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Abstract - There has been a potential rise in the usage of renewable energy sources in the distribution system over the past few
years because of advantages like less power loss, improved voltage regulation, reliability, and environmental friendliness. In
spite of these advantages, these sources, known as Decentralized Power Generation Resources (DPGRs), cause alteration of
system parameters. Bidirectional power flows, increased and variable fault currents can lead to protection miscoordination,
nuisance tripping, and reduced system reliability. An adequate protection should be provided for reliable protection and
operation of the distribution system. An Overcurrent Protection (OCP) scheme for Industrial Distribution Network (IDN) with
Decentralized Power Generation Resources (DPGR) with a Fuzzy Logic-based controller is proposed in this article. Simulation
of the suggested Over Current Protection (OCP) is done through ETAP software, incorporating Decentralized Power Generation
Resources (DPGRs) in the Distribution System. Impact of Decentralized Power Generation Resources on protection system and
protection coordination is verified in a site study. Results demonstrate that the proposed scheme reduces fault clearing time,
minimizing false operations and enhancing system stability, and it offers a better solution for modern grids and a directing way

for future development and enhancement in adaptive protection strategies.

Keywords - Decentralized Power Generation Resources, Fuzzy Logic, Industrial Distribution System, Overcurrent Protection,

Protection Coordination.

1. Introduction

An increase in power demand requires large power
generation units, which are far away from the load end, and
requires the installation of a long transmission and distribution
line network for power to reach the load end. These power
generation units, being non-renewable, cause pollution, and
because of the transmission and distribution line network,
there is an issue of power loss and voltage drop. This
encourages the usage of Decentralized Power Generation
Resource (DPGR), also known as Distributed Generation
(DG) Sources, which is an electricity generation facility [1]
connected at the consumer end or in the distribution network.

Integration of Distribution Power Generation Resources
(DPGRs) like Solar PV, Wind Energy Systems into modern
electrical distribution networks has revolutionized energy
production and consumption paradigms. These sources have
many benefits and drawbacks (as shown in Figure 1) when
implemented in distribution networks [2-13], but their
proliferation introduces challenges to traditional protection

coordination schemes, particularly in managing overcurrent
protections which can arise from bidirectional power flows, an
increase in fault current magnitude, variable generation
patterns from DPGRs, and fault conditions. Apart from
increasing fault current, these sources will also increase
normal system current, which leads to the upgradation of
protection and switchgear components. Factors that affect
protection coordination in terms of Decentralized Power
Generation Resources are their types, size, location, and
number of sources connected in the system (as shown in
Figure 2).

Protection coordination also depends on the type of
distribution network (viz., radial, ring main). When
Decentralized Power Generation Resources (DPGRs) are
connected in a distribution network for supply to various
consumers, it is known as a Microgrid. For distribution
network protection, overcurrent protection remains a
cornerstone. Conventional overcurrent protection, primarily
designed for distribution networks with unidirectional power
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flow from the utility grid, often fails to adopt the dynamic ~ ensuring sensitivity, speed, and selectivity. This article
nature of DPGRs integrated networks, leading to relay  proposes an overcurrent protection scheme that employs a
miscoordination. This has encouraged research into intelligent ~ fuzzy logic controller-based scheme to enhance adaptability
protection strategies that can adapt to real-time variation, and reliability in the DPGR integrated network.

Implementation of Decentralized Power Generation Resources
(DPGRs) in Distribution System
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Fig. 1 Benefits and drawbacks of implementing DPGRs in the distribution system
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Fig. 2 Factors affecting protection coordination in terms of source and system
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The proposed method adjusts relay settings even with the
dynamic nature of DPGR. The contribution of this work is to
provide a robust, low computational cost alternative to
existing methods.

The article is arranged as follows: Section 2 presents
details of owvercurrent protection used in the distribution
system. Section 3 presents a literature review of existing
methodologies. Section 4 gives details of the proposed
methodology and simulation setup. Section 5 presents the
verification and discussion of the proposed methodology.
Finally, Section 6 gives concluding remarks of the article.

