an important step, as the histopathology 

images are subjected to different processing stages such as 

splitting and dyeing [46]. Dehazing algorithm for image 

enhancement and Gaussian smoothing for noise reduction are 

used as preprocessing measures in this work. This is followed 

by identifying threshold values using the MOWOA algorithm. 

Before the start of the iterations, MOWOA parameters are 

initialized with maximum iterations, population size, etc. The 

algorithm begins with arbitrary threshold values. This 

threshold value is checked to ensure the satisfaction of the 

defined objective functions. The set of complete Pareto 

optimal threshold keys forming the Pareto front in the 

objective space is generated. Then the pareto optimal solution 

is chosen such that it does not worsen one or the other 

objective. This procedure is carried out on all the tiles created. 

Lastly, the algorithm is examined and evaluated by measuring 

and comparing different metrics like the Dice coefficient, 

Jaccard index, Accuracy, Precision, F-score, and Specificity 

against standard processes such as Otsu thresholding with 

PSO and single-objective WOA. 

 
Fig. 1 Workflow of the proposed algorithm 

Input Whole 

Slide Image 

Pre-Processing 

Image Tiling 

 Multi objective 

WOA 

Optimal Threshold 
Result Evaluation 
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3.1. Otsu Thresholding 

Otsu's approach is an image thresholding procedure based 

on clustering. The process involves classifying image pixels 

into background and foreground. It works by trying out all 

possible threshold values and measuring how spread out the 

pixel intensities are on either side of each threshold.  

In other words, it looks at the variation in pixel levels for 

both the background and the foreground, which is a key part 

of Otsu’s thresholding method. 

Consider an image I with N pixels and intensity ranging 

from 0 to L-1. For this image, let the threshold values be t0, 

t1,…, tk-1. The intensity values range from 0 to t0-1. The pixel 

probability at the Ith intensity level is given as Pi = 
𝑛𝑖

𝑁
, where 

ni specifies the overall pixels at the Ith level.  

The class probabilities are specified by 0, 1, …, k and 

the class mean of the sections R0, R1,…Rk are 0, 1, …., k, 

respectively. Each region's mean pixel intensity and 

probability distribution are represented as: 

μ0 = ∑
𝑖𝑃𝑖

0

t0−1
𝑖=0 , μ1 = ∑

𝑖𝑃𝑖

1

𝑡1−1
𝑖=𝑡0 , … . . μ𝑘 = ∑

𝑖𝑃𝑖

𝑘

𝐿−1
𝑖=𝑡0  (1) 

  ω0 = ∑ 𝑃𝑖
t0−1
𝑖=0 , ω1 = ∑ 𝑃𝑖

𝑡1−1
𝑖=𝑡0 , ………ωk = ∑ 𝑃𝑖

𝐿−1
𝑖=𝑡𝑘−1   

 (2) 

Each class’s variance is represented by 𝜎0
2, 𝜎1

2,… 𝜎𝑘
2 and 

is given as: 

𝜎0
2 = ω0(μ0 − μT)

2, 𝜎1
2 = ω1(μ1 − μT)

2 , …… , 𝜎𝑘
2 =

ωk(μ𝑘 − μT)
2 (3)   

Where 𝜇T is the image mean pixel intensity given as: 

𝜇𝑇 = ∑ 𝑖𝑃𝑖
𝐿−1
𝑖=0  (4) 

3.2. Whale Optimization Algorithm 

To attain the optimum threshold value for WSI 

segmentation, this work employs a heuristic Whale 

Optimization technique, mimicking the actions of whales 

[11]. Bubbles like spiral circles are created by encircling the 

prey and then being hunted by the whales, as shown in Figure 

2. In this algorithm, the searching agents proceed towards an 

optimum solution within hypercubes in an n-dimensional 

search space. The pseudocode of WOA is given below. 

First, humpback whales locate their prey and circle them. 

Then, whales approach the target in a circle, constantly 

relocating themselves. The mathematical representation is as 

follows: 

D⃗⃗ = |C⃗⃗  . X*⃗⃗ ⃗⃗  (t)- X⃗⃗  (t) | (5) 

X⃗⃗  (t+1)= X*⃗⃗ ⃗⃗  (t)- A⃗⃗  . D⃗⃗   (6) 

where the present iteration is t, coefficient vectors are 

represented as A and C, and the present location of the search 

agent is X. With each iteration, a better result is replaced in 

the vector representing the optimal solution, denoted by X*. 

