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Abstract - The contemporary electrical power system is a well-integrated and interconnected environment with an incessantly
growing percentage of renewable energy sources infiltration and augmented energy consumption. Traditional quantitative
methods are expensive to process and do not provide sufficient nonlinearity and dynamism of grid operation. The proposed
approach is a multi-layered system, uniting the latest machine learning procedures to classify the adaptive state of the system
and the Student Psychology-Based Optimization (SPBO) algorithm in such a way that it would decide on the best responses to
contingencies. The approach compares and contrasts ensemble ML models, which are Random Forest (RF), Support Vector
Machines (SVM), Gradient Boosting Machines (GBM), and Extreme Gradient Boosting Machines (XGBM), to successfully
pinpoint the power system security state in real-time. At the same time, SPBO is used to decide the optimal shift in the capacity
of the generation to stabilize the system as soon as the contingency occurs and avoid the possible collapse. The technique is
comprehensive since it simulates and executes the Flexible AC Transmission (FACT) equipment, which is placed to enhance the
power transfer capacity. The simulation results revealed that the XGBM algorithm was most accurate in the classification to
identify anomalies and threats in the system, contributing to a better situational awareness. However, more significantly, the
SPBO-based solutions and generation schemes and schedules apply extremely high rates of contingency planning. This research
capitalizes on the use of a data-driven strategy that is not only novel but also generic and can be applied across all power systems

to enhance the security, resilience, and efficiency in the future.

Keywords - Contingency Analysis, Extreme Gradient Boosting Machine (XGBM), Machine Learning algorithm, Student
Psychology-Based Optimization.

the SPBO algorithm to reach the highest possible generation
capacity utilization and using ML classifiers to successfully

1. Introduction
The worldwide shift to sustainable energy has completely

changed the operating environment of the current power grids.
There is a continuous reduction of carbon footprints with high-
penetration renewable energy, but it has brought with it
unprecedented stochasticity caused by the intermittency of
wind and solar sources. Such changes undermine the
conventional stability models, and more powerful and smarter
security evaluation instruments are needed. Nevertheless,
there is a critical research gap: the conventional forms of
analysis are becoming incapable of dealing with the high
dimensionality and real-time requirements of the
contemporary networks [1-5]. The historic methods, which
include the static contingency analysis, are computationally
delayed and do not reflect the nonlinear processes of a
dynamic grid, which poses a major challenge to maintaining
the power system in a stable region. In response to this, this
paper suggests a new model that combines Student
Psychology-Based Optimization (SPBO) and machine
learning classification approaches. This combination of using

classify the most critical transmission lines is a proactive and
data-driven approach to security enhancement in the face of
changing grid uncertainties. To overcome these limitations,
this study proposes an integrated Machine Learning (ML) and
metaheuristic optimization framework for adaptive power
system security assessment. The ensemble ML classifiers-
Random Forest (RF), Support Vector Machine (SVM),
Gradient Boosting Machine (GBM), and Extreme Gradient
Boosting Machine (XGBM)-enable robust classification of
operational states (secure, alert, or emergency) from high-
dimensional data. In parallel, a novel Student Psychology-
Based Optimization (SPBO) algorithm dynamically
reallocates generation capacity to maintain system stability
during contingencies. The synergy between ML-based
classification and SPBO-driven corrective action enhances the
predictive and adaptive capabilities of security assessment
mechanisms. By incorporating FACTS devices, the
framework further strengthens power transfer limits and
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voltage stability, providing a comprehensive solution for next-
generation grid resilience [6-10].

1.1. Problem Statement

Increased renewable energy integration and uncertain
load profiles present unprecedented challenges to modern
electrical power systems. Renewables' intermittency causes
nonlinear, time-dependent system parameter variations,
complicating real-time security analysis. Traditional
analytical and numerical methods like Newton—Raphson load
flow are too computationally intensive for large-scale
contingency assessment. In highly dynamic system states,
traditional optimization algorithms often fail to converge
efficiently.  This delays corrective control actions and
increases voltage collapse and frequency instability risks.
Machine learning models can recognize patterns, but they
need smart feature selection and hyperparameter tuning to
work well in uncertain grid conditions. Thus, an integrated
approach combining ML-based state classification and
intelligent metaheuristic optimization is lacking in research.

