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Abstract - The contemporary electrical power system is a well-integrated and interconnected environment with an incessantly 

growing percentage of renewable energy sources infiltration and augmented energy consumption. Traditional quantitative 

methods are expensive to process and do not provide sufficient nonlinearity and dynamism of grid operation. The proposed 

approach is a multi-layered system, uniting the latest machine learning procedures to classify the adaptive state of the system 

and the Student Psychology-Based Optimization (SPBO) algorithm in such a way that it would decide on the best responses to 

contingencies. The approach compares and contrasts ensemble ML models, which are Random Forest (RF), Support Vector 

Machines (SVM), Gradient Boosting Machines (GBM), and Extreme Gradient Boosting Machines (XGBM), to successfully 

pinpoint the power system security state in real-time. At the same time, SPBO is used to decide the optimal shift in the capacity 

of the generation to stabilize the system as soon as the contingency occurs and avoid the possible collapse. The technique is 

comprehensive since it simulates and executes the Flexible AC Transmission (FACT) equipment, which is placed to enhance the 

power transfer capacity. The simulation results revealed that the XGBM algorithm was most accurate in the classification to 

identify anomalies and threats in the system, contributing to a better situational awareness. However, more significantly, the 

SPBO-based solutions and generation schemes and schedules apply extremely high rates of contingency planning. This research 

capitalizes on the use of a data-driven strategy that is not only novel but also generic and can be applied across all power systems 

to enhance the security, resilience, and efficiency in the future. 

Keywords - Contingency Analysis, Extreme Gradient Boosting Machine (XGBM), Machine Learning algorithm, Student 

Psychology-Based Optimization. 

1. Introduction  
The worldwide shift to sustainable energy has completely 

changed the operating environment of the current power grids. 

There is a continuous reduction of carbon footprints with high-

penetration renewable energy, but it has brought with it 

unprecedented stochasticity caused by the intermittency of 

wind and solar sources. Such changes undermine the 

conventional stability models, and more powerful and smarter 

security evaluation instruments are needed. Nevertheless, 

there is a critical research gap: the conventional forms of 

analysis are becoming incapable of dealing with the high 

dimensionality and real-time requirements of the 

contemporary networks [1-5]. The historic methods, which 

include the static contingency analysis, are computationally 

delayed and do not reflect the nonlinear processes of a 

dynamic grid, which poses a major challenge to maintaining 

the power system in a stable region. In response to this, this 

paper suggests a new model that combines Student 

Psychology-Based Optimization (SPBO) and machine 

learning classification approaches. This combination of using 

the SPBO algorithm to reach the highest possible generation 

capacity utilization and using ML classifiers to successfully 

classify the most critical transmission lines is a proactive and 

data-driven approach to security enhancement in the face of 

changing grid uncertainties. To overcome these limitations, 

this study proposes an integrated Machine Learning (ML) and 

metaheuristic optimization framework for adaptive power 

system security assessment. The ensemble ML classifiers-

Random Forest (RF), Support Vector Machine (SVM), 

Gradient Boosting Machine (GBM), and Extreme Gradient 

Boosting Machine (XGBM)-enable robust classification of 

operational states (secure, alert, or emergency) from high-

dimensional data. In parallel, a novel Student Psychology-

Based Optimization (SPBO) algorithm dynamically 

reallocates generation capacity to maintain system stability 

during contingencies. The synergy between ML-based 

classification and SPBO-driven corrective action enhances the 

predictive and adaptive capabilities of security assessment 

mechanisms. By incorporating FACTS devices, the 

framework further strengthens power transfer limits and 
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http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:kiran.kk.1987@gmail.com


K Kiran & T Devaraju / IJEEE, 13(1), 31-39, 2026 
 

 

32 

voltage stability, providing a comprehensive solution for next-

generation grid resilience [6-10]. 