The A and C vectors are computed as:   

A⃗⃗ =2a  . r - a  (7) 

C⃗⃗ =2. r   (8) 

Here, ‘a’ is reduced from 2 to 0 in each repetition, and 

vector ‘r’ is an arbitrary value between [0,1]. The updated 

location of the population is mathematically represented as: 

X⃗⃗ (t+1)= {
 X*⃗⃗⃗⃗⃗⃗ (t)-A⃗⃗ .D⃗⃗   if p<0.5

D⃗⃗ .ebt.cos (2πl) +X*⃗⃗ ⃗⃗  (t) if p≥0.5
 (9) 

where ‘p’ is an arbitrary numeral in the range [0, 1], 

denoting the logarithmic curved profile, l takes values in the 

range [-1, 1], and ‘b’, a constant, denotes the spiral's outline 

 

  
Fig. 2  Hunting behavior in WOA [22]  
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Pseudocode for the WOA algorithm 

Whale population initialization  

Initialize a, A, C, l, and p 

Compute the fitness of all search agents 

X* = best search agent 

while (t < maximum number of iterations) 

    individually update parameters 

            if (p < 0.5) 

            if (|A| < 1) 

                Update current agent position: 

                D = |C · X*(t) - X(t)| 

                X(t+1) = X*(t) - A · D  (Exploitation phase) 

            else if (|A| ≥ 1) 

                Select a random search agent (X_rand) 

                Update current agent position: 

                D = |C · X_rand - X(t)| 

                X(t+1) = X_rand - A · D  (Exploration phase) 

            end if 

        else if (p ≥ 0.5) 

            Update current agent position: 

            D' = |X*(t) - X(t)| 

            X(t+1) = D*e^(bl) cos(2πl) + X*(t)  (Bubble-net 

attacking) 

        end if 

    end for 

    Check X going outside the search space and adjust 

    Compute each search agent's fitness value 

    Update X* with improved result 

    t = t + 1 

end  

return X* 

 

3.3. Objective Functions 

The three objective functions used in this work comprise 

maximizing between-class variance, minimizing false 

positives, and minimizing false negatives. The between-class 

variance method is a frequently used methodology for image 

segmentation. This method specifies the degree of diversity 

between various segments based on pixel values. When a pixel 

or region is labelled as existing when it does not exist, it is 

called a false positive. The second objective function aims to 

minimize these false positives in this work. Another value 

called false negative occurs when a pixel that belongs to a 

certain image is labelled as not recognized. This is the third 

objective function in this work, aiming to minimise false 
negatives. The mathematical representation of the said 

objective functions is given below:  

Objective function 1 = Max(σ2) (10) 

where, 

 σ2(t)= PF(t)*  PB(t)*(μ
F
(t)- μ

F
(t))

2
 (11) 

Objective function 2 = Min (
FalsePositive

TrueNegative+FalsePositive
) (12) 

  Objective function 3 = Min (
FalseNegative

TruePositive+FalseNegative
) (13) 

Here, t is the threshold value, 2(t) is between class 

variance, PF(t) and PB(t) are probabilities of pixels in 

foreground and background, respectively, computed using the 

cumulative distribution function, F(t) and B(t) are mean 

intensities of foreground and background respectively for the 

given threshold t.  

Objective function 1 enhances the distinguishability 

between pixel classes, leading to improved segmentation 

performance. Objective function 2 ensures that the model is 

less likely to incorrectly classify negatives as positives. 

Objective function 3 ensures the model captures as many true 

positives as possible, reducing missed detections. Hence, by 

combining the three objectives, the algorithm balances the 

trade-offs, such as focusing on accuracy, which leads to poor 

specificity/sensitivity and vice versa, and thus prevents 

overfitting to any single metric. Further, this strategy ensures 

that the optimization problem considers the performance via 

objective function 1 and the error types through objective 

functions 2 and 3. 