Overcurrent Protection

2. Overcurrent Protection

Overcurrent protection is a critical protection aspect for
the distribution network, basically designed to safeguard
equipment and ensure system reliability. It involves detecting
and mitigating excessive current flows that could damage
components or cause system outages. When the current sensed
by the relay is more than its pickup or preset value, giving an
indication of the presence of a fault in the distribution system,
overcurrent relays will operate. As per the requirement of the
protection scheme, either a directional or non-directional
overcurrent relay is used. According to characteristics, the
classification of overcurrent relays is presented in Figure 3.
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Fig. 3 Classification of Overcurrent (O/C) relay (according to time-current characteristics)

Table 1. Coordination time interval for relay coordination

Relay Types Coordination Time Interval (CTI) (Sec) *!
Overcurrent Relays (Induction Disc) (With Disc Overtravel Component) 0.3t004
Overcurrent Relays (Static) (Removing Disc Overtravel Component) 0.21t00.3
Overcurrent Relay (Numerical / Digital) 021003
(Removing Disc Overtravel Component) ' '

*CTI is reduced further through Field Calibration by 0.05 s

ICTI = Relay Over Travel + Relay Tolerance + Circuit Breaker Opening Time + Setting Errors

In a distribution network, an overcurrent relay can be used
for primary as well as secondary (or backup) protection. For
better coordination between primary and secondary (or
backup) relays, Time Gradient Margin (TGM) or Coordination
Time Interval (CTI) is an important parameter.

Coordination Time Interval (CTI) for different types of
relays according to IEEE Standard 242-2001 is given in Table
1[14].

Generally, distribution networks are in radial
configuration, and for coordinating overcurrent protection,
one of the methods used is time-based coordination (as shown
in Figure 4) where relays are coordinated such that the relay
nearest to the fault will operate first and relay nearest to the
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source has longer operating time, which is not feasible, as near
to the source, fault current is maximum. The second method is
current-based coordination, where the setting is done based on
pickup current, and the relay nearest to the fault will trip its
respective circuit breakers.

Fig. 4 Radial Distribution Network (RDN)
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Tor = [ (A/(MP-1)) * TDS ]+ B Q)

where,

A, B, P = Constants according to IDMT characteristics
as per IEC 60255

TDS = Time Dial Setting or Time Multiplier Setting
(TMS)
M = Plug Setting Multiplier (PSM)

Overcurrent relays used in the distribution system have
inverse time characteristics, so with an increase in fault
current, fault-clearing time will decrease. One of the main
parameters that needs to be adjusted for an inverse time
overcurrent relay is the Plug Setting Multiplier (PSM). Ratio
of the current transformer secondary current and the relay
operating current is known as Plug Setting Multiplier (PSM).
According to the requirements, the pickup current of the relay
is adjusted. Another parameter is Time Multiplier Setting
(TMS), which adjusts the operating time (Top) of the relay.
Equation of operating time (Top) of the relay is given in
Equation (1), and constants for calculating the operating time
of the relay are given in Figure 3.

3. Existing Methodologies

Researchers have developed overcurrent protection
methods with different techniques for distribution networks
with distributed generation sources. For ensuring proper
operating time (Top) and protective coordination, a protection
algorithm for Inverse-Time Overcurrent (ITOC) relays [15]
was developed without considering bidirectional flow of fault
currents in both radial and ring main distribution networks.
Investigation of optimum utilization of Fault Current Limiters
(FCLs) [16] for maintaining Directional Overcurrent Relay
coordination without changing relay setting and DG status was
done, and multi-objective particle swarm optimization was
used to identify the location and size of FCLs, but in this
scheme, DGs of the same size are used. Directional
overcurrent protection [17-19] was also developed, but used
only Wind Turbine Generators (WTG) or Synchronous
Generators (SG) as distributed generation sources. Artificial
Bee Colony (ABC) based optimized coordination of
Directional Overcurrent Relay [20] and overcurrent relay
having fuzzy inference and neural network learning module
[21] were proposed for the Distribution System with
Distributed Generation Sources.

Local measurements-based overcurrent protection using
the least square algorithm [22] for determining the Thevenin
circuit equivalent was developed for a distribution system
using only wind power generators. A numerical overcurrent
protection with the facility of updating Time Current
Characteristic (TCC) online [23] and with Microgrid
Communication Medium (MCM) [24] for updating relay
operating currents was developed for a distribution network
with distributed generation sources. This scheme is working
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on the communication medium, and if it fails, the protection
scheme will not work properly. A new computational method
of Plug Setting Multiplier (PSM) for inverse time protection
scheme [25] was developed for a distribution network, but has
a limitation of working only for a radial system, and the effect
of penetration of the DG source is not even considered.
Communication-based overcurrent protection [26] was
developed for a distribution network with DG sources but has
the problem of inaccurate coordination, as there is a possibility
that the backup relay gets tripped for a fault in the forward
direction. Overcurrent protection based on optimization
technique using Genetic Algorithm [27] was also evolved, but
again has the limitation of not considering DG source
penetration. Numerical Inverse Definite Minimum Time
(IDMT) Overcurrent Relay (OCR) [28] for the protection of a
microgrid was developed using a Field-Processable Gate
Array (FPGA), but has a limitation to its applicability for
radial systems only.