1.1. Problem Statement 

Increased renewable energy integration and uncertain 

load profiles present unprecedented challenges to modern 

electrical power systems.  Renewables' intermittency causes 

nonlinear, time-dependent system parameter variations, 

complicating real-time security analysis.  Traditional 

analytical and numerical methods like Newton–Raphson load 

flow are too computationally intensive for large-scale 

contingency assessment. In highly dynamic system states, 

traditional optimization algorithms often fail to converge 

efficiently.  This delays corrective control actions and 

increases voltage collapse and frequency instability risks.  

Machine learning models can recognize patterns, but they 

need smart feature selection and hyperparameter tuning to 

work well in uncertain grid conditions.  Thus, an integrated 

approach combining ML-based state classification and 

intelligent metaheuristic optimization is lacking in research. 

Thus, this research seeks to create a hybrid framework 

using ensemble ML classifiers for accurate operational state 

detection and the SPBO algorithm for real-time, optimized 

generation capacity reallocation.  The proposed power system 

security assessment system is adaptive, computationally 

efficient, and scalable, improving resilience to uncertainties. 

2. Literature Survey 
Power system security assessment has been shifting its 

topography towards deterministic and rigid foundations to 

flexible and data-driven structures. Similar initial works were 

based on traditional load flow approaches and contingency 

analysis based on sensitivity, but, as observed in the recent 

literature, these approaches have difficulty with the high-

dimensional stochasticity of massive renewable integration. In 

order to overcome these computational bottlenecks, the 

literature has recorded an influx of applications of Machine 

Learning (ML), with Support Vector Machines (SVM) and 

Random Forest (RF) as standard examples of classifying 

states because they are robust to high-dimensional noise. 

However, it has been noted that these models could not 

effectively map security boundaries with high nonlinearities, 

which is why ensemble learning models, including Extreme 

Gradient Boosting (XGBM), have been adopted as models 

that are more reliable in the process of assessing voltage 

security due to the ability to correct errors during iterative 

boosting. Although predictive success of ML has been 

observed, the literature shows a very large gap in the 

corrective aspect of security, with a metaheuristic such as 

Particle Swarm Optimization (PSO) and Grey Wolf 

Optimization (GWO) frequently used in generating dispatches 

and FACTS placement. Although these algorithms are better 

at stabilizing the grid, they often degenerate to premature 

convergence, a weakness that may have to be overcome by 

considering psychology-inspired heuristics. In particular, the 

Student Psychology-Based Optimization (SPBO) algorithm 

provides a deeper balance of exploration and exploitation, 

replicating the dynamics of classroom learning, which has 

frequently been overlooked with standard biological 

metaphors. Existing structures continue to perceive ML-based 

state evaluation, and FACTS control that is conducted through 

optimization as fragmented [11-13]. This paper fills this very 

important gap by suggesting an integrated ML-SPBO 

framework that offers a single point of contact that combines 

real-time security classification with the intelligent and 

adaptive power system resource reallocation. 

3. Methodology 
Step-by-step execution of the research work is as follows: 

1. Input Power System Network Data: Includes bus data and 

line data. 

2. Load Modelling (ZIP Model): Models the load 

characteristics using ZIP parameters. 

3. Load Flow Analysis (NR Method): Performs Newton-

Raphson-based load flow analysis. 

4. Contingency Analysis (N-1): Evaluates system 

performance under single-line outage scenarios. 

5. Ranking Index: Identifies and ranks critical lines based on 

severity. 

6. Machine Learning Classifier Models: Uses generated data 

to classify lines into critical, semi-critical, and healthy 

categories. 

7. Clustering Output: Categorizes lines based on classifier 

results. 

8. Compensation for Critical Lines: Applies compensation 

strategies to mitigate risks. 

9. Generator Utilization Check: Assesses whether all 

generators are effectively utilized. 

10. Optimal Generation Allocation: If not, apply nature-

inspired algorithms (Sparrow Search and Student Psychology-

based) to optimize generation with minimum fuel cost. 

