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Abstract - Recently, the use of modular technology, a wide range of inverters, and free-standing Photovoltaic (PV) systems has 

helped a lot in making MSPV more efficient, reliable, and safe to scale. Many engineers view MMCs as highly appropriate for 

major PV plants because they can be installed modularly, are galvanically isolated and have separate MPPT. With MMC 

inverters, both power quality and losses have improved when PV panels are connected to the grid. For a 5-level MMC inverter, 

the shared triangle saturation shared mode PWM method has both the least voltage THD and the lowest power losses in the 

inverter of the techniques that have been considered. Surprisingly, although modular technologies can help a lot, they can also 

cause problems in places with poor electricity connections. It is important to address concerns about stability when solar systems 

are linked to grids that have low short-circuit strength and inertia. This indicates that high-tech approaches to control and 

technology should be considered in these systems. PV or photovoltaics, offers one of the best chances to build renewable energy 

by turning light directly into electricity on the atomic level. Consequently, PV systems must be improved, taking into account the 

major role of this renewable power. 

Keywords - Modularity technologies, Solar photovoltaic cells, Multilevel inverters, Power quality, Stability issues. 

1. Introduction  
PV systems are adopting RDC MLIs more often, since 

they improve power quality, make systems more efficient and 

lead to fewer components and lower costs. Thanks to its high 

flexibility, reduced harmonics and good output voltage shape, 

this topology is increasingly popular in medium voltage and 

high-power applications. It is possible that coupling SC-based 

converters with DC-AC converters offers a smaller best, 

improved efficiency and has only ideal switching parts [1]. We 

should also point out that some RDC MLI layouts allow an 

increased output voltage, something useful for different 

applications. A boost-type MLI that uses a switched-capacitor 

will produce a 7-level output with a DC input/PV connection, 

giving three times as much AC load current. There is another 

option: have n sections repeated with level boosting, and the 

user can get 4n + 7 voltage levels where 2n + 3 are not enough. 

Overall, the main benefits of using MLIs in photovoltaic 

systems are: improved quality of electricity output, using 

fewer electronic components and greater efficiency [2]. 

Efforts in this research continue with the aim of achieving 

enhanced performance by using fewer switches, alleviating 

stress to electrical components and boosting voltage gain. 

Because of these changes, RDC MLIs may be easier to 

implement with renewable energy in the future, helping 

smaller, cheaper and more effective PV systems [3]. The main 

reasons for recent trends in multilayer inverters in 

photovoltaic systems are to increase power quality, reduce the 

number of required components and make them more efficient 

[4-6]. MLIs have recently evolved by using fewer devices, 

adding battery systems and developing advanced control 

strategies like model predictive control. Such improvements 

aim to make the system perform better and more efficiently at 

reduced costs and improved power quality [6]. Using high-

power capacitors in PV systems has led to promising results 

for better energy storage and improved function [7, 8]. 

Research on made-in-Latin-America solutions that work well 

and are economical will be a key topic with the increase in 

worldwide PV installations. The potential of emerging 

modular technologies and how they may influence the 

photovoltaic industry has not been fully exploited. Theoretical 

literature tends to simplify the relationships between several 

inverters in one system, and it may cause confusion regarding 

the effectiveness and stability of the system. The actual 

limitations of a standalone photovoltaic system, e.g. weather 

conditions, maintenance problems, geographical limitations, 

etc., are scarcely researched. More complex interactions 
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between two or more inverters in a single system can be 

explored in future studies, and more sophisticated predictive 

models can be developed. These results indicate that, though 

there has been extensive research on modular technologies, 

multiple inverters, and standalone photovoltaic systems, 

numerous gaps remain in our knowledge, especially in terms 

of methodology, theory, and practice. These gaps still require 

more research to fill so that we can improve our understanding 

in these areas. 

1.1. Significant Benefits Associated with MV Multilevel 

Converters 
In medium-to-high voltage applications, such as High-

Voltage Direct Current (HVDC) transmission, MMCs are a 

new kind of power electronic converter. Enhanced 

dependability, reduced harmonic distortion, and power 

conversion efficiency are just a few of the factors that have 

made this sophisticated voltage source converter so popular 

[9, 10]. 