A fuse-relay coordination-based Overcurrent Relay
(OCR) [29] protection scheme was developed for a microgrid,
but considered only diesel generators as DG sources.
Researchers have developed a Directional Overcurrent (DOC)
protection scheme using a fault steady state component [30]
for a distribution system, but not considering high impedance
faults. A dual setting directional overcurrent protection
scheme [31-33] was proposed for a distribution network, but
applicable for a system with only one type of DG. An
overcurrent protection that eliminates the impact of DG [34,
35] on branch current, as per the branch contribution factor
matrix, was developed, but it works only with one type of DG.

The Dynamic Adaptive Overcurrent Relaying (AOCR)
[36] scheme, not dependent on an external controller for
estimating relay pickup, was proposed but has a limitation to
work for systems with only Solar PV as a DG source. A phase
fault protection scheme performing optimal setting of
directional overcurrent relay using a meta-heuristic-based
optimization algorithm [37] was proposed, but considering
only synchronous generators as DG source, and the scenario
will be different when inverter-interfaced DG sources are
included in the distribution network. An online
communication-based protection scheme [38, 39] using
numerical directional overcurrent protection relays with a
commercial AMPL-based IPOPT solver was proposed, but
considering only synchronous generators as a DG source and
failure of the communication system makes this scheme
inoperative. Other different methods have been developed for
distribution system with distributed generator sources based
on mixed characteristic curves of relays [40], definite-time
grading technique [41], micro genetic algorithm [42],
Evaporation Rate Water Cycle Algorithm (ER-WCA) based
optimization algorithm [43], Gravitational Search based
Algorithm [44], Fault Current Limiter and Cuckoo Linear
Optimization Algorithm [45], Non-standard characteristic of
overcurrent relay [46] and Ant Lion Optimizer [47].



Ishan Desai et al. / IJEEE, 13(1), 19-30, 2026

4. Proposed Adaptive Methodologies and

Simulation Setup

Adaptivity is an activity that responds to changes in the
system and its requirements with altered protection
coordination through necessary control action and externally
generated signals [48]. When there is an alteration in fault
current level during a change in system condition or topology,
the adaptive protection scheme will update the necessary
settings of overcurrent protection. In this method,
programming can be done for the Overcurrent Relay (OCR)
for Automatic Setting Group (ASG) simulation. Switchgears
connected in a Microgrid (MG) can be controlled by operation
mode auto selection, appropriate protection, and control logic
restoration. Different faults (including a major 3-¢ fault) are
simulated at different system locations for calculating fault

current, operating time, and identifying relay pairs. Relay will
require real-time data from the Distribution System to perform
its allocated tasks. It collects locally measured data like 3-®
line currents from Current Transformers (CTs), details such as
Circuit Breaker (CB) status, and fault directions of other relays
through the communication network. The proposed protection
algorithm is shown in Figure 5. Pre-Installation Analysis like
Load Flow Analysis (using NR method) and Short Circuit
Analysis will be performed through ETAP Real Time
following IEC standards which helps in calculating and/or
setting required relay parameters like pickup current (Ipickup
considering safety margin) and Time Multiplier Setting (TMS)
for primary and secondary protection coordination considering
fault location and network operating mode (i.e., grid
connected or isolated).

Load Flow Analysis (NR) and Short Circuit
Analysis ad per IEC Standard using ETAP
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TDS) Reset

Change in Load
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Fig. 5 Proposed overcurrent protection algorithm
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The protection relay will do the re-calibration
automatically and reset relay parameters like Pickup Current
and Time Multiplier Setting (TMS). If there is any change in
system configuration or topology, data will be sent to the relay,
which will modify its parameters (Ipickup and TMS). Next, it
will detect whether a fault is present in the system or not. The
algorithm in the overcurrent relay follows Equation (1) with
values as per IEC 60255. The primary protection relay will be
actuated when fault current on the secondary side of the CT is
more than the pickup current, and a trip signal will be sent to
the respective circuit breaker to operate and isolate the faulty
part of the system. Greater pickup current is an indication of
“No Fault” or “Normal Condition”.

In case of failure of primary protection or if the fault is
still unclear, then secondary protection will be actuated.
Primary and Backup protections are coordinated so as to
maintain selectivity of the protection scheme with enough
delay time for the backup relay to actuate, known as
Coordinated Time Interval (CTI). CTI values can be taken
from Table 1.