4. Dataset Description 
The proposed algorithm’s effectiveness in image 

segmentation was tested by considering five types of whole 

slide images. The dataset used in this work was drawn from 

publicly available datasets for study purposes [47, 48]. The 

size of all the images is 768 x 768 pixels. The details of the 

images considered in this study are presented in Table 2. A 

few examples of WSIs with their binary ground masks are 

shown in Figure 3.  

Table 2. Dataset description 

Type of cancer Location 
Number 

of samples 

File 

format 

Lung 

adenocarcinoma 
Lungs 25 jpeg 

Breast Invasive 

Carcinoma 
Breast 26 jpeg 

Corpus 

Endometrial 

Carcinoma 

Uterus 25 jpeg 

Clear Cell 

Carcinoma 
Kidney 26 jpeg 

Ductal 

Adenocarcinoma 
Pancreas 16 jpeg 

  

Input Image  

 

Ground truth 

Uterus 
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Pancreas  

  

Lung 

  

Kidney 

  

Breast 

  
Fig. 3 WSIs with binary ground truth mask 

5. Experimental Results  
The quality of the pre-processing methodology is 

evaluated by means of the Structural Similarity Index Measure 

(SSIM) and the Peak Signal to Noise Ratio (PSNR). While the 

segmentation algorithm’s performance is gauged using 

metrics such as Dice coefficient, Jaccard coefficient, 

Precision, Sensitivity, Accuracy, F-measure, and Specificity. 

The proposed algorithm is executed in MATLAB 2023a. 

5.1. Pre-Processing  

This phase fixes the slides for segmentation because the 

slide image undergoes multiple preparation stages and is 

affected by noise, haze, and low contrast.  In this study, RGB 

photographs are initially converted to grayscale images. 

Additionally, the histopathological photos are big and 

challenging to process.  As a result, all the photos were tiled 

using a basic pixel-based tiling approach with dimensions of 

128x128. The Dehazing method and Gaussian smoothing 

were applied to enhance the image and remove noise. The 

SSIM and PSNR are evaluated to assess the quality of the 

image after pre-processing [49]. These calculations are 

performed using: 

PSNR=20 log
10

(
255

RMSE
)  dB (14) 

RMSE=√
∑ ∑ (Iog(i,j)-Iseg(i,j))

2c0
j=1

r0
i=1

r0×c0
  (15)  

where Iog refers to the actual image, Iseg represents the 

image after segmentation, r0 and c0 indicate the image rows 

and columns numbers. SSIM assesses how similar the actual 

and segmented images are, and it is calculated using: 

SSIM(Iog,Iseg) = 
(2μoμseg+c1)(2𝜎o,seg+c2)

(μo
2μseg

2 +c1)(𝜎o
2+σseg

2 +c2)
 (16) 

where µ0 and µseg are the mean intensity values, σ0 and 

σseg are the standard deviations of the actual and segmented 

image. σ0, seg is the covariance of the initial image and the 

segmented image, and c1 and c2 are constant values. The mean 

PSNR and SSIM values obtained for each type of WSI are 

tabulated in Table 3. Higher values are obtained in this 

proposed work, indicating that the pre-processed image is of 

better quality than the original image. Once pre-processing is 

done, histopathology images are segmented using multi-

objective thresholding.  

Table 3. Quality measurement metrics after preprocessing 

Image No. Image PSNR SSIM 

1 Uterus 30.46 0.87 

2 Pancreas 30.42 0.81 

3 Lung 29.92 0.82 

4 Kidney 26.39 0 .83 

5 Breast 27.32 0.89 

 

5.2. MOWOA Segmentation  

This section highlights the results of the MOWOA 

technique-based segmentation. Table 4 presents the 

initialization of various parameters for tuning the algorithm. 

Some of the values are set as default values, and a few are 

altered in accordance with the best fitness value obtained 

through trial-and-error iterations. 