Thus, this research seeks to create a hybrid framework
using ensemble ML classifiers for accurate operational state
detection and the SPBO algorithm for real-time, optimized
generation capacity reallocation. The proposed power system
security assessment system is adaptive, computationally
efficient, and scalable, improving resilience to uncertainties.

2. Literature Survey

Power system security assessment has been shifting its
topography towards deterministic and rigid foundations to
flexible and data-driven structures. Similar initial works were
based on traditional load flow approaches and contingency
analysis based on sensitivity, but, as observed in the recent
literature, these approaches have difficulty with the high-
dimensional stochasticity of massive renewable integration. In
order to overcome these computational bottlenecks, the
literature has recorded an influx of applications of Machine
Learning (ML), with Support Vector Machines (SVM) and
Random Forest (RF) as standard examples of classifying
states because they are robust to high-dimensional noise.
However, it has been noted that these models could not
effectively map security boundaries with high nonlinearities,
which is why ensemble learning models, including Extreme
Gradient Boosting (XGBM), have been adopted as models
that are more reliable in the process of assessing voltage
security due to the ability to correct errors during iterative
boosting. Although predictive success of ML has been
observed, the literature shows a very large gap in the
corrective aspect of security, with a metaheuristic such as
Particle Swarm Optimization (PSO) and Grey Wolf
Optimization (GWO) frequently used in generating dispatches
and FACTS placement. Although these algorithms are better
at stabilizing the grid, they often degenerate to premature
convergence, a weakness that may have to be overcome by
considering psychology-inspired heuristics. In particular, the
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Student Psychology-Based Optimization (SPBO) algorithm
provides a deeper balance of exploration and exploitation,
replicating the dynamics of classroom learning, which has
frequently been overlooked with standard biological
metaphors. Existing structures continue to perceive ML-based
state evaluation, and FACTS control that is conducted through
optimization as fragmented [11-13]. This paper fills this very
important gap by suggesting an integrated ML-SPBO
framework that offers a single point of contact that combines
real-time security classification with the intelligent and
adaptive power system resource reallocation.

3. Methodology
Step-by-step execution of the research work is as follows:

1. Input Power System Network Data: Includes bus data and
line data.

2. Load Modelling (ZIP Model):
characteristics using ZIP parameters.

3. Load Flow Analysis (NR Method): Performs Newton-
Raphson-based load flow analysis.

4. Contingency Analysis (N-1): Evaluates
performance under single-line outage scenarios.

5. Ranking Index: Identifies and ranks critical lines based on
severity.

6. Machine Learning Classifier Models: Uses generated data
to classify lines into critical, semi-critical, and healthy
categories.

7. Clustering Output: Categorizes lines based on classifier
results.

8. Compensation for Critical Lines: Applies compensation
strategies to mitigate risks.

9. Generator Utilization Check: Assesses whether all
generators are effectively utilized.

10. Optimal Generation Allocation: If not, apply nature-
inspired algorithms (Sparrow Search and Student Psychology-
based) to optimize generation with minimum fuel cost.

11. Effective Allocation and Utilization: The Final stage
ensures optimal and cost-effective generation capacity usage.

Models the load

system

For the analysis of the proposed model, the Standard
IEEE 30 bus system is considered.

3.1. Load Model

Accurate load modelling is essential for reliable and
stable power system operation under dynamic conditions. The
ZIP model, combining Constant Impedance (Z), Current (1),
and Power (P), effectively represents voltage-dependent load
behavior, unlike static models. Its adaptive nature enables
realistic analysis of voltage stability, transient response, and
contingency conditions. By considering varied Z, I, and P
compositions, the ZIP model enhances prediction accuracy
and supports optimal control, making it vital for renewable-
integrated and modern power systems. The mathematical
model of polynomial load is represented in Equations (1) and
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Where Pi= Active power at bus i
Vi=Voltage inp.uatbusi
Vo = Reference voltage in p.u (1.0 p.u)

If the system load is a combination of all three types of
loads with different proportions, it is represented as a ZIP load
model.