The following is a summary of an MMC's fundamental 

functions: 

 The basic building blocks are called sub-modules, 

sometimes referred to as "arms" or "cells." Capacitors and 

power semiconductor devices (switches) are found in 

each sub-module. The converter's capacity to generate 

voltage levels is determined by the total number of sub-

modules. 

 Series connection: These submodules are linked in series 

to achieve the appropriate output voltage level. It is 

interesting to note that each sub-module has a voltage 

rating that is lower than the overall output voltage, 

improving voltage management and efficiency. 

 Voltage synthesis: By regulating the switches in the 

submodules, the converter may generate varied voltage 

values between both the positive and 

negative connections, resulting in the ideal voltage output 

waveform. 

 The control system uses Pulse Width Modulation (PWM) 

techniques to govern the switching of power 

semiconductor devices. In order to regulate the amplitude 

of every voltage level and appropriately shape the output 

voltage waveform, it modifies the period of the duty cycle 

of the PWM signals. 

 Capacitor voltage balancing: Variations in loads or 

switching activities can cause voltage imbalances in 

capacitors while in operation. The control system keeps 

an eye on the capacitor voltages and makes any required 

adjustments to ensure stability and appropriate voltage 

distribution. 

 Synchronization and Control: A complex control system 

is required to efficiently manage the MMC. It 

continuously checks factors such as output voltage, 

current, and capacitor voltage to ensure smooth and 

efficient performance. To maintain the necessary 

waveform integrity in multi-module MMCs, sub-module 

synchronization is required. 

1.2. Traditional Multilevel Inverters 
Compared to conventional two-level inverters, Multi-

Level Inverters (MLIs) exhibit better harmonic performance 

and significantly higher power ratings, making them more 

attractive for high power and high voltage applications [11]. 

These inverters can output almost sinusoidal wave form 

voltage and switch once per fundamental period, dispensing 

with transformers in multipoles inverters for conventional 

utility interconnections and static var compensators. They also 

have more components, more switches and complicated gate 

pulse generation, all of which can lead to poorer efficiencies 

and higher costs (See Figure 1 and Table 1) 

 
Fig. 1 Traditional multiple inverters [12] 

Multilevel Inverters 

Multiple DC Source 

MLIS Single DC Source 

MLIS 

Diode-Clamped 

Inverter 

Flying 

Capacitor 

Invertor 

Asymmetrical 

Cascaded H-

Bridge Invertor 

Cascaded 

H-Bridge 

Invertor 

Modular 
Multilevel 

Convertor 

Hybrid 

MLIs 

Hybrid MLIs with 

Mixed DC Source 

Hybrid CHB with 
NPC or Flaying 

Capacitor 

Other Custom 

Topologies 



Priya & Gayathri K M / IJEEE, 12(9), 236-255, 2025 

 

238 

Table 1. Limitations and merits of multiple-level and dual-level inverters 

Multi-level inverter Dual-level inverter 

The output waveform exhibits low THD. Maximum THD to Output waveform 

Low-switching stress Higher  switching stress 

High-voltage scope Limitations of a higher voltage scope 

Higher voltage levels Did not enhance high voltages 

Lower dv/dt Higher dv/dt 

Decreasing switching losses owing to lower Higher switching losses due to the high switching frequency 