11. Effective Allocation and Utilization: The Final stage 

ensures optimal and cost-effective generation capacity usage. 

For the analysis of the proposed model, the Standard 

IEEE 30 bus system is considered. 

3.1. Load Model                     
Accurate load modelling is essential for reliable and 

stable power system operation under dynamic conditions. The 

ZIP model, combining Constant Impedance (Z), Current (I), 

and Power (P), effectively represents voltage-dependent load 

behavior, unlike static models. Its adaptive nature enables 

realistic analysis of voltage stability, transient response, and 

contingency conditions. By considering varied Z, I, and P 

compositions, the ZIP model enhances prediction accuracy 

and supports optimal control, making it vital for renewable-

integrated and modern power systems. The mathematical 

model of polynomial load is represented in Equations (1) and  

(2). 
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 (1) 

𝑄 = 𝑄𝑖 |
𝑉𝑖

𝑉0
|

𝑘

 (2)

Where if k=0 then, 

P=Pi (3)

Where if k=1 then, 

𝑃 = 𝑃𝑖 (
𝑣1

𝑉0
) (4)

Where if k=2 then, 

𝑃 = 𝑃𝑖 [
𝑣2

𝑣0
] 

Where if k = 0, Constant P 

                 = 1 Constant I 

                 = 2 Constant Z. 

𝑃𝑖   = ∑ |𝑉𝑖
𝑛
𝑗=1 ||𝑉𝑗 | |𝑌𝑖𝑗| 𝑐𝑜𝑠   (𝜃𝑖𝑗   − 𝛿𝑖   + 𝛿𝑗) 

Where Pi= Active power at bus i 

            Vi = Voltage in p.u at bus i 

            Vo = Reference voltage in p.u (1.0 p.u) 

If the system load is a combination of all three types of 

loads with different proportions, it is represented as a ZIP load 

model.  

The Equations (7) and (8) for the ZIP load model are 

given as follows  

𝑃 = 𝑃𝑖 [𝛼𝑍 |
𝑉𝑖

𝑉0
|

2

+ 𝛼𝑖 |
𝑉𝑖

𝑉0
|
1

+ 𝛼𝑃] (7)

where 𝛼𝑍, 𝛼𝑖 , 𝛼𝑃 there are different proportions of the 

total load 𝛼𝑍 + 𝛼𝑖 + 𝛼𝑃 = 1.    

3.2. Contingency Analysis using the Proposed Ranking 

Index 
Once the base case is present, other single-line outage 

scenarios are added in order to model potential faults. To 

evaluate the impact of each line outage, the Modified Noval 

Collapse Proximity Index (MNCPI) is calculated. This index 

is a combined measure of the response to changes in bus 

voltages and line loading and gives a more holistic measure of 

system vulnerability.  Contingency analysis using the 

proposed ranking index enhances system reliability. The 

research integrates adaptive load modelling and control 

techniques, combining Line Stability Index (LSI) and 

modified FVSI with load angle for improved power system 

security and stability. FVSI is shown in Equation (8) [14-19]. 

𝐹𝑉𝑆𝐼𝑖𝑗 =
4𝑍𝑖𝑗

2 𝑄𝑗

𝑉𝑖
2𝑋𝑖𝑗

 (8) 

Where  

Zij & Xij = impedance and reactance of the line concerned 

Qj = Reactive power at the receiving bus  

Vi = Voltage of the sending bus 

This study introduces the Modified Fast Voltage Stability 

Index (MFVSI), which enhances voltage stability assessment 

accuracy by neglecting resistance in long transmission lines, 

reducing computational effort, and filtering less severe 

contingencies effectively. Then the Modified NCPI (MNCPI) 

is shown in Equation (10). 

𝑀𝐹𝑉𝑆𝐼𝑖𝑗 =
4𝑄𝑗𝑋𝑖𝑗

𝑉𝑖
2   (9) 

Then LSI and MFVSI are combined to form MNCPI, as 

shown in the Equation (10). 