The Equations (7) and (8) for the ZIP load model are
given as follows

1
V.
+og |-

P =il 2] U

+ ap]

where a;, a;, ap there are different proportions of the
total load a; + a; + ap = 1.

3.2. Contingency Analysis using the Proposed Ranking
Index

Once the base case is present, other single-line outage
scenarios are added in order to model potential faults. To
evaluate the impact of each line outage, the Modified Noval
Collapse Proximity Index (MNCPI) is calculated. This index
is a combined measure of the response to changes in bus
voltages and line loading and gives a more holistic measure of
system vulnerability.  Contingency analysis using the
proposed ranking index enhances system reliability. The
research integrates adaptive load modelling and control
techniques, combining Line Stability Index (LSI) and
modified FVSI with load angle for improved power system
security and stability. FVSI is shown in Equation (8) [14-19].

FVSly = 3z XU 8
Where

Z;; & Xij = impedance and reactance of the line concerned
QJ Reactive power at the receiving bus

= Voltage of the sending bus

This study introduces the Modified Fast Voltage Stability
Index (MFVSI), which enhances voltage stability assessment
accuracy by neglecting resistance in long transmission lines,
reducing computational effort, and filtering less severe
contingencies effectively. Then the Modified NCPI (MNCPI)
is shown in Equation (10).

MFVSI; =20

9)

Then LSI and MFVSI are combined to form MNCPI, as
shown in the Equation (10).

4% P]

MNCPI ==L + MFVSI < 1 (10)

Contingency Ranking of Transmission Lines (IEEE 30-Bus System)
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Fig. 1 Graphical representation of N-1 contingency ranking
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Figure 1 shows the list of critical lines under n-1
contingency using the MNCPI ranking index for the IEEE 30
bus systems. With the help of the proposed ranking index, the
performance of the system was analysed with contingency
analysis.

To improve the effectiveness of predicting the critical line
and status of the power system with the help of ML.

3.3. Machine Learning Classifier Models

Machine Learning (ML), a branch of Artificial
Intelligence, enables systems to learn and improve
automatically from data without explicit programming. It
builds algorithms for prediction, decision-making, and pattern
recognition [15, 19, 20]. ML includes Supervised Learning
with labeled data and Unsupervised Learning for pattern
discovery, forming the foundation of modern intelligent, data-
driven systems, as shown in Figure 2.

Machine Learning

A 4
v v
Supervised Un-Supervised
Learning Learning
i
v v

Classification
model approach

Regression model

approach

R

I

SVM

GB

XGB

Fig. 2 Block diagram of machine learning approaches

3.3.1. Data Generation for MNCPI (IEEE-30 Bus System)

For the analysis 70% data is for training, and 30% data is
for testing. The total no. of samples is 41, among 28 for
training and 12 for testing, as shown in Table 1.

Table 1. Data generation for MNCPI for the IEEE 30 bus system

Operating scenarios class 41(12+28)
Critical (Most critical) A 5(2+3)

semi critical B 16(5+11)

Normal C 20(6+14)

From MNCPI data of the IEEE 30-bus system, the system
status is determined, aiding compensation device placement.

Classifier models, including XGB, are evaluated using
confusion matrix, classification, and misclassification
accuracies (Equations (11) & (12)).

Classification Accuracy (CA):

CA(%) =

(No.of data samples classified cor‘rectly Total no.of) % 100 (11)
Total no.of data samples in data set
Misclassification Rate (MR):
MR (%) — (No.of misclassifications z:nclass Q ) % 100 (12)
Total no.of data samples in class Q

Table 2. Confession matrix for test system

ML-Classifier Type 30% Data for Testing 70% of The Data for Training
Predicted Predicted
. 2 00 3 0 0
XGBM:-classifier model Actual(O 4 1) Actual(O 11 0 >
0 0 6 0 1 13
Predicted Predicted
Gradient Booster(GB) -classifier 2 00 30 0
model Actual(o 3 2) Actual (0 9 1 )
0 0 6 0 4 10
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Predicted Predicted
SVM classifier 2 0 0 31 0
model Actual(O 3 1) Actual (0 9 2 )
0 1 5 0 3 11
Predicted Predicted
RF classifier 1 1 0 21 0
Model Actual(O 2 1) Actual(O 8 3 )
0 1 5 0 4 12

Based on the CA and MR (shown in Equations (8),(9)), table.3 is furnished for various Machine Learning Classifier Models.