Table 2. THD numbers for 2-level, 5-level cascaded, and 5-level NPC inverters 

5-level NPC 5-level Cascaded Dual-level The concept of topology 

Up-to 31.57 Up-to 29.65 Up-to 114.56 @ 1kHZ, Voltage THD% 

Up-to 1.87 Up-to 0.43 Up-to 5.83 @ 1kHZ, Current THD% 

1.3. Modular Technologies on Standalone PV Systems 

Photovoltaic systems that operate on their own are 

constructed to deliver the power needed by particular DC or 

AC devices. Solar systems can use solar energy exclusively or 

also add wind, a generator powered by an engine or grid 

electricity to make them a photovoltaic-hybrid system. A 

simple way to use a stand-alone photovoltaic system is known 

as direct-coupling, where the DC power from a solar module 

or grid goes directly to a DC appliance [13]. As electrical 

storage is not needed for direct-coupled systems, the power is 

only delivered when there is sunlight (See Table 2). For this 

reason, these designs are commonly used in water pumps, 

ventilation fans and very small pumps found in solar water 

heating devices [14, 15]. A successful direct-coupled system 

depends on matching the load’s impedance to the solar array’s 

maximum power point. For certain loads like positive-

displacement water pumps and others, a Maximum Power 

Point Tracker (MPPT) electronic converter is added between 

the array and its output to better utilize the array’s maximum 

available energy [16]. Systems installed on the ground or roof 

require a mounting framework, and an inverter is required if 

the user wants AC power (See Figures 2 and 3). As batteries 

are often responsible for 40% of a stand-alone PV system’s 

lifetime costs, they are generally chosen for energy storage in 

these kinds of installations. 

1.4. Challenges of Future Prospects  

Global improvements in different industries, as well as 

academic studies, have led to an increase in demand for high-

energy efficiency converters. Because of their inherent 

benefits, MLIs are in high demand to play an important role in 

DC/AC process conversions that include both high-power and 

high-voltage techniques [18]. The ability to interact directly 

with intermediate voltage, a reduction in semiconductor 

devices, DC sources, and their associated gate driver circuits, 

as well as enhanced effectiveness, lower cost, and small size, 

are just a few of the key characteristics that have powered 

RSC-MLIs from an idea in theory to practical applications 

[19]. This literature study examines several topologies and 

modulation approaches, compares their performance metrics, 

and concludes that asymmetric multilevel inverters 

outperform symmetric MLIs with regard to positive aspects 

(Figure 4). The review study focused mostly on reduced 

switching multilevel inverter architectures [20]. This article 

provides a detailed explanation of modulation schemes for 

both higher and lower switching rates. This review aims to 

collect the majority of the necessary data for working in this 

sector, including information on selecting the best topology 

for a specific application, switching techniques, and control 

approaches. High performance and efficiency of modular 

technologies and multiple inverters have been reported in 

some studies, with lower values in others. Such contradictions 

can be explained by methodological, conditioning, or 

assumption differences in the studies. More research must be 

conducted in order to eliminate such contradictions and 

identify the variables that define the effectiveness and efficacy 

of such technologies. Original research on the creation of new 

modular technologies, as well as multiple inverters, is 

possible. This type of research would result in more efficient, 

reliable, and economical solutions to standalone photovoltaic 

systems. 

2. Recent Advancement of Modular 

Technologies and Multiple Inverters 
Stand-alone photovoltaic systems are intended to function 

independently of the electricity grid, and are often designed 

and sized to serve specific DC and/or AC electrical needs. 

These systems can be powered solely by a solar array or can 

also employ wind, an engine generator, or electricity from the 

grid as an auxiliary power source, resulting in a photovoltaic-

hybrid system [23, 24]. The most basic sort of stand-alone 

photovoltaic power is a direct-coupled system, in which the 

DC output of a solar module or grid is directly linked to a DC 

load. Since direct-coupled systems do not require electrical 

energy storage (batteries), the load only runs when the sun is 

shining [25-27].  

This makes these designs appropriate for typical uses like 

water pumps, ventilation fans, and tiny circulating pumps for 

solar-powered water heating systems (See Table 3). A key 

component of developing a successful direct-coupled system 

is matching the electrical load's impedance to the solar array's 

maximum power output [28]. For specific loads, such as 

positive-displacement pumps for water, an electronic DC-DC 
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converter known as a Maximum Power Point Tracker (MPPT) 

is utilized between the array and the load to help better use the 

array's full power output [30]. A mounting framework is 

necessary for systems that are installed on the ground or roof, 

and an inverter is also needed if AC power is sought [31, 32]. 

Since batteries can make up as much as 40% of the total cost 

of a stand-alone PV system during its lifetime, they are 

frequently employed for energy storage in these systems 

(Figure 5). 

2.1. Active Neutral Point Clamped (ANPC) 

The working techniques of at least five levels of Active 

Neutral-Point-Clamped (ANPC) converters are revealed [34]. 