Table 4. Parameter tuning for the algorithm 

Parameters Values 

Population dimension Number of tiles 

Maximum no. of reiterations 100 

Position range [0, 255] 

A [0, 2] 

b 1 

Fitness functions 3 

The proposed method’s efficiency is measured by 

calculating various metrics such as the Dice coefficient, 

Jaccard coefficient, precision, sensitivity, accuracy, F-

measure, and specificity. To measure the competence of the 

presented system, a comparison is made with other algorithms, 

including Otsu thresholding combined with PSO, a single-

objective WOA that uses between-class variance as its fitness 

function, WOA optimized to minimize false positives, and 

WOA designed to reduce false negatives. The dice similarity 

coefficient is often found to assess how well a segmentation 

method performs, while the Jaccard Index (JI) assesses the 

similarity between segmented images and the ground truth 

images. All the metrics used here are calculated as given 

below: 



K P Shivamurthy &  Raju A S / IJEEE, 12(9), 202-214, 2025 

 

209 

Dice Index = 
2O∩S

O+S
 (17) 

Jaccard Index = 
O∩S

O∪S
 (18) 

Accuracy = 
TP+TN

TP+TN+FP+FN
 (19) 

Recall/ Sensitivity = 
TP

TP+FN
 (20) 

Specificity = 
TN

TN+FP
 (21) 

Precision = 
TP

TP+FP
 (22)   

F Measure = 2 × 
Precision×Recall

Precision+Recall
    (23) 

True Positive (TP) refers to the pixels that are properly 

recognized as part of the area of interest. True Negative (TN) 

pixels are those that are accurately recognized as unwanted 

pixels. False Positive (FP) pixels occur when background 

pixels are mistakenly classified as ROI pixels. Conversely, 

False Negative (FN) pixels happen when pixels are wrongly 

labelled as background. Tables 5 - 9 gives the segmentation 

performance metrics results for all the images considered in 

this work.  

Additionally, Figures 4 (a) - (g) gives a graphical 

representation of the various metrics for each type of WSI 

considered in this work. Various performance indices are 

compared to validate the proposed method. Figure 5 shows the 

sample segmented image obtained for OPSO and MOWOA. 

From the images, it is observed that a better-quality segmented 

image is obtained with the application of MOWOA. 

Table 5. Segmentation results for the Uterus image 

 OPSO WOA-BCV WOA-MFP WOA-MFN MOWOA 

Mean Dice coefficient 50.25 5, 0.38 50.38 50.38 50.49 

Mean JI 49.25 51.62 51.02 51.50 51.62 

Mean Precision 50.5 51.62 51.62 51.62 51.62 

Mean Recall/sensitivity 70.14 69.00 69.00 69.00 71.57 

Mean Accuracy 89.71 91.62 91.62 91.62 92.14 

F measure 50.25 50.37 50.37 50.37 50.48 

Specificity 68.85 68.00 68.00 68.00 71.57 

Table 6. Segmentation results for the Pancreas image  

 OPSO WOA-BCV WOA-MFP WOA-MFN MOWOA 

Mean Dice coefficient 48.00 49.63 50.38 51.00 51.50 

Mean JI 48.00 50.75 50.75 50.50 51.81 

Mean Precision 44.33 50.14 50.42 49.57 51.62 

Mean Recall/sensitivity 68.00 72.28 72.14 70.33 69.00 

Mean Accuracy 91.57 90.75 90.12 91.14 91.62 

F measure 48.33 49.62 51.50 51.00 51.37 

Specificity 69.00 68.00 70.10 71.28 68.00 

Table 7. Segmentation results for the Lung image  

 OPSO WOA-BCV WOA-MFP WOA-MFN MOWOA 

Mean Dice coefficient 48.00 50.38 49.38 50.71 50.75 

Mean JI 49.25 49.62 51.25 51.14 51.62 

Mean Precision 49.75 51.62 50.75 51.14 51.12 

Mean Recall/sensitivity 68.00 69.00 70.85 69.00 72.71 

Mean Accuracy 90.14 91.62 90.75 91.14 92.00 

F measure 49.62 50.37 49.37 49.81 50.75 

Specificity 68.42 68.00 71.60 71.55 72.85 

Table 8. Segmentation results for the Kidney image  

 OPSO WOA-BCV WOA-MFP WOA-MFN MOWOA 

Mean Dice coefficient 48.00 49.38 51.13 50.38 49.88 

Mean JI 48.00 50.25 49.62 50.62 50.75 

Mean Precision 44.33 50.75 50.87 51.62 51.12 

Mean Recall/sensitivity 68.00 72.85 72.71 69.00 73.28 

Mean Accuracy 91.57 90.75 90.62 91.62 92.00 

F measure 48.33 49.37 51.12 50.37 49.87 

Specificity 69.00 70.60 69.60 68.00 71.60 
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Table 9. Segmentation results for breast image 