After fault clearance, the relay reset itself back to the
initial condition. Coding for the algorithm shown in Figure 5
can be implemented in a Fuzzy Logic Controller (FLC) for use
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in real time. Protection coordination through Intelligent
Electronic Devices (IED) behaves adaptively with real-time
calculated settings using Supervisory Control and Data
Acquisition (SCADA) and Fuzzy Logic Designer (FLD)
application for Microgrid (MG) Central Controller. The
application requires a system model for Load Flow (LF)
calculation with measurement integration for the collection of
online data through a communication medium.

4.1. Simulation Setup

An industrial radial distribution network is considered for
this work. Preparation of system SLD, simulation of Load
Flow Analysis, Short Circuit Analysis, and Coordinated Time
Interval studies are performed through the Electrical Transient
Analyzer Program (ETAP) software.

Before doing data entry in ETAP for different
components like relays and switchgears, site verification of
these components and finalization of the master SLD is done.
A 9-bus radial distribution system, a part of an industrial
network, is mainly selected as a microgrid for this work. A
detailed analysis is performed on this system to get exact
values for protection coordination. The ETAP simulation
system for the selected 9-bus radial distribution system is
represented in Figure 6.
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Fig. 6 9-Bus industrial distribution network
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4.1.1. Load Flow Analysis (LFA) of 9-Bus Industrial System
Load flow analysis is an important tool for knowing the
steady-state behaviour of any industrial distribution network.
This study is done on a 9-bus industrial distribution network
(as shown in Figure 6) for assessing the impact of
decentralized power generation resources on load flow and its
implications on overcurrent protection coordination. The

Adaptive Newton Raphson (ANR) method is used for Load
Flow Analysis (LFA) through ETAP software. Different
Setting Group (SG) configurations considered for analysis are
presented in Table 2. Summary of Generation, Loading, and
Demand from Load Flow Analysis for different Setting Group
(SG) configurations is presented in Tables 3, 4, and 5,
respectively.

Table 2. Setting group configurations

SG No. Setting Group (SG) Configurations

1 PG* only
2 PG + 1 DPGR**
3 PG + 2 DPGR
4 Island + 1 DPGR
5 Island + 2 DPGR

* PG = Power Grid

** DPGR = Distributed Power Generation Resources

Table 3. Load flow analysis generation, loading, and demand summary for SG#1, 2, and 3
Description MW | MVar | MVA PF
Source (Swing Bus) | 2.952 | 1.929 | 3.526 | 0.83 Lag
Total Demand 2.952 | 1.929 | 3.526 | 0.83 Lag
Total Motor Load | 2.377 | 1.473 | 2.796 | 0.85 Lag
Total Static Load | 0.564 | 0.350 | 0.664 | 0.85 Lag

Table 4. Load flow analysis generation, loading, and demand summary for SG#4

Description MW MVar MVA PF
Source (Swing Bus) | 1.486 0.876 1.725 0.86 Lag
Total Demand 1.486 0.876 1.725 0.86 Lag
Total Motor Load 1.188 0.737 1.398 0.85 Lag
Total Static Load 0.297 0.184 0.349 0.85 Lag

Table 5. Load flow analysis generation, loading, and demand summary for SG#5

Description MW MVar MVA PF
Source (Swing Bus) | 2.973 1.799 3.475 0.85 Lag
Total Demand 2.973 1.799 3.475 0.85 Lag
Total Motor Load 2.377 1.473 2.796 0.85 Lag
Total Static Load 0.593 0.367 0.697 0.85 Lag

4.1.2. Short Circuit Analysis of 9-Bus Industrial System

An industrial distribution network is incorporating
decentralized power generation resources to enhance
reliability and sustainability, which complicates short-circuit
behaviour. This short circuit analysis is conducted to assess
fault levels and optimize overcurrent protection schemes.
Short Circuit Analysis (SCA) according to the IEC standard
for calculating short-circuit currents in three-phase AC power
systems (IEC 60909) for a selected 9-Bus industrial
distribution network is carried out, and reading for 3-¢ faults
is taken for setting relay parameters. The effects of Distributed
Power Generation Resources (DPGR) on the fault current
level are presented in Table 6. Short Circuit Analysis also
helps in knowing the effect of different types of faults on the
system fault current. Change in fault current demands
updation in relay parameters setting and also demands an
adaptive protection scheme that can adapt to system changes.

4.2. Simulation for Protection Coordination

For any Industrial Distribution Network, protection
coordination is very much critical to ensure reliability and
safety of equipment as well as the system.

Protection Coordination involves the design and strategic
adjustment of protection device parameters so that they can
operate in a coordinated manner, isolate faults, and minimize
disruptions to the power supply.