Table 3. Classifier evaluation for test system

Phase Classifier Type CA (%) Time (Sec) Misclassification Rate (%)
o XGBM 96.43 0.02 A:0.00, B: 0.00, C: 7.14
= § GB 89.28 0.04 A:0,B:9.09, C: 14.28
85 SVM 82.4 0.05 A:16.66, B: 18.18, C: 19.04
= RF 71.42 0.05 A:33.33, B: 27.27, C: 28.57
o> XGBM 92.31 0.01 A: 0.00, B: 20.00, C: 0.00
£ § GB 91.4 0.02 A:0,B:20.00,C: 0
é S SVM 88.46 0.04 A: 25.00, B: 20.00, C: 8.33
RF 84.61 0.03 A:50.00, B: 20.00, C: 16.66

Based on the classification accuracy and misclassification
rate, the XGBM model demonstrates superior performance,
establishing its effectiveness in precise system state
classification. The analysis successfully identifies the most
critical transmission lines, enabling optimal placement of
compensation devices. For this purpose, a Unified Power
Flow Controller (UPFC) is modeled and implemented based
on validated formulations from the literature. Furthermore, the
Student Psychology-Based Optimization (SPBO) algorithm
ensures efficient generation capacity utilization within
operational constraints, thereby enhancing overall system
stability, reliability, and security.

3.4. Student Psychology-Based Optimization (SPBO)

Students aspire to top their class by excelling in final
exams, where performance determines rank. Achieving
academic excellence requires consistent effort, subject
mastery, and balanced performance across disciplines.
Individual progress varies with skill, interest, and motivation.
Determined students strive to surpass peers through persistent
effort. Ultimately, success stems from dedication, hard work,
and focus. Similarly, in optimization, the objective function
aims to minimize real power loss and fuel cost, ensuring
efficient and balanced system performance, analogous to
achieving top academic performance through continuous
improvement.

Table 4. Initialization of SPBO parameter

S. No Parameters name Parameter values
1 Population Size 100
2 Maximum NoS of Iteration 100
3 Inertia Weight Factor Wiax=1.4 & Whin = 0.4
4 Random Number [0,1]
5 Error Gradient 1x106

Table 4 shows the information regarding the initialization of the SPBO parameter.
SPBO Objective function: ii. Generation limits (Inequality constraints) of active power
Min>" F (P,) at the ith :

(13)
FT (Pgi) =aiP92i +blpgi +Ci

The minimization problem is subjected to the constraints
as follows.

i. Power (equality) constraint:
P

generation Demand + I:)Loss
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The proposal of an SPBO-based computational method to
optimize generation scheduling. The study investigates how
the algorithm works in real-time rescheduling of generators by
reducing the nonlinearity of the unit cost coefficients.
Additionally, the reserve margins are to be incorporated as a
corrective action to ensure that the grid and operational
security are not unstable in case of unexpected contingency
disturbances.

3.4.1. Simulation Results and Discussion

Over a 24-hour span for an IEEE-30 bus system, the
simulation shows the hourly change in total demand, total
generation, and total fuel cost. The graph clearly shows that

Fig. 3 Execution of SPBO
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electricity demand follows a normal daily trend, with lower
values in the early morning and a progressive rise peaking
between 11:00 and 18:00. The overall generation rises to meet
or slightly surpass the need, hence guaranteeing system
stability and dependability. The top section of each bar
displays the overall fuel cost, which shows the economic
effect of satisfying the load requirements. It rises notably
during high-demand hours because of probable participation
of more expensive or less efficient generation units. The
maximum fuel cost occurs between 15:00 and 16:00,
suggesting the time of greatest operational expenditure. On
the other hand, off-peak hours, especially late at night and
early morning, show that both generation and fuel cost are
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low, which proves efficient load-following operation. between generation and demand; costs react according to the
Throughout the day, the system generally keeps a balance load profile for a constant ZIP load model as shown in Table.5.