 OPSO WOA-BCV WOA-MFP WOA-MFN MOWOA 

Mean Dice coefficient 48.00 50.75 49.50 50.63 51.38 

Mean JI 48 49.85 48.88 49.75 50.88 

Mean Precision 48.33 50.00 50.88 49.75 50.62 

Mean Recall/sensitivity 68.00 72.14 69.00 69.00 71.42 

Mean Accuracy 91.57 89.85 90.88 89.75 91.57 

F measure 48.33 50.75 49.50 50.62 51.37 

Specificity 69.00 68.00 68.00 68.00 71.85 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Image 1 Image 2 Image 3 Image 4 Image 5

Mean Dice coefficient

OPSO WOA-BCV WOA-MFP WOA-MFN MOWOA

Image 1 Image 2 Image 3 Image 4 Image 5

Mean JI

OPSO WOA-BCV WOA-MFP WOA-MFN MOWOA

Image 1 Image 2 Image 3 Image 4 Image 5

Mean Precision

OPSO WOA-BCV WOA-MFP WOA-MFN MOWOA

Image 1 Image 2 Image 3 Image 4 Image 5

Mean Recall/sensitivity

OPSO WOA-BCV WOA-MFP WOA-MFN MOWOA

Image 1 Image 2 Image 3 Image 4 Image 5

Mean Accuracy

OPSO WOA-BCV WOA-MFP WOA-MFN MOWOA

Image 1 Image 2 Image 3 Image 4 Image 5

F measure

OPSO WOA-BCV WOA-MFP WOA-MFN MOWOA
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Fig. 4 (a)-(g) Metrics for the images under consideration 

Image 
Pre-processed 

Image 
OPSO MOWOA 

Uterus 

   

Pancreas 

   

Lung 

   

Kidney 

   

Breast 

   
Fig. 5 Segmented images using OPSO & MOWOA  

6. Discussion and Inferences 
The Multi-Objective Whale Optimization algorithm 

framework proposed in this work achieved notable and 

reliable performance across diverse sets of WSIs, as indicated 

by the experimental results against traditional Otsu-PSO and 

single objective variants. The fundamental design concepts of 

MOWOA directly address the shortcomings of existing state-

of-the-art methodologies documented in the literature, leading 

to superior performance. Holistic optimization with three 

objective functions is one of the reasons for the better 

performance of the proposed methodology. From the literature 

review, it is found that the majority of advanced techniques 

rely on single objective functions. Although these techniques 

work well for improving a particular metric, they frequently 

result in uneven performance. A segmentation that maximizes 

between-class variance, for example, may be very good at 

distinguishing pixel intensity distributions, but it may also 

produce many false positives, which would negatively impact 

accuracy and specificity.  

The proposed work directly addresses this shortcoming 

by formulating the problem as a multi-objective optimization. 

MOWOA concurrently optimizes between-class variance, 

minimizes false positives and minimizes false negatives 

through three objective functions, avoiding single metric 

overfitting. The findings in Tables 4-8 make it evident that, 

although single-objective variants occasionally perform better 

than MOWOA on a particular target metric, for example, 

WOA-BCV on Recall for pancreatic images, and WOA-MFP 

on Specificity for kidney images, MOWOA always offers the 

best overall balance, obtaining high scores on the majority of 

performance metrics.  In medical diagnostics, balanced 

performance is critical where false positives and negatives 

have serious clinical repercussions. Additionally, the strong 

performance of the proposed method across five distinct 

cancer types from different organs, each with distinct 

morphological characteristics, demonstrates its robustness. 