The maximum of five-level ANPC inverters may have upper 

and lower DC connections, a neutral point, a converter output, 

a number of switching devices, comprising lower and 

upper actively neutral clamps switching equipment, and in 

addition, one two-level cell linked to the output [35, 36]. Each 

two-level cell may contain a float capacitor and a reversible 

switch (See Figure 6 and Table 4). In some cases (See Figure 

7 and Table 5), switches may be placed across the upper and 

lower DC links and the upper and lower active neutral clamp 

switching devices, while circuit breaking components may be 

linked between the neutral position and the lower and 

upper active neutral clamping switching devices. This method 

involves operating a five-level Active. 

 
Fig. 2 MLI classification based on the number of DC sources employed [17] 
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Fig. 3 Augmentation approaches for grid-connected MLIs [21] 
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Fig. 4 Traditional MLI architectures [22]
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Table 3. Comparing the characteristics of several multilevel inverter architectures [29] 

The topological 

structure 
H-bridge Cascaded Capacitor-flying 

Capacitors of 

the DC link 
3*(n-1) n-1 

Clamping 

Diodes 
3*(n-1)*(n-2) 0 

Clamping 

capacitors 
0 3*(n-1)*(n-2)/2 

Voltage level Very-small Higher 

Merits 

Robust construction employs the 

fewest DC-link capacitors required 

(reduced voltage imbalance concerns). 

Phase redundancy can be used to balance 

voltage across DC-link capacitors. 

De-merits 
As the number of levels increases, so 

do the clamping diodes. 

Bulky and more expensive, with more 

complicated voltage balancing control 

algorithms. 

Scope STATCOM, Motor driving System STATCOM, Motor driving System 

 
(a) 

 
(b) 

Fig. 5 H-bridge inverter to five-level cascaded and H-bridge inverter to 

five-level cascaded and DC MLI of 3-level [33] 

An Active Neutral-Point-Clamped (ANPC) converter 

with lower and upper DC sources, a neutral point located at a 

converter results in at least one two-level cell associated with 

the converter output, and a plurality of switching devices, 

including upper and lower engaged neutral clamp switching 

devices coupled to the neutral point, as well as other switching 

devices [37, 38]. The policy and regulation implications of the 

adoption and use of these technologies are not adequately 

discussed in the literature. Future research can focus on the 

impacts of different policy frameworks and regulations on the 

introduction and performance of standalone photovoltaic 

systems. Various sources give various opinions about the 

limitations of standalone photovoltaic systems. More research 

is required to shed a little more light on these contradictions 

and to give a far more detailed account of these restrictions. 

 
Fig. 6 Model of active-neutral point clamp MLI [39] 

3. Reduced Device Count Topologies for 

Multiple-Level Inverters 
People are interested in RDC MLI topologies because 

they supply good output voltage with a small number of 

devices [43]. These topologies are created to correct common 

problems in MLIs, such as a high number of devices 

connected, low lift and non-uniformity in DC voltage [36]. 
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The reason RDC MLIs stand out in renewables is their 

flexibility and good generating power, especially for 

Photovoltaic (PV) systems (See Figure 8). Recent research has 

centered on new topologies of Novel MLIs that maintain or 

improve performance, while reducing the number of 

individual DC sources, power gate drivers, and/or power 

semiconductor devices [44, 45].  

For instance, a single-phase asymmetric MLI that reduces 

the Total Standing Voltage (TSV) and number of devices has 

been presented, capable of generating 33 levels. Levels 

Dependent Source Concoction Multi-Level Inverter 

(LDSCMLI) uses a module to create a stepped DC link and 

relies on a traditional H-bridge to deliver the waveform for the 

AC output [46]. 

Table 4. MLI architectures are compared depending on the technical considerations [40]

 
Inverter architecture 

DC-MLI MLI-FC MLI- CHB MLI-DC The Implementation Factor 

DC-ANPC Link 

Capacitors 
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Table 5. Performance comparisons between LSPWM and PSPWM systems [41] 

Key aspects PSPWM LSPWM 

The frequency at which devices switch Similar across all devices. Different 

Does the gadget have the same conduction period? Yes No 

Converter architecture CHBC, FCMLC Structure is independent. 