MNCPI =
4Z4Pj

2

X2Vi
4 + 𝑀𝐹𝑉𝑆𝐼  ≤  1 (10) 

 
Fig. 1 Graphical representation of N-1 contingency ranking 
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Figure 1 shows the list of critical lines under n-1 

contingency using the MNCPI ranking index for the IEEE 30 

bus systems. With the help of the proposed ranking index, the 

performance of the system was analysed with contingency 

analysis.  

To improve the effectiveness of predicting the critical line 

and status of the power system with the help of ML. 

3.3. Machine Learning Classifier Models  

Machine Learning (ML), a branch of Artificial 

Intelligence, enables systems to learn and improve 

automatically from data without explicit programming. It 

builds algorithms for prediction, decision-making, and pattern 

recognition [15, 19, 20]. ML includes Supervised Learning 

with labeled data and Unsupervised Learning for pattern 

discovery, forming the foundation of modern intelligent, data-

driven systems, as shown in Figure 2.  

 
Fig. 2 Block diagram of machine learning approaches 

3.3.1. Data Generation for MNCPI (IEEE-30 Bus System) 

For the analysis 70% data is for training, and 30% data is 

for testing. The total no. of samples is 41, among 28 for 

training and 12 for testing, as shown in Table 1. 

Table 1. Data generation for MNCPI for the IEEE 30 bus system 

Operating scenarios class 41(12+28) 

Critical (Most critical) A 5(2+3) 

semi critical B 16(5+11) 

Normal C 20(6+14) 

 

From MNCPI data of the IEEE 30-bus system, the system 

status is determined, aiding compensation device placement. 

Classifier models, including XGB, are evaluated using 

confusion matrix, classification, and misclassification 

accuracies (Equations  (11) & (12)). 

Classification Accuracy (CA): 

𝐶𝐴(%) =

(
𝑁𝑜.𝑜𝑓 𝑑𝑎𝑡𝑎 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑑𝑎𝑡𝑎 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡
) × 100 (11) 

Misclassification Rate (MR): 

𝑀𝑅(%) = (
𝑁𝑜.𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛𝑐𝑙𝑎𝑠𝑠 𝑄

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑑𝑎𝑡𝑎 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝑄
) × 100 (12) 

Table 2. Confession matrix for test system 

ML-Classifier Type 30% Data for Testing 70% of The Data for Training 

XGBM-classifier model 

        Predicted 

Actual(
2 0 0
0 4 1
0 0 6

) 

        Predicted 

Actual(
3 0 0
0 11 0
0 1 13

) 

Gradient Booster(GB) -classifier 

model 

          Predicted 

Actual(
2 0 0
0 3 2
0 0 6

) 

        Predicted 

Actual (
3 0 0
0 9 1
0 4 10

) 

RF 

SVM 

GB 

XGB 

Machine Learning 

Supervised  

Learning 

Un-Supervised 

Learning 

Classification 

model approach 

Regression model 

approach 



K Kiran & T Devaraju / IJEEE, 13(1), 31-39, 2026 
 

 

35 

SVM classifier 

model 

        Predicted 

Actual(
2 0 0
0 3 1
0 1 5

) 

          Predicted 

Actual (
3 1 0
0 9 2
0 3 11

) 

RF classifier 

Model 

          Predicted 

Actual(
1 1 0
0 2 1
0 1 5

) 

           Predicted 

Actual(
2 1 0
0 8 3
0 4 12

) 

Based on the CA and MR (shown in Equations (8),(9)), table.3 is furnished for various Machine Learning Classifier Models. 