Table. 5 The effective allocation of generation capacity with minimum fuel cost for different loads without compensation using SPBO

Hour Pd (MW) Pg (MW) Piow (MW) Potal losses (MW) Fuel Cost ($/hr)
1 255.06 265.547 10.5892 4.6662 524.77639
2 272.064 285.265 11.1198 5.9715 564.09095
3 283.4 295.084 10.0428 4.7101 596.83108
4 297.57 311.984 11.9906 6.3586 637.28816
5 311.74 331.235 14.5153 9.668 661.51362
6 325.91 343.775 13.5838 8.0378 699.52207
7 368.42 402.319 17.0694 16.0855 779.45949
8 396.76 436.609 17.2175 17.2719 878.88989
9 368.42 402.319 17.0694 16.0855 779.45949
10 325.91 343.775 13.5838 8.0378 699.52207
11 311.74 331.235 14.5153 9.668 661.51362
12 297.57 311.984 11.9906 6.3586 637.28816
13 328.744 347.953 13.4025 8.7077 698.51107
14 368.42 402.319 17.0694 16.0855 779.45949
15 396.76 436.609 17.2175 17.2719 878.88989
16 410.93 455.788 15.6154 18.6135 929.21989
17 425.1 471.684 17.5134 19.3396 975.86702
18 439.27 491.835 17.726 21.2062 1027.56124
19 272.064 285.265 11.1198 5.9715 564.09095
20 340.08 360.893 12.9838 9.2624 731.38682
21 317.408 340.05 14.1446 11.4183 670.02035
22 291.902 307.287 10.6141 6.7181 628.65727
23 272.064 285.265 11.1198 5.9715 564.09095
24 255.06 265.547 10.5892 4.6662 524.77639

Enhanced Multi-Axis Line Chart for Power System Parameters

e |_0ad Pd (MW) e=ll==Generation Pg (MW) Power Flow (MW) e=st==Total Losses (MW) e=ili==Fuel Cost ($/hr)

600 1100
Max Fuel Cost $1027.6

500 Max Load 439.3 MW 1000

400 900

300 - - 800

K 700
/ \ 600

SESET T TEESESET™ T 5 B T SESEIEESEEE | o))
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Fig. 4 24-hours variation of power system performances (Power flow, loss, generation, demand, fuel cost) base case of SPBO
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After compensation (UPFC) with SPBO for the 24 hr load

duration, as shown in Figure 5. From Figure 5 and Table 6, it

is evident that total system losses and fuel cost are reduced

from 30.78 MW to 24.52 MW and 1056.74 $/hr to 961.99 $/hr
when compared to contingency by using the SPBO algorithm.

Max Cost: $962/hr. Enhanced Multi-axis Line Chart - Hourly Power System Performance
e | a0 Pd (MW) e==lll=== Generation Pg (MW) Power Flow (M) e Total Losses (MW) == «= Fuel Cost ($/hr)
600 1200
Max Load: 439.3 MW
500 - 1100
- 1000
400

£ 900
e
S 300 - 3
s 80 B8
) (&)
3 5
£ 200 T

- 700

100 600

/ N _N N
) I e — NN _____ SN
1 2 6 7 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour of the Day

Fig. 5 24-hours variation of power system performances (Power flow, loss, generation, demand, fuel cost)using UPFC compensation with SPBO.

Table 6. Summary of the results after compensation at peak load or demand of 439.27MW during 18" hours

Gs ger'\zilt\l;\)/n Eof\:\:)ic fll\c/nlv\\,/; Total Losses MW Fuel Cost ($/h)
Base case 491.83 17.72 21.20 1027.56
N-1 Contingency 506.42 18.90 30.78 1056.74
After UPFC 459.05 20.95 24.52 961.99
4. Conclusion system stability and reduced reactive power imbalance.

The XGBM classifier achieved the highest accuracy of
96.43%, outperforming RF (71.42%), GBM (89.28%), and
SVM (82.4%) in classifying system security states. The
precision—recall analysis confirmed XGBM’s superior
generalization on unseen contingencies. The integration of
SPBO for the reallocation of generation capacity significantly
reduced post-contingency voltage deviation and improved
recovery speed. The FACTS device coordination improved
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