THD (line-to-line voltage) Good Better 

Nature capacitor voltage balance Voltage balance was achieved. Null 

Control design Simple Complex 

  
Fig. 7 SVM block diagram, the symbol 1 denotes positive states, 2 stands 

for negative states and 0 corresponds to zero states [42] 

A couple of topologies have managed to boost voltage 

with fewer parts, like the Seven-Level Switched Capacitor 

Boost Inverter (7L-SCBI) that uses just eight switches and two 

capacitors to reach seven voltage stages and increases the 

input DC-link (See Figure 9) voltage by 1.5. Analogously, a 

modified seven-level H-bridge inverter with two DC supplies 

and six IGBTs has been built, and its output is managed by 

Aquila Optimizer (AO) [47, 48].  

Such improvements prove that RDC MLIs can lead to 

huge reductions in the number of parts, expenses, and volume 

while sustaining or improving how well they function, unlike 

older designs [51, 52]. In essence, RDC MLI (See Figures 

10(a) to 10(c)) topologies work well for many uses, especially 

when making energy-efficient and grid systems. Such 

topologies address major issues that most MLI systems 

encounter, such as cost-efficiency and a steady power supply, 

by reducing the components that are needed [53, 54]. As 

studies in this topic move ahead, we can predict new and better 

designs in RDC MLI (See Figures 11(a) to 11(c)), making 

power conversion for medium and high power applications 

less expensive, more space-efficient and improved [55]. 

This article explains how hybrid-switching and a closed 

loop are used to control a trinary asymmetric 27-level inverter 
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when needed in a PV system. This diagram illustrates a two-

loop control approach for a grid-connected PV system (See 

Figure 12).  The internal loop ensures that the power factor 

stays at 100% and the external loop is in charge of setting the 

voltage for the main H-bridge [60-62]. Auxiliary H-bridge 

modules supply ceiling, floor and slope details for the right 

and left aligned timer approaches as explained. Steady 

operation is achieved when a zero-error signal is added to the 

closed-loop control system (See Figure 13). Equation-based 

balancing methods have been created to hold the flying 

capacitor voltage constant during any changes in power factor 

and load current values [63]. It is possible to detect the 

movement of the load’s current with a zero-crossing detector 

(See Figure 14). At the start, the core controller gives the 

PWM its index for modulation, and the PWM then makes a 

multistep comparison signal. With sinusoidal PWM and HER, 

the PWM creates a baseline waveform that is not simple but 

has many steps [64]. Inputs to this subsystem are only the 

voltage levels from the inverter, so it can be used as a global 

modulator. 

 
Fig. 8 MLI reduced the device count [49] 

 
Fig. 9 Half-bridge MLI cascaded with sub-cells [50] 
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(a) (b) 

 
(c) 

Fig. 10 (a) Simplified half-bridge MLI with a cell that has reverse polarity, (b) A bidirectional asymmetric switch MLI with 13 levels, and (c) MLI 

with five transistor clamping levels [56]. 
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(a) (b) 

 
(c) 

Fig. 11 (a) Inverter with many levels of modules, (b) SCSS MLI consists of five levels, and (c) A thirteen-level hybrid SCMLI [57]. 
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Fig. 12 A seventeen-level hybrid SMLI [58] 

 
Fig. 13 A 27-level inverter uses hybrid Pulse-Width Modulation (PWM) and various control approaches [59]
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Fig. 14 Balancing FC active voltage with the LGB control infrastructure [65] 

4. Techniques for Controlling Various Voltage 

Sources, Grid-Connected MLI 
A special power transfer control system (See Figure 15) 

is described in the paper, which helps the CHB-MLI system in 

SECS to regulate capacitor charging under various 

environmental conditions [66, 67]. The technique Can 

investigate how to manage bidirectional power flow, which 

allows for separate control of each HBC and adjustable power 

drawn from the DC-links. Thanks to the panels being unevenly 

connected, a perfect balance is still reached using a DC-link 

capacitor [68, 69]. Sometimes, to inject sinusoidal current in 

phase with the grid, grid-connected cascaded MLIs depend on 

precise control systems that maintain the UPF (See Figure 16). 