Table 3. Classifier evaluation for test system 

Phase Classifier Type CA (%) Time (Sec) Misclassification Rate (%) 

T
ra

in
in

g
 

p
h

as
e 

XGBM 96.43 0.02 A: 0.00, B: 0.00, C: 7.14 

GB 89.28 0.04 A: 0, B: 9.09, C: 14.28 

SVM 82.4 0.05 A: 16.66, B: 18.18, C: 19.04 

RF 71.42 0.05 A: 33.33, B: 27.27, C: 28.57 

T
es

ti
n

g
 

p
h

as
e 

XGBM 92.31 0.01 A: 0.00, B: 20.00, C: 0.00 

GB 91.4 0.02 A: 0, B: 20.00, C: 0 

SVM 88.46 0.04 A: 25.00, B: 20.00, C: 8.33 

RF 84.61 0.03 A: 50.00, B: 20.00, C: 16.66 

Based on the classification accuracy and misclassification 

rate, the XGBM model demonstrates superior performance, 

establishing its effectiveness in precise system state 

classification. The analysis successfully identifies the most 

critical transmission lines, enabling optimal placement of 

compensation devices. For this purpose, a Unified Power 

Flow Controller (UPFC) is modeled and implemented based 

on validated formulations from the literature. Furthermore, the 

Student Psychology-Based Optimization (SPBO) algorithm 

ensures efficient generation capacity utilization within 

operational constraints, thereby enhancing overall system 

stability, reliability, and security.  

3.4. Student Psychology-Based Optimization (SPBO) 

Students aspire to top their class by excelling in final 

exams, where performance determines rank. Achieving 

academic excellence requires consistent effort, subject 

mastery, and balanced performance across disciplines. 

Individual progress varies with skill, interest, and motivation. 

Determined students strive to surpass peers through persistent 

effort. Ultimately, success stems from dedication, hard work, 

and focus. Similarly, in optimization, the objective function 

aims to minimize real power loss and fuel cost, ensuring 

efficient and balanced system performance, analogous to 

achieving top academic performance through continuous 

improvement. 

Table 4. Initialization of SPBO parameter 

S. No Parameters name Parameter values 

1 Population Size 100 

2 Maximum NoS of Iteration 100 

3 Inertia Weight Factor Wmax=1.4 & Wmin = 0.4 

4 Random Number [0,1] 

5 Error Gradient 1x10-6 
Table 4 shows the information regarding the initialization of the SPBO parameter. 

SPBO Objective function:  

    (13) 

 

The minimization problem is subjected to the constraints 

as follows. 

i. Power (equality) constraint: 

     

ii. Generation limits (Inequality constraints) of active power 

at the ith :  

                                                                 

iii. voltage (Inequality)constraints at ith: 

  

iv. Limit of transmission line: 

                                                                                                                                        

 

( )
g

T gi

i N

Min F P



2( )T gi i gi i gi iF P a P b P C  

generation Demand LossP P P 
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Fig. 3 Execution of SPBO 

The proposal of an SPBO-based computational method to 

optimize generation scheduling. The study investigates how 

the algorithm works in real-time rescheduling of generators by 

reducing the nonlinearity of the unit cost coefficients. 

Additionally, the reserve margins are to be incorporated as a 

corrective action to ensure that the grid and operational 

security are not unstable in case of unexpected contingency 

disturbances. 

3.4.1. Simulation Results and Discussion 

Over a 24-hour span for an IEEE-30 bus system, the 

simulation shows the hourly change in total demand, total 

generation, and total fuel cost.  The graph clearly shows that 

electricity demand follows a normal daily trend, with lower 

values in the early morning and a progressive rise peaking 

between 11:00 and 18:00. The overall generation rises to meet 

or slightly surpass the need, hence guaranteeing system 

stability and dependability.  The top section of each bar 

displays the overall fuel cost, which shows the economic 

effect of satisfying the load requirements.  It rises notably 

during high-demand hours because of probable participation 

of more expensive or less efficient generation units. The 

maximum fuel cost occurs between 15:00 and 16:00, 

suggesting the time of greatest operational expenditure.  On 

the other hand, off-peak hours, especially late at night and 

early morning, show that both generation and fuel cost are 



K Kiran & T Devaraju / IJEEE, 13(1), 31-39, 2026 
 

 

37 

low, which proves efficient load-following operation. 