Key elements of any protection coordination are Time
Current Characteristics (TCC), Time Grading Margin (TGM),
or Coordinated Time Interval (CTI), and Device (Relay,
Fuses, Circuit Breaker) settings. In this article, a protection
coordination simulation study, Coordination Time Interval
(CTI) simulation with fault creation using the Star
Coordination module, is used in ETAP software.
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Fig. 8 Fault simulation relays operations report for setting group#3
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Relay response sequence of fault simulation and fault
simulation report of relay operations for Setting Group (SG)#3
are presented in Figure 7 and Figure 8, respectively. The IEC
Standard Inverse Curve is used for coordinating Overcurrent
Relays (OCR) in the 9-Bus Industrial Distribution Network
considered for this study. For each Setting Group (SG), relay
settings are reviewed for correct operating sequence and the
Time of operation (Top). Figure 9 presents the TCC curve of
fault simulation with Setting Group SG#3. Table 6 represents

the CT1 report summary with details like system fault currents
seen by relays and protection relay parameters like Pickup
Current and Time Dial Setting for different Setting Groups.
For analysis, fault location is considered to be on the Feeder
of Chiller 2. To ensure reliable operation of the system,
analysis is performed with different Setting Groups, Optimum
TCC curve, and relay pairs, which also helps in establishing
relay programming. From the analysis, relay R2F18 is found
to be common and important in all Setting Groups.

Table 6. CTI report and relay operating time (top) summary

SG Setting Group (SG) Relay System Fault Current Ipickup Time Dial T1 (Top)
No. Arrangement seen by Relays (kA) (Amp) Setting (TDS) (ms)
R16 7.828 0.98 0.1 0.227
1 PG Only R2F16 7.828 0.40 0.12 0.360
R1F16 7.828 0.98 0.15 0.446
R16 9.309 1.17 0.1 0.227
2 PG + 1 DPGR R2F16 9.309 0.55 0.12 0.385
R1F16 7.828 0.98 0.15 0.446
R16 10.885 1.37 0.1 0.227
3 R2F16 10.885 0.77 0.11 0.386
PG +2DPGR R1F16 7.828 0.86 0.15 0.421
R16 1.48 0.46 0.1 0.329
4 Island + 1 DPGR R2F16 1.48 0.16 0.12 0.540
DGR3 1.48 0.39 0.14 0.620
R16 3.057 0.46 0.1 0.242
5 Island + 2 DPGR R2F16 3.057 0.31 0.12 0.518
DGR3 3.057 0.77 0.14 0.604

5. OCR Functional Verification and Discussion

Integration of Distributed Power Generation Resources
(DPGRYs) into the Industrial Distribution Network has altered
the dynamics of the Overcurrent Protection scheme.

This article demonstrates that an Industrial Distribution
Network, if it relies on conventional protection, significant
disruptions might be encountered because of DPGRs.

i
[
2
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The article uses the simulation of a 9-Bus Industrial
Distribution Network through ETAP software for analyzing
the effect of DPGR on protection coordination with different
Setting Groups. Table 6 shows that the relay operating time
and system fault currents are different for various SGs. The
proposed Overcurrent Protection scheme that employs a Fuzzy
Logic Controller offers better performance against the
traditional protection approach.
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Fig. 1 Relay panel and omicron test kit isplay from Hardware In
Loop (HIL) test setup
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For Overcurrent (OC) functional verification, the SE-
P139 relay is used, where Setting Groups are programmed
with the help of pre-computed values of Pickup Current (Ip)
and Time Dial Setting (TDS) identified through fault
simulations and CTI settings, done through ETAP software,
respectively. Relay programming done through Easergy
Studio V9.3.1-SE also determines pairs of relays for Circuit
Breaker’s control actions. With the help of the Secondary
Injection method, existing Distribution Network (DN) panels
are set up for Hardware In Loop (HIL) tests (as shown in
Figure 10 and Figure 11). The relay test block was wired
appropriately, connected with the Omicron CPC 100 testing
kit, and relay control was established with the help of Ethernet.
Event activity log and summary are also downloaded for
analysis. After mitigating protection challenges, the scheme
presented in this article enhances network reliability.

6. Conclusion

Integration of Distributed Power Generation Resources
(DPGRS) in the Distribution Network (DN) has significantly
transferred conventional overcurrent protection strategies.
This article gives an overview of challenges imposed by
DPGRs, like variable fault current and dynamic network
configurations. The proposed overcurrent protection scheme
effectively addresses these challenges by enhancing fault
detection and system reliability. Protection Single Line
Diagram was adopted for the Industrial Distribution Network,
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