Make sure all the PV-made electricity goes immediately into 

the grid with the DC-link voltage higher than the voltage the 

grid can handle [72, 73]. Similarly, the best method for the 

controller of cascaded MLIs is to maximize the power 

extracted from each solar array using separate control of the 

DC-link voltage [77]. A controller is required to maintain the 

system’s stability when any of these external conditions 

change: the environment, radiation and wind [78]. The figure 

displays how the five-level Modular FC Multi-Level 

Converter (MFCMLC) manages the voltages at the 

electromagnetic-wave ports to control Vdcx1 and Vdcx2, 

which are the two reference dc-link voltages for the isolated 

HBCs. As each HBC allows separate regulation of the voltage 

and capacitors, MPPT is useful for both wind and solar 

systems [79]. In addition, the use of the MFCMLC with a 

control system and switching method that is good at handling 

imbalances in power that often appear between and among 

cells in a phase due to changes in the environment. 

 
Fig. 15 CHB-ML control scheme [70] 
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Fig. 16 MFCMLC control scheme [71] 

                                             
                                                  Table 6. Detailed comparison of a multilayer inverter with fewer devices [80] 
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---- 
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[81] 
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hardware and 
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suggested 
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Micro controller 
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89C52 

EMTDC/ 
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THD, 
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losses, 
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Based 

MLI/ 
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J et al. 

(2012) 

[82] 
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simulation 

outcomes of this 
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contrasted with 
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topologies. 

dSpace 

DS1103 

Simulink/ 

MATLAB/ 

THD, 
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losses, 
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losses, 

SPWM/ PD 
MLI/ 

SCSS 

Gupta, 

K.K.  etal 

(2014) 

[83] 

As a result, it 

became possible 

to remove the 

polarity changer, 

so there were less 

switching devices, 

less expense and 

simpler circuits. 

Controller 

TMS320F28335 
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Simulink/ 

MATLAB/ 
THD 

Harmonic 

elimination 

scheme 

half-bridge 

inverter 

asymmetric 

cascaded 

M,Ahmed 

et al. 

(2017) 

[84] 

A half-bridge 6013/ NI PCI Simulink/ THD POD (Phase half-bridge K.M, [85] 
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inverter 

operating at 15 

levels used PWM 

techniques that 

work in multiple 

carrier 

frequencies. 

MATLAB/ opposite 

deposition), 

IPD (In 

phase 

deposition), 

APOD 

(Alternative 

POD), 

inverter 

(cascaded) 

Kotb, 

et al. 

(2016) 

A series 

connection of sub-

multilevel 

inverters 

recommended 

using the RSB-

MLI scheme. 

Micro controller 

ATMEL 

89C52 

EMTDC/ 

PSCAD 

 

Standing 

voltage, 

THD 

Angle 

Switching 

Bi 

directional 

switch/ ML 

E, Babaei 

et al. 

(2007) 

[86] 

Approaches in the 

standard showed 

how to determine 

components and 

their voltage 

levels. The 

strategy was 

confirmed by 

results from 

simulations and 

experiments. 

Micro controller 

ATMEL 

89C52 

PSCAD 

output 

voltage/ 

THD 

Frequency 

switching 

technique 

half-bridge 

inverter 

(cascaded) 

E, Babaei 

et al. 

(2007) 

[87] 

Table 7. Comparison of contemporary MLIs for PV systems with fewer devices 

PV 

Configuration 

Algorithm 

MPPT 

Controller 

Systems 

Modulation 

Scheme 
Software’s 

MLI 

Configuration 
References 

Standalone ---- 
Micro controller 

PIC16F877A 

PD, APOD, 

POD 

Simulink/ 

MATLAB/ 
CHB Modified [88] 

Standalone 

IC 

Incremental 

conductance 

2560 

Arduino Mega 

PWM-PD 

PWM-SHE 

Simulink/ 

MATLAB/ 

Reduced Switch 

H-Bridge-Based 

(RSHB)MLI with LDC 

[89] 