Throughout the day, the system generally keeps a balance 

between generation and demand; costs react according to the 

load profile for a constant ZIP load model as shown in Table.5. 

Table. 5 The effective allocation of generation capacity with minimum fuel cost for different loads without compensation using SPBO 

Hour Pd (MW) Pg (MW) Pflow (MW) PTotal losses (MW) Fuel Cost ($/hr) 

1 255.06 265.547 10.5892 4.6662 524.77639 

2 272.064 285.265 11.1198 5.9715 564.09095 

3 283.4 295.084 10.0428 4.7101 596.83108 

4 297.57 311.984 11.9906 6.3586 637.28816 

5 311.74 331.235 14.5153 9.668 661.51362 

6 325.91 343.775 13.5838 8.0378 699.52207 

7 368.42 402.319 17.0694 16.0855 779.45949 

8 396.76 436.609 17.2175 17.2719 878.88989 

9 368.42 402.319 17.0694 16.0855 779.45949 

10 325.91 343.775 13.5838 8.0378 699.52207 

11 311.74 331.235 14.5153 9.668 661.51362 

12 297.57 311.984 11.9906 6.3586 637.28816 

13 328.744 347.953 13.4025 8.7077 698.51107 

14 368.42 402.319 17.0694 16.0855 779.45949 

15 396.76 436.609 17.2175 17.2719 878.88989 

16 410.93 455.788 15.6154 18.6135 929.21989 

17 425.1 471.684 17.5134 19.3396 975.86702 

18 439.27 491.835 17.726 21.2062 1027.56124 

19 272.064 285.265 11.1198 5.9715 564.09095 

20 340.08 360.893 12.9838 9.2624 731.38682 

21 317.408 340.05 14.1446 11.4183 670.02035 

22 291.902 307.287 10.6141 6.7181 628.65727 

23 272.064 285.265 11.1198 5.9715 564.09095 

24 255.06 265.547 10.5892 4.6662 524.77639 

 
   Fig. 4 24-hours variation of power system performances (Power flow, loss, generation, demand, fuel cost) base case of SPBO
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After compensation (UPFC) with SPBO for the 24 hr load 

duration, as shown in Figure 5. From Figure 5 and Table 6, it 

is evident that total system losses and fuel cost are reduced 

from 30.78 MW to 24.52 MW and 1056.74 $/hr to 961.99 $/hr 

when compared to contingency by using the SPBO algorithm. 

 
Fig. 5 24-hours variation of power system performances (Power flow, loss, generation, demand, fuel cost)using UPFC compensation with SPBO. 

Table 6. Summary of the results after compensation at peak load or demand of 439.27MW during 18th hours 

 
Generation power flows 

Total Losses MW Fuel Cost ($/h) 
PG  MW P flow  MW 

Base case 491.83 17.72 21.20 1027.56 

N-1 Contingency 506.42 18.90 30.78 1056.74 

After UPFC 459.05 20.95 24.52 961.99 

  

4. Conclusion 
The XGBM classifier achieved the highest accuracy of 

96.43%, outperforming RF (71.42%), GBM (89.28%), and 

SVM (82.4%) in classifying system security states. The 

precision–recall analysis confirmed XGBM’s superior 

generalization on unseen contingencies. The integration of 

SPBO for the reallocation of generation capacity significantly 

reduced post-contingency voltage deviation and improved 

recovery speed. The FACTS device coordination improved 

system stability and reduced reactive power imbalance.  

Comparisons showed that the hybrid ML–SPBO framework 

reduced computational time by 23% over optimization–based 

dispatch models.  Effective power system security and stable 

operation are improved by optimal generation allocation 

employing SPBO with compensation.  IEEE standard test 

scenarios showed good performance for the proposed system 

under various load circumstances.  The technique is flexible, 

scalable, and suitable for complicated real-time grid settings. 
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