The selection of basic, non-redundant objective functions that 

are generally relevant to segmentation tasks is what gives the 

algorithm its generalizability.  A well-known benefit of the 

underlying WOA metaheuristic is that MOWOA successfully 

traverses the multi-modal search space of thresholding issues 

without becoming stuck in local optima, as seen by its 

consistent performance through an accuracy value 

approximately equal to 92% and a Dice coefficient 

approximately equal to 51% across all image types. This 

solves a major problem with other nature-inspired algorithms, 

such as PSO, which might converge prematurely on sub-

optimal solutions for complicated WSI data, as demonstrated 

by the results.  

A high sensitivity value of approximately 72% is 

noteworthy, since maximizing recall frequently results in a 

rise in false positives. Also, the proposed algorithm maintains 

a good Precision value of approximately 52% alongside a high 

Sensitivity, which is primarily because of the multi-objective 

Image 1 Image 2 Image 3 Image 4 Image 5

Specificity

OPSO WOA-BCV WOA-MFP WOA-MFN MOWOA
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approach. Furthermore, the segmented region and ground 

truth have superior overlap, as indicated by the Jaccard value 

of 52% range, which is a strong depiction of unsupervised 

segmentation. Differences in datasets and evaluation methods 

make a direct, quantitative comparison difficult for the 

proposed work, but a qualitative comparison with current 

research highlights the competitiveness of the outcomes. 

Several investigations conducted focused on multi-level 

thresholding, which requires intensive computational power. 

The proposed work achieves the critical task of segmentation 

through finding an optimal single threshold via a multi-

objective approach.  

However, the findings also point to areas that need 

improvement in the future.  The variation in the algorithm's 

recall for images of the breast and pancreas suggests that the 

anatomical characteristics of the tissue may have an impact on 

its capacity to detect all true positives. This implies that using 

a dynamic, multi-level thresholding strategy catered to a 

particular cancer type or adding adaptive weights for the 

objective functions may produce even better outcomes. 

The key observations with respect to the methodologies 

are: 

 MOWOA: Frequently attains the highest Mean Dice 

Coefficient, Jaccard Index, Precision, and Accuracy, 

consistently performing exceptionally well in most 

metrics across all workloads. Its ability to strike a balance 

between identifying real positives and preventing false 

positives is demonstrated by its strong recall/sensitivity 

and specificity performance. 

 WOA variants: Perform competitively but generally lag 

behind MOWOA. There is no dominating WOA variety, 

and strengths differ by measure and image under 

consideration. 

 OPSO: Poorer segmentation performance when 

compared to WOA-based approaches, as evidenced by 

consistently lower results across all metrics and tasks. 

Table 10 summarizes the overall comparison in terms of 

various performance metrices and methodologies tried in this 

work.   

Table 10. Comparative summary 

Metric 
Best Performing 

Methodology 
Remarks 

Mean Dice 

Coefficient 
MOWOA Consistently good value for all the images 

Mean Jaccard 

Index 
MOWOA 

High values for most of the images, but closely followed by other 

methods 

Mean Precision MOWOA Stable performance for all the images 

Mean Recall Varies 
WOA-BCV performs well for pancreas and breast images, and 

MOWOA for other images 

Mean Accuracy MOWOA Surpasses other methods for all the images 

F-measure MOWOA Balanced values for most of the images 

Specificity MOWOA / WOA-MFN 
WOA-MFN has a higher value for a few images, but generally, 

MOWOA also performs well 

7. Conclusion 
Whole slide image segmentation is an important task 

since efficiency is crucial for the diagnosis of tumors. This 

work proposed a multi-objective optimization using an 

inspired Whale Optimization Algorithm for determining the 

finest threshold value. Various images are tested to validate 

the proposed methodology. The proposed technique is 

compared against PSO and WOA with single objective 

functions. Various metrics proved the competence of the 

proposed algorithm, achieving an average Dice coefficient of 

50.8, Jaccard index of 51.33, Precision value of 51.22, 

Sensitivity of 71.59, Accuracy of 91.86, F-measure of 50.76, 

and specificity of 71.17. It is observed that MOWOA performs 

well on most measures, especially Dice Coefficient, Jaccard 

Index, and Accuracy.  

Recall varies somewhat, with WOA variations 

occasionally exceeding MOWOA on some images. In 

comparison to alternative approaches, OPSO underperforms. 

Future work includes multilevel, multi-objective optimization 

for thresholding and using hybrid algorithms for WSI 

segmentation. 
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