Standalone ------ 
Spartan 6 processor 

FPGA 
NLM 

Simulink/ 

MATLAB/ 

Multilevel inverter 

with dual source 
[90] 

Grid connected ------ 
STM32F407 DSP 

STMicroelectronics 
PWM -------- 

Double-mode with 

multilevel inverter 
[91] 

Grid connected IC 
dSPACE 

MicroLab Box 
PWM 

(R2009a) 

Simulink/ 

MATLAB/ 

Enhanced 

H-bridge 

multilevel inverter 

[92] 

Standalone IC 
Spartan 

FPGA 
PWM 

Simulink/ 

MATLAB/ 

Modified MLI 

H-bridge 
[93] 

Standalone Fuzzy logic 
3E-500FPGA 

Xilinx Spartan 
PD/CPWM 

Simulink/ 

MATLAB/ 

Cascaded 

sub-MLI 

H bridge 

[94] 

Standalone 

Observe and 

Perturb 

(P &O) 

dSPACE/1104  

controller 
PD/CPWM 

Simulink/ 

MATLAB 

CHB is integrated with a 

double-level circuit 
[95] 

Grid connected IC Controller/ DSP PD/CPWM 
Simulink/ 

MATLAB 

(VLB)MLI 

Voltage Level Boost 
[96] 

Standalone P/O 
dSPACE/1104  

controller 
PD/CPWM 

Simulink/ 

MATLAB 
Micro multilevel inverter [97] 

Standalone fuzzy logic DSPIC/30F2010 SHE/PWM Simulink/ Switched capacitor (MLI) [98] 
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control with 

GreyWolf 

optimization 

technique 

controller MATLAB 

Standalone Fuzzy logic ------ 

Swarm 

optimization 

Anti-predatory 

particle 

Simulink/ 

MATLAB 
Switched capacitor (MLI) [99] 

Grid connected 
hysteresis  

control with IC 
--------- PWM 

Simulink/ 

MATLAB 

U-cells 

S-packed 
[100] 

Table 8. Key mechanisms to enhance the results by state-of-the-art techniques 

References State-of-the-Art Limitation Modular/Multiple Inverter Approach Improvement Area 

[45] Rigid, difficult to scale Easy expansion, hot-swapping modules Modularity and Scalability 

[67] Higher THD, more filtering needed Low THD, stepped waveform Power Quality 

[78] Centralized, limited by the weakest Distributed, per-module optimization MPPT Efficiency 

[85] System-wide shutdowns Operation continues after faults. Fault Tolerance 

[90] More components, higher losses Fewer switches, lower cost Component Count 

5. Conclusion and Future Challenges  
The review within this paper covers all the major points 

about classical multilevel inverters and various modulation 

techniques (See Tables 6 and 7). They are described with their 

pros and cons. The main focus of the current work is on 

multilevel inverters that need a lower number of devices. The 

framework in this work is built on the topology of how 

machines and fiber links are connected. Of late, many new 

topologies have been developed aiming to produce a larger 

number of output voltage levels with less need for power 

electronic devices. Particularly, SDCS-MLI topologies fit 

better for electric vehicles and renewable energy systems than 

MDCS-MLI structures. This means moving towards increased 

use of DC sources in magnetic levitation systems. Besides, 

topologies such as the Level Dependent Sources Concoction 

Multilevel Inverter, LDSCMLI, allows for producing different 

voltage levels using sizeable savings in components and 

control signals. Going forward, MLI researchers might focus 

on making RDC systems lighter, more efficient, and more 

tolerant of possible faults. Future research would also be wise 

to look at more SDCS-MLI designs, try out structures using 

different MLI types and find better control ways to increase 

performance and decrease stress on main components. 

Reliability should be improved, standby voltage should be 

lowered, and design modifications should consider certain 

applications, such as grid-connected systems or renewables 

integration. Modular design, distributed control and advanced 

inverter topologies allow standalone PV systems to be more 

efficient, reliable, and flexible than traditional solutions, 

especially when operating within the limits of real-world 

conditions